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MULTI-REGION TREFFTZ COLLOCATION GRAINS (MTCGS)
FOR MODELING PIEZOELECTRIC COMPOSITE AND POROUS MATERIALS

IN DIRECT AND INVERSE PROBLEMS

PETER L. BISHAY, ABDULLAH ALOTAIBI AND SATYA N. ATLURI

A simple and efficient method for modeling piezoelectric composite and porous materials to solve direct
and inverse 2D problems is presented in this paper. The method is based on discretizing the problem
domain into arbitrary polygonal-shaped regions that resemble the physical shapes of grains in piezoelec-
tric polycrystalline materials, and utilizing the Trefftz solution functions derived from the Lekhnitskii
formulation for piezoelectric materials, or for elastic dielectric materials, to express the mechanical and
electrical fields in the interior of each grain or region. A simple collocation method is used to enforce the
continuity of the inter-region primary and secondary fields, as well as the essential and natural boundary
conditions. Each region may contain a void, an elastic dielectric inclusion, or a piezoelectric inclusion.
The void/inclusion interface conditions are enforced using the collocation method, or using the special
solution set which is available only for the case of voids (traction-free, charge-free boundary conditions).
The potential functions are written in terms of Laurent series which can describe interior or exterior
domains, while the negative exponents are used only in the latter case. Because Lekhnitskii’s solution for
piezoelectric materials breaks down if there is no coupling between mechanical and electrical variables,
the paper presents this solution in a general form that can be used for coupled (piezoelectric) as well as
uncoupled (elastic dielectric) materials. Hence, the matrix or the inclusion can be piezoelectric or elastic
dielectric to allow modeling of different types of piezoelectric composites. The present method can be
used for determining the meso/macro physical properties of these materials as well as for studying the
mechanics of damage initiation at the micro level in such materials. The inverse formulation can be used
for determining the primary and secondary fields over some unreachable boundaries in piezoelectric
composites and devices; this enables direct numerical simulation (DNS) and health monitoring of such
composites and devices. Several examples are presented to show the efficiency of the method in modeling
different piezoelectric composite and porous materials in different direct and inverse problems.

1. Introduction and literature review

Piezoelectric composites possess some enhanced properties over monolithic piezoelectric materials that
enable them to be used in different industrial applications. Bigger range of coupled properties, better
acoustic properties or figures of merit, and less brittleness are among these enhanced properties. Both
“subtractive” and “additive” approaches were used to develop piezoelectric composites where, in the
“subtractive” approach, controlled porosity is induced in piezoelectric materials to form porous piezo-
electric materials with reduced density [Li et al. 2003]. These porous piezoelectric materials found

Bishay is the corresponding author.
Keywords: piezoelectric, composites, porous, Trefftz, Lekhnitskii, Voronoi cells, void, inclusion, collocation, inverse

problems.

287

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2014.9-3
http://msp.org


288 PETER L. BISHAY, ABDULLAH ALOTAIBI AND SATYA N. ATLURI

applications such as miniature accelerometers, vibration sensors, contact microphones and hydrophones.
Porous piezoelectric materials have several advantages such as lack of possibility of destructive chemical
reactions between the piezoelectric ceramic and the second phase (the air) during production, ability to
control pore size, shape and distribution, light weight compared to monolithic piezoelectric materials and
other piezoelectric composites, reduced price of production compared to other piezoelectric composites,
and low acoustic impedances compared to dense ceramics, hence they could be used to improve the
mismatch of acoustic impedances at the interfaces of medical ultrasonic imaging devices or underwater
sonar detectors [Kumar et al. 2006]. Porous ceramics are classified by the International Union of Pure
and Applied Chemistry (IUPAC) according to their pore size (or diameter d) as follows: macroporous
(d > 50 nm), meso-porous (2 nm< d < 50 nm), and microporous (d < 2 nm). Also, they are classified
according to the pore geometry [Araki and Halloran 2005] as: foam, interconnected, pore spaces between
particles, plates and fibers, and large or small pore networks.

On the other hand, in the “additive” approach, the effective properties of the composite are optimized
by combining two or more constituents. The second phase is used to modulate the overall properties of
piezoelectric composites and could be dielectric ceramic [Jin et al. 2003], metal [Li et al. 2001], polymer
[Klicker et al. 1981], or another piezoelectric material. Piezoelectric ceramics are also used in smart
composite materials where piezoelectric rods (fibers) or particles are embedded in an elastic matrix.

Analytical models for porous piezoelectric materials are only available for simple geometries such
as an infinite plate with circular or elliptical hole as presented in [Sosa 1991; Xu and Rajapakse 1999;
Chung and Ting 1996; Lu and Williams 1998] using either the Lekhnitskii formalism [Lekhnitskii 1957]
or the extended Stroh formalism [Stroh 1958]. However for more complicated geometries and practical
problems, numerical methods such as finite elements, boundary elements, meshless or Trefftz methods
should be used.

Modeling domains with defects (holes, inclusions or cracks) using the ordinary finite element method
needs mesh refinement around defects in order to achieve acceptable results for the gradients of fields;
hence it is very complex, time-consuming, and costly. Thus, special methods should be used to model
defects. Special methods for direct numerical simulation (DNS) of micro/mesostructures were developed
by Bishay and Atluri [2014] for porous piezoelectric materials; by Bishay et al. [2014] for piezoelectric
composites; and by Dong and Atluri as 2D and 3D Trefftz cells [Dong and Atluri 2012b; 2012c; 2012d]
and SGBEM cells [Dong and Atluri 2012e; 2013] for heterogeneous and functionally graded isotropic
elastic materials, where each cell models an entire grain of the material, with elastic/rigid inclusions or
voids, for direct numerical micromechanical analysis of composite and porous materials. Also 2D and
3D radial basis functions (RBF) grains were successfully used to model functionally graded materials
(FGM) and the switching phenomena in ferroelectric materials by Bishay and Atluri [2012; 2013]. Finite
elements with elliptical holes, inclusions or cracks in elastic materials were also developed by Zhang
and Katsube [1995; 1997], Piltner [1985; 2008], and Wang and Qin [2012]. Hybrid-stress elements
were developed by Ghosh and his coworkers (see [Moorthy and Ghosh 1996] for instance). Readers
are referred to [Dong and Atluri 2012b] for a critical comparison between Ghosh’s hybrid-stress ele-
ments and the hybrid-displacement and Trefftz elements presented in the aforementioned papers. For
piezoelectric materials, Wang et al. [2004] developed a hybrid finite element with a hole based on the
Lekhnitskii formalism, while Cao et al. [2013] developed a hybrid finite element with defects based
on the extended Stroh formalism. The boundary element method was also used by Xu and Rajapakse
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[1998] to analyze piezoelectric materials with elliptical holes. In addition, Trefftz methods were used to
model microstructures with defects, using multi-source-point Trefftz method in [Dong and Atluri 2012a]
for plane elasticity, and Trefftz boundary collocation method for plane piezoelectricity macromechanics
developed by Sheng et al. [2006] based on the Lekhnitskii formalism.

