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PLANAR GRAINED STRUCTURES WITH
TRACTION-SMOOTHING INCLUSIONS: AN ELASTOSTATIC

NUMERICAL ANALYSIS FOR SHEAR AND TORSION

SHMUEL VIGDERGAUZ

The topical problem of optimizing the stress state in a bimaterial plate by proper shaping of the ma-
trix/inclusion interface is considered with respect to a recently advanced criterion of minimizing the
global variations of the contact stresses. Mathematically, the variations provide an integral-type as-
sessment of the local stresses which requires less computational effort than direct minimization of the
stress concentration factor. The proposed criterion can thus be easily incorporated in the numerical
optimization scheme previously proposed by the author for similar inverse problems. It consists of an
efficient complex-valued direct solver and an ordinary evolutionary search enhanced with an economi-
cal shape parametrization tool. The attendant problem of optimizing the effective shear moduli is also
solved for comparison purposes. Though methodologically the paper continues the previous works of
the author, the primary emphasis is now placed on developing a systematic optimization approach to
obtain comprehensive numerical results for nonbiaxial loadings. This setup is of special interest since
it differs drastically from the biaxial case, where the analytically known equistress interfaces serve as
an efficient benchmark for both theory and computations. Consequently, given the lack of structurally
specific analytical assessments, the simulations performed for a wide range of values of the governing
parameters provide detailed numerical insight into the chosen case. The elastic behavior of the optimal
square-symmetric structures with strongly contrasting well-ordered constituents is conveniently detailed
in a set of figures.

1. Introduction

An infinite plate with a regular lattice of perfectly bonded foreign inclusions is often employed as a simple
and efficient theoretical model to numerically simulate the linear elastic behavior of fibrous composites
with negligible end effects. The assumed periodicity permits a statistically correct assessment of real
materials with technologically inevitable small structural deviations in inclusions’ shapes, sizes, and loca-
tions within the lattice cells. Mathematically, the periodicity is incorporated either in the boundary condi-
tions on the cell sides (in FEM-like methods) or through quasiperiodic functions in the complex-variable
technique. Both approaches lead to equivalent boundary-value problems for determining the stress-strain
state of the cell which depend on the phases’ elastic moduli and volume fractions as well as on the
inclusion shape. In practical applications, the shape is much less important than the other factors and
hence may be additionally used for optimizing the structure’s elastic response to an applied static load.
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The corresponding optimization criteria are generally distinguished as either local (like the stress con-
centration) or integral (like the effective moduli (EMs), whose precise definition can be found elsewhere
(see, for example, [Milton 2002])). Due to their averaging nature, integral-type criteria are computa-
tionally more tractable for both perforated [Vigdergauz 2001] and bimaterial composites [Vigdergauz
2013].

While very helpful in structural engineering, the EMs provide no information on the local stresses
since they involve only cell averages of the elastic field. For this reason, even though the inclusion shape
results in an acceptable value of either EM, it may induce potentially damaging stress concentrations.

The direct localization and minimization of the stress peaks is hard to tackle numerically. Matters
can be simplified by relaxing the optimality criterion: instead of minimizing the stress peaks we propose
[Vigdergauz 2013] to minimize the variations of the traction stresses σnn(t) and σnθ (t) in the local
curvilinear coordinates t = (n, θ) along the interface L:

V [σnn] + V [σnθ ]
{L}
// min . (1-1)

Conforming with the theory of real-valued functions [Natanson 1955], the variations are defined through
the nonnegative discrete sums of absolute values of the differences of the stresses between each two
adjacent points on L:

V [σ(L)] = sup
n∑

i=0

|σ(ti+1)− σ(ti )| ≥ 0, {ti } ∈ L , (1-2)

where the supremum is taken over all possible partitions of L with an arbitrary system of points t0, t1, . . . , tn
ordered by a chosen direction of traversing. For a closed contour we require tn = t0. The abstract notation
σ stands here for either σnn or σnθ

The variations are an integral measure of how the function is everywhere close to uniformity; hence
(1-1) and (1-2)) provide the best possible tool to smooth the tractions.

Evidently, the V-functional is absolutely bounded below by zero. It is minimized over a set of closed
continuous shapes with neither self-intersections nor angles, which may only hinder the smoothing of
the tractions.

