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ORIGIN AND EFFECT OF NONLOCALITY IN A COMPOSITE

STEWART A. SILLING

A simple demonstration of nonlocality in a heterogeneous material is presented. By analysis of the
microscale deformation of a two-component layered medium, it is shown that nonlocal interactions nec-
essarily appear in a homogenized model of the system. Explicit expressions for the nonlocal forces are
determined. The way these nonlocal forces appear in various nonlocal elasticity theories is derived. The
length scales that emerge involve the constituent material properties as well as their geometrical dimen-
sions. A peridynamic material model for the smoothed displacement field is derived. It is demonstrated
by comparison with experimental data that the incorporation of nonlocality in modeling improves the
prediction of the stress concentration in an open-hole tension test on a composite plate.

1. Introduction

In typical engineering analysis, the elastic response of a heterogeneous material is treated by applying the
classical solid mechanics equations with smoothed (often called “homogenized” or “effective”) material
properties. These properties can be thought of as those that would be measured using a laboratory
test specimen much larger than any internal length scale in the material. For example, we perform an
unconfined compression test on a sample of concrete about 15 cm in diameter and measure the total
force as a function of displacement at the ends. We divide the relative displacement at the ends by the
specimen length and call the result the “strain”. We divide the force by the cross-sectional area and call
the result the “stress”. The ratio of stress to strain is defined to be the Young’s modulus of the material,
which is then treated as homogeneous for purposes of finite element modeling of a structure.

This approximation is adequate for many applications. However, it ignores the reality of how a load
applied on the surface of a concrete body is transmitted internally. Concrete is a heterogeneous material.
It consists of small rocks (aggregate) of length scale about 2 cm held together by a weaker material
(cement or paste). Since the aggregate inclusions may be in contact with each other, or nearly so, the
actual force distribution within the material follows a tortuous path through the aggregate particles and
their points of contact. This results in a quantitative and qualitative disparity between the local equations
of solid mechanics theory using smoothed material properties and the way the material really behaves.
Nonlocality in a random medium such as concrete has been treated in a number of references, for example
[Willis 1985; Drugan and Willis 1996; Drugan 2003].

In the early 1980s, Bažant pioneered the application of nonlocal modeling to materials with damage.
He demonstrated by a simple example that nonlocality is a necessary property of the elastic response
in a material containing distributed defects [Bažant 1991]. In the same general spirit, the present paper
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derives nonlocal interactions that are implied by the use of a smoothed displacement field to model a
heterogeneous microstructure. Unlike Bažant’s analysis, the discussion here omits cracks and damage,
and treats only the elastic response of the composite.

Nonlocality also arises in the study of plasticity, in which the finite sizes of dislocations and the
distances between them interacts with the geometry of the system, as in the formation of geometrically
necessary dislocations. Strain gradient models of plasticity, which incorporate a kind of weak nonlocal-
ity, have been developed to model such effects [Fleck et al. 1994; Bassani et al. 2000]. Much of the
nonlocal literature concerns nonlocal operations on a damage variable, particularly its beneficial effects
in reducing mesh dependence in numerical modeling [Bažant 1991; de Borst et al. 1995; Geers et al.
1999; Germain et al. 2007]. In a heterogeneous elastic material with a periodic microstructure, it has
also long been recognized that nonlocal interactions may arise as a result of homogenization [Beran and
McCoy 1970a; 1970b; Gambin and Kröner 1989; Boutin 1996; Bellieud and Bouchitté 1998; Fish et al.
2002; Cherednichenko et al. 2006; Chakraborty 2007]. Ben-Amoz [1975; 1976] and Ardiç, Santare, and
Chou [Ardiç et al. 1989] incorporated aspects of nonlocality in models of composite material elasticity.

