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THERMOELASTIC DAMPING IN AN AUXETIC
RECTANGULAR PLATE WITH THERMAL RELAXATION:

FORCED VIBRATIONS

BOGDAN T. MARUSZEWSKI, ANDRZEJ DRZEWIECKI,
ROMAN STAROSTA AND LILIANA RESTUCCIA

We analyze the forced vibrations of an auxetic rectangular thermoelastic plate. In contrast with the
existing classical studies, two important phenomena have been considered: thermoelastic damping and
second sound. In this way the presented model much better describes thermomechanical processes run-
ning in “negative” materials of finite extent.

1. Introduction

Thermoelastic interactions in classical continuous media of finite extent have been investigated by many
authors [Boley and Weiner 1960; Nowacki 1962; 1975; Noda et al. 2003]. However, the definite geometry
of a body can also be the origin of certain unusual phenomena that do not occur in infinite media. One
of these, among others, is so-called thermoelastic damping, which does not arise from eventual viscous
features of the body. The extra energy dissipation resulting from that phenomenon, not observed in a
pure elastic infinite medium, comes from an additional heat flux occurring in bodies of finite extent (in
the case of a plate the flux is normal to its limiting surfaces). The origin of that extra heat flux is a
specific deformation of the plate: if we consider a vibration process, for instance, the upper and lower
fibers are alternatively extended and compressed. Thus, any thermoelastic problem in a plate in bending
is 2D–3D (the latter because of the extra heat flux normal to the middle surface). Here nD stands for
“n-dimensional”. The first idea which pointed out one of the mechanisms of thermoelastic damping was
based on the stress heterogeneities which give rise to fluctuations of temperature [Zener 1937]. Zener
focused his attention on 1D bodies. While his theory has been successful in explaining the measurements
of internal friction in reeds and wires, it is incomplete in two respects:

(a) It is not consistent with the modern theory of thermoelasticity.

(b) It does not describe the thermoelastic behavior of bodies of arbitrary form, especially if coupling
occurs between different vibration modes.

The complete thermodynamical model of that phenomenon has been presented in [Alblas 1961; 1981].
There you can find the general theory of thermoelastic internal friction in 3D bodies of finite extent and
its application to thermoelastic damping during vibrations of beams of various cross-sections (1D–3D
problems) which proves its consistency. Following that model, in [Maruszewski 1992] damping during
vibrations of circular plates has been considered. Research on thermoelastic damping has continued for
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many years as the phenomenon plays an important role in many applications. However, all the men-
tioned considerations were based on the classical irreversible thermodynamics. Within that model, the
temperature distribution is described by the parabolic heat conduction equation [Bishop and Kinra 1993;
1994; Milligan and Kinra 1993; Kinra and Milligan 1994]. Since any physical signals propagate with
finite velocity it is much better to base the above considerations on extended irreversible thermodynamics
[Cattaneo 1958; Vernotte 1958; Chester 1963; Lebon 1982; Jou et al. 1988; Maruszewski 1988]. That
idea has been, for the first time, applied to describe thermoelastic damping with the effect of second
sound [Khisaeva and Ostoja-Starzewski 2006; Ignaczak and Ostoja-Starzewski 2010]. Such an approach
is crucial in researching micro, nano, and macroengineering problems [Lifshitz and Roukes 2000; Nayfeh
and Younis 2004; Vengallatore 2005; Prabhakar and Vengallatore 2008].

