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B-SPLINES COLLOCATION EIGENANALYSIS OF 2D ACOUSTIC PROBLEMS

CHRISTOPHER G. PROVATIDIS

We continue our research on the performance of CAD-based global approximation to the analysis of
2D acoustic problems. In addition to previous “boundary-only” Coons and transfinite Gordon–Coons
interpolations, we now investigate the quality of the solution when utilizing “tensor product B-splines”
interpolation. For the latter, we propose a global collocation method that is successfully compared with
the well known Galerkin–Ritz formulation. Particular attention is paid to the handling of Neumann
boundary conditions as well as to the role of multiplicity of internal knots. The theory is supported by
two numerical examples, one for a rectangular and the other for a circular acoustic cavity in which the
approximate solution rapidly converges towards the exact solution.

1. Introduction

The tendency in contemporary computer methods in applied mechanics and engineering is to integrate
solid modeling (computer-aided-design or CAD) with analysis (computer-aided-engineering or CAE)
using NURBS interpolation, in such a way that both the geometry and the mechanical variables (dis-
placement, temperature, etc.) are mathematically expressed in a similar manner (global approximation)
[Cottrell et al. 2009]. In fact, though the nonuniform B-splines (NURBS) of today is, chronologically
speaking, the fifth important formulation applied to the mathematical description of CAD models, the
same integration can be achieved with using any of the previous formulations. The first bivariate formula
was proposed in 1964–1967 by Coons [1967], the second by Gordon [1971] and the third in 1966–1971 by
Bézier [1971]. Furthermore, B-splines are chronologically the fourth formula in CAD practice. Although
older mathematical formulations of splines were first published by Schoenberg [1946], they became very
popular only after 1972 when de Boor [1972] proposed his computationally efficient algorithms. Finally,
B-splines were later modified on the basis of weighting coefficients, thus producing the popular NURBS
of today, which are fully controlled sculptured surfaces [Piegl 1991; Piegl and Tiller 1995]. For a detailed
review we refer to [Farin et al. 2002].

Concerning mechanical analysis in problems of solids and structures including acoustics, it is well
known that there are three main methodologies: the popular finite element method (FEM), the boundary
element method (BEM), and the promising global collocation method ([Provatidis 2008b; 2009b; Prova-
tidis and Ioannou 2010] and about 300 references therein). For the sake of brevity, finite volume, finite
difference, mesh-less and mesh-free methodologies are not commented on. So far, FEM [Höllig 2003]
and BEM [Cabral et al. 1990; 1991] have been applied in conjunction with tensor product B-splines in
several engineering problems. Also, Coons–Gordon transfinite interpolation has been extensively used
in conjunction with the Galerkin–Ritz formulation; for an overview we refer to [Provatidis 2012] and
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literature therein. Our conclusion in that article is that rapid CAD-based global collocation methods have
to be applied instead of time-consuming domain Galerkin–Ritz methods.

For the first time, in 2005 the author expressed the above general idea of implementing a global
collocation scheme in conjunction with CAD-based approximation [Provatidis 2006, p. 6704], while
he continued with numerical applications in potential problems under Dirichlet [Provatidis 2008b] and
Neumann [Provatidis 2009b] boundary conditions, as well as in plane stress elastostatics [Provatidis and
Ioannou 2010]. Concerning eigenvalue and time response structural analysis, in 2008 he published a
couple of papers [Provatidis 2008a; 2008c] (1D problems), and also he supervised a thesis concerning
2D acoustics and 2D elastodynamics in conjunction with Lagrange polynomials [Filippatos 2010]. It is
worth mentioning that isogeometric collocation methods were recently presented by others [Auricchio
et al. 2010].

It is well known that B-splines collocation methods were initially developed by mathematicians, well
before engineers understood that CAD-based Galerkin–Ritz methods require high computing effort, a
fact that motivated them to investigate their replacement by isogeometric collocation schemes [Hughes
et al. 2010]. For a detailed review of 273 papers covering the period 1934–1989 we refer to [Fairweather
and Meade 1989], whereas recent works are cited in a survey [Bialecki et al. 2011]. A fair comparison
between B-spline collocation and Galerkin methods on the basis of the same bandwidth (and not the
same degree of shape functions) in one spatial dimension is [Kwok et al. 2001]. However, most works
are limited to one-dimensional problems [de Boor 2001, Chapter XV], where, for cubic B-splines, the key
point is to use two collocation points between any two breakpoints, thus resulting in as many equations as
the number of unknowns; this is strictly related to using double knots (de Boor, personal communication,
2007). On the other hand, excellent results have been obtained in some particular examples using for
collocation the images of either Greville or Demko abscissae [Auricchio et al. 2010].

It is remarkable that de Boor’s software, aiming at the solution of one-dimensional (1D) elliptic
nonlinear problems, although incorporated in Matlab (Spline Toolkit) long ago, is not still applicable
to the solution of eigenvalue and time-marching problems “as is”. As confirmed by the absence of
relevant publications, the need of a computational environment to solve 2D and 3D problems is of great
engineering interest.

Within this context, this paper reports on the performance of the B-splines-based global collocation
method for the eigenvalue analysis of two-dimensional acoustic cavities under arbitrary, Dirichlet or
Neumann boundary conditions. Particular attention is paid to the treatment of the free-free problem in
order to bypass the singularities that sometimes may appear at the four corner points of the reference
square. Moreover, the role of the multiplicity of internal knots is thoroughly investigated, and particularly
the performance of the proposed least-squares scheme in conjunction with single knots is studied. The
theory is sustained by two numerical examples, one for a rectangular and the other for a circular acoustic
cavity, in which the proposed collocation method is successfully compared with its competitive Galerkin–
Ritz scheme, using either tensor product B-splines or/and conventional finite elements, for the same mesh
density.

2. B-splines as a global 2D functional set

2.1. General. Let us consider a rectangular domain �= (ABCD)= [0, a]×[0, b] in R2. The axis origin
is chosen at the corner A, whereas the Cartesian axes x and y lie on the sides AB and AD, respectively.
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Sides AB and CD are uniformly divided into nx segments, while BC and DA are uniformly divided
into ny segments. This leads to nx + 1 breakpoints along AB and CD, and ny + 1 breakpoints along
BC and DA. Although it is possible to use different degrees for the spline polynomials in the x- and
y-directions, we will use a single degree px = py = p, with p ≥ 3, since we are dealing with a second
order PDE (acoustics). As a result, the univariate function u(x, 0) along the side AB can be interpolated
via a piecewise polynomial B-spline of p-th degree in x , and the function u(0, y) along the side DA via
a piecewise polynomial B-spline of p-th degree in y.

2.2. One-dimensional shape functions. This section refers to either the x- or y-directions (along the
sides AB and DA, respectively). Below, n corresponds to either subdivision nx or ny , whereas the domain
[0, L] corresponds to either of the intervals [0, a] or [0, b].

Let us assume a given number of n subdivisions of the interval [0, L], with breakpoints x0, . . . , xn ,
and a given polynomial degree p. In its original form [Schoenberg 1946; Schoenberg and Whitney
1953], the B-splines formula includes a complete polynomial of p-th degree for the entire domain [0, a],
plus (n− 1) truncated monomials 〈x − xi 〉

p
+, i = 1, . . . , n. In this way, the total number of coefficients

becomes (n + p), and we refer to a multiplicity of internal knots equal to one, which ensures C p−1-
continuity. Therefore, in the particular case of a cubic approximation (p = 3), the total number of
coefficients becomes (n+ 3), which ensures C2-continuity.

In contrast, if we alternatively consider the above complete polynomial of p-th degree for the entire
domain [0, L] plus the aforementioned (n− 1) truncated monomials 〈x − xi 〉

p
+, and additionally (n− 1)

truncated monomials 〈x − xi 〉
p−1
+ , i = 1, . . . , n, the total number of coefficients becomes (2n+ p− 1),

and then we refer to internal multiplicity equal to two, which ensures C p−2-continuity; for example,
C1-continuity and 2(n+ 1) coefficients, when p = 3.