In contrast to the EM-related two-dimensional averaging of the stresses, the V-criterion is only one-
dimensional and would thus be expected to have better equalizing capability in numerical simulations.
On the theoretical side, this expectation is supported by the benchmark inequality [Natanson 1955],

V [σ ] ≥max(σ )−min(σ ) > 0, max(σ ) 6=min(σ ), (1-3)

which shows that V-minimization necessarily narrows the gap between the extrema of the function.
Similarly, the identity [Natanson 1955]

V [σ ] =
∫

L
|σ ′(t)| dt (1-4)

indicates the potential capability of the V-criterion to filter computationally induced noise (stress oscil-
lations) in points with large absolute values of the first derivative |σ ′(t)|. Both above-described features
do show up in the numerical simulations (see Section 5).
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Though the other pros and cons of the devised criterion are detailed in [Vigdergauz 2013], we sum-
marize them here again for completeness. The pros are as follows:

• The V-criterion is evidently attainable under very broad assumptions and regains equistressness,
whenever such exists.

• The contact stresses in (1-1) are mutual for both phases, thus simultaneously involving them in the
optimization process.

• The proposed integral-type assessment of the local stresses is more numerically stable than their
direct minimization, which often presents a nasty computational problem.

• The current V-criterion is intimately related to the V-minimization of the hoop stresses along
traction-free holes advanced and applied to perforated structures in [Vigdergauz 2012a; 2012b].
This allows for using the same numerical optimization scheme, as before, specifically adjusted for
the current purposes.

• Numerical results (Section 5) show that minimization of the variation of the stresses does effectively
smooth them. The strong filtering capability of the proposed V-criterion is critical for achieving our
ends.

The cons:

• The proposed criterion actually defines myriads of functions, all of which behave differently within
the same strictly positive minimum value of V . Though the numerical scheme stably identifies a
single and physically sensible solution (see Section 5), in the chosen examples this may not always
be the case.

• The question remains open as to how V-minimization affects the local criterion of the boundary
stresses maxima; in other words, whether both criteria are minimized in parallel or only at the ex-
pense of each other, with the lesser maximum inducing a more rigidity-favorable stress distribution.
Since the stress cell averages are fixed by a given external load (see (2-8) in the next section), the
latter case seems hardly to be expected, as also illustrated in Section 5. Nevertheless, a thorough
analysis is required in the future.

In the previous paper [Vigdergauz 2013], the V-criterion is numerically applied to identify the optimal
shapes for the square checkerboard arrangement of the inclusions and biaxial loading. This combination
allows us to assess the deviation of the inclusion shape from the analytical equistress optimum (see, for
instance, [Milton 2002]) under geometric bounds within a periodicity cell. When the shape evolution
with the increasing volume fraction c1 is unbounded, the equistress inclusions are known to exist at any
c1 < 1 with the following attaining the absolute minimum in (1-1):

σnn(t)= Const. 6= 0, σnθ (t)= 0, t ∈ L −→ V [σ ] = 0. (1-5)

In contrast, this paper focuses on shape V-optimization in an unbounded square lattice under shear or
torsion when the equistress inclusions cease to exist at all and the V-criterion remains perhaps the only
optimization measure of the local stresses. This distinction between the two problems is substantial
enough for studying the shear/torsion case in its own right with the aim of augmenting the numerical
application of the V-criterion.
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In order to numerically find the V-optimal shapes and related quantities, we employ the same solution
strategy which has been proven to be efficient in the closely related optimization problems [Vigdergauz
2012a; 2012b; 2013]. This includes an efficient complex-valued direct solver and a standard evolutionary
optimization algorithm enhanced with an economical shape parametrization tool.

Our contribution is thus in extending the V-criterion to shear and torsion loads and in obtaining a
variety of numerical results, which turn out to be drastically different from those for the biaxial case.
While the stress-smoothing concept is not yet fully validated, it provides a quantitative insight into the
optimal design of two-dimensional elastic structures.

The paper is organized as follows. For reader convenience, Section 2 summarizes the analytical
basics required for further development. In these terms, Section 3 formulates the optimization problem
and briefly sketches the applied numerical scheme. Section 4 verifies this scheme’s performance against
the available data in the literature. The results for the representative test cases within a wide range
of governing parameters are displayed and analyzed at length in Section 5. Finally, Section 6 gives
conclusions and discusses open issues.

2. Problem setup and cell governing equations

Geometrically, a two-dimensional grained regular structure with four-fold rotational symmetry is formed
by replicating a basic square cell along the axes of a complex Cartesian plane z = x + iy, with periods ω1

and ω2 = iω1, Imω1 and Reω2 both equal to zero, and area F =−iω1ω2. Let the cell contain only one
inclusion perfectly bonded with the matrix along the smooth interface L , let the cell and the inclusion
both be centered at the origin, and let the inclusion have at least the same square symmetry as the cell.
Under these conditions, the set 3 of admissible structures is completely defined by the inclusion shape:
3=3(L). We adopt the index j = 1, 2 to identify the inclusion and the matrix, respectively. The curve
L divides the cell domain S in two parts, S1 and S2 = S\S1, of the volume fractions c1 and c2 = 1− c1,
each occupied by its own homogeneous and isotropic linearly elastic phase, with planar bulk and shear
moduli K j and µ j , respectively.