Fast technological development requires the use of unconventional materials with peculiar and unusual
properties. Special interest has been recently focused on “negative” materials, that is, materials with
negative Poisson’s ratio, negative compressibility, negative stiffness, negative heat expansion coefficient,
and the like [Almgren 1985; Lakes 1987; Wojciechowski 1989; Novikov and Wojciechowski 1999;
Poźniak et al. 2010; Kołat et al. 2010; 2011]. Those unconventional features strongly influence the
behavior of many mechanical structures, like bodies of finite extent, laminates, composite structures,
weaved structures, and other multiphase structures. In contrast to [Khisaeva and Ostoja-Starzewski 2006],
where the thermoelastic damping in a vibrating beam has been investigated with one relaxation time based
only on the hyperbolic heterogeneous heat equations, we have focused in this paper on an analysis of the
forced bending vibrations of an auxetic thermoelastic rectangular plate (a plate with negative Poisson’s
ratio) within coupled thermoelasticity. This research takes also into account thermoelastic damping and
the relaxation features of the thermal field (second sound). The obtained results have been compared to
those of the normal material of the plate and those without thermal relaxation.

2. Basic equations

Let us consider forced vibrations of a thermoelastic rectangular plate with 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b,
−h/2 ≤ x3 ≤ h/2, where h denotes the thickness, and a, b� h (see Section 4). Following [Nowacki
1975; Alblas 1981; Ignaczak and Ostoja-Starzewski 2010] the basic equations for such a plate consisting
of one relaxation time of the thermal field read

D0w,ααββ + ρhẅ+ 1
1−νT

MT,αα = p, (2-1)

θ,i i −
(
τ
∂

∂t
+ 1

)(ρcv
k
θ̇ +

m
k

T0ė
)
= 0. (2-2)

Here w = w(x1, x2, t) and θ = θ(x1, x2, x3, t) with ranges of variables 0≤ x1 ≤ a, 0≤ x2 ≤ b, −h/2≤
x3 ≤ h/2, and 0≤ t <∞, where α, β = 1, 2, i = 1, 2, 3, τ is the thermal relaxation time, ρ is the constant
plate density, and

D0 =
ET h3

12(1− ν2
T )
, m =

ETαT

1− 2νT
.

Taking into account (2-1) on the one hand and (2-2) and (2-5) below on the other, we see that the problem
is 2D–3D. The heat expansion coefficient is αT , k is the heat conductivity, and the moment MT due to
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the temperature distribution is given by

MT = αT ET

∫ h/2

−h/2
θ(x1, x2, x3, t)x3 dx3. (2-3)

The general form of the dilatation e for the thermoelastic plate is as follows:

e = 1−2ν
1−ν

(u,1+ v,2− x3w,αα)+αT
1+ν
1−ν

θ. (2-4)

T denotes the absolute temperature of the plate and θ is a small temperature variation coming from
reciprocal thermoelastic interactions (see (2-1) and (2-2)), so we assume that θ = T − T0, |θ/T0| � 1.
T0 is the constant reference temperature (see (2-9) and (2-10)) and cv is the specific heat, while u and
v denote displacements corresponding to the elongation of the middle surface and w is the deflection of
the plate. However, we confine ourselves to a simplified form of e in the sequel, i.e.,

e =−
1− 2ν
1− ν

x3w,αα, (2-5)

assuming that the contribution of the remaining terms in (2-4) can be neglected in the case considered,
of pure small bending (see [Khisaeva and Ostoja-Starzewski 2006]). Note that the coefficients ET (the
Young’s modulus) and νT (the Poisson’s ratio) are isothermal. The Poisson’s ratio ν in (2-4) and (2-5)
has an effective value dependent on the vibrational mode but does not much differ from νT [Alblas 1981].
So, we assume that ν = νT in the sequel. For the model of interactions taken in this paper we also assume
that changes in temperature come only from mechanical vibrations of the plate. The mass forces and
heat sources have been neglected.

To obtain an exact solution of the problem we have to pose proper boundary conditions for the set
(2-1) and (2-2), assuming that
• the plate is simply supported at all edges,
• the temperature at lateral surfaces T = T0, and
• at the upper and lower surfaces temperature changes result from alternate compression and extension

of the plate fibers; free heat exchange across those surfaces has been assumed.