In the modern approach [Piegl and Tiller 1995; de Boor 2001], these coefficients are associated with
what’s called control points. In more detail, we start with the above-mentioned breakpoints

{xb} = [x0, . . . , xn], (1)

and then we introduce the knot vector {V },

{V } = [v0, . . . , vm], (2)

which highly depends on the chosen multiplicity λ of internal knots (usually single or double):

• multiplicity λ= 1: {V }λ=1 = [x0, . . . , x0︸ ︷︷ ︸
p+1

, x1, x2, . . . , xn−1, xn, . . . , xn︸ ︷︷ ︸
p+1

], (3)

• multiplicity λ= 2: {V }λ=2 = [x0, . . . , x0︸ ︷︷ ︸
p+1

, x1, x1︸ ︷︷ ︸
2

, x2, x2︸ ︷︷ ︸
2

, . . . , xn−1, xn−1︸ ︷︷ ︸
2

, xn, . . . , xn︸ ︷︷ ︸
p+1

]. (4)

Therefore, Equations (3) and (4) lead to the unified relationship

m = 2(p+ 1)+ λ(n− 1)− 1, λ= 1, 2. (5)

Based on the above-mentioned computed knot vector {V }, the vector of control points is denoted by

{P} = [P0, . . . , Pnc ], (6)
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where the number of control points (nc+1) is related to the number of elements in the knot vector (m+1)
as

m = nc+ p+ 1. (7)

Then, for every position x ∈ [0, L], with normalized coordinate ξ = x/L ∈ [0, 1], we can determine
the values of nc+ 1 basis functions, Ni,p(x) or Ni,p(ξ), i = 0, . . . , nc:

(1) The Cartesian coordinate is approximated as

x(ξ)=
n∑

i=0

Ni (ξ) · xi . (8)

(2) The variable is approximated as

u(ξ)=
n∑

i=0

Ni (ξ) · ai . (9)

It is worth mentioning that the coefficients ai in (9) are generally different from the nodal values ui

associated to the breakpoints, except at the ends where a0 = u0 and an = un .

Remark. In the particular case in which there are no internal breakpoints (i.e., n = 1), (5) implies that
the knot vector consists of m+ 1= 2(p+ 1) elements, whence (7) implies that the number of control
points becomes nc = p. In other words, in case of Bézier (Bernstein polynomial) representation, the
number of coefficients is identical with those involved in a Taylor series, that is, a full polynomial of
degree p.

2.3. Two-dimensional global shape functions. Given the uniform subdivisions nx and ny of the inter-
vals [0, a] and [0, b], respectively, the breakpoints along each of the four sides (AB, BC , CD, and DA)
are determined. Moreover, given the multiplicity of internal knots, as well as the polynomial degrees px

and py , the control points in the x- and y-direction are also determined. If the patch is curvilinear, then
x- and y-coordinates have to be replaced by the ξ - and η-normalized coordinates, respectively.

While in the older B-splines formulation [Schoenberg 1946; Schoenberg and Whitney 1953] the de-
grees of freedom are associated to the (nx + 1)× (ny + 1) nodal points xi j lying at the intersections
of i-th and j-th lines perpendicular to the axes and passing through the breakpoints (xi , y j ), in this
“modern” formulation we have to deal only with the tensor product of q control points. Therefore,
in the case of cubic approximation (px = py = p = 3), we distinguish two cases. In the first case,
the multiplicity of internal knots is λ = 1, so the tensor product consists of q = (nx + 3)× (ny + 3)
coefficients ai j . In the second case, the multiplicity of internal knots is λ = 2, so the tensor product
consists of q = 4(nx + 1)(ny + 1) coefficients ai j .

Therefore, according to the selected value of multiplicity λ (1 or 2), the two-dimensional global shape
functions are given by

λ= 1: φi j (x, y)= Ni (x) · N j (y), i = 0, . . . , (nx + 3)∧ j = 0, . . . , (ny + 3), (10)

λ= 2: φi j (x, y)= Ni (x) · N j (y), i = 0, . . . , 2(nx + 1)∧ j = 0, . . . , 2(ny + 1) (11)

(the double subscript is to emphasize the two directions).
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The continuity of the approximation is prescribed by both the polynomial degree and the multiplicity.
For cubic splines, if the multiplicity is one, then the univariate approximation is C2-continuous (whereas
for 2D, u ∈ C2,2(�st)). In contrast, if the multiplicity is two, then the univariate approximation is C1-
continuous (whereas for 2D, u ∈ C1,1(�st)); �st = [0, 1]× [0, 1] is the standard reference square.

In the general case of higher polynomial degrees, p > 3, the B-splines approximation ensures C p−λ-
continuity when the multiplicity of inner knots is λ (1≤ λ≤ p−1). The most usual case for the numerical
solution of an ordinary differential equation by collocation is to require C1-continuity (multiplicity λ=
p− 1) and take λ collocation points between any two successive breakpoints. Under these circumstances,
after encountering the two boundary conditions we obtain as many equations as the number of unknowns
(this observation is useful to static problems, for which the reader is referred to Appendix A, and dynamic
ones). Therefore, the minimum value of multiplicity λ is 1 (C p−1-continuity), whereas the maximum
one is p− 1 (C1-continuity).

In general, the q control points are divided into two categories, that is, nc,in in the interior of the
domain � and nc,b near the boundary (q = nc,in + nc,b). In more detail, if a side of the quadrilateral
ABCD (e.g., AB) is straight, the corresponding control points lie on this side (AB). In contrast, if the
side is curved, then only the extreme control points (P0 and Pn) will belong to the boundary, and even
they coincide with the corners (e.g., A, B), whereas the rest will be either inside or outside the domain
� in accordance to the curvature of the curve AB.

3. The proposed global collocation procedure

3.1. General. For the given partial differential equation (PDE)

1
c2

∂2u
∂t2 −∇

2u = 0 in �, (12)

we seek an approximate solution to (12) which is a linear combination of the bivariate global basis
functions {φi (x, y)}, i = 1, 2, . . . , q:

ũ(x, y; t)=
q∑

j=1

α j (t) ·φ j (x, y). (13)

Based on the global shape functions φ j in (13), which are applied for the entire domain, we can apply
either the proposed global collocation or the well-known Galerkin–Ritz method.

Without loss of generality, the boundary consists of ñ1 breakpoints (which correspond to n1 control
points) under Dirichlet and ñ2 ones (which correspond to n2 control points) under Neumann boundary
conditions. Although many acoustical cavities have absorbing boundaries (e.g., mufflers) with mixed
boundary conditions (Robin-type) due to the acoustic impedance, for the sake of brevity below we limit
the discussion in the two typical cases of boundary conditions, that is, open boundary (Dirichlet-type)
and hard walls (Neumann-type).

3.2. The proposed global collocation approach. Fulfilling the PDE (12) at ncol collocation points, one
obtains the matrix formulation (the index “c” stands for collocation)

[Mc]{ä(t)}+ [Kc]{a(t)} = {0}, (14)
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where
mc

ij =
( 1

c2

)
φ j (xi ), kc

ij =−∇
2φ j (xi ). (15)

In (15), “i” corresponds to the collocation points and “j” to the control points. It can be noticed that in
this formulation no domain integral appears. This advantage comes at the cost of having to calculate the
stiffness elements ki j through the two components of the Laplace operator in (15), which are given by

∂2φ j

∂x2 =

(
∂ξ

∂x

)2
∂2φ j

∂ξ 2 + 2
∂ξ

∂x
∂η

∂x
∂2φ j

∂ξ∂η
+

(
∂η

∂x

)2
∂2φ j

∂η2 +
∂2ξ

∂x2

∂φ j

∂ξ
+
∂2η

∂x2

∂φ j

∂η
,

∂2φ j

∂y2 =

(
∂ξ

∂y

)2
∂2φ j

∂ξ 2 + 2
∂ξ

∂y
∂η

∂y
∂2φ j

∂ξ∂η
+

(
∂η

∂y

)2
∂2φ j

∂η2 +
∂2ξ

∂y2

∂φ j

∂ξ
+
∂2η

∂y2

∂φ j

∂η
.