A large body of literature on nonlocal elasticity, much of which is highly mathematical, has been
developed over the past five decades. In spite of this, nonlocal models are generally not adopted in the
computational and analytical methods that engineers commonly use for applications. A typical analyst
simply does not see why there should be nonlocal forces in a material at any scale above the molecular.
Casual observers may conclude that, in spite of any benefits in regularizing finite element simulations, and
regardless of compelling evidence from mathematical proofs, nonlocal models are not justified physically.

What apparently has been lacking in the nonlocal literature is a convincing mechanical picture of
nonlocal interactions. In the present work, we consider how nonlocality arises in a specific, relatively
simple heterogeneous system, based only on simple mechanical concepts. The micromechanical model
uses only the standard equations of solid mechanics, yet it is shown that nonlocality appears in the
global model derived from it. It is demonstrated that nonlocality arises from the decision to model the
composite in terms of a smoothed displacement field, rather than arising from direct physical interactions
across a finite distance. The nonlocal interaction forces can be included in the displacement equations of
motion in various nonlocal theories. This example also permits us to compute how mesoscale geometrical
dimensions combine with material properties to determine the length scale that applies in the nonlocal
model.

2. Microscale model of a composite

Consider a composite material composed of alternating layers of stiff (s) and compliant (c) materials
(Figure 1). The two constituent materials have the same density. The layers have thickness 2hs and 2hc.
Let Es and Ec denote the Young’s moduli and µs and µc the shear moduli of the materials. It is assumed
that

Es � Ec, µs � µc.

Only the displacements us and uc in the x-direction, that is, parallel to the layers, appear in the following
approximate analysis.

The following analysis is based on a “shear-lag” model of the transfer of forces between the materials
[Nairn 1997]. It is assumed that because of the disparity in elastic constants, us is independent of y. The
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Figure 1. Composite composed of alternating stiff and compliant layers.

following ansatz is adopted: in the compliant material, a displacement field of the form

uc(x, y)= us(x)+ (h2
c − y2)w(x) (2-1)

is assumed, where w is a continuous function and y = 0 is located at the midplane of a typical compliant
layer (Figure 2). The shear traction on either surface of any compliant layer is found from

τ(x)= µc
∂uc

∂y
(x,−hc)= 2µchcw(x). (2-2)

In the absence of body forces, a force balance on the cross-section of a stiff layer yields

hsσ
′

s(x)+ τ(x)= 0, (2-3)

where σs is the normal stress and a prime denotes d/dx . Using (2-2), (2-3), and the Hooke’s law expres-
sion

σs = Esu′s,

the force balance on the stiff layers may be rewritten as

Eshsu′′s (x)+ 2µchcw(x)= 0. (2-4)

Compliant 

Stiff 

tDÖ  

tDæ 

T 

U 

Qæ T  

QÖ Tá U  

Figure 2. Axial displacement fields in the composite layers.
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3. Equilibrium of a smoothed displacement field

Define the smoothed (homogenized) displacement field to be the average at any x over a cross-section
through the layers:

ū(x)=
1

hs + hc

[
hsus(x)+

∫ hc

0
uc(x, y) dy

]
.

Using (2-1), this evaluates to
ū(x)= us(x)+αw(x), (3-1)

where

α =
2h3

c

3(hs + hc)
. (3-2)

Using (3-1) and (3-2), we remove us from the force balance (2-4) and obtain

ū′′(x)= αw′′(x)−
2µchc

Eshs
w(x). (3-3)

Our immediate objective is to analyze the forces in the composite for a prescribed ū function. If ū is
prescribed, then (3-3) is a nonhomogeneous second-order linear ordinary differential equation (ODE) for
w. The homogeneous part of the solution to this ODE (that is, for ū either constant or a linear function
of x) is

wh(x)= Aeλx
+ Be−λx ,

where

λ=

√
2µchc

αEshs
=

√
3µc(hs + hc)

Eshsh2
c

, (3-4)

and where A and B are arbitrary constants.
Of particular interest is the choice of prescribed ū′′ given by