Hence we have [Boley and Weiner 1960]

w(0, x2, t)= w(a, x2, t)= w(x1, 0, t)= w(x1, b, t)= 0, (2-6)

w,11+
1

D0(1− νT )
MT = 0, at x1 = 0, a, (2-7)

w,22+
1

D0(1− νT )
MT = 0, at x2 = 0, b, (2-8)

θ = 0, at x1 = 0, a, (2-9)

θ = 0, at x2 = 0, b, (2-10)

∂θ

∂x3
± η

(
τ
∂

∂t
+ 1

)
θ = 0, at x3 =±

h
2
, (2-11)

where η denotes the surface heat exchange coefficient.
From (2-3), (2-9), and (2-10) follows that MT = 0 at x1 = 0, a and x2 = 0, b.
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3. Forced vibrations

Since we are interested in the description of the forced vibrations of a rectangular plate accompanied by
thermoelastic damping, the general solutions of (2-1) and (2-2) with the boundary conditions (2-6)–(2-11)
are looked for in the forms

w(x1, x2, t)=
∞∑

m=1

∞∑
n=1

w00mn sin
(mπ

a
x1

)
sin
(nπ

b
x2

)
eiωt , (3-1)

θ(x1, x2, x3, t)=
∞∑

m=1

∞∑
n=1

θ00mn(x3) sin
(mπ

a
x1

)
sin
(nπ

b
x2

)
eiωt . (3-2)

These solutions concern the situation that our problem is 2D–3D, as was mentioned before.
For the plate vibrations having a forced character we assume that the upper surface x3 = h/2 is loaded

by (see (2-1))

p(x1, x2, t)=
∞∑

m=1

∞∑
n=1

p00mn sin
(mπ

a
x1

)
sin
(nπ

b
x2

)
eiωt . (3-3)

For the sake of simplicity we take into consideration only the first terms of expansions (3-1)–(3-3),
meaning in the sequel that w0011 = w00, θ0011 = θ00, and p0011 = p00, confining us to only one solution
for θ00(x3).

Making use now of (3-1)–(3-3) with (2-5) in (2-1) and (2-2), we arrive at the following result for
displacement w00:

w00 =
βB+ p̄00

ω2
0−ω

2
, (3-4)

where

p̄00 =
p00

ρh
, β =

αT ET H
(1− νT )ρh

, ω2
0 =

D0 H 2

ρh
, H =

π2

a2 +
π2

b2 , (3-5)

B =
∫ h/2

−h/2
x3θ00 dx3 = C

∫ h/2

−h/2
x3θ̃00 dx3 = C D.

On using (3-4) in (2-2) the equation for θ00(x3) (which gives the solution for temperature distribution
along the plate thickness within the third dimension) reads

∂2θ00

∂x2
3
− ε2θ00 = Cx3. (3-6)

Now, setting θ00=C θ̃00, the solution of (3-6) is possible (see [Alblas 1981]) with the help of the modified
condition (2-11) by the assumption that η =+∞, that is, (τ∂/∂t + 1)θ = 0 for 0≤ x1 ≤ a, 0≤ x2 ≤ b,
and 0≤ t <∞ at x3 =±h/2, and postulating that θ00(h/2)= θ00(−h/2)= 0:

θ̃00 =
−h exp

[ 1
2 (h− 2x3)ε

]
+ h exp

[ 1
2 (h+ 2x3)ε

]
+ 2x3− 2x3 exp(hε)

2ε2(−1+ exp(hε))
, (3-7)

where ε =
√

H + (iω− τω2)γ and γ = ρcv/k.
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Thus way we have, from (3-5) and (3-7),

D =−h
12+ h2ε2

− 6hε coth(hε/2)
12ε4 and C =

p̄00(iω− τω2)δ

ω2
0−ω

2−βδ(iω− τω2)D
, (3-8)

where
δ =

ETαT T0 H
k

1−2ν
1−2νT

. (3-9)

Therefore, the final solutions for the displacement amplitude w00 and temperature θ00 are

w00 =
p00

ω2
0−ω

2−βD(iω− τω2)
, θ00 = C θ̃00. (3-10)