(16)

The terms ∂ξ
∂x , ∂

2ξ

∂x2 , ∂ξ
∂y and ∂2ξ

∂y2 , as well as ∂η

∂x , ∂
2η

∂x2 , ∂η
∂y and ∂2η

∂y2 in (16), are calculated as usual, starting
from the inverse of the Jacobian matrix [Provatidis and Ioannou 2010, p. 400].

3.3. The well known Galerkin–Ritz approach. Applying the Galerkin method to (12), for the free vi-
bration problem, one obtains the well known matrix formulation [Höllig 2003]

[M]{ä(t)}+ [K ]{a(t)} = {0}, (17)

where [M] and [K ] are the mass and stiffness matrices, respectively, which are given by

mi j =
1
c2

∫
�

φiφ j d�, ki j =

∫
�

∇φi∇φ j d�. (18)

A B-splines implementation in conjunction with Equations (17) and (18) is not a novel task, as the
general procedure has been previously presented in a textbook ([Höllig 2003] and papers therein). For
the completeness of our description, we should mention that

(1) Dirichlet boundary conditions (near to n1 ≤ nc,b control points) are easily implemented eliminating
both the n1 rows and columns which correspond to the restrained coefficients;

(2) Neumann boundary conditions (near to n2 ≤ nc,b control points) make the “near-boundary” (outer)
control points be treated equally with the nc,in unrestrained internal ones. In the particular case of
a free-free problem, no matrix elimination is required.

3.4. Implementation of boundary conditions in global collocation. In general, we fulfill the PDE ap-
plying (15) at ncol collocation points in the interior of the domain.

In free acoustic excitation, the collocation leads to the following general matrix equations system

[
Mcol,1 Mcol,2 Mcol,I

]
·

ä1

ä2

äI

+ [Kcol,1 Kcol,2 Kcol,I
]
·

a1

a2

aI

=
F1

0
0

 , (19)

where a1 and a2 are vectors of coefficients that refer to the above-mentioned n1 and n2 control points
related to the boundary, respectively, while aI refers to the associated n I “internal” (with respect to the
reference square) control points.
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3.4.1. Dirichlet boundary conditions. Dirichlet boundary conditions (u = 0) are easily applied. These
conditions are readily implemented by eliminating the columns that correspond to the restricted nodes,
that is, the matrices Mcol,1 and Kcol,1 in (19). In most cases this task is trivial, particularly when one or
more entire sides, for example AB out of the whole boundary (= AB ∪ BC ∪CD ∪ DA), is restricted
(u = 0). Obviously this happens because the boundary condition u = 0 along the side AB implies that
all coefficients that correspond to it vanish (ai ≡ 0). If the entire boundary is under Dirichlet conditions,
then all relevant coefficients vanish (i.e., a1 = 0).

Therefore, eliminating the vectors a1 = ä1 = 0, and assuming that no other part of the boundary is
under Neumann conditions (a2 is absent), (19) becomes

Mcol,I · äI + Kcol,I · aI = 0. (20)

Equation (20) depicts that the resulting matrices Mcol,I and Kcol,I will be square (of order nc,in×nc,in)
only when the number of collocation points equals the number of control points nc,in in the interior.
Obviously, this condition is valid regardless of the multiplicity λ (= 1 or 2) of internal knots.

3.4.2. Neumann boundary conditions. Neumann boundary conditions (∂u/∂n = 0, n = unit normal
vector) impose a linear dependency between the coefficients associated to the control points in the
neighborhood of the boundary. A similar dependency had been previously found, however in conjunction
with Lagrange polynomials [Provatidis 2008a, p. 245]. In this way, the matrix elements in those columns
related to the free boundary are first reorganized and then condensed; details will be given below.

Taking the first derivative of (13) with respect to the unit normal vector n (at a boundary point), we
obtain

∂u
∂n
=

q∑
k=1

∂φk(ξ, η)

∂n
· ak . (21)

In the sum that appears in (21), nc,in out of the total number of q control points belong to the interior,
while n2 belong to the boundary (actually they are outside or inside the domain in accordance to the
curvature). For a smooth boundary, applying (21) to n2 boundary points (in the neighborhood of the
“close-to-the-boundary” control points), we derive the matrix equation[

B22︸︷︷︸
n2×n2

B2I︸︷︷︸
n2×n I

]
·

[
a2

aI

]
=

[
0
0

]
. (22)

Eliminating a2 from (22) and substituting into (19) in which the vector a1 is absent, we obtain

M∗ äI + K ∗aI = 0, (23)

where
M∗ = Mcol,I −Mcol,2 B−1

22 B2I , K ∗ = Kcol,I − Kcol,2 K−1
22 K2I . (24)

The imposition of Neumann boundary conditions in the case of nonsmooth boundary (e.g., corners ap-
pearing in a rectangular ABCD like that of Example 1, free-free boundary conditions) is performed as
follows. We select two opposite sides, for example AD and BC and impose the Neumann boundary
conditions at so many points along each of them as the number of the corresponding control points (the
end points (A, D) of the side AD, and (B, C) of BC are included). For the remaining two sides, AB
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and CD, the corner points are excluded, therefore for each of them Neumann boundary conditions are
applied to as many boundary points as the corresponding number of control points minus two. This is
the minimum number of Neumann boundary conditions that can be applied in a straightforward manner.
However, if one wishes to apply Neumann boundary conditions at the ends of the sides AB and CD as
well, then the number of rows in (22) will increase by four, thus a least-squares procedure should be
applied to it in order to make possible the inversion of matrix B22.

3.4.3. Implementation to static problems. At this point, it is instructive to refresh those basics of the col-
location method related to nonhomogeneous boundary conditions for solving boundary value problems.
Details for the one-dimensional problem defined in the interval [0, L] are given in Appendix A.

3.4.4. Multiplicity of internal knots. As mentioned in Section 2.3, after the breakpoints along the bound-
ary are given, the next decisive step is to assign the multiplicity of internal knots.

In the case of λ = 2, in conjunction with p = 3, the golden rule is to take the collocation points at
the 2× 2 Gauss points in the (nx × ny) cells formed by the breakpoints, so that the number of equations
equals the number of unknowns, always related to the internal control points. For p > 3, the same occurs
when λ= p−1, whereas the aforementioned 2×2 is replaced by a (p−1)×(p−1) Gaussian quadrature.

In contrast, when λ= 1, in conjunction with p = 3, we can use more collocation points, for example,
the same as those for λ= 2. In such case the matrices Mcol,I and Kcol,I are nonsquare. For p > 3, we
can use the same as those for λ = p− 1 or smaller. This shortcoming is easily resolved applying the
least-squares technique, of which the academic implementation is to left-multiply (20) by the transpose
of the matrix Mcol,I , thus leading to

M︸︷︷︸
n I×n I

äI + K︸︷︷︸
n I×n I

aI = 0, (25)

where
M = (Mcol,I )

T
· (Mcol,I ), K = (Mcol,I )

T
· (Kcol,I ). (26)

In the case of adopting λ= 1 (C p−λ-continuity), another possibility is to collocate at the images of the
Demko’s or Greville’s abscissae [Auricchio et al. 2010; de Boor 2001, p. 192], thus skipping the above-
mentioned least-squares procedure. For the sake of brevity, in this paper a relevant choice is characterized
by the term “isogeometric” collocation.