ū′′(x)=1(x), (3-5)

where 1 is the Dirac delta function. Kinematically, this choice means that the homogenized strain field
ū′ is given by the Heaviside step function

ū′(x)= H(x)

(see Figure 3). For this choice, the solution, denoted −G, to the ODE (3-3) is

w(x)=−G(x), G(x)= ke−λ|x |, (3-6)

where
k = 1

2αλ
. (3-7)

The easiest way to confirm that (3-6) and (3-7) provide a solution to (3-3) and (3-5) is to observe that by
integrating (3-3) from 0− to 0+, the jump in ū′ at the origin is given by

[ū′] = α[w′] −
2µchc

Eshs

∫ 0+

0−
w(x) dx . (3-8)
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Figure 3. Strain fields in the stiff and compliant layers resulting from a prescribed
smoothed displacement field in which there is a jump in strain at x = 0.

By (3-6), w is bounded (as well as continuous) everywhere, so the last term vanishes. Differentiation of
w yields

w′(x)= kλ(2H(x)− 1)e−λ|x |.

Evidently this implies [w′] = 2kλ. So, using (3-7), the jump condition (3-8) is satisfied.
Because the ODE (3-3) is linear, and because of the properties of the Dirac delta function, for an

arbitrary prescribed function ū, (3-6) implies

w(x)=−
∫
∞

−∞

ū′′(p)G(x − p) dp. (3-9)

Next we compute the homogenized normal stress σ̄ in the composite. From a force balance on a cross-
section through the point x , this stress is found to be

σ̄ (x)= 1
hs+hc

[
hsσs(x)+

∫ hc

0
σc(x, y) dy

]
, (3-10)

with

σs(x)= Esu′s(x), σc(x)= Ecu′c(x).

Carrying out the integration in (3-10) using (2-1) and (3-1) leads to

σ̄ (x)= Eū′(x)− γw′(x), (3-11)
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where

E =
Eshs + Echc

hs + hc
, (3-12)

γ = αE −
2Ech3

c

3(hs + hc)
=

2hsh3
c(Es − Ec)

3(hs + hc)2
. (3-13)

Rewriting (3-11) using (3-9) and (3-13) leads to

σ̄ (x)= Eū′(x)+ γ
∫
∞

−∞

ū′′(p)G ′(x − p) dp. (3-14)

Note that w no longer appears explicitly in this expression for the homogenized stress. The nonlocality
inherent in modeling heterogeneous materials using a smoothed displacement field is now evident: values
of ū remote from x contribute to the stress at x . This is a type of strong nonlocality. A more suggestive
version of (3-14) may be obtained by integrating the last term by parts:

σ̄ (x)= Eū′(x)+ γ
∫
∞

−∞

ū′(p)G ′′(x − p) dp. (3-15)

Differentiating (3-6) twice yields

G ′′(x)= kλ2e−λ|x |− 2kλ1(x) (3-16)

= λ2G(x)− 2kλ1(x). (3-17)

Substituting (3-17) into (3-15), using the properties of the Dirac delta function, and using (3-7), (3-12),
and (3-13) to simplify the constants yields

σ̄ (x)= Ecū′(x)+ γ λ2
∫
∞

−∞

ū′(p)G(x − p) dp. (3-18)

This expression is similar to the nonlocal stress used in Eringen’s nonlocal theory [Eringen and Edelen
1972], because it involves taking a weighted average of strain.

4. Nonlocal equations of motion

Next we investigate how the nonlocal forces in the homogenized model appear in nonlocal equations
of motion. With this goal in mind, we evaluate the acceleration at x at a given time t . From the linear
momentum balance in the absence of body forces, using the assumption that ρs = ρc, our expression for
the net normal stress (3-18) implies

ρ ¨̄u(x)= σ̄ ′(x)= Ecū′′(x)+ γ λ2
∫
∞

−∞

ū′(p)G ′(x − p) dp.