4. Numerical results

Let us analyze the results obtained for a plate with the following thermomechanical properties:

ET = 1011 N
m2 , αT = 3× 10−6 K−1, ρ = 7860

kg
m3 , k = 58 J

smK
, cv = 460 J

kgK
, (4-1)

h = 0.005 m, a = 1 m, b = 1 m, T0 = 100 K, p00 = 1000 N/m2. (4-2)

The characteristic frequency, assuming a Poisson’s ratio νT = 0.3, reads ω0 = 106.5313 s−1. The first
eigenfrequency, as the root of the denominator of (3-10), is then ωR = 106.5324 s−1.

In Figure 1 we see that the resonance frequency for auxetics, ωR1, is lower than that for normal
materials, ωR2, and both amplitudes Re(w00) (top plot) and Im(w00) (bottom) are bigger for auxetics.
Moreover Re(w00) and Im(w00) are phase-shifted by 3

2 π for auxetics and π
2 for normal materials. How-

ever, much more interesting are the real and imaginary parts of the temperature distribution θ00 across
the thickness of the plate, because that distribution is the direct origin of the thermoelastic damping.

Figure 2, top, shows that the above temperature parts are phase shifted with each other and their
distributions are completely different across the thickness. We see that thermoelastic damping dominates
in the vicinity of the resonance frequency. Detailed depictions of the more spectacular situations indicated
in the figure are presented in 3D form in Figure 3. Figure 2, bottom, shows details of the two top panels
of Figure 2 around the first eigenfrequency ωR = ωR2.
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Figure 1. Bending displacement amplitudes w00 versus forcing frequency for νT = 0.3
(blue) and νT =−0.3 (red); τ = 10−10 s.
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Figure 2. Temperature distribution amplitudes across plate thickness versus forcing fre-
quency for νT = 0.3 and τ = 10−10 s; x3 = −0.001 m (red), x3 = −0.0005 m (green),
x3 = 0.0005 m (blue), and x3 = 0.0001 m (orange).

  
Figure 3. 3D presentation of real and imaginary parts of the temperature amplitude
distribution across the thickness.

We remark that the results presented in Figures 2 and 3 are qualitatively comparable to those shown
in [Khisaeva and Ostoja-Starzewski 2006].
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We still have to analyze how the auxeticity and the relaxation of the thermal field influence mechanical
bending and the amplitude distribution responsible for the thermoelastic damping temperature.

For greater legibility, Figures 4–7 show the amplitudes in limited ranges only, while the Poisson’s
ratios are shown in their full range. The amplitudes are actually represented by smooth functions, not
asymptotic ones. The amplitude distributions are symmetric with respect to ν = 0 only within the
mathematical range, not within the physical one. For the first eigenfrequency ω < 101.625 s−1 there is
no resonance in any normal and auxetic material. But for increasing ω if ω > 101.625 s−1 the resonance
peaks follow increasing values of |ν|. Beyond approximately ω = 120 s−1 the resonance occurs only for
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materials, for various Poisson’s ratios ν.
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Figure 7. Temperature amplitudes Im(w00), phase-shifted π/2 with respect to Re(θ00),
for different frequencies and various materials, and various Poisson’s ratios ν (continued
on next page).

auxetics. Numerical analysis has indicated that for arbitrarily large values of ω > 101.625 s−1 resonances
occur as the Poisson’s ratio ν approaches −1. In the “normal material” (ν > 0) sides of Figures 6 and 7
the character of the dependence temperature variations on the forcing frequency ω are also qualitatively
comparable to the similar character of results presented in [Khisaeva and Ostoja-Starzewski 2006]. Note
that the temperature distributions shown in Figures 6 and 7 have been calculated for fixed x3.
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Figure 8. Real and imaginary parts of the bending w00 versus the Poisson’s ratio for
different thermal relaxation times, with high frequency ω = 105 s−1. On the left, the
graph of Re(w00) remains essentially the same for τ = 10−10 s, τ = 10−8 s, τ = 10−6 s,
and τ = 5×10−6 s. On the right, τ = 10−8 s (blue), τ = 10−6 s (green), τ = 10−5 s (red),
and τ = 5× 10−6 s (orange).