For an applied static load, the inclusion-distorted stress tensor σ(z)= {σxx , σyy, σxy} at any point in
S is linearly given by the two Kolosov–Muskhelishvili (KM) potentials ϕ(z), and χ(z) [Muskhelishvili
1975], modified in [Vigdergauz 1999] for doubly periodic problems. They are sectionally holomorphic
functions [Gakhov 1966] in S:

ϕ(z)=
{
ϕ1(z), z ∈ S1,

ϕ2(z), z ∈ S2,
ψ(z)=

{
χ1(z), z ∈ S1,

χ2(z), z ∈ S2,
(2-1)

where the pairs (ϕ1(z), χ1(z)) and (ϕ2(z), χ2(z)) are analytic, respectively, in the subdomains S1 and S2

of constancy of the elastic moduli.
The stresses in either subdomain take then the form

Tr{σ(z)} = σxx(z)+ σyy(z)= 4 Reϕ′j (z), z ∈ S j + L , j = 1, 2, (2-2a)

Dev{σ(z)} = σyy(z)− σxx(z)= 2 Re[z̄ϕ′′j (z)+χ
′

j (z)− δ j,2φ
′(z)], (2-2b)

σxy(z)= Im[z̄ϕ′′(z)+ψ ′(z)+χ ′j (z)− δ j,2φ
′(z)] (2-2c)

φ′(z)= ζ0(z)ϕ′(z). (2-2d)
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Here δ j,2 is the Kronecker delta and ζ0(z) is the normalized quasiperiodic Weierstrass zeta function
[Abramowitz and Stegun 1965]:

ζ0(z)= (F/π)ζ(z), [ζ0(z)]m = ω̄l, l = 1, 2, (2-3)

which implicitly incorporates the cell-type specifics. The square brackets denote the quasiperiod of the
bracketed function, that is, the difference of its values at arbitrary congruent points: [ f (z)]l ≡ f (z +
ωl)− f (z), [z]l = ωl , l = 1, 2.

The KM matrix-related components ϕ2(z) and χ2(z) are also quasiperiodic and have the following
form [Vigdergauz 1999]:

ϕ2(z)= D1z+ D2ζ0(z)+ ξ(z), (2-4a)

χ2(z)= R1z+ R2ζ0(z)+ η(z), (2-4b)

where Dl and Rl , l= 1, 2, are unknown quasiperiods, [ϕ2(z)]l = D1ωl+D2ω̄l and [χ2(z)]l = R1ωl+R2ω̄l ,
l = 1, 2, and ξ(z) and η(z) are new doubly periodic functions.

Furthermore, the contact tractions P(t)= Px(t)+ i Py(t), t ∈ L , acting on either side of the interface in
the normal direction n= (n, θ), 0≤ θ = arg(t)≤ 2π , are obtained [Muskhelishvili 1975] by integrating
the tensor product σ(t)⊗n≡ σnn(t)+ iσnθ (t):

σ(z)⊗n= 2 Reϕ′j (t)+
dt̄
dt
[tϕ′′j (t)+χ

′

j (t)− δ j,2φ′(t)], (2-5)

over an arc γ ∈ L . From (2-2)–(2-5) we have (up to an additive constant)

P(t)=
∫
γ

(σnn(t)+ iσnτ (t)) dt = ϕ j (t)+ tϕ′j (z)+χ j (t)− δ j,2φ(t). (2-6)

Displacements un(t) and uθ (t) along γ are expressed through the same functions [Muskhelishvili 1975]:

2µ j [un(t)+ iuθ (t)] = λ jϕ j (t)− tϕ′j (z)−χ j (t)+ δ j,2φ(t), λ j = (3− ν j )/(1+ ν j ). (2-7)

Quasiperiods from (2-4) enter linearly into the stress averages 〈·〉 over the cell (see [Vigdergauz 1999]),
namely

〈Tr〉 = 〈σxx + σyy〉 = 4 Re(D1+ R2), (2-8a)

〈Dev〉 = 〈σxx − σyy〉 = 2 Re(D2+ R1), (2-8b)

〈σxy〉 = Im(D2− R1), (2-8c)

which are used in the periodic problems as a given external load. They may be conveniently combined
into the linearly independent trial loads:

〈Tr〉 = 1, 〈Dev〉 = 0, 〈σxy〉 = 0, bulk load, (2-9a)

〈Tr〉 = 0, 〈Dev〉 = 1, 〈σxy〉 = 0, shear, (2-9b)

〈Tr〉 = 0, 〈Dev〉 = 0, 〈σxy〉 = 1, torsion. (2-9c)
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For further use we also display the ϕ(z) series expansions

ϕ1(z)=
∞∑

k=1

d(k)1 zk, z ∈ S1+ L; ξ(z)=
∞∑

k=1

d(k)2 ζ
(k)
0 (z); ζ

(k)
0 (z)≡

dkζ0(z)
dzk ; (2-10)

converging for a rather smooth shape L . However, in computations they may cause spurious stress
oscillations which are effectively filtered by the V-criterion, whose smoothing capability counts strongly
in its favor.