Integrating the last term by parts,

ρ ¨̄u(x)= Ecū′′(x)+ γ λ2
∫
∞

−∞

ū(p)G ′′(x − p) dp.
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Using (3-16) in the last term, and introducing a body force field b according to d’Alembert’s principle,
yields

ρ ¨̄u(x)= Ecū′′(x)+ γ kλ4
∫
∞

−∞

(ū(p)− ū(x))e−λ|x−p| dp+ b(x). (4-1)

In this form, the model is similar to the nonlocal theory proposed by DiPaola, Failla, and Zingales [2009].
This form, like that of Kröner [1967], retains both local and nonlocal terms.

The peridynamic model seeks to eliminate any reference to strain, because one of its goals is to avoid
using spatial derivatives of the deformation, thus making the theory compatible with discontinuities in
displacement. The general form of the peridynamic equation of motion in one dimension [Silling 2000;
Silling and Lehoucq 2010] is given by

ρü(x)=
∫

Hx

f (p, x, t) dp+ b(x), (4-2)

where Hx is a neighborhood of x called the family of x . The radius of Hx, which is called the horizon,
can be either finite or infinite. The function f is called the bond force density. It can depend quite
generally on the deformation of the family through suitable material models, including the effects of
nonlinearity and damage. The peridynamic model is nonlocal because the family has nonzero size.

In linearized peridynamics [Silling 2010], the equation of motion (4-2) can be approximated by the
following expression, which is formally the same as in the nonlocal theories of Kunin [1982; 1983] and
Rogula [1982]:

ρü(x)=
∫

Hx

C(x, p)(u(p)− u(x)) dp+ b(x), (4-3)

where C is a function called the micromodulus. The equation of motion (4-1) that was derived from
the microstructural model of a composite has strong similarities to the linearized peridynamic expres-
sion (4-3). Both equations contain strongly nonlocal terms; in (4-1) the horizon is infinite, although a
reasonable approximation would be to cut off the nonlocal interactions outside a distance r where the
weighting term e−λr is sufficiently small.

A local term involving u′′ does not appear in the peridynamic equation (4-3). However, with the goal
of representing this term in (4-1), it can be approximated by short-range interactions by using the same
sort of manipulations used above. Using integration by parts, the following identities hold:

u′′(x)=
∫
∞

−∞

u′′(p)1(x − p) dp =
∫
∞

−∞

u′(p)1′(x − p) dp =
∫
∞

−∞

u(p)1′′(x − p) dp. (4-4)

Using the approximation

1(x)≈ φ(x) := τe−τ |x |

2
,

where τ is a large constant, we compute from (4-4)

u′′(x)=
∫
∞

−∞

u(p)1′′(x − p) dp ≈
∫
∞

−∞

u(p)φ′′(x − p) dp

=

∫
∞

−∞

u(p)
(
τ 3e−τ |x−p|

2
− τ 21(x − p)

)
dp = τ

3

2

∫
∞

−∞

(u(p)− u(x))e−τ |x−p| dp.
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Thus, our model for the smoothed composite displacement field, (4-1), can be approximated to any level
of accuracy by choosing a sufficiently large τ in the following model:

ρ ¨̄u(x)=
∫

Hx

(
Ecτ

3

2
e−τ |x−p|

+ γ kλ4e−λ|x−p|
)
(ū(p)− ū(x)) dp+ b(x). (4-5)

This is the peridynamic model (4-3) with the choice of micromodulus function given by

C(x, p)=
Ecτ

3

2
e−τ |x−p|

+ γ kλ4e−λ|x−p|.

The foregoing discussion illustrates many of the key properties in understanding the role of nonlocality
in the modeling of continua:

• Nonlocality is introduced by making the modeling decision to describe the problem using a smoothed
displacement field rather than the detailed microstructural fields.

• Although the underlying microstructural model (in terms of the us and uc fields) is local, the resulting
smoothed model (in terms of ū) is nonlocal.