3.4.5. Eigenvalues extraction. It can be noticed that (20) and (23) have the form of a standard problem in
dynamics and therefore can be calculated either taking the roots of the characteristic polynomial produced
by demanding that det(‖K −λM‖)= 0, or by any established algorithm for nonsymmetric matrices such
as QR.

4. Numerical implementation

4.1. Global collocation method. The proposed global collocation method was implemented using (p−1)
Gauss points per direction, between any two successive breakpoints. In the tensor product, the break-
points create nx × ny cells. Using (p− 1)2 collocation points per cell, the total number of collocation
points becomes ncol = (p− 1)2nx ny , which equals to the number of unknown coefficients.
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Clearly, in the case of multiple double knots (e.g., λ= 2 for p = 3) the total number of control points
(coefficients) in the tensor product is q = 4(nx + 1)× (ny + 1), of which nb = 4(nx + ny + 1) control
points (coefficients) lie on the boundary.

• For a Dirichlet problem (e.g., with p = 3), the aforementioned nb columns are eliminated, thus
nint = q − nb = 4nx ny coefficients remain (they correspond to the control points in the interior).
Therefore, the number of the collocation points ncol equals to the number of unknown coefficients,
a fact that leads to a square matrix of unknowns which can be easily solved.

• For a free-free problem, all coefficients that correspond to the boundary control points are again
eliminated, thus resulting in nint = q − nb = 4nx ny , exactly the same number as in the above-
mentioned Dirichlet problem.

Also, in case of simple knots (λ= 1), in conjunction with p = 3, the total number of control points
(coefficients) in the tensor product is q = (nx + 3)× (ny + 3), of which nb = 2(nx + ny + 4) control
points (coefficients) lie on the boundary. As previously, in both Dirichlet and Neumann problems all the
coefficients associated to the nb close-to-boundary control points are eliminated thus nint= q−nb= 4nx ny

coefficients remain and constitute the order of the final matrices.
Moreover, for any chosen multiplicity λ, in conjunction with a chosen number of breakpoint subdivi-

sions, the number q of control points is determined according to (7). In addition to the above schemes,
instead of using only Gaussian points this study reports about numerical experience using the images
of Demko’s and Greville’s abscissae for collocating points, previously applied in isogeometric analysis
[Auricchio et al. 2010].

4.2. Galerkin–Ritz global method. The elements mi j of the mass matrix are products of two basis func-
tions, each of piecewise p-th (i.e., third) degree. In the particular case of a rectangular domain, the
integrand becomes of piecewise sixth degree, thus it requires four-point Gauss quadrature per direction,
that is, sixteen Gauss points per integration cell. For p > 3, we use (p+ 1)× (p+ 1) Gauss points per
integration cell.

A Dirichlet problem, for p = 3, leads to mass and stiffness matrices of order nint = q − nb = 4nx ny ,
while a Neumann problem leads to matrices of order neq = 4(nx + 1)× (ny + 1), a fact that is entirely
different from the above-mentioned collocation technique.

5. Numerical examples

A Matlab code was developed on a standard PC Pentium IV. The basis functions Ni,p and their derivatives
were created using the “spcol” function, which exists in the Spline Toolkit. Demko’s abscissae were
determined using the “chbpnt” function. The eigenvalues were calculated using the standard “eig”
function.

The theory is now elucidated by two examples taken from the literature [Provatidis 2004; 2009a], in
which the exact analytical solution is known. The quality of the numerical solution ũ is evaluated in
terms of the relative error, which was calculated as

er =
ũ− uexact

uexact
× 100%. (27)



268 CHRISTOPHER G. PROVATIDIS

Error (in %) of calculated eigenvalues

Collocation Galerkin–Ritz

Mode
Exact

(a) λ= 2 (b) λ= 1 (c) λ= 1

(m, n) ω2
(nx × ny) (nx × ny) (nx × ny)

2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4

1 (0, 0) 0 — — — — — — — — — — — —
2 (1, 0) 1.5791 0.23 0.02 0.00 0.00 0.26 0.02 0.00 0.00 0.06 0.00 0.00 0.00
3 (2, 0) 6.3165 −8.81 0.23 0.05 0.02 −8.81 0.26 0.05 0.02 0.10 0.09 0.01 0.00
4 (0, 1) 8.1567 −8.81 0.23 0.05 0.02 −8.81 0.26 0.05 0.02 0.06 0.06 0.00 0.00
5 (1, 1) 9.7358 −7.35 0.19 0.04 0.01 −7.34 0.22 0.04 0.01 0.06 0.05 0.00 0.00
6 (3, 0) 14.2122 −7.14 0.67 0.23 0.08 −7.14 1.83 0.26 0.08 1.91 1.91 0.10 0.01
7 (2, 1) 14.4732 10.35 0.23 0.05 0.02 — 0.26 0.05 0.02 88.07 0.65 0.00 0.00
8 (3, 1) 22.3689 4.65 0.51 0.16 0.06 — 1.26 0.19 0.06 58.17 1.61 0.07 0.01
9 (4, 0) 25.2662 — −8.81 0.55 0.23 — −8.81 1.01 0.26 93.83 0.12 1.01 0.11

10 (0, 2) 32.6268 — −8.81 0.55 0.23 — −8.81 1.01 0.26 51.98 0.10 0.84 0.09

Number of equations 8 32 72 128 6 15 28 45 20 35 54 77

Table 1. Example 1: calculated eigenvalues of a rectangular acoustic cavity (a = 2.5 m,
b = 1.1 m) under Neumann (free-free: ∂u/∂n = 0) boundary conditions, using various
nx × ny uniform subdivisions in conjunction with cubic B-splines (p = 3). Results are
shown as percentage errors for an approximation involving “tensor product B-splines”
using three alternative formulations: (a) collocation (with multiplicity λ= 2), (b) collo-
cation (with multiplicity λ= 1), and (c) Galerkin–Ritz (with multiplicity λ= 1).

Example 1: eigenvalues of rectangular acoustical cavity. We consider a rectangular acoustical cavity
of dimensions a = 2.5 m, b = 1.1 m with sound velocity c = 1 m/s. Two types of boundary conditions
are considered: (a) Neumann (free-free), and (b) Dirichlet boundary conditions, for which the exact
analytical eigenvalues are given by

Free-free: ω2
mn = π

2c2
(

m2

a2 +
n2

b2

)
, m, n = 0, 1, 2, . . . , (28)

Dirichlet: ω2
mn = π

2c2
(

m2

a2 +
n2

b2

)
, m, n = 1, 2, . . . . (29)

In all cases a uniform mesh of (nx × ny) subdivisions of breakpoints along x- and y-directions, re-
spectively, has been used. The obtained results for p = 3 are shown in Tables 1–3. In more detail:

(1) Table 1 shows the results for Neumann boundary conditions, for three different formulations, that is,
B-splines collocation in conjunction with the usual multiplicity λ= 2 and the novel λ= 1, as well as
B-splines Galerkin–Ritz with the usual multiplicity λ= 1. It can be noticed that both formulations
are of similar quality. The proposed collocation method requires the most degrees of freedom when
λ= 2 and the least when λ= 1.