Analysis of these figures shows that thermoelastic damping decreases for increasing frequencies and
comes from the thermoelastic damping occurring in the plate.

We see in Figure 8, left, that the mechanical vibrations described by the real part of the bending
amplitude w00 are practically independent of the thermal relaxation time τ ; its influence in that situation
is negligible. Moreover, we see that amplitudes are very small because the frequency ω is high.

But for the mechanical vibrations phase-shifted π/2, described by the imaginary part of the bending
amplitude w00, the situation is different (see Figure 8, right). Although those amplitudes are extremely
small, they depend on the thermal relaxation time τ and decrease if the Poisson’s ratio ν approaches −1.

A similar situation occurs qualitatively for the temperature distribution Re(θ00) (see Figure 9). This
conclusion is very important because the distribution of θ00= θ00(x3) forms the origin of the thermoelastic
damping. That damping increases for decreasing frequencies.

Comparison of Figures 8 and 9 shows that Im(w00) strongly depends on the Poisson’s ratio being
weakly dependent on the thermal relaxation time. But Im(θ00) is constant for various Poisson’s ratios
which are strongly dependent on the thermal relaxation time.

5. Conclusions

The detailed analysis of thermoelastic damping during forced vibrations of an auxetic rectangular plate
presented in this paper within the extended thermodynamical model shows that
• energy dissipation is lower in an auxetic material then in normal material,
• thermoelastic damping decreases if forcing frequency increases,
• unconventional behavior of materials occurs in the vicinity of the resonance frequency ωR , and
• only the imaginary parts of the bending and temperature amplitudes depend on the thermal relaxation

time.
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Figure 9. Real and imaginary parts of the temperature distribution θ00 versus the Pois-
son’s ratio for different thermal relaxation times, with high frequency ω = 105 s−1. On
the left, the graph of Re(θ00) remains essentially the same for τ = 10−10 s, τ = 10−8 s,
τ = 10−6 s, and τ = 5× 10−6 s. On the right, τ = 10−8 s (blue), τ = 10−6 s (green),
τ = 10−5 s (red), and τ = 5× 10−6 s (orange).

References

[Alblas 1961] J. B. Alblas, “On the general theory of thermo-elastic friction”, Appl. Sci. Res. A 10:1 (1961), 349–362.

[Alblas 1981] J. B. Alblas, “A note on the theory of thermoelastic damping”, J. Therm. Stresses 4:3–4 (1981), 333–355.

[Almgren 1985] R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio =−1”, J. Elasticity 15:4 (1985),
427–430.

[Bishop and Kinra 1993] J. E. Bishop and V. K. Kinra, “Thermoelastic damping of a laminated beam in flexure and extension”,
J. Reinf. Plast. Compos. 12:2 (1993), 210–226.

[Bishop and Kinra 1994] J. E. Bishop and V. K. Kinra, “Elastothermodynamic damping in composite materials”, Mech. Com-
pos. Mater. Struct. 1:1 (1994), 75–93.

[Boley and Weiner 1960] B. A. Boley and J. H. Weiner, Theory of thermal stresses, Wiley, New York, 1960.

[Cattaneo 1958] C. Cattaneo, “Sur une form de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée”,
C. R. Hebd. Séances Acad. Sci. 247 (1958), 431–433.

[Chester 1963] M. Chester, “Second sound in solids”, Phys. Rev. 131:5 (1963), 2013–2015.

[Ignaczak and Ostoja-Starzewski 2010] J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with finite wave speeds, Ox-
ford University Press, 2010.

[Jou et al. 1988] D. Jou, J. Casas-Vázquez, and G. Lebon, “Extended irreversible thermodynamics”, Rep. Prog. Phys. 51:8
(1988), 1105–1179.