The basic idea of the various Trefftz methods is to use the so-called Trefftz functions which satisfy
the homogenous governing equations of the relevant physical phenomenon as the trial and/or weight
functions. A complete set of Trefftz functions that satisfy only the homogenous governing equations
is termed as a basic solution set. A complete set of Trefftz functions that satisfy both the homogenous
governing equations and the homogenous boundary conditions is termed as a special solution set. To
formulate any Trefftz method, Trefftz functions must be available. For the case of impermeable voids,
the special solution set that satisfies the traction-free, charge-free conditions can be used. Hence there is
no need to enforce the void boundary conditions by collocation or any other method. Using the special
solution set is more efficient. However, for the case of grains with pressurized voids or inclusions, the
special solution set does not exist and collocation/least squares method should be used instead to enforce
the void/inclusion boundary conditions.

In this paper, multi-region Trefftz collocation grains (MTCGs) are developed for modeling porous
piezoelectric materials as well as piezoelectric composites where the materials of the matrix and the
inclusion could be piezoelectric or elastic dielectric (anisotropic in general). The formulation is very
simple and efficient since there are no simple polynomial-based elements in the finite element sense.
Each grain has an arbitrarily polygonal shape to mimic the physical shape of grains in the microscale.
Each grain may contain a circular or an arbitrarily oriented elliptical void or inclusion and has its own
crystallographic orientation (poling direction). Each grain may be surrounded by an arbitrary number
of neighboring grains; hence MTCGs are expected to show field distributions that cannot be obtained
using regular triangular and four-sided polynomial-based finite elements. Dirichlet tessellation is used to
construct the mesh or the geometric shapes of the grains. The formulation is also very effective in inverse
problems where the boundary conditions over some portions of the problem boundary are completely
unknown while on other portions extra conditions are known or measured. The Lekhnitskii formalism
is employed here due to the relatively explicit nature of the derived Trefftz functions.

The paper is organized as follows: Section 2 introduces all governing equations and boundary condi-
tions. Lekhnitskii’s solution for coupled/uncoupled plane electroelastic problem is presented in Section 3
while the multi-region Trefftz collocation grains (MTCGs) formulation for piezoelectric composites with
and without voids/inclusions is introduced in Section 4 for direct problems and in Section 5 for inverse
problems. The advantage of using MTCGs to model representative volume element (RVE) for obtaining
the overall material properties of piezoelectric composites is discussed in Section 6. Numerical examples
are provided in Section 7 and conclusions are summarized in Section 8.

2. Governing equations and boundary conditions

Consider a domain � filled with a piezoelectric composite. On the boundary of the domain, denoted ∂�,
we can specify displacements on Su or tractions on St (not both at any point, i.e., Su ∩ St =∅). Similarly
we can specify electric potential on Sϕ or electric charge per unit area (electric displacement) on SQ

(where again Sϕ ∩ SQ =∅). So ∂�= Su ∪ St = Sϕ ∪ SQ . The whole domain � can be divided into N
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Figure 1. Left: 2D irregular polygon (grain) with an elliptical void/inclusion and its local
coordinates (x1-x3) as well as the global (X1-X3), grain local (x̂1-x̂3) and crystallographic
(x ′1-x ′3) Cartesian coordinate systems. Right: elliptical void/inclusion with the local coor-
dinate system as well as the poling direction of the piezoelectric material.

regions �=
∑N

e=1�
e (where each region may represent a grain in the material). The intersection of the

boundary of region e, denoted ∂�e, with Su , St , Sϕ and SQ is Se
u , Se

t , Se
ϕ and Se

Q , while the intersection
with the boundaries of the neighboring regions is denoted Se

g. Hence ∂�e
= Se

u ∪ Se
t ∪ Se

g = Se
ϕ ∪ Se

Q ∪ Se
g.

The domain of each region, �e, may contain a void or an inclusion filling the domain �e
c and has a

boundary ∂�e
c such that �e

c ⊂�
e and ∂�e

c ∩ ∂�
e
=∅. In this case, the region outside the void/inclusion

domain in region e is called the matrix domain �e
m =�

e
−�e

c. Figure 1 (left) shows one grain (irregular
polygonal region for the 2D case) with an arbitrarily-oriented elliptical void/inclusion. The figure also
shows the crystallographic coordinates and the poling direction.

Adopting matrix and vector notation and denoting uα (2 components), εα (3 components) and σ α

(3 components) as the mechanical displacement vector, strain and stress tensors written in vector form
respectively, and ϕα (scalar), Eα (2 components) and Dα (2 components) as the electric potential, electric
field and electric displacement vectors respectively, where the superscript α = m or c (for matrix or
inclusion), the following equations should be satisfied in the matrix and inclusion domains (�e

m and �e
c):

(1) Stress equilibrium and charge conservation (Gauss’s) equations:

∂T
uσ

α
+ b̄α = 0; σ α = (σ α)T , ∂T

e Dα
− ρ̄αf = 0, (1)

where b̄α is the body force vector, and ρ̄αf is the electric free charge density (which is approximately zero
for dielectric and piezoelectric materials).

(2) Strain-displacement (for infinitesimal deformations) and electric field-electric potential relations:

εα = ∂uuα, Eα
=−∂ eϕ

α, (2)
where

∂u =

[
∂/∂x1 0 ∂/∂x3

0 ∂/∂x3 ∂/∂x1

]T

, ∂ e =
[
∂/∂x1 ∂/∂x3

]T
.

The representation of the electric field in (2), as gradients of an electric potential, includes the assump-
tion that Faraday’s equation (∇ × Eα

=−∂Bα/∂t = 0, where B is the magnetic flux density) is satisfied
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for electrostatics. Note that we consider only two equations (Gauss’s and Faraday’s equations) from the
four Maxwell’s equations. The remaining two equations (Gauss’s law for magnetism and Ampere’s law
with Maxwell’s correction) are not considered in the electrostatic analysis of piezoelectric materials.