Remark. Since the cell type completely resides in the Weierstrass zeta function and its derivatives, the
above-sketched analytical technique holds for a general parallelogram cell. However, as stated before,
we restrict ourselves to the square to reduce the computational size of the problem by employing high
rotational symmetry.

Indeed, under nonbiaxial loads (2-9b) and (2-9c) the KM potentials exhibit the following properties
when reflected over the x-axis (z→ z̄) or rotated through 90 degrees (z→ i z) about the origin:

ϕ(z̄)=±ϕ(z), ϕ(i z)=−iϕ(i z), χ(z̄)=±χ(z), χ(i z)= iχ(i z), z ∈ S, (2-11)

where the upper and lowers signs (when present) correspond to shear and torsion, respectively. As a
result, the coefficients {d1,2} partially vanish:

d(k)1,2 = 0 for k 6= 4l − 2, l = 1, 2, . . . , (2-12)

while the nonzero items are either real or pure imaginary:

Im d(4l−2)
1.2 = 0 for shear, Re d(4l−2)

1.2 = 0 for torsion, (2-13)

and, furthermore, in view of (2-2) and (2-5):

σnn(θ +π/4)=∓σnn(θ −π/4), σnθ (θ +π/4)=±σnθ (θ −π/4), (2-14a)

σ
(m)
θθ (θ +π/4)=∓σ

(m)
θθ (θ −π/4), σ

(i)
θθ (θ +π/4)=∓σ

(i)
θθ (θ −π/4). (2-14b)

With (2-11)–(2-13), the simulations can be performed only along the irreducible interval [0, π/4] of the
optimized square-symmetric interface.

The KM phase-related components are linked at the boundary L by the assumed continuity of the
tractions (2-6) and displacements: (2-7)

ϕ2(t)+ t̄ϕ′2(t)+χ2(t)−φ(t)= ϕ1(t)+ t̄ϕ′1(t)+ψ1(t), (2-15a)

µ12[λ2ϕ2(t)− (t̄)ϕ′2(t)−χ2(t)+φ(t)] = λ1ϕ1(t)− t̄ϕ′1(t)−ψ1(t), (2-15b)

µ12 = µ1/µ2, µ2 6= 0, t ∈ L .

Together with nonhomogeneous average loads (2-8), the boundary conditions (2-15) form the direct
elastostatic problem (DEP) in finding the local stress tensor (2-2) and all the related quantities through
the quasiperiodic KM potentials (2-4) in the form (2-10).
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In particular, after appropriately combining identities (2-15), the traction stresses in (2-6) are [Vigder-
gauz 2013]

(1−µ12)P ′(z)= (1−µ12)(σnn(t)+ iσnτ (t))= (λ1+ 1)ϕ′1(t)−µ12(λ2+ 1)ϕ′2(t), t ∈ L , (2-16)

and, furthermore, with the invariant (2-2a), the hoop stresses on either side of the interface takes the form

σ
( j)
θθ (t)= 4 Reϕ j (z)− σnn(t), t ∈ L , j = 1, 2. (2-17)

The analytical averaging of the local strain/stress field (2-2) while making use of (2-16) and (2-8) gives
[Vigdergauz 1999] the closed expressions for the inverses of all effective moduli of the composite. Sim-
ilarly to the stress averages (2-8), they linearly involve the quasiperiods D1 and D2 of ϕ2(z):

1
K ∗
=

1
K2
+ 4Aq, A = 4 Re D1− 1, q =

1
K2
+

1
µ2
, (2-18a)

1
µ∗1
=

1
µ2
+ 4B1q, B1 =−4 Re D2, (2-18b)

1
µ∗2
=

1
µ2
+ 4B2q, B2 = 2 Im D2, (2-18c)

taken from the DEP solutions at the corresponding trial loads (2-9). For an alternative derivation in
the case of perforated plates, see [Lukkassen et al. 2012]. The perturbation-like forms (2-18) are espe-
cially amenable to numerical evaluation, since all the structure-specific features completely reside in the
coefficients:

D1,2, R1,2 = D1,2, R1,2(K1, K2, µ1, µ2, c1, L). (2-19)