• Expressions called bond force densities in the peridynamic model of the form

C(x, p)(ū(p)− ū(x))

do not necessarily represent a direct nonlocal physical interaction (such as electrostatic forces) be-
tween p and x .

• The applicable length scale in the nonlocal term, 1/λ, depends not only on the geometrical length
scales (hs and hc), but also on the constituent material properties Es and µc. If Es � µc, then this
length scale can greatly exceed the layer thicknesses. This result is consistent with the computations
by Pipes and Pagano [1970] which show that edge effects on the stresses in plies can extend over
distances that substantially exceed the ply thicknesses.

• A peridynamic model can contain multiple length scales; in the case of the composite model in (4-5)
these are 1/λ and 1/τ .

• By considering a displacement field of the form

ū(x)= ε0x + β
2

x2,

where β is a constant, and applying (4-1), one finds that the quadratic term leads to an acceleration
at x = 0 given by

¨̄u(0)= 4βγ kλ
ρ

.

Since this acceleration is positive whenever the strain gradient β is positive, this result means that
positive strain gradient tends to increase the force on x . This is suggestive of experimental results
that show stresses in real materials increase as the strain gradient is increased [Fleck et al. 1994].

The analogous local model for the composite in terms of the smoothed displacement field is

ρ ¨̄u(x)= Eū′′(x)+ b(x),
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where E is given by (3-12). Comparing this with (4-1), evidently the local term Eū′′ is replaced by a
different local term Ecū′′ plus a nonlocal term. It is possible that a more detailed microstructural model,
for example, a submicrostructural model that considers the features within each of the layers such as
individual fibers, would further resolve the local term in (4-1). Based on the patterns emerging in the
above derivations, it is plausible that a hierarchy of N such submodels could be derived, resulting in a
micromodulus of the form

C(x, p)= C1(x, p; λ1)+C2(x, p; λ2)+ · · ·+CN (x, p; λN ),

where each Ci represents interactions with length scale 1/λi . By inference from (4-5), such terms might
have the form

Ci (x, p; λi )= ai eλi |x−p|,

where the ai are constants.

5. Nonlocality at the macroscale

As noted in the previous section, the operative length scale in a heterogeneous material system depends
on the constituent material properties as well as the geometrical length scale. However, the macroscale
geometry of a body also combines with material properties to provide additional length scales. For
example, consider the classic problem of an anisotropic plate under tension containing an open hole of
radius r (Figure 4). In the local theory, the stress σyy as a function of position x along the midplane was
derived analytically by Lekhnists̄kiĭ [1968]:

σyy =
σ∞

2

{
2+

( r
x

)2
+ 3

( r
x

)4
+ (2− n)

[
5
( r

x

)6
− 7

( r
x

)8 ]}
, (5-1)

where

n =

√
2
(

E1

E2
− ν12

)
+

E1

G12
,

where the subscripts 1 and 2 denote the loading direction and transverse direction, respectively. From
this, the stress concentration at the edge of the hole is found to be

Kπ/2 = 1+ n.

The parameter n tends to increase in anisotropic materials, particularly those that have greater stiffness
in the loading (y) direction. In addition to changing the stress concentration at the edge, anisotropy also
changes the rate at which the stress decays with distance from the edge. Denote by r0 the radius at which
the stress in the classical solution drops off to half of its value at the edge, that is,

σyy(r0)

σyy(r)
=

1
2
.

Typical values of r0 determined from (5-1) are given in Table 1. (Similar decay distance parameters play
an important role in certain laminate failure models that implicitly recognize nonlocality [Whitney and
Nuismer 1974; Ko 1985] by including an explicit length scale.)
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Material n Kπ/2 r0/r
Isotropic 2 3 1.52
Fabric ply 4.16 5.16 1.13
Unidirectional ply 10 11 1.07

Table 1. Stress concentration and decay distance near an open hole in a plate.