(3) Piezoelectric material constitutive laws:

σ α = Cα
Eε

α
− eαT Eα,

Dα
= eαεα + hαε Eα,

or
εα = SαDσ

α
+ gαT Dα,

Eα
=−gασ α +βασ Dα,

(3)

where Cα
E , hαε , SαD, βασ are, respectively, the elastic stiffness tensor measured under constant electric field,

dielectric permittivity tensor measured under constant strain, elastic compliance tensor measured under
constant electric displacement, and inverse of the dielectric permittivity tensor measured under constant
stress. eα and gα are piezoelectric tensors measured under constant strain and stress respectively.

The SI units of the mentioned fields are as follows: stress σ α (Pa or N/m2), strain εα (m/m), electric
displacement Dα (C/m2), electric field Eα (V/m or N/C), and the SI units of the material matrices
are: Cα

E (Pa or N/m2), SαD (m2/N), hαε (C/Vm), βασ (Vm/C), eα (C/m2), and gα (m2/C). Note that
SαD 6= (C

α
E)
−1 and βασ 6= (hαε )−1.

If the matrix or the inclusion material is elastic (not piezoelectric), then Equations (1) and (2) should
be satisfied in the corresponding domains, and the coupling piezoelectric matrices eα = gα = 0 in (3).

2.1. Matrix boundary conditions.

(1) Mechanical natural (traction) and essential (displacement) boundary conditions:

nσσm
= t̄ at St or Se

t ,

um
= ū at Su or Se

u,
(4)

(2) Electric natural and essential boundary conditions:

ne Dm
= Q̄ at SQ or Se

Q,

ϕm
= ϕ̄ at Sϕ or Se

ϕ.
(5)

where

nσ =
[

n1 0 n3

0 n3 n1

]
, ne =

[
n1 n3

]
, (6)

t̄ is the specified boundary traction vector, Q is the specified surface density of free charge. n1 and n3,
the two components present in nσ and ne are the components of the unit outward normal to the grain
boundary ∂�e. We designate ū as the specified mechanical displacement vector at the boundary Su (or
Se

u), and ϕ̄ as the specified electric potential at the boundary Sϕ (or Se
ϕ).

The following conditions should also be satisfied at each (inter-region) boundary Se
g:

(1) Mechanical displacement and electric potential compatibility conditions:

um+
= um−,

ϕm+
= ϕm−. (7)
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(2) Mechanical traction and electric charge reciprocity conditions:

(nσσm)++ (nσσm)− = 0,

(ne Dm)++ (ne Dm)− = 0.
(8)

2.2. Impermeable void boundary conditions. The dielectric constants of piezoelectric materials are
three orders of magnitude higher than that of air or vacuum inside the void. This means that charges do
not accumulate on the void boundary and the impermeable assumption can be adopted. We then have
traction-free, charge-free conditions along the void boundary ∂�e

c:

tm
= nσσm

= 0,

Qm
= ne Dm

= 0.
(9)

2.3. Inclusion boundary conditions. If the matrix and inclusion materials are elastic and nonconducting
(dielectric or piezoelectric), we have the following conditions along the inclusion boundary ∂�e

c:

(1) Mechanical displacement and electric potential continuity conditions:

um
= uc, ϕm

= ϕc. (10)

(2) Traction reciprocity and charge continuity conditions:

−nσσm
+ nσσ c

= 0, ne Dm
= ne Dc, (11)

where the normal unit vector whose components, n1 and n3, appear in ne and nσ (see Equation (6)) along
the inclusion boundary is directed away from the inclusion domain.

These inclusion boundary conditions can be used for the case of piezoelectric particles or fibers in a
nonpiezoelectric matrix (polymer, say) or in a piezoelectric matrix made up of different material. They
can also be used to model elastic particles or fibers in a piezoelectric matrix.

3. General solution of coupled/uncoupled plane electroelasticity using Lekhnitskii’s formulation

Let (x ′1, x ′3) be the principal material (crystallographic) coordinates, x ′3 be the poling direction (for piezo-
electric materials) and (x1, x3) be the set of coordinates obtained by rotating (x ′1, x ′3) through an anti-
clockwise rotation ζ (see Figure 1, right). Using the Lekhnitskii formalism [Lekhnitskii 1977], Xu and
Rajapakse [1999] derived the general solution of plane piezoelectricity with respect to (x1, x3) coordinate
system. This formulation is generalized here to be applicable to uncoupled electromechanical problems
as for the case of isotropic or transversely-isotropic elastic dielectric materials (in the isotropic case, there
is no unique crystallographic coordinate system; any coordinate system can be considered as such).

The constitutive equations with respect to the crystallographic axes x ′1− x ′3 for plane stress and plane
strain problems, with stress and electric displacement as objectives of the equations, can be written in
compact form as: {

ε′

E′

}
=

[
S′ g′T

−g′ β ′

]{
σ ′

D′

}
, (12)

where superscripts, α, in (3) that indicate whether we are talking about the matrix or the inclusion, as
well as the subscripts of S′ and β ′, are omitted for simplicity.
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By invoking tensor transformation rule, the constitutive relations can be written with respect to (x1, x3)

coordinate system as:
ε1

ε3

ε5

E1

E3

=


S11 S13 S15 g11 g31

S13 S33 S35 g13 g33

S15 S35 S55 g15 g35

−g11 −g13 −g15 β11 β13

−g31 −g33 −g35 β13 β33



σ1

σ3

σ5

D1

D3

 or
{
ε

E

}
=

[
S gT

−g β

]{
σ

D

}
, (13)

in which
S= T T

2 S′T2, g = T T
1 g′T2, β = T T

1 β
′T1, (14)

and in the above equations,

T1 =

[
cos ζ −sin ζ
sin ζ cos ζ

]
and T2 =

 cos2 ζ sin2 ζ −2 sin ζ cos ζ
sin2 ζ cos2 ζ 2 sin ζ cos ζ

sin ζ cos ζ −sin ζ cos ζ cos2 ζ − sin2 ζ

 .
It can be seen that the coefficients S, g and β are functions of the angular rotation ζ . Again, for

nonpiezoelectric materials, there is no coupling between the elastic and the electric fields, and g′ = g = 0.
Here we summarize the expressions used to describe the primary and secondary fields in absence of

body force and free-charge density (b= 0, ρf = 0) using the Lekhnitskii formalism. For more details, the
reader is referred to [Bishay and Atluri 2014; Sheng et al. 2006]. However, if the material is not piezo-
electric and there is no coupling (gi j = 0), the expressions presented in the aforementioned references
break down. Hence, the following expressions are modified to account for both coupled and uncoupled
materials: 

u1

u3

ϕ

= 2 Re
3∑

k=1


pk

qk/µk

sk

ωk(zk), (15)