(2) Table 2 shows the results for Dirichlet boundary conditions, again for previous three different for-
mulations. It can be noticed that again the proposed collocation and the Galerkin–Ritz are of the
same quality. It can be also noticed that the alternative least-squares collocation (λ= 1) is almost
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Error (in %) of calculated eigenvalues

Collocation Galerkin–Ritz

Mode
Exact

(a) λ= 2 (b) λ= 1 (c) λ= 1

(m, n) ω2
(nx × ny) (nx × ny) (nx × ny)

2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4

1 (1, 1) 9.7358 18.12 0.19 0.04 0.01 18.12 0.19 0.04 0.01 1.11 0.02 0.01 0.00
2 (2, 1) 14.4732 21.59 0.23 0.05 0.02 25.38 0.24 0.05 0.02 3.53 0.06 0.01 0.00
3 (3, 1) 22.3689 15.74 0.51 0.16 0.06 15.74 0.67 0.18 0.06 4.36 0.45 0.07 0.01
4 (4, 1) 33.4229 −6.25 16.37 0.43 0.17 −6.25 31.89 0.64 0.20 8.58 8.58 0.57 0.09
5 (1, 2) 34.2059 −3.65 20.59 0.52 0.22 11.04 36.69 0.58 0.24 21.12 15.69 0.20 0.09
6 (2, 2) 38.9433 −3.88 18.12 0.47 0.19 17.41 25.40 0.52 0.21 27.85 5.37 0.18 0.08
7 (3, 2) 46.8390 −2.38 11.03 0.45 0.18 — 20.44 0.50 0.20 — 4.66 0.18 0.07
8 (5, 1) 47.6351 10.83 13.31 0.42 0.39 — 19.34 1.13 0.55 — 9.00 1.95 0.46
9 (4, 2) 57.8930 — 21.59 0.55 0.23 — 40.06 0.70 0.25 — 14.22 0.45 0.11

10 (6, 1) 65.0056 — 10.85 11.50 0.59 — 29.34 12.05 1.21 — 20.72 12.46 1.59

Number of equations 8 32 72 128 6 15 28 45 6 15 28 45

Table 2. Example 1: calculated eigenvalues of a rectangular acoustic cavity (a = 2.5 m,
b = 1.1 m) under Dirichlet (u = 0) boundary conditions, using various nx × ny uni-
form subdivisions in conjunction with cubic B-splines (p = 3). Results are shown as
percentage errors for an approximation involving “tensor product B-splines” using three
alternative formulations: (a) collocation (with multiplicity λ= 2), (b) collocation (with
multiplicity λ= 1), and (c) Galerkin–Ritz (with multiplicity λ= 1).

Error (in %) of calculated eigenvalues

Conventional finite elements (FEM)

Mode

(a) Free-free (b) Dirichlet
(nx × ny) (nx × ny)

2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4

1 — — — — — 18.93 8.27 4.60
2 21.59 5.24 2.30 1.29 — 21.59 9.43 5.24
3 21.59 21.59 9.43 5.24 — 35.00 17.15 9.54
4 21.59 21.59 9.43 5.24 — — 30.11 17.60
5 21.59 18.93 8.27 4.60 — — 35.19 20.65
6 23.82 23.82 11.44 7.17 — — 32.35 18.93
7 — 40.13 19.39 9.98 — — 32.17 18.68
8 — 35.00 17.15 9.54 — — 38.13 28.29
9 — 21.59 36.78 21.59 — — 36.78 21.59

10 — 21.59 33.28 20.47 — — 56.14 38.00

Number of equations 6 15 28 45 0 3 10 21

Table 3. Example 1: calculated eigenvalues of a rectangular acoustic cavity (a = 2.5 m,
b = 1.1 m) using various nx × ny uniform subdivisions. Results are shown as percentage
errors for conventional bilinear (four-node) finite elements under (a) free-free and (b)
Dirichlet boundary conditions.
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identical with the orthogonal collocation (λ= 2) and even it has the same (small) number of control
points as the Galerkin–Ritz formulation.

(3) For comparison, Table 3 shows the results obtained using conventional finite elements — for the
same mesh density, of course. It can be noticed that the minor differences appearing in Table 1 and
Table 2 are negligible, that is, of the same order of accuracy when compared with the conventional
finite element solution in Table 3. However, for the same number of breakpoints, the number of
DOFs in the conventional FEM is minimal.

In the sequence, the results of Tables 1–3 are enhanced as follows. First, the discretization of break-
points is extended from 8× 4 to 12× 6, 16× 8 and 32× 16 at maximum. Second, three additional
collocation schemes from recent literature were tested, involving, in order, Demko’s, Greville’s Tn- and
Greville’s Sn+2 abscissae (for definitions see [Auricchio et al. 2010]).

Comparative results for p= 3 and Neumann boundary conditions are shown in Figure 1, where one can

Figure 1. Rectangular under Neumann boundary conditions: Convergence of the first
four nonzero eigenvalues, ω2

i , i = 2, 3, 4, 5, in terms of number of equations using cubic
B-splines, p = 3 (the first eigenvalue, not shown, equals to zero: ω2

1 = 0).
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Figure 2. Rectangular under Neumann boundary conditions: convergence of the second
eigenvalue, ω2

2, in terms of number of equations, for higher polynomial degrees (p = 4,
5, 6 and 7).

notice the overall superiority of the Galerkin–Ritz B-splines method, in terms of accuracy. The proposed
single knot based (λ= 1) least-squares collocation closely follows the accuracy of Galerkin–Ritz method,
whereas the usual double knot based (λ= 2) collocation method is of adequate accuracy. Moreover, the
images of Demko’s and Greville’s abscissae as collocation points lead to rather poor results. Surprisingly,
Demko’s solution coincides with the conventional FEM solution (based on 4-node bilinear elements) up
to the twelfth decimal point at least.

For the same (Neumann) boundary conditions, the superiority of the proposed method (λ= 1) does
not continue when dealing with higher polynomial degrees (p = 4, 5, 6 and 7), where the choice of
multiplicity λ= p− 1 outperforms between all collocation methods tested in this study (Figure 2).

Comparative results for p = 3 and Dirichlet boundary conditions are shown in Figure 3, where one
can again notice the overall superiority of the Galerkin–Ritz B-splines method, in terms of accuracy. The
proposed single knot based (λ= 1) least-squares collocation is again the best accurate scheme between
all tested collocation methods. Moreover, the images of Demko’s and Greville’s (Tn-based) abscissae as
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Figure 3. Rectangular under Dirichlet boundary conditions: convergence of the first
four eigenvalues, ω2

i , i = 1, 2, 3, 4, in terms of number of equations using cubic B-
splines (p = 3).

collocation points are not applicable as they lead to singular dynamic matrices. This finding is justified
by the fact that the extreme collocation points of these two sets belong to the boundary and therefore
Dirichlet boundary conditions erase the dominating diagonal terms appearing in series expansion given
by (13). Only the Greville’s (Sn+2-based) abscissae are applicable but the quality of results is slightly
lower compared even with the conventional FEM solution (4-node bilinear elements).

For the same (Dirichlet) boundary conditions, the superiority of the proposed method (λ= 1) does
not continue when dealing with higher polynomial degrees (p = 4, 5, 6 and 7), where the choice of
multiplicity λ = p − 1 outperforms between all collocation methods tested in this study (Figure 4).
Concerning the other (isogeometric) sets of global collocation, only the images of Greville’s (Sn+2-based)
abscissae are applicable and of similar quality with the proposed least-squares scheme.

Example 2: eigenvalues of circular acoustical cavity. A circular cavity of radius a= 1 m under Dirichlet
or Neumann (free-free) conditions is considered. For the purposes of this study, a unit reference sound
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Figure 4. Rectangular under Dirichlet boundary conditions: convergence of the first
eigenvalue, ω2

1, in terms of number of equations, for higher polynomial degrees (p = 4,
5, 6 and 7).

velocity, c = 1 m/s, is considered. The theoretical eigenvalues are given by the formula

Dirichlet: Jm(ka)= 0, m = 0, 1, 2, . . . , (30)

Free-free (Neumann): J ′m(ka)= 0, m = 0, 1, 2, . . . , (31)

where J ′m(ka) is the first derivative of the Bessel function Jm(ka) of the first kind and order m and
k = ω/c the wavenumber.

Now the discretization consists of 4, 8, 16, and 32 breakpoints uniformly distributed along the entire
circumference. This corresponds to nx = ny = n= 1, 2, 4 and 8, subdivisions of every side in the reference
square ABCD, respectively. As previously, the control points for p = 3 were derived for multiplicity
λ= 1 and 2.