Thus, in a unidirectional ply, the stress decays to half its value at the edge over a distance of only 7%
of the hole radius. If the hole radius is r = 2.5 mm, then this distance is r0− r = 0.175 mm, which is on
the order of a typical ply thickness.

To put this result in the context of our previous discussion of length scales and nonlocality in heteroge-
neous media, suppose we compute the length scale implied by (3-4) with hc = hs = 0.1 mm, µc = 4 GPa,
and Es = 150 GPa. The resulting length scale for nonlocal interactions due to transfer of shear load
between the constituent materials is

1
λ
=

√
Eshsh2

c

3µc(hs + hc)
= 0.25 mm.

Comparing this with our stress concentration decay distance (0.175 mm), the two values are similar. From
this similarity, evidently nonlocality in a homogenized model due to the exchange of forces between the
materials could play an important role in modeling the problem.

Toubal, Karama, and Lorrain [Toubal et al. 2005] measured the stress in a fabric composite laminate
near an open hole as a function of position along the midplane of the specimen. They used an electronic
speckle pattern interferometry measurement technique. This technique provides noncontact strain data
with a spatial resolution of about 0.5 mm. Their measurements showed that the actual stress concentration
is much lower than what is predicted by the analytical results from the local theory [Lekhnists̄kiĭ 1968].
Does nonlocality explain this difference?

To investigate this possibility, the peridynamic computational model Emu [Silling and Askari 2005]
was applied to try to reproduce the measured stress concentration reported in [Toubal et al. 2005]. The
material model used in the peridynamic computations was similar to that used in [Xu et al. 2008]. In this
material model, peridynamic bonds parallel to the fibers have much greater stiffness than bonds in any
other direction.

In the experiment, the hole diameter was 5.0 mm, and the specimen width was 25 mm. The specimen
contained six plies, all epoxy reinforced by carbon fabric, with a total thickness of 2.28 mm. The ply
laminate properties were E1 = 51 GPa, E2 = 50 GPa, ν12 = 0.06, and G12 = 3.24 GPa. Since all the
plies were identical in the experiment, shear forces between the plies are not significantly involved in
the problem. Therefore, for purposes of estimating the nonlocal interaction distance 1/λ, the applicable
geometric length scale is the fabric tow width. In other words, each tow acts like one of the layers in the
microstructural model developed in Section 2. This view is supported by the X-ray diffraction studies
[Davies et al. 2008] which show that in the vicinity of an open hole, the fabric tows deform more or less
uniformly across the width of each tow. Under this assumption, and setting hc = hs = 1.25 mm, which
is a typical value for tow width, one finds from (3-4) that 1/λ= 2.0 mm. In the computational model,
the mesh spacing was 0.32 mm and the peridynamic horizon was 2.0 mm.
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Figure 4. Stress contours in a simulated open-hole tension test in a composite. Note
the large stress gradients.

As shown in Figure 4, the predicted contours of σyy (the normal stress in the loading direction) show
strong gradients in the vicinity of the hole. In fact, there are large gradients above and below the hole as
well, due primarily to the relatively small shear modulus G12, which is characteristic of fiber and fabric-
reinforced composites. In an isotropic material such as a typical metal, the contours of stress would
be more diffuse. Figure 5 shows a comparison between the optically measured stress σyy and the local
theory of anisotropic media [Toubal et al. 2005]. The figure also shows the results from the peridynamic
computational model. The results in this figure suggest that nonlocality helps improve the agreement
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Figure 5. Comparison of stress along the midplane in an open-hole tension test on
a fabric-reinforced composite. The local theory overpredicts the stress concentration
compared with optically measured data [Toubal et al. 2005]. The peridynamic model
offers improved agreement, apparently due to nonlocality.
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between a continuum model and measured data for stress concentrations in composites. This also helps
explain why failure criteria in composites that rely solely on the predicted stress in the local theory tend
to under-predict the failure load in open-hole tension and compression tests: these criteria are based on
an over-prediction of the stress concentration [Soutis et al. 1991].