σ1

σ3

σ5

= 2 Re
3∑

k=1


γkµ

2
k

γk

−γkµk

ω′k(zk),

{
D1

D3

}
= 2 Re

3∑
k=1

{
λkµk

−λk

}
ω′k(zk),


ε1

ε3

ε5

= 2 Re
3∑

k=1


pk

qk

rk

ω′k(zk),

{
E1

E3

}
=−2 Re

3∑
k=1

{
sk

tk

}
ω′k(zk), (16)

where zk = x1+µk x3, ωk(zk) are three complex potential functions, the prime denotes differentiation
with respect to zk and

pk = γk(S11µ
2
k + S13− S15µk)+ λk(g11µk − g31),

qk = γk(S13µ
2
k + S33− S35µk)+ λk(g13µk − g33),

rk = γk(S15µ
2
k + S15− S55µk)+ λk(g15µk − g35),

sk = γk(g11µ
2
k + g13− g15µk)− λk(β11µk −β31),

tk = γk(g31µ
2
k + g33− g35µk)− λk(β13µk −β33),
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λk =
g11µ

3
k−(g15+g31)µ

2
k+(g13+g35)µk−g33

β11µ
2
k−2β13µk+β33

, γk = 1 for piezoelectric material,

λk = δk3, γk = δk1+ δk2 for nonpiezoelectric material,

where δi j is the Kronecker delta. For piezoelectric materials, µk (k = 1, . . . , 6) are the roots of the
characteristic equation

c6µ
6
+ c5µ

5
+ c4µ

4
+ c3µ

3
+ c2µ

2
+ c1µ+ c0 = 0, (17)

where

c0 = S33β33+ g2
33,

c1 =−2S35β33− 2S33β13− 2g33(g13+ g35),

c2 = S33β11+ 4S35β13+β33(2S13+ S55)+ 2g33(g31+ g15)+ (g13+ g35)
2,

c3 =−2g11g33− 2S15β33− 2S35β11− 2β13(2S13+ S55)− 2(g31+ g15)(g13+ g35),

c4 = S11β33+ 4S15β13+β11(2S13+ S55)+ 2g11(g13+ g35)+ (g31+ g15)
2,

c5 =−2S11β13− 2S15β11− 2g11(g31+ g15),

c6 = S11β11+ g2
11,

while for elastic dielectric materials, µ1, µ2, µ4 and µ5 are obtained from the elasticity equation (18),
and µ3 and µ6 are obtained from the electrostatics equation (19):

S11µ
4
− 2S15µ

3
+ (2S13+ S55)µ

2
− 2S35µ

3
+ S33 = 0, (18)

β11µ
2
− 2β13µ+β33 = 0. (19)

In general, the roots of (17) or those of (18) and (19) are complex with three conjugate pairs:

µ1 = Aµ1+ i Bµ1, µ2 = Aµ2+ i Bµ2, µ3 = Aµ3+ i Bµ3, µ4 = µ̄1, µ5 = µ̄2, µ6 = µ̄3, (20)

in which i =
√
−1, Aµk and Bµk (k = 1, 2, 3) are all distinct. Over-bar denotes complex conjugate.

3.1. Basic solution sets. For an elliptical void/inclusion as shown in Figure 1(right), the following con-
formal mapping can be used to transform an ellipse in zk-plane into a unit circle in ξk-plane [Lekhnitskii
1977]:

ξk =
zk ±

√
z2

k − (a2
o +µ

2
kb2

o)

ao− iµkbo
, k = 1, 2, 3, (21)

where ao and bo are the half lengths of the void/inclusion axes as shown in Figure 1 (right) and the sign
of the square root (±) is chosen in such a way that |ξk | ≥ 1. The inverse mapping has the form

zk =
ao− iµkbo

2
ξk +

ao+ iµkbo

2
ξ−1

k , k = 1, 2, 3. (22)

Along the void/inclusion boundary which is a unit circle in the ξk-plane, we have |ξk | = 1 or ξ1 = ξ2 =

ξ3 = ei2 where 2 ∈ [−π, π].
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The basic set of Trefftz functions for electromechanical displacements u = {u1, u3, ϕ}
T , electrome-

chanical stresses and strains σ =
{
σ1 σ3 σ5 D1 D3

}
T , ε =

{
ε1 ε3 ε5 E1 E3

}
T for interior or exterior

domains, respectively, can be obtained as

u = 2
M∑

n=Ms

3∑
k=1

[(
Re Dk Re Zn

k − Im Dk Im Zn
k

)
a(n)k −

(
Re Dk Im Zn

k + Im Dk Re Zn
k

)
b(n)k

]
, (23)

σ = 2
M∑

n=Ms

3∑
k=1

[(
Re Gk Re nY n−1

k − Im Gk Im nY n−1
k

)
a(n)k −

(
Re Gk Im nY n−1

k + Im Gk Re nY n−1
k

)
b(n)k

]
, (24)

ε = 2
M∑

n=Ms

3∑
k=1

[(
Re Hk Re nY n−1

k − Im Hk Im nY n−1
k

)
a(n)k −

(
Re Hk Im nY n−1

k + Im Hk Re nY n−1
k

)
b(n)k

]
. (25)

In the above,

Dk = {pk, qk/µk, sk}
T , Gk = {γkµ

2
k, γk,−γkµk, λkµk,−λk}

T ,

Hk = {pk, qk, rk,−sk,−tk}T ,

and
Ms = 0, Zk = zk, Y n−1

k = zn−1
k for simply connected domains,

Ms = 0, Zk = ξk, Y n−1
k = ξ n−1

k for ellipse-interior domains,

Ms =−M, Zk = ξk, Y n−1
k =

ξ n−1
k

A− Bξ−2
k

for ellipse-exterior domains,

where A = 1
2(ao− iµkbo), B = 1

2(ao+ iµkbo).
For interior/exterior solutions, when M is increased by one, six/twelve Trefftz functions with their

corresponding undetermined real coefficients
{
a(±n)

1 , b(±n)
1 , a(±n)

2 , b(±n)
2 , a(±n)

3 , b(±n)
3

}
are added to the

solution. So the number of Trefftz functions mT (which is also equivalent to the number of undetermined
real coefficients) is:

mT =

{
6(M + 1) for interior domain solution,
6(2M + 1) for exterior domain solution.