In particular, for perforated plates (K1, µ1 = 0) we have [Vigdergauz 1999]

D1,2, R1,2 = D1,2, R1,2(c1, L). (2-20)

For future use, we display at last the exact, structure-independent Hashin–Shtrikman (HS) bounds on the
effective shear moduli [Milton 2002]:

(c1µ
−1
1 + c2µ

−1
2 )−1

≤ µ∗1,2 ≤ c1µ1+ c2µ2−
c1c2(µ1−µ2)

2

c1µ2+ c2µ1+max{K1, K2}
. (2-21)

Though not attainable on piecewise homogeneous composites, they serve as a benchmark to assess µ∗1,2
(see Section 5).

3. Problem formulation and solution procedure

We are now in a position to accurately rephrase the problem (1-1) of minimizing variation of the traction
elastic stresses in complex-variable terms as follows.

Given the phases’ elastic moduli and the volume fractions of a two-dimensional thin-grained elastic
structure, to find the shape of a perfectly bonded foreign inclusion, which minimizes the contact stresses
variation for either shear or torsion loading, we have:

V [P ′(L)]
L∈3

// min(K1, K2, µ1, µ2, c1). (3-1)
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Maximization of either of the effective shear moduli,

µ∗1,2(L) L∈3
// max(K1, K2, µ1, µ2, c1), (3-2)

will also be studied in parallel with (3-1). In order to save computational effort, we additionally sup-
pose that the admissible set 3 contains no concave curves, which are most likely not promising for
optimization.

As already noted in Section 1, both problems have markedly different solutions with the attainable
µ∗-maxima falling rather short of the upper HS bound.

In light of these considerations, our objective is to quantitatively illustrate the described situation by
optimizing both criteria for a representative data set. In doing so, we intend to obtain the evolution of the
V-optimal solutions with increasing c1 and to compare them with their µ∗-optimal counterparts. Unlike
in the equistress case, here only a numerical solution of (3-1) and (3-2) is available.

The computational size of this shape optimization problem is halved by the relations derived in
Section 2, the loads (2-8), the boundary stresses (2-16) and (2-17), and the effective moduli (2-18),
are free from χ1(z) and from the doubly periodic part η(z) of χ2(z) in (2-4). Because of their analyticity,
both functions may also be eliminated from the boundary conditions (2-15) of the DEP [Vigdergauz
2013]. Actually, χ1(z) and η(z) are needed only to find the stresses strictly inside the phases, which is
outside of our current scope.

In the previous papers [Vigdergauz 2012a; 2013] we used this feature to develop a simple and fast com-
putational tool for stochastic shape optimization in two-dimensional elastostatics. The experience gained
from a series of applications provides strong grounds to believe that here it will do as well. Because the
tool is detailed in the above-mentioned articles, now we only briefly sketch its basic constituents for
convenient reference. They include: (A) an enhanced direct solver adapted specially for KM potentials,
(B) an economical shape encoding scheme, and (C) a standard genetic algorithm search for the optimum.

(A) By eliminating χ1(z) and η(z), the initial DEP is equivalently transformed into an infinite system
of linear algebraic equations in the quasiperiods D1, D2, R1, and R2, and the ϕ-coefficients {d1,2} from
(2-10). In numerical practice, the system is truncated at a finite size N with real entries. They come as
regular integrals over L with the integrands composed of the basic functions in (2-10) and their conjugates
and derivatives.

(B) Such integrals are commonly calculated using quadratures over a number of points along the discre-
tion path in the parameter space, the choice of which is important for the numerical efficiency of the
optimization as a whole. To this end, we propose to employ a finite-term conformal mapping of the
exterior of the unit circle γ onto the square-symmetric inclusion shape L [Ahlfors 1978]:

t =�(τ)= C
(
τ +

Q∑
q=1

a4q−3τ
−4q+3

)
, t ∈ L , τ = exp iθ ∈ γ, 0≤ θ ≤ 2π, (3-3)

which straightforwardly incorporates geometrical constraints [Vigdergauz 2012b]. Particularly, the as-
sumed shape convexity is explicitly enforced in the current terms as [Pólya and Szegő 1972]

Re
τ�′′(τ )

�′(τ )
>−1, τ ∈ γ. (3-4)
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An arbitrary multiplier C is used for scaling the shape to a given volume fraction c1 of the inclusion.
In fact, the proposed conformal-mapping parametrization replaces the initial searching space with its
(Q+ 1)-dimensional subspace, ordered in the sense that the higher coefficient a4q−2 is, the less impact
it has on the shape. This scheme dramatically reduces the running time and gives a better convergence
rate than the usual nodal representation. It also allows us to compute the boundary integrals through the
same set of points hm ∈ γ , m = 1, 2, . . . ,M , along the unit circle independently of the actual shape L .