Tables 4 and 5 show the results for the Dirichlet and Neumann problems, respectively. It can be noticed
that for medium and fine meshes the results are of similar quality, especially when they are compared
with conventional finite elements. The latter elements have been previously studied in [Provatidis 2004,
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Error (in %) of calculated eigenvalues

Collocation Galerkin–Ritz

Mode
Exact

(a) λ= 2 (b) λ= 1 (c) λ= 1

m ω2
Number of subdivisions (4n) Number of subdivisions (4n) Number of subdivisions (4n)

4 8 16 32 4 8 16 32 4 8 16 32

1 0 5.7832 97.14 −3.48 0.00 0.00 98.68 −3.70 0.02 0.00 8.94 −0.01 0.01 0.00
2 1 14.6820 39.25 16.63 0.13 0.01 38.98 47.78 0.68 0.01 16.72 11.55 0.46 0.00
3 1 14.6820 39.25 16.63 0.13 0.01 38.98 47.78 0.68 0.01 16.72 11.55 0.46 0.00
4 2 26.3746 −1.59 21.84 −2.23 0.03 −2.54 34.75 −2.20 0.03 29.88 11.97 0.30 0.01
5 2 26.3746 — 33.12 0.88 0.07 — 49.23 3.38 0.09 — 30.32 2.02 0.02
6 0 30.4713 — 27.51 −3.31 0.05 — 195.80 −3.35 0.07 — 26.45 0.16 0.03
7 3 40.7065 — 9.04 −0.20 0.14 — 246.60 2.66 0.19 — 65.18 4.81 0.07
8 3 40.7065 — 9.04 −0.20 0.14 — 246.60 2.66 0.19 — 65.18 4.81 0.07
9 1 49.2185 — 23.30 11.63 0.14 — 327.16 13.92 0.23 — 121.01 20.60 0.17

10 1 49.2185 — 23.30 15.74 0.14 — — 80.75 0.23 — — 32.95 0.17

No. of equations 4 16 64 256 4 9 25 81 4 9 25 81

Table 4. Example 2: calculated eigenvalues of a circular acoustic cavity of radius 1.0 m
under Dirichlet (u = 0) boundary conditions, using various uniform subdivisions in con-
junction with cubic B-splines (p= 3). Results are shown as percentage errors for “tensor
product B-splines” approximation using three alternative formulations: (a) collocation
(with multiplicity λ= 2), (b) collocation (with multiplicity λ= 1), and (c) Galerkin–Ritz
(with multiplicity λ= 1).

Exact

Error (in %) of calculated eigenvalues

Collocation Galerkin–Ritz

Mode m ω2

(a) λ= 2 (b) λ= 1 (c) λ= 1
Number of subdivisions (4n) Number of subdivisions (4n) Number of subdivisions (4n)

4 8 16 32 4 8 16 32 4 8 16 32

1 0 0.00 — — — — — — — — — — — —
2 1 3.3900 −15.28 1.89 0.05 0.00 −15.04 4.27 −0.06 −0.01 0.09 0.29 0.00 0.00
3 1 3.3900 −15.28 1.89 0.05 0.00 −15.04 4.27 −0.06 −0.01 0.09 0.29 0.00 0.00
4 2 9.3284 −43.16 −9.76 −0.17 −0.06 −43.64 −9.77 −0.58 −0.10 −1.13 0.18 0.06 0.00
5 2 9.3284 — 8.61 0.18 0.00 — 23.17 0.42 0.01 50.37 2.71 0.09 0.00
6 0 14.6820 — −8.50 0.36 0.03 — −8.81 0.57 0.03 68.85 0.50 0.15 0.00
7 3 17.6500 — 0.44 0.09 −0.08 — 13.95 1.06 −0.11 63.78 9.68 0.76 0.00
8 3 17.6500 — 0.44 0.09 −0.08 — 13.95 1.06 −0.11 63.78 9.68 0.76 0.00
9 4 28.2764 — −9.27 −2.09 −0.27 — −1.97 −1.66 −0.43 67.23 9.80 0.45 0.02

10 4 28.2764 — 1.29 2.83 −0.01 — — 9.40 0.14 90.50 88.13 5.17 0.03

Number of equations 4 16 64 256 4 9 25 81 16 25 49 121

Table 5. Example 2: calculated eigenvalues of a circular acoustic cavity of radius 1.0 m
under Neumann (free-free) boundary conditions, using various uniform subdivisions in
conjunction with cubic B-splines (p = 3). See caption of previous table for details.
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p. 51]; briefly, for the Neumann problem in conjunction with 216 triangular elements and 127 nodes, the
error in the first three nonrigid modes was: ∼= 0.86%, 1.36%, and 1.79%, respectively.

Better insight is obtained when increasing mesh density into 40 breakpoints and again comparing
all those methods tested in Example 1. Concerning the FEM, the same mesh with that of breakpoints
considered in collocation methods was used. The results are as follows.

For the Dirichlet problem, it is clearly shown in Figure 5 that B-splines Galerkin–Ritz method outper-
forms and then the proposed collocation method (λ= 1) follows. The images of Demko’s and Greville’s
(Tn-based) abscissae lead to singular matrices, whereas Greville’s (Sn+2 based) abscissae work well but
perform slightly worse even that usual FEM.

For the Neumann problem, it is clearly shown in Figure 6 that B-splines Galerkin–Ritz method again
outperforms and then the proposed collocation method (λ = 1) follows. The images of Demko’s and
Greville’s (Tn-based) abscissae do not now lead to singular matrices but the errors are tremendously high
(some eigenvalues are even negative), whereas Greville’s (Sn+2-based) abscissae again work well but in
some cases hardly fight the FEM solution.

6. Discussion

The global B-spline collocation method has been previously applied in the 1960s mainly in 1D elliptic
problems [de Boor 2001], whereas preliminary eigenvalue analysis has been discussed by Jerome and
Varga [1969]. Collocation methods have been extensively used for 2D problems but they have been
implemented mostly in conjunction with small size elements; for details we refer to [Provatidis 2009b]
and papers therein. For cubic B-splines, the state-of-the-art is to use two collocation points between two
successive breakpoints (per direction). The latter matter is closely related to double knots (multiplicity
of internal knots equal to two: λ= 2), so as to produce as many equations as the number of the unknown
coefficients. In contrast, Galerkin–Ritz is usually applied on the basis of multiplicity of internal knots
equal to one (λ= 1) [Höllig 2003] (for the sake of brevity in this study the case of double knots was not
tested).

In the part of this study concerning cubic piecewise polynomials (p = 3), we found that the B-splines
based global collocation method is applicable for any multiplicity of internal knots, that is, the usual
(λ = 2) and the new (λ = 1). For the latter case (λ = 1), in which nx subdivisions of breakpoints per
direction lead to nx + 3 control points, we have initially tested to collocate at the centroids of the nx cells
defined by the breakpoints plus the ends and the middle of the domain in the corresponding direction,
ξ or η. Although in this way we derived as many equations as the number of the coefficients, the results
were not satisfactory. In contrast, when the collocation was performed taking 2×2 (Gauss) points per cell,
that is exactly the same as those used in case (λ= 2), the results became of equal quality as in case (λ= 2).
The increased number of equations, compared to the smaller number of control points (and associated
coefficients), was easily resolved applying a least-squares reduction of them (left-multiplication by a
transpose matrix) thus producing a matrix of order equal to the number of control points.

From the study of Example 1 it is concluded that the use of images of Greville (Sn+2-based) abscissae
is a good choice when applied in conjunction with polynomials of higher degree (p > 3). The images of
Demko and Greville (Tn-based) abscissae must never be applied to Dirichlet-type eigenvalue problems
in acoustics.
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Figure 5. Circular cavity under Dirichlet boundary conditions: convergence of the first
six eigenvalues in terms of number of equations, for cubic B-splines interpolation
(p = 3).
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Figure 6. Circular cavity under Neumann boundary conditions: convergence of the first
five nonzero eigenvalues in terms of number of equations, for cubic B-splines approxi-
mation (p = 3).
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It is worth repeating that the domain integration for calculating the matrices involved in B-splines
Galerkin–Ritz method was performed in conjunction with 4× 4 (in general: (p+ 1)× (p+ 1)) Gauss
points per cell of breakpoints; this is four times higher than the proposed global collocation method
(independently of the multiplicity of internal knots).