(26)

Because of the exponential growth of the term Zn
k as n is increased, we introduce a characteristic length

to scale the Trefftz solution set in order to prevent the system of equations from being ill-conditioned.
For an arbitrary polygonal grain as shown in Figure 1 (left), where the coordinates of the nodes are(
x j

1 , x j
3

)
, j = 1, 2, . . . ,m, the center point of the polygon has coordinates (xc

1, xc
3). Relative to the local

coordinates at the center point, we have ẑk = x̂1 + µk x̂3 = (x1 − xc
1)+ µk(x3 − xc

3), k = 1, 2, 3 and
correspondingly,

ξ̂k =
ẑk ±

√
ẑ2

k − (a2
o +µ

2
kb2

o)

ao− iµkbo
.

Now, Zk (zk for interior domains or ξk for exterior domains) will be replaced by Ẑk/Rc where

Rc =max(Rck), Rck =max
j

√[
Re Ẑ j

k

]2
+
[
Im Ẑ j

k

]2
, j = 1, 2, . . . ,m. (27)
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This is done only for terms with positive exponents. In this way, the exponential growth of Zn
k is

prevented as n is increased because 0< |(Ẑk/Rc)
n
|< 1 for any point within the grain or along the grain

boundaries.

3.2. Special solution set for impermeable elliptical voids. Trefftz special solution set accounts for the
homogeneous boundary conditions of voids, cracks, etc. Wang et al. [2004] constructed a special solution
set of Trefftz functions for elliptical voids with axes parallel/perpendicular to poling direction. Sheng
et al. [2006] extended this to the case of arbitrarily oriented impermeable elliptical voids.

By enforcing traction-free, charge-free boundary conditions along the void surface, we can express
a(−n)

k and b(−n)
k in terms of a(n)k and b(n)k , as (see [Stroh 1958])

a(−n)
k =

3∑
j=1

(
Re(Ek j )a

(n)
j − Im(Ek j )b

(n)
j

)
, b(−n)

k =−

3∑
j=1

(
Im(Ek j )a

(n)
j +Re(Ek j )b

(n)
j

)
, (28)

where E11 E12 E13

E21 E22 E23

E31 E32 E33

=−
 γ1 γ2 γ3

γ1µ̄1 γ2µ̄2 γ3µ̄3

λ̄1 λ̄2 λ̄3

−1 γ1 γ2 γ3

γ1µ1 γ2µ2 γ3µ3

λ1 λ2 λ3

 .
So the number of Trefftz functions mT (which is also equivalent to the number of undetermined real

coefficients) is reduced to mT = 6(M + 1).
Substituting (28) into (23)–(25) yields the following special set of Trefftz functions:

uvoid =

M∑
n=0

3∑
k=1

(
8(n)ak

a(n)k +8
(n)
bk

b(n)k

)
,

σ void =

M∑
n=0

3∑
k=1

(
9(n)

ak
a(n)k +9

(n)
bk

b(n)k

)
,

εvoid =

M∑
n=0

3∑
k=1

(
0(n)ak

a(n)k +0
(n)
bk

b(n)k

)
,

(29)

where

8(n)
ak
= χ (n)ak

+

3∑
j=1

(
Re(E jk)χ

(−n)
a j
− Im(E jk)χ

(−n)
b j

)
, 8

(n)
bk
= χ

(n)
bk
−

3∑
j=1

(
Im(E jk)χ

(−n)
a j
+Re(E jk)χ

(−n)
b j

)
,

9(n)
ak
=6(n)

ak
+

3∑
j=1

(
Re(E jk)6

(−n)
a j
− Im(E jk)6

(−n)
b j

)
,9

(n)
bk
=6

(n)
bk
−

3∑
j=1

(
Im(E jk)6

(−n)
a j
+Re(E jk)6

(−n)
b j

)
,

0(n)ak
= ϒ (n)

ak
+

3∑
j=1

(
Re(E jk)ϒ

(−n)
a j
− Im(E jk)ϒ

(−n)
b j

)
, 0

(n)
bk
= ϒ

(n)
bk
−

3∑
j=1

(
Im(E jk)ϒ

(−n)
a j
+Re(E jk)ϒ

(−n)
b j

)
, (30)

and in (30):
χ (±n)

ak
= 2 Re Dk Re ξ±n

k − 2 Im Dk Im ξ±n
k ,

χ
(±n)
bk
=−2 Re Dk Im ξ±n

k − 2 Im Dk Re ξ±n
k ,
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6(±n)
ak
=±2n

(
Re Gk Re

ξ±n−1
k

z′k
− Im Gk Im

ξ±n−1
k

z′k

)
,

6
(±n)
bk
=∓2n

(
Re Gk Im

ξ±n−1
k

z′k
+ Im Gk Re

ξ±n−1
k

z′k

)
,

ϒ (±n)
ak
=±2n

(
Re Hk Re

ξ±n−1
k

z′k
− Im Hk Im

ξ±n−1
k

z′k

)
,

ϒ
(±n)
bk
=∓2n

(
Re Hk Im

ξ±n−1
k

z′k
+ Im Hk Re

ξ±n−1
k

z′k

)
.

4. Multi-region Trefftz collocation grain (MTCGs) formulation for direct problems

Consider a 2D irregular m-sided polygonal grain with/without void/inclusion as shown in Figure 1 (left).
The basic solution set in Equations (23)–(25) can be used as the interior/exterior fields, which satisfy
the constitutive law, the strain-displacement relationship, the electric field-electric potential relationship
and the equilibrium and Maxwell’s equations. For the case of impermeable elliptical voids, the special
solution set in Equations (29) which additionally satisfies the void stress-free charge-free boundary con-
ditions can be used instead. In matrix and vector notation, these interior/exterior fields in �e when α =m,
and in �e

c when α = c, can be written in the form{
uα

ϕα

}
=

{
Nα

u
Nα
ϕ

}
cα,

{
σ α

Dα

}
=

{
Mα
σ

Mα
D

}
cα,

or

uα = Nαcα, σ α = Mαcα,

(31)

where Nα are the Trefftz functions in the order of Ms, . . . , 0, 1, . . . ,M and cα denotes the unknown real
coefficients (a(±n)

k , b(±n)
k , k = 1, 2, 3 and n = Ms, . . . ,M) associated with Trefftz functions. If there is

no void/inclusion, only the nonnegative exponents are used in the basic solution set.
The tractions and density of free charge on the boundaries ∂�e when α = m, and ∂�e

c when α = c,
can be written as

tα = nσσ α = nσ Mα
σ cα, Q = ne Dα

= ne Mα
Dcα,

or

tα =
{

tα

Qα

}
=

[
nσ 0
0 ne

]{
σ α

Dα

}
= nσ α = nMαcα.