6. Conclusions

The purpose of this work is to show how a nonlocal model arises when we make the modeling decision
to use a smoothed displacement field, rather than a detailed microstructural description. By considering
the micromechanics of a layered composite under uniaxial stress, it was shown that nonuniformity of the
displacement field across any cross-section leads to nonlocality in a homogenized model. The nonlocal
effects appear only when the strain in the smoothed displacement field is nonconstant (that is, when
a strain gradient is present). The nonlocal interactions, in this special case, can be represented using
different nonlocal models, including those of Eringen and Kröner, as well as peridynamics. The peridy-
namic micromodulus function for the nonlocal interactions can be determined explicitly, although there
is some arbitrariness in the kernel used to approximate the local term that appears in the peridynamic
equation of motion. The length scale 1/λ in the peridynamic model is determined not only by the
microscale geometry of the composite, but also by the material properties of the constituent materials. In
the peridynamic expression that was derived, interactions between material points separated by a finite
distance necessarily occur, even though there are no direct physical interactions between these points in
the microstructure.

In summary, nonlocality is not just a property of the physical system; it is also a property of the fields
we choose to model the system with.

References

[Ardiç et al. 1989] E. S. Ardiç, M. H. Santare, and T.-W. Chou, “Stress fields in a composite material by means of a non-
classical approach”, Int. J. Eng. Sci. 27:11 (1989), 1397–1405.

[Bassani et al. 2000] J. L. Bassani, A. Needleman, and E. van der Giessen, “Plastic flow in a composite: a comparison of
nonlocal continuum and discrete dislocation predictions”, Int. J. Solids Struct. 38:5 (2000), 833–853.

[Bažant 1991] Z. P. Bažant, “Why continuum damage is nonlocal: Micromechanics arguments”, J. Eng. Mech. (ASCE) 117:5
(1991), 1070–1087.

[Bellieud and Bouchitté 1998] M. Bellieud and G. Bouchitté, “Homogenization of elliptic problems in a fiber reinforced struc-
ture: Nonlocal effects”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26:3 (1998), 407–436.

[Ben-Amoz 1975] M. Ben-Amoz, “On wave propagation in laminated composites, I: Propagation parallel to the laminates”,
Int. J. Eng. Sci. 13 (1975), 43–56.

[Ben-Amoz 1976] M. Ben-Amoz, “A dynamic theory for composite materials”, Z. Angew. Math. Phys. 27 (1976), 83–99.

[Beran and McCoy 1970a] M. J. Beran and J. J. McCoy, “Mean field variations in a statistical sample of heterogeneous linearly
elastic solids”, Int. J. Solids Struct. 6 (1970), 1035–1054.

[Beran and McCoy 1970b] M. J. Beran and J. J. McCoy, “The use of strain gradient theory for analysis of random media”, Int.
J. Solids Struct. 6 (1970), 1267–1275.

[de Borst et al. 1995] R. de Borst, J. Pamin, R. H. J. Peerlings, and L. J. Sluys, “On gradient-enhanced damage and plasticity
models for failure in quasi-brittle and frictional materials”, Comput. Mech. 17:1–2 (1995), 130–141.

[Boutin 1996] C. Boutin, “Microstructural effects in elastic composites”, Int. J. Solids Struct. 33:7 (1996), 1023–1051.

http://dx.doi.org/10.1016/0020-7225(89)90063-3
http://dx.doi.org/10.1016/0020-7225(89)90063-3
http://dx.doi.org/10.1016/S0020-7683(00)00059-7
http://dx.doi.org/10.1016/S0020-7683(00)00059-7
http://dx.doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1070)
http://www.numdam.org/item?id=ASNSP_1998_4_26_3_407_0
http://www.numdam.org/item?id=ASNSP_1998_4_26_3_407_0
http://dx.doi.org/10.1016/0020-7225(75)90072-5
http://dx.doi.org/10.1007/BF01595244
http://dx.doi.org/10.1016/0020-7683(70)90046-6
http://dx.doi.org/10.1016/0020-7683(70)90046-6
http://dx.doi.org/10.1016/0020-7683(70)90102-2
http://dx.doi.org/10.1007/BF00356485
http://dx.doi.org/10.1007/BF00356485