(C) A gradientless genetic algorithm (GA) approach which employs the mapping coefficients {a4q−2} as
design variables bounded by the required mapping uniqueness [Ahlfors 1978], −(4q − 3)−1/2

≤ a4q−3 ≤

(4q − 3)−1/2. The growing popularity enjoyed by GAs is mostly due to their simplicity and practically
proven ability to find the global or near-global optimum in difficult high-dimensional problems, espe-
cially, where the search space is not well understood. Another strong GA feature is implementation
flexibility. In effect, only the shape-encoding procedure and the fitness-evaluation scheme specifically
configure the basic GA for a current purpose.

4. Numerical scheme verification

Before performing the simulations, the accuracy of the built-in deterministic solver of the KM potentials
needs to be estimated by comparing against available data from the literature.

A good example is the case of a square array of hard circular disks (K1 = 225, µ1 = 135) in a soft
matrix (K2 = 3 1

3 , µ2 = 1) whose effective shear moduli µ∗1,2 from (2-18) are computed in [Greengard
and Helsing 1998] with the highest accuracy by solving an integral equation of Sherman–Lauricella type
[Muskhelishvili 1975]. Comparison with our results (Table 1) shows remarkably good agreement almost
up to the percolation threshold c1 = π/4 ≈ 0.785398 . . . . The reason for this is that the circle has no
angular points which may not be exactly mapped by the finite-term approximation (3-3).

This is in contrast to, say, the exact FEM representation, actually used by [Berggren et al. 2001] to
compute the effective moduli of an elastic plate with a square lattice of square holes (µ1 = 0) for different

µ∗1 c1 = 0.3 c1 = 0.5 c1 = 0.78 c1 = 0.785
GH 1.9415606008 3.7984374034 33.0679995249 41.5392409243
Current 1.941560601 3.7984374034 33.06798462 41.52200211
Relative error 2.053× 10−11 3.488× 10−12 4.507× 10−7 4.150× 10−4

V-criterion 2.602 2.752 9.944 15.745

µ∗2 c1 = 0.3 c1 = 0.5 c1 = 0.78 c1 = 0.785
GH 1.5410983175 2.1743265379 14.6242590661 27.277092151
Current 1.541098318 2.174326538 14.62424051 27.05524626
Relative error −1.260× 10−11

−1.293× 10−12 1.269× 10−6 8.133× 10−3

V-criterion 1.849 1.719 5.701 14.656

Table 1. A square array of hard disks in a soft matrix: comparison of the µ∗1,2 values
obtained by different methods at different values of the inclusion volume fraction c1.
The corresponding V-criteria are also added for completeness. Data from [Greengard
and Helsing 1998] is labeled by GH.
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q 1 2 3
d4q−1 −0.159082817 1.4840715179× 10−2

−3.756551076× 10−3

q 4 5 6
d4q−1 1.355021822× 10−3

−4.465339808× 10−4 1.194202545× 10−4

Table 2. The side-straightening coefficients of the circle-to-square conformal mapping.

values of their volume fraction. Before reproducing these results with the current approach, we have to
find the mapping coefficients {d4q−1} from (3-3). In the current context, the most relevant way to do this
is again a genetic algorithm minimizing the V-criterion:

n∑
i=0

|Im(ti+1)− Im(ti )|
{dm}
// min, {ti } ∈ L , 0≤ arg(ti )≤ 45◦, (4-1)

at a given area of the square for nonconcave curves (3-4). The criterion (4-1) straightens the segment of
square-symmetric shape which corresponds to the right half of the square. The resultant coefficients for
Q = 6 and the V-optimal shape are given in Table 2 and Figure 1, respectively.

For clarity, it should be pointed out that the V-criteria (3-1) and (4-1) are divorced from each other.
The latter is a pure conformal approximation of an isolated given shape and hence does not include the
KM direct solver. It may find further use in similar situations.