(32)

Now the following conditions should be enforced:

(1) Continuities of primal fields (electromechanical displacements), in (7), as well as reciprocity condi-
tions, in (8), at all boundaries, Se

g, between a grain and its neighboring grains, if any.

(2) Essential boundary conditions (in (4) and (5)) if prescribed on boundaries Se
u and Se

ϕ ,

(3) Natural boundary conditions ((4) and (5)) if prescribed on boundaries Se
t and Se

Q .

(4) Void/inclusion interface conditions as mentioned in Section 2 (when an inclusion is present in the
grain or when a void is present in the grain and the basic solution set is to be used).
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In this work, we use the simple collocation/least squares method to enforce all these conditions.
Galerkin method can also be used and may yield a slightly better accuracy, but it is more susceptible
to round-off errors [Sheng et al. 2006] as compared to the straightforward collocation method. When
the void/inclusion boundary ∂�e

c shrinks to zero, the grain is reduced to the case of a grain with no
void/inclusion.

For the case of an impermeable void, using the special solution set, which already satisfies the void
traction-free charge-free boundary conditions, is clearly more efficient than using the basic set because
there is no need to enforce any conditions on the void boundary, however if the void is pressurized, filled
with conducting fluid or replaced by any type of inclusions, the basic set should be used as mentioned
earlier (there is no special solution set in this case).

The first three of the aforementioned conditions are enforced in a strong sense at several preselected
collocation points along the grain boundary ∂�e. nc points, (x(r), r = 1, 2, . . . nc), are selected along
each side of the grain’s outer boundary. Also when using the basic solution set, (Equations (23)–(25)),
void/inclusion boundary conditions are enforced by dividing the void/inclusion periphery into a number
of curved segments, ns , along the void/inclusion boundary ∂�e

c=
∑ns

j=1 ∂�
e
cj , and enforcing the boundary

conditions on each segment, or on the center point of each segment. So,

(1) Continuity of electromechanical displacements and reciprocity of electromechanical tractions along
Sab

g , the boundary side that separates any two neighboring grains a and b:

um(�a)(x(r), cm
a )− um(�b)(x(r), cm

b )= 0, x(r) ∈ Sab
g , r = 1, 2, . . . nc,

tm(�a)(x(r), cm
a )+ tm(�b)(x(r), cm

b )= 0, x(r) ∈ Sab
g , r = 1, 2, . . . nc.

(33)

(2) Essential boundary conditions along the boundaries Se
u and Se

ϕ in grain e:

um(x(r), cm
e )= ū, x(r) ∈ Se

u, r = 1, 2, . . . nc,

ϕm(x(r), cm
e )= ϕ̄, x(r) ∈ Se

ϕ, r = 1, 2, . . . nc.
(34)

(3) Natural boundary conditions along the boundaries Se
t and Se

Q in grain e:

tm(x(r), cm
e )= t̄, x(r) ∈ Se

t , r = 1, 2, . . . nc,

Qm(x(r), cm
e )= Q̄, x(r) ∈ Se

Q, r = 1, 2, . . . nc.
(35)

(4) Void/inclusion interface conditions along ∂�e
c (when using the basic solution set):

(a) Impermeable void: traction-free and charge-free conditions along ∂�e
c:∫

∂�e
cj

tm(x, cm
e ) ds = 0, j = 1, 2, . . . ns . (36)

(b) Inclusion: primal fields’ continuity, traction reciprocity and charge-continuity conditions along ∂�e
c:

um(x( j), cm
e )− uc(x( j), cc

e)= 0, j = 1, 2, . . . ns,

tm(x( j), cm
e )+ tc(x( j), cc

e)= 0, j = 1, 2, . . . ns .
(37)
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Combining all these conditions for N grains in a matrix/vector form leads to

Ac= b or c= A−1b, (38)

where c is a column matrix containing the unknown coefficients of the matrix and inclusion of all grains.
The length of the vector c can be expressed as

NT =

N∑
e=1

((mT )e+ (mT c)e), (39)

where (mT )e is the number of Trefftz functions in the matrix of grain e, and (mT c)e is the number of
Trefftz functions in the inclusion of grain e (if applicable). These numbers depend on M , the highest
order of Zk in (23)–(25) or (29), used in the matrix and inclusion of each grain. In this study, we use the
following (according to (26)):

M = 4 (for matrix of a grain with void or inclusion):
(mT )e = 6(2M + 1)= 54 (basic solution set, ellipse-exterior domain)

M = 4 (for inclusions):
(mT c)e = 6(M + 1)= 30 (basic solution set, ellipse-interior domain)

M = 2 (for matrix of a grain with impermeable void):
(mT )e = 6(M + 1)= 18 (special solution set).

Since we are collocating six variables at each collocation point on each of the inner boundaries (bound-
aries shared by any two neighboring grains), and three variables at each collocation point on each of the
outer boundaries (grain boundaries on the outer frame of the domain), the number of collocation equations
can be expressed as:

NE = nc(6Ni + 3No)+

N∑
e=1

pe(ns)e, (40)

where Ni is the number of inner grain boundaries (sides) in the whole domain, No is the number of outer
grain boundaries (sides) in the whole domain, and (ns)e is the number of segments used to divide the
void periphery in grain e (only if the basic solution set is used) or the number of collocation points along
the inclusion periphery in grain e, and pe = 0 if we are using the special solution set, pe = 3 if grain e
contains a void and the basic solution set is used, while pe = 6 if grain e contains an inclusion.

In order for the system of equations (38) to be solved, we need NT ≤ NE . In the last three examples
we present in Section 7, we use two uniformly distributed collocation points on each side of the outer
boundary of each grain (nc = 2) and 16 points or segments on the void/inclusion boundary in each grain
((ns)e = 16). This ensures that the number of equations is larger than the number of unknowns; hence the
system is over-constrained and is solved using singular value decomposition (SVD). The SVD method
can solve even the singular system of equations and produces the least squares solutions to the over-
constrained systems. The distribution of collocation points along each side of a grain’s outer boundary
could be selected as the Gaussian points [Bishay and Atluri 2012]. However this makes no significant
difference in the solution.
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5. Multi-region Trefftz collocation grain (MTCG) formulation
for inverse problems with regularization

If both electromechanical displacements and tractions are specified or known only on a part of the prob-
lem boundary, the inverse problem is to determine the electromechanical displacements and tractions in
the domain as well as the other part of the boundary where everything is unknown. The same can be
said if “tractions” is replaced by “strains” in the previous sentence. One example is in health monitoring
of piezoelectric composites and devices when data are known or measured on the outer boundaries, but
not available at the inaccessible cavities in the domain.