Concerning the elimination of the coefficients that are associated to the boundary, in the proposed
global collocation method they have to be eliminated independently on the type of boundary condi-
tions. In more detail, in the case of Dirichlet boundary conditions they are simply erased whereas in the
Neumann case they are properly incorporated into internal ones. In contrast, in the B-splines Galerkin–
Ritz formulation, only Dirichlet-type boundary conditions require the elimination of those coefficients
associated to the boundary, whereas in the free-free problem the mass and stiffness matrices remain as
they are.

Concerning the two examples of this study, we make some remarks:

Example 1: Rectangular cavity. No difficulty appeared in the implementation of the proposed theory
for both types of boundary conditions. Concerning the particular elimination required in the Neumann
problem, the standard equation (24) is generally applicable. It was found that, for both multiplicities, it
is sufficient to consider only one boundary equation at each of the four corners (A, B, C , D), which is
the derivative in either x- or y-direction. As previously mentioned at the end of Section 3.4.2, it is also
possible to consider both directions but then it becomes necessary to apply a least-squares procedure
so as to derive a square matrix B22; in this case the results did not change at all. Moreover, for the
particular case of a cubic polynomial (p = 3) and double knots (λ = 2), we can alternatively apply a
more schematic procedure as shown in Appendix B.

Example 2: Circular cavity. This study reduces to cubic B-splines (p = 3) only. Unlike the rectangular
cavity, this example requires a careful programming. First of all, the determination of the circle is not
a unique procedure. In all cases we have to divide the circumference into four equal parts: AB, BC ,
CD and DA. Then, for a given number of nx uniform subdivisions per side using (nx + 1) breakpoints
along (e.g., AB), and for a given multiplicity (λ= 1 or 2), there are either (nx + 3) or 2(nx + 1) control
points, respectively, to be determined. In all cases, the extreme control points coincide with the ends
of the corresponding side (e.g., AB). The internal control points were determined using boundary-only
Coons interpolation.

F In the case of double knots (λ = 2), it was found reasonable at every breakpoint to consider the
values of both the coordinates (x = r cosφ, y= r sinφ) and the slopes (dx/dφ=−r sinφ, dy/dφ=
r cosφ), with φ = (π/2)ξ, 0≤ ξ ≤ 1.

F In the case of single knots (λ= 1), it was found sufficient to consider nx + 1 uniformly arranged
internal breakpoints, that is, nx + 2 uniform segments.

Under these conditions, the following findings were noticed:

• For double knots (λ= 2), the derivative at the corners becomes singular due to the vanishing Jacobian
determinant. In more details, at the corner “A” it holds: (∂x/∂ξ = ∂x/∂η = 0). This shortcoming
was resolved considering one point before and one after the corner A (for example, in the midpoints
of the adjacent control points) and then taking the mean average of the normal derivatives.

• For single knots (λ= 1), no difficulty was observed.
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• When the internal control points were determined by smoothing the initial positions derived by
boundary-only Coons interpolation, the accuracy of the numerical solution decreased.

In summary, for both examples of this study, the quality of the B-splines Galerkin–Ritz solution
was the highest compared to that of the collocation schemes. Having said this, we must mention that the
same quality of results had been previously received when using the well known tensor product Lagrange
polynomials or Coons–Gordon transfinite interpolation (see [Provatidis 2006, p. 6702; Provatidis 2004,
p. 49; Provatidis 2009a, pp. 486–492], among others). In other words, the high quality of the numerical
solution is due more to the global character of any CAD-based interpolation (global approximation of
the acoustic pressure) and less on the individual methodology (Galerkin–Ritz or collocation).

Although it was a study in depth, this article has some weaknesses that must be cured in our ongoing
future research. One weak point is that the study does not focus on the bandwidth of the produced
matrices (or better on the required CPU-time) but only on the number of equations per numerical scheme,
a fact that may somehow influence the conclusions. A second point is that the second example (circular
cavity) has to be studied again using NURBS in conjunction with higher polynomial degrees. A third
point is that this paper refers only to cases where the basis functions have either maximum continuity
(multiplicity of 1) or continuity reduced by one (multiplicity of p− 1) at all internal knot lines. In the
future, cases where continuity is different at different knot lines should be tested.

7. Conclusions

The proposed global collocation method was based on tensor product B-splines, which are also used in
the Galerkin–Ritz formulation. Unlike the latter, the estimation of mass and stiffness matrices does not
need any domain integral to be computed, thus reducing the computer effort. The proposed method is
applicable using either single or multiple internal knots, where the maximum allowed multiplicity equals
the polynomial degree minus one. In general, multiple knots are preferred as they do not require any least-
squares scheme and they lead to a rather better quality. Alternatively, isogeometric collocation should be
carefully applied in conjunction with single knots, particularly in problems of Dirichlet-type boundary
conditions. Obviously, the extension of the proposed approach from acoustics to elastodynamics and
other types of partial differential operators as well as to three-dimensional problems is straightforward.

Appendix A: Solving boundary-value problems

The solution of the ordinary differential equation (ODE)

D(u(x))= f, x ∈ [0, L], (A.1)

by collocation is conducted as follows.
The variable is written as a B-splines series expansion

u(x)=
q∑

i=1

Ni,p(x) · ai , (A.2)

where q is the number of control points, Ni,p the basis functions, and ai the unknown coefficients.
Between alternatives, it is proposed to start with a mesh of (n+ 1) discrete breakpoints (i.e., n segments,
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uniform or not). For a given polynomial degree p, considering a given standard multiplicity λ of all inner
points (see [Piegl and Tiller 1995; de Boor 2001]), we have that

q = p+ 1+ λ(n− 1). (A.3)

For reasons that will be explained below, we use λ collocation points per cell, that is, between any two
successive breakpoints. Then the total number of collocation points becomes

ncol = λn. (A.4)

The overall computational procedure is as follows:

(1) First the ODE is fulfilled at the above-mentioned ncol collocation points (this procedure is identical
with that used in the eigenvalue problem), which leads to the matrix equation

[Acol]ncol×q ·

a1
...

aq

=
 f1

...

fncol

 . (A.5)

(2) Then the boundary conditions are imposed. We distinguish two cases:

(a) Two Dirichlet-type boundary conditions:

x = 0 ⇒ a1 =U0 and x = L ⇒ aq =UL . (A.6)

In this case, (A.6) are substituted into (A.5), the first (with elements ai1, i = 1, . . . , ncol) and
last (with elements aiq , i = 1, . . . , ncol) columns of matrix [Acol] are multiplied by the known
quantities U0 and UL and then these terms are transferred to the right-hand-side. In this way,
the dimensions of matrix [Acol] reduce from ncol× q to ncol× (q − 2) and the equations system
to be solved becomes

[Acol]ncol×(q−2) ·

 a2
...

aq−1

=
 f1− a11U0− a1qUL

...

fncol − ancol,1U0− ancol,qU L

 . (A.7)

In the sequence we shall seek for the conditions for which the aforementioned reduced matrix
[Acol] becomes square (with equal number of rows and columns). Actually, the combination of
(A.3) and (A.4) gives

q − 2= λn+ (p− 1− λ). (A.8)

Therefore, if one selects that
λ= p− 1, (A.9)

the parenthesis in (A.8) vanishes and gives that q − 2= λn, which in turn, by virtue of (A.4),
gives the desired relationship ncol = (q − 2), ensuring that matrix [Acol] is square.