Table 3 compares the FEM-obtained values of µ∗1-related constants (2-20) from [Berggren et al. 2001]
to their KM counterparts. Here the relative errors are several orders of magnitude worse than those for the
circle. This gap may not completely account for the rounded square corners as the FEM-related results
correspond to smaller values of µ∗1. Actually, it should be the reverse: they are found as the minimum of a
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Figure 1. The six-term equiarea mapping of a unit square. The maximum deviation,
δ ≈ 0.0283, occurs at the square’s vertex
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c1 = 0.1 c1 = 0.3 c1 = 0.5 c1 = 0.7 c1 = 0.9
BLMS 0.179394 0.563755 1.165734 2.519723 9.202034
Current 0.178934 0.561895 1.160867 2.508157 9.161075
Relative error 2.57× 10−3 3.299× 10−3 4.175× 10−3 4.590× 10−3 4.451× 10−3

Table 3. The c1-dependent constant R1(c1) from (2-20) for a square array of square
holes in a matrix. Values are shown for the FEM of [Berggren et al. 2001] (denoted
BLMS) and the KM solver.

variational problem [Berggren et al. 2001] and hence remain always larger than the exact values. In other
words, the FEM estimate seems too conservative, as noted by the authors themselves. This solver’s ac-
curacy is, however, acceptable for our purposes. Possibly excessive smoothing of angular points through
neglecting the high-order coefficients is counteracted by the integral nature of the V-criterion.

Furthermore, since probabilistic computations are nonexplicit and involve heuristic parameters, the
proposed GA-optimization approach should be carefully calibrated by multiple test runs on real data. The
proximity to the true extremum can be only estimated through the internal convergence of the results
for problem size parameters successively increasing from the initial values Q = 5÷ 7, N = 16÷ 48,
and M = 360, for varying c1. These choices for further computations are based on our experience
in the previous studies [Vigdergauz 2012a; 2012b; 2013]. In the current simulations the V-optimum
relative deviations induced by doubling each size remain typically less then 0.6%, providing an acceptable
compromise between accuracy and computational cost. For eliminating GA-related stochastic noise, all
output data were computed several times, randomly starting each optimization process and stopping the
evolution after a rather large number of iterations, when the fitness is deemed to converge.

5. Numerical results

The conducted GA simulations aim to numerically find the optimum, by (3-1) and (3-2), in the represen-
tative interval of the inclusion volume fraction c1 at given phases’ moduli. In order to make the results
more conclusive, we present, for comparison, four distinctive cases, namely the interchanged pairs of
soft inclusions/hard matrix and hard inclusion/soft matrix, each under either shear or torsion load. The
local moduli values are borrowed from [Greengard and Helsing 1998], as given in the previous section.
The graphed results show the c1-dependent evolution of the V- and µ∗1,2-optimal inclusion shapes, the
corresponding µ∗1,2(c1) values, and, finally, the stress distributions along the V-optimal interfaces. For
correct comparison we kept the same GA parameter values for all observations.

Figure 2 presents the computed V (c1)-optima for the chosen cases. It is of interest that the hard
inclusion demonstrates the decreasing dependence of V on c1. As we shall see below, this is primarily
due to narrowing the interval (1-3) between the extrema of the case-dominating tangential tractions σnθ

with increasing c1 rather than due to smoothing.
Figure 3 shows the µ∗1(c1) and µ∗2(c1) maxima against their V-optimal counterparts and those of the

circular inclusions, all within the HS bounds (2-21).
Essentially, even the µ∗1.2 maxima appear to be rather far from the upper HS bound. This is particularly

true of the second modulus µ∗2. Similar µ∗-optimization results have been obtained in [Vigdergauz
2001] for a more simple limiting case of a perforated structure (µ1 = 0). Furthermore, V-optimization
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Figure 3. The soft (top) and hard (bottom) inclusions, for the effective shear moduli
µ∗1(c1) and µ∗2(c1) (the dashed lines) within the HS bounds: optimum (1) and V-related
values (2). The moduli for the circular inclusion (3) are also added for comparison.

is performed at the sacrifice of substantially decreased shear effective moduli, especially for the hard
inclusion where the V-related modulus µ∗2 lies close to the HS lower bound. Moreover, in this case the
V-related effective shear moduli are significantly less than even those for the circle (Figure 3, bottom).
This is accounted for by affecting the V-performance of the inclusion shapes, as shown in Table 4. Since
in both cases the tractions are monotone functions of the angle θ in the irreducible interval [0, π/4] (see
Figure 6 on page 101), V-optimization acts here by drastically diminishing their tangential components at
the significant expense of much lower normal stresses, which enter into the criterion (1-2) with the same
weight. Conceivably, the case-dependent weights for either component might improve the numerical
sensitivity of the optimization scheme. This complication is, however, beyond the scope of this paper.



PLANAR GRAINED STRUCTURES WITH TRACTION-SMOOTHING INCLUSIONS 99

V µ∗2 max(σnn(θ)) max(σnθ (θ))

V-opt 0.801 4.342 0.373 0.634
Circle 1.205 6.654 0.190 1.544
Difference (%) 50.4 −53.2 49.0 −143.3

Table 4. The hard inclusion under torsion at c1 = 0.75: comparison of the numerically
obtained V-optimal values of Ke with those for the circular shape. The relative dif-
ference between each pair of counterparts with respect to the former is also added for
convenience. Conforming with the symmetry relations (5-1b), min(σnn)=min(σnθ )= 0.