Now let Se
c be a part of the boundary of grain e (outer boundaries for a grain containing an inclusion,

and both inner and outer boundaries for a grain with a void) where electromechanical displacements
and tractions (or strains) are known. We use the available data and select enough collocation points
(x(p) ∈ Se

c , p = 1, 2, . . . P) along Se
c to get

um(x(p), cm
e )= ū, ϕm(x(p), cm

e )= ϕ̄, p = 1, 2, . . . P, (41)

and
tm(x(p), cm

e )= t̄, Qm(x(p), cm
e )= Q̄, p = 1, 2, . . . P, (42)

or
εm(x(p), cm

e )= ε̄, Em(x(p), cm
e )= Ē, p = 1, 2, . . . P. (43)

Combining (41) and (42) or (43) in addition to the continuity of electromechanical displacements and
reciprocity of electromechanical tractions along Sab

g in (33), and the inclusion boundary conditions in
(37) for grains with inclusions, represent the measured or known data in all grains. This can be written
in matrix form as

AI cI = bI . (44)

This equation cannot be solved directly using the least squares method because the system of equa-
tions in inverse problems is known to be ill-posed and generally very-sensitive to perturbation in the
measurement data on the boundary Se

c . Hence, regularization techniques should be used to mitigate this
ill-posedness. There are several regularization methods that were used in the literature, among which are
the truncated singular value decomposition (TSVD), selective singular value decomposition (SSVD), and
the Tikhonov regularization [Hansen 1994; Tikhonov and Arsenin 1974]. In this work, TSVD method
was used and the regularization parameter is obtained using the generalized cross-validation (GCV)
method. For details about the aforementioned methods, the reader is referred to [Hansen 1994].

This formulation is generally suitable for any selection of Se
c . For a plate with a hole modeled with

only one region (N = e = 1), for instance, Sc could be all or part of the outer boundary where all
measurements can be taken.

6. On using representative volume element (RVE) to predict
the effective material properties of piezoelectric composites

In order to determine the overall properties of piezoelectric composites from known properties of their
constituents (matrix and particles or fibers), two approaches were used in the literature: macromechanical
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and micromechanical. In the macromechanical approach, the heterogeneous structure of the composite is
replaced by a homogeneous medium with anisotropic properties, while in the micromechanical approach,
a periodic RVE or a unit cell model is used to obtain the global properties of the composite [Berger et al.
2006]. A unit cell is the smallest part that contains sufficient information on the geometrical and material
parameters at the microscopic level to allow for prediction of the effective properties of the composite.
The numerical methods, such as the finite elements, are well-suited to model the RVE and to describe
the behavior of these composite materials because there are no restrictions on the geometry, the material
properties, the number of phases, and the size of the composite constituents. When employing unit cell
models, the local fields in the constituent phases can be accurately determined by the numerical method,
and various mechanisms such as damage initiation and propagation can be studied through the analysis.
Numerical homogenization method is based on finding a globally homogeneous medium equivalent to
the original composite, where the strain energy stored in both systems is approximately the same. In
order to do so, first, a representative volume element which captures the overall behavior of a composite
structure is created. Then the effective material properties are calculated by applying periodic boundary
conditions and appropriate load cases, which are connected to specific deformation patterns, to the unit
cell [Kari et al. 2008].

It is known that the advantages of the analytical approaches over the FE analyses are their ability
to model statistical distributions of fibers/particles in the composite, and their low computational time,
while the FE analysis, in contrast, is appropriate for estimating the effective properties of composites with
a given periodic fiber/particle distribution and more complicated geometries (different shapes of fibers’
cross-section, more than two phases, etc.), and at the same time, the local fields can be obtained accurately.
Berger et al. [2006] found that in order to get sufficiently accurate results from the FE model, the mesh
density should be chosen in such a way that the average element width is at least 5% of the unit cell
width. This means that at least 400 two-dimensional regular elements are required to accurately model
a two-dimensional unit cell that includes only one fiber or particle. Finite element results are sensitive
to mesh density; hence it could be a difficult task to find appropriate meshes for the RVE [Berger et al.
2005]. The disadvantages of the numerical models can be avoided if we resort to the newly developed
techniques such as those presented in this article and in [Bishay and Atluri 2014; Bishay et al. 2014;
Dong and Atluri 2012a; 2012b; 2012c; 2012d] because these advanced methods can model a grain with
its inclusion using only one element or region whose geometric shape is arbitrary, hence any statistical
random distribution of fibers or particles can be accounted for with relatively very small computational
cost and with high resolution in local fields’ calculation.

In Section 7.4, we show the ability of MTCGs method to predict the effective material properties of a
piezoelectric composite using only one region, while in Section 7.5, we show the ability of the proposed
method to model random distributions of the second phase, and to obtain high resolution of local fields
that enables studying damage initiation mechanisms in the microlevel.

7. Numerical examples

The formulation described above is programmed using Matlab in a 64-bit Windows operating system,
and executed on a PC computer equipped with Intel Q8300 2.5 GHz CPU, and 8 GB RAM. The material
properties of the materials used in the examples in this section are listed in Table 1.
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Property C11 C12 C13 C22 C23 C33 C44 C55

PZT-4 139 77.8 74.3 139 74.3 113 25.3 25.3
PZT-7A 148 76.2 74.2 148 74.2 131 25.4 25.4
LaRC-SI 8.1 5.4 5.4 8.1 5.4 8.1 1.4 1.4

Property C66 e31 e32 e33 e15 h11 h22 h33

PZT-4 30.6 −6.98 −6.98 13.84 13.44 6 6 5.47
PZT-7A 35.9 460 460 235 9.2 −2.1 −2.1 9.5
LaRC-SI 1.4 0 0 0 0 2.8 2.8 2.8

Table 1. Material properties used in the numerical examples: Ci j in GPa, ei j in C/m2,
hi i in pC/(Vm).

Simple problems that use grains with no voids or inclusions, such as patch test and bending of a
piezoelectric panel, can be easily and accurately modeled using any number of grains (with no voids or
inclusions) to mesh the problem domain, and the error in the whole structure is less than 1%. Patch test
with any number of grains containing inclusions having the same material properties as that of the matrix
can also be passed with error less than 1%.