[Khisaeva and Ostoja-Starzewski 2006] Z. F. Khisaeva and M. Ostoja-Starzewski, “Thermoelastic damping in nanomechanical
resonators with finite wave speeds”, J. Therm. Stresses 29:3 (2006), 201–216.

[Kinra and Milligan 1994] V. K. Kinra and K. B. Milligan, “A second-law analysis of thermoelastic damping”, J. Appl. Mech.
(ASME) 61:1 (1994), 71–76.

[Kołat et al. 2010] P. Kołat, B. T. Maruszewski, and K. W. Wojciechowski, “Solitary waves in auxetic plates”, J. Non-Cryst.
Solids 356:37–40 (2010), 2001–2009.

[Kołat et al. 2011] P. Kołat, B. T. Maruszewski, K. V. Tretiakov, and K. W. Wojciechowski, “Solitary waves in auxetic rods”,
Phys. Status Solidi B 248:1 (2011), 148–157.

[Lakes 1987] R. Lakes, “Foam structures with a negative Poisson’s ratio”, Science 235:4792 (1987), 1038–1040.

http://dx.doi.org/10.1007/BF00411929
http://dx.doi.org/10.1080/01495738108909973
http://dx.doi.org/10.1007/BF00042531
http://dx.doi.org/10.1177/073168449301200207
http://dx.doi.org/10.1080/10759419408945822
http://books.google.com/books?id=ANSn1_BUiLYC
http://gallica.bnf.fr/ark:/12148/bpt6k31993/f437.image.langEN
http://dx.doi.org/10.1103/PhysRev.131.2013
http://books.google.com/books?id=xq_24PpVFT4C
http://dx.doi.org/10.1088/0034-4885/51/8/002
http://dx.doi.org/10.1080/01495730500257490
http://dx.doi.org/10.1080/01495730500257490
http://dx.doi.org/10.1115/1.2901424
http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.002
http://dx.doi.org/10.1002/pssb.201083983
http://dx.doi.org/10.1126/science.235.4792.1038


THERMOELASTIC DAMPING IN AUXETIC RECTANGULAR PLATE WITH THERMAL RELAXATION 413

[Lebon 1982] G. Lebon, “A generalized theory of thermoelasticity”, J. Tech. Phys. 23 (1982), 37–46.

[Lifshitz and Roukes 2000] R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanomechanical systems”,
Phys. Rev. B 61:8 (2000), 5600–5609.

[Maruszewski 1988] B. T. Maruszewski, “Evolution equations of thermodiffusion in paramagnets”, Int. J. Eng. Sci. 26:11
(1988), 1217–1230.

[Maruszewski 1992] B. T. Maruszewski, “Nonlinear thermoelastic damping in a circular plate”, Z. Angew. Math. Mech. 72:4
(1992), T75–T78.

[Milligan and Kinra 1993] K. B. Milligan and V. K. Kinra, “On the thermoelastic damping of a one-dimensional inclusion in a
uniaxial bar”, Mech. Res. Commun. 20:2 (1993), 137–142.

[Nayfeh and Younis 2004] A. H. Nayfeh and M. I. Younis, “Modeling and simulations of thermoelastic damping in mi-
croplates”, J. Micromech. Microeng. 14:12 (2004), 1711–1717.

[Noda et al. 2003] N. Noda, R. B. Hetnarski, and Y. Tanigawa, Thermal stresses, 2nd ed., Taylor & Francis, New York, 2003.

[Novikov and Wojciechowski 1999] V. V. Novikov and K. W. Wojciechowski, “Negative Poisson’s coefficients of fractal struc-
tures”, Phys. Solid State 41:12 (1999), 1970–1975.

[Nowacki 1962] W. Nowacki, Thermoelasticity, Pergamon, Oxford, 1962.

[Nowacki 1975] W. Nowacki, Dynamic problems of thermoelasticity, Noordhoff, Leyden, 1975.
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