Of special interest are the V and µ∗-optimal square-symmetric shapes compared in Figure 4 for dis-
crete values of c1. In all instances, the µ∗-optimal inclusion shapes tend, as expected, to form nearly
straight segments connecting distinct angular points. Their favorable role in maximizing the shear moduli
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was first numerically observed by Vigdergauz and Cherkayev [1986] and later analyzed in more depth
[Cherkaev et al. 1998] for the simplest case of an isolated hole in a shear-loaded infinite plane. On the
contrary, due to its smoothing nature, V-optimization rounds the inclusion shape. Furthermore, at any c1,
the µ∗1 and µ∗2-optimal soft inclusions differ from each other by rotation about the origin through 45◦ as
caused by the different principal directions of the shear and torsion trial loads. For the µ∗-optimal holes
this fact was indicated in [Vigdergauz 2001].

The µ∗1-optimal hard inclusion behaves more complicatedly than the soft. It experiences a sudden
rotation by 45◦ when evolving through the interval c1 ∈ [0.4550; 0.4555] (see the top right graph in
Figure 4). This puzzling observation should be verified independently by other methods.

Finally, Figures 5 and 6 illustrate the angular distribution of the tractions and the induced hoop stresses
along the irreducible part 0 ≤ θ ≤ 45◦ of the V-optimal interface. The symmetry relations (2-14) give
the following locations of the distributions’ zeros:
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Figure 6. The boundary stresses for the V-optimal hard inclusion under shear and tor-
sion (the dashed lines) with change in the inclusion volume fraction c1: the normal
contact traction (top left), tangential contact traction (top right), matrix-side hoop stress
(bottom left), and inclusion-side hoop stress (bottom right). Data for the circular hole at
c1 = 0.75 under torsion are also added for comparison.

σnn(π/4)= σnθ (0)= σ
(m)
θθ (π/4)= σ

(i)
θθ (π/4)= 0 for shear, (5-1a)

σnn(0)= σnθ (π/4)= σ
(m)
θθ (0)= σ

(i)
θθ (0)= 0 for torsion. (5-1b)

It should be borne in mind that the angle θ = arctan(y/x) : t = x + iy ∈ L is measured in the physical
plane rather than around the auxiliary unit circle γ . From these figures, one sees that none of the patterns
show high-frequency oscillations. This is also true for the hoop stresses σθθ (θ), which are not involved
explicitly in the V-smoothing process.

In most cases, the boundary stresses are monotonic functions of the angle θ . The only exceptions are
provided by the torsion for all stresses around the soft inclusion at c1 = 0.75 and for the hard inclusion-
side hoop stresses at any c1. Curiously the extremal values of the normal and tangential tractions around
the hard inclusion under torsion and shear, respectively, decrease with increasing c1 (see Figure 6). Both
features are not V-specific since they also take place for the circle (not shown for better visibility).
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6. Summary and future applications

The numerical V-optimization of the interface tractions is now extended to planar grained structures
under shear and torsion loads. As explained in Section 1, this loading case merits separate attention. The
results obtained attest to the general applicability of the proposed V-criterion. Computationally, they are
rather accurate, marking a sharp contrast with the biaxial mode, where the equistress principle permits
one to simultaneously saturate the structurally independent HS upper K ∗ bound and the V-optimum by
the same inclusions shapes. For clarity, we summarize the basic distinctions as follows.

• The V and µ∗-optimal inclusions significantly differ from each other in their shapes and orienta-
tions. The degree of dissimilarity depends on all the parameters involved: the load type, the relative
inclusion rigidity, and its volume fraction.

• As a result, the corresponding shear moduli appear to be rather different, with the maximum being
far from the upper HS bound. For bimaterial grained structures its unattainability was first proved
by Allaire and Aubry [1999], if not earlier. Now some nontrivial quantitative characteristics of this
phenomenon are also provided.

• Finally, the above-noted (see Section 5) dramatic rotation of the µ∗1-optimal hard inclusion in passing
the point c1 ≈ 0.45525 is well worth a further look and independent corroboration.

These observations stimulate similar investigations for V-optimal structures with badly ordered phases
or with macroisotropy. In the latter case, it is of special interest to compare the numerical results with
the corresponding phase-interchange analytical relations deduced by Gibiansky and Torquato [1996]. We
hope to pursue both issues in further publications. It would also be interesting to study the V-criterion’s
performance for the weighted sums in (1-1), as mentioned in Section 5. Due to the lack of analytical
results, it would be prudent here to use a straightforward, numerical trial-and-error approach.
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