(b) One Dirichlet- and one Neumann-type boundary condition:

a1 =U0 (A.10)
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and (
∂u
∂x

)
x=L
= q̄L . (A.11)

In this case, we take the first derivative of (A.2) over x and equate it with q̄L according to (A.11).
Thus the number of equations is increased by one and becomes equal to (ncol+ 1) while the first
column is erased (as previously), since all relevant elements are multiplied by the known value
U0, and is then transferred to the right hand side. Again the equations matrix is square, but in
this case it is of dimensions (ncol+ 1)× (ncol+ 1).

Remark. Another alternative is to consider a greater number of collocation points than previously, that is
ncol >λn. In this case, after the boundary conditions are imposed the obtained matrix [Acol] is nonsquare,
of dimensions ncol× (q − 2), that is with more equations than the unknowns. The remedy to obtain a
numerical solution is to apply a least-squares scheme, for example multiplying both parts of (A.7) by
the transpose of matrix [Acol]. However, the time-consuming transpose-matrix concept is always solved
by a QR-decomposition least-squares solver (which can be found in LINPACK, LAPACK, etc.). In this
way, the solution time increment is almost negligible when compared to a regular QR-decomposition for
a square matrix. Nevertheless, the built up of more rows (collocation points) than necessary is the main
source of increased computer time.

Appendix B: Elimination of boundary coefficients for the free-free problem in a rectangular

We deal with the particular case in which the polynomial degree is p = 3 whereas the multiplicity of
internal knots equals to two (λ= 2). In other words, we consider double knots.

Let us consider a rectangle ABCD as shown in Figure 7. The opposite sides AB and CD are divided
into nx uniform subdivisions, whereas the other opposite sides (BC and DA) are divided into ny uniform
ones. The axis origin is taken at the corner A.

In case of piecewise cubic polynomials (p = 3) the first control point P0 coincides with the corner A,
whereas P2nx+1 coincides with the corner B. The second layer consists of the control points (P2(nx+1)

up to P4(nx+1)−1), and so on. Obviously, the last control point is P4(nx+1)×(ny+1)−1, and it coincides with

Figure 7. A sketch, for nx ×ny = 4×2 subdivisions and double knots (λ= 2) for cubic
B-splines (p = 3), aiming at describing the procedure of eliminating the coefficients
associated to the boundary control points in a rectangular ABCD. The hatched area
indicates those internal control points that are not influenced by the aforementioned
elimination.
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the upper right corner C (Figure 7). Henceforth, for the sake of simplicity we limit the discussion for the
particular case of nx × ny = 4× 2 subdivisions, where we change the numbering of the control points,
starting from “1” (corner A) and ending at “60” (corner C).

Taking the first derivative of (13) with respect to the unit normal vector n (at a point along the side
DA), we obtain

∂u
∂n

∣∣∣
DA
=

q∑
k=1

∂φk(0, η)
∂n

· ak, (B.1)

where, as already explained, it holds that

q = 4(nx + 1)× (ny + 1). (B.2)

First, (B.1) is applied at the control point P0 ≡ A, and due to the free-free boundary conditions we
obtain

q∑
k=1

∂φk(0, 0)
∂x

· ak = 0. (B.3)

Due to the compact support of the basis functions Ni,p(ξ) and N j,p(η), (B.3) is written as

2(nx+1)∑
l=1

blx · al = 0, (B.4)

with

blx =
∂φl

∂x
(0, 0), l = 1, . . . , 2(nx + 1). (B.5)

Applying (B.3) at all control points along the boundary, we can obtain several relationships:

between “1” and “2”: b1xa1+ b2xa2 = 0. (B.6)

Equation (B.6) induces a linear relationship between the coefficients a1 and a2 associated to control
points “1” and “2”, respectively.

Moreover, we can write one identical relationship between the control points “11” and “12”:

between “11” and “12”: b1xa11+ b2xa12 = 0 ⇒ a11 =−
b2x

b1x
a12. (B.7)

In an analogous way, taking the derivatives in the y-direction, we can write:

between “1” and “11”: b1ya1+ b2ya11 = 0, (B.8)

between “2” and “12”: b1ya2+ b2ya12 = 0 ⇒ a2 =−
b2y

b1y
a12. (B.9)

Equations (B.6)–(B.9) impose four equations for the four variables: a1, a2, a11 (to be eliminated) and
the a12 (to be kept). Therefore, it is anticipated that one of them is redundant. In fact, substituting (B.6),
which is related to the derivative in the x-direction, into (B.9) one obtains the relationship between the
corner “1” and the close-to-corner “12” control point as

a1 =
b2x

b1x
·

b2y

b1y
· a12. (B.10)
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Obviously, the same relationship is also derived starting from the derivative at the corner “1” in the
y-direction, that is, substituting (B.8) into (B.7):

a1 =−
b2y

b1y
a11 =−

b2y

b1y
·

(
−

b2x

b1x
· a12

)
=

b2y

b1y
·

b2x

b1x
· a12. (B.11)

The above fact (identity between (B.10) and (B.11)) depicts that it is not necessary to consider both
fluxes at the corner. Therefore, we can ignore, for example, (B.8) and derive unique expression between
points 11 and 12 (B.7), as well as between “2” and “12” (B.9). Moreover, the relationship between the
control points “3” with “13” is similar to that between “2” and “12”. Generally, all intermediate control
points along AB are slaves of the master points along the internal boundary A′B ′ (Figure 7). In an
analogous way, we can obtain master-to-slave relations for the control points along the remaining sides
AB, BC , and CD. In this way, all control points along the boundary are slaves and are substituted by
the master control points along the line A′B ′C ′D′ shown in Figure 7.

In order to analytically perform the elimination, let us now consider an arbitrary collocation point “i”
(not shown in Figure 7). The i-th row of the matrix equation is written as(
mi,1ä1+mi,2ä2+ · · ·+mi,11ä11+mi,12ä12+ · · ·+mi,60ä60

)
+
(
ki,1a1+ ki,2a2+ · · ·+ ki,11a11+ ki,12a12+ · · ·+ ki,60a60

)
= 0. (B.12)

In (B.12) we substitute the boundary values such as a1 using (B.10), a2 using (B.9), a11 using (B.7)
and so on. In this way, the coefficient a12 appears as a factor of four terms, the coefficients a13 to a18

appear as factors of two terms, the coefficient a19 appears as a factor again of four terms, and so on. In
more detail, after the above-mentioned subsitutions equation (B.12) is written as

ä12

[
mi,1

(
b2y

b1y
·

b2x

b1x

)
+mi,2

(
−

b2y

b1y

)
+mi,11

(
−

b2x

b1x

)
+mi,12

]
+ ä13

[(
−

b2y

b1y

)
mi,3+mi,13

]
+ · · ·+ ä18

[(
−

b2y

b1y

)
mi,8+mi,18

]
+ · · ·

+ a12

[
ki,1

(
b2y

b1y
·

b2x

b1x

)
+ ki,2

(
−

b2y

b1y

)
+ ki,11

(
−

b2x

b1x

)
+ ki,12

]
+ a13

[(
−

b2y

b1y

)
ki,3+ ki,13

]
+ · · ·+ a18

[(
−

b2y

b1y

)
ki,8+ ki,18

]
+ · · · = 0. (B.13)

Obviously, the implementation of (B.13) and its analogue reduces the order of each matrix from
4(nx + 1)(ny + 1) to 4(nx − 1)(ny − 1).

In summary, those control points deeply in the interior (large black circles) are not influenced by the
Neumann conditions and keep their columns. The remaining internal control points (small black circles)
that are in the first layer parallel to the boundary are divided into two categories. The first category
consists of only the four control points A′, B ′, C ′, and D′ that lie in the neighborhood of the four
corners; the corresponding condensed matrix elements are composed of four values (cf. a12 in (B.13)).
The second category consists of those intermediate control points along the internal boundary A′B ′C ′D′

(Figure 7); the corresponding condensed matrix elements are composed of two values (cf. a13 in (B.13)).
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