ORIGIN AND EFFECT OF NONLOCALITY IN A COMPOSITE 257

[Chakraborty 2007] A. Chakraborty, “Wave propagation in anisotropic media with non-local elasticity”, Int. J. Solids Struct.
44:17 (2007), 5723–5741.

[Cherednichenko et al. 2006] K. D. Cherednichenko, V. P. Smyshlyaev, and V. V. Zhikov, “Non-local homogenized limits for
composite media with highly anisotropic periodic fibres”, Proc. Roy. Soc. Edinburgh Sect. A 136:1 (2006), 87–114.

[Davies et al. 2008] R. J. Davies, S. J. Eichhorn, J. A. Bennett, C. Riekel, and R. J. Young, “Analysis of the structure and
deformation of a woven composite lamina using X-ray microdiffraction”, J. Mater. Sci. 43:20 (2008), 6724–6733.

[Di Paola et al. 2009] M. Di Paola, G. Failla, and M. Zingales, “Physically-based approach to the mechanics of strong non-local
linear elasticity theory”, J. Elasticity 97:2 (2009), 103–130.

[Drugan 2003] W. J. Drugan, “Two exact micromechanics-based nonlocal constitutive equations for random linear elastic
composite materials”, J. Mech. Phys. Solids 51:9 (2003), 1745–1772.

[Drugan and Willis 1996] W. J. Drugan and J. R. Willis, “A micromechanics-based nonlocal constitutive equation and estimates
of representative volume element size for elastic composites”, J. Mech. Phys. Solids 44:4 (1996), 497–524.

[Eringen and Edelen 1972] A. C. Eringen and D. G. B. Edelen, “On nonlocal elasticity”, Int. J. Eng. Sci. 10 (1972), 233–248.

[Fish et al. 2002] J. Fish, W. Chen, and G. Nagai, “Non-local dispersive model for wave propagation in heterogeneous media:
one-dimensional case”, Int. J. Numer. Methods Eng. 54:3 (2002), 331–346.

[Fleck et al. 1994] N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson, “Strain gradient plasticity: Theory and
experiment”, Acta Metall. Mater. 42:2 (1994), 475–487.

[Gambin and Kröner 1989] B. Gambin and E. Kröner, “Higher-order terms in the homogenized stress-strain relation of periodic
elastic media”, Phys. Status Solidi B 151:2 (1989), 513–519.

[Geers et al. 1999] M. G. D. Geers, R. de Borst, and T. Peijs, “Mixed numerical-experimental identification of non-local
characteristics of random-fibre-reinforced composites”, Compos. Sci. Technol. 59:10 (1999), 1569–1578.

[Germain et al. 2007] N. Germain, J. Besson, and F. Feyel, “Composite layered materials: anisotropic nonlocal damage mod-
els”, Comput. Methods Appl. Mech. Eng. 196:41–44 (2007), 4272–4282.

[Ko 1985] W. L. Ko, “Stress concentration around a small circular hole in the HiMAT composite plate”, Technical Memoran-
dum 86038, NASA, 1985.

[Kröner 1967] E. Kröner, “Elasticity theory of materials with long range cohesive forces”, Int. J. Solids Struct. 3 (1967), 731–
742.

[Kunin 1982] I. A. Kunin, Elastic media with microstructure, I: One-dimensional models, Springer Series in Solid-State Sci-
ences 26, Springer, Berlin, 1982.

[Kunin 1983] I. A. Kunin, Elastic media with microstructure, II: Three-dimensional models, Springer Series in Solid-State
Sciences 44, Springer, Berlin, 1983.
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