In the following, we show some numerical examples using the proposed MTCGs. In the first example
we present inverse problem where the electromechanical displacements and tractions are all measured
with white noise on the outer boundary of a piezoelectric domain with an impermeable elliptical void
under mechanical loading, and the variables on the unreachable void surface are predicted. Then we
study the convergence of this inverse problem as the accessible part on the outer boundary of the domain
shrinks. The problem of a piezoelectric inclusion in an infinite piezoelectric matrix is then studied.
This is followed by evaluation of material properties of a piezoelectric particulate composite material as
functions of particle volume fraction. Finally we present contour plots that detect damage-prone sites in
porous piezoelectric material samples with arbitrary elliptical voids. Comparisons with other analytical
and computational results are presented whenever possible.

7.1. Piezoelectric panel with impermeable void: inverse problem. Consider a piezoelectric panel with
an arbitrarily oriented elliptical void whose semi-axes are a and b and the inclination angle between the
elliptical void minor axis and the poling direction is ζ as shown in Figure 2 (left). The local coordinate
system of the ellipse is denoted x1-x3, while the global coordinate system is denoted X1-X3. The poling
direction is aligned with the global vertical X3 axis (shown in blue in the figure). The material is PZT-
4 whose properties are presented in Table 1 (taken from [Xu and Rajapakse 1999]) and plane strain
assumption is used in this problem. Now consider that the electromechanical displacements and tractions
are all measured at the outer boundary and that there is some white noise in the measurements. The
inverse problem is to use these available measurements to predict the electromechanical tractions and
displacements at the inner cavity. In this example, we use the analytical solution presented in [Xu and
Rajapakse 1999] for an elliptical void in an infinite piezoelectric panel as the prescribed (or measured)
data on the outer boundary after adding certain level of white noise. Mechanical load σo = 1 Pa is applied
on the panel’s upper and lower edges. In this example we take L =W = 6a, b/a = 0.6, ζ = 0, M = 4
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Figure 2. Left: a finite rectangular domain with arbitrarily oriented elliptical void.
Right: collocation points considered in Section 7.2.
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Figure 3. Variations of σθ/σo (left), Dθ/σo (right) along the periphery of an elliptical void.

(equivalent to 54 unknown coefficients) and we use 3 collocation points per side (giving 72 collocation
equations). Hence, in this case Sc, mentioned in Section 5, is all the outer boundary of the plate where
all data are measured.

Figure 3 and Figure 4 show the computed circumferential distributions of σθ , Dθ , Eθ and Er divided
by σo obtained from the solution of the inverse problem with different levels of white noise added to
the measured electromechanical displacements and tractions. The figures show that when there is no
noise present, this approach can always exactly reproduce the electromechanical tractions in the domain.
When white noise of 40 dB and 30 dB signal-to-noise ratio (SNR), which is equivalent to 1% and 3.3%
amplitude of noise in the measurements, is added, only limited error is obtained in the predicted stress,
electric displacement and electric field on the void periphery.

The effects of varying ζ , a/b and W/a ratios on the stress, electric displacement and electric field are
presented in [Xu and Rajapakse 1998].
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Figure 4. Variations of Eθ/σo (left), Er/σo (right) along the periphery of an elliptical void.

7.2. Convergence study for the inverse problem. In this study, the same problem presented in Section 7.1
is considered again when the outer boundary is not fully accessible. Hence we rely on measurements
taken from only a limited part of the outer boundary. Ten collocation points are used along each side of the
outer boundary as shown in Figure 2 (right) and we keep removing collocation equations corresponding
to these points from side 2 first (starting from point 11 in the figure) followed by side 3, then side 4.
Every time we remove two points, we solve the problem and calculate the discrete extreme mechanical
and electrical errors, expressed as

Emech = max
xr∈∂�c

(
|σθ (xr )− σ̃θ (xr )|

σ̃max

)
, Eelect = max

xr∈∂�c

(
|Dθ (xr )− D̃θ (xr )|

D̃max

)
, (45)

where σ̃θ (xr ) and D̃θ (xr ) are the exact solutions at boundary points xr along the periphery of the void;
σ̃max and D̃max are respectively the maximum magnitudes of σ̃θ (xr ) and D̃θ (xr ).

It was found that when there is no noise in the prescribed (measured) data, only nine points (equivalent
to 54 collocation equations, which is equal to the number of unknown coefficients when M = 4 is used)
are required to get accurate results with Emech and Eelect less than 0.001. These nine points could be
prescribed on only a small part (quarter) of side 1 only, side 3 only, or on both sides 2 and 4 such that at
least one point is on one of these two sides and the remaining points are on the other side. However when
there is a white noise in the prescribed (measured) data, errors increase as we remove more points (or take
our measurements from only a limited part of the outer boundary). The mechanical and electrical discrete
extreme errors are presented in Table 2, when white noise of 40 dB signal-to-noise ratio (SNR) is added
to the prescribed data, as more points are removed from the collocation points in Figure 2. It is clear
from the table that the errors increase as more collocation points are removed from the outer boundary.
When all collocation points on side 2 are not used, we get Emech ≈ 3%, and Eelect ≈ 12%. When all
collocation points on both side 2 and side 3 are not used, we get Emech ≈ 17.5%, and Eelect ≈ 51%.
Removing additional points from side 4, results in highly increasing Eelect.

It should be noted that the numbers in Table 2 change slightly every time we change the added random
white noise. In addition, errors increase as the noise level increases.
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Points removed None 11–12 11–14 11–16 11–18 11–20 11–22

Emech 0.0045 0.0106 0.0177 0.0225 0.0260 0.0297 0.0392
Eelect 0.0117 0.0525 0.0642 0.1030 0.1133 0.1207 0.1570

Points removed 11–24 11–26 11–28 11–30 11–32 11–34 11–36

Emech 0.0423 0.0875 0.1004 0.1753 0.2807 0.4458 1.9738
Eelect 0.2393 0.2825 0.3373 0.5123 2.1058 5.4703 8.0255

Table 2. Discrete extreme mechanical and electrical errors as more collocation points are
removed from the outer boundary (white noise of 40 dB SNR is added to the prescribed
data on the outer boundary).

7.3. Infinite piezoelectric domain with elliptical inclusion. Consider an infinite piezoelectric plane with
an elliptical inclusion subjected to vertical mechanical loading in the far field. For numerical implemen-
tations, the infinite domain is truncated into a rectangle with length L and width W , as shown in Figure 2
(left) with ζ = 0, L = W = 6a, and σo = 1 Pa. The matrix material is PZT-4 whose properties are
presented in Table 1 and plane strain assumption is used. The properties of the inclusion are given as:[

Cc
E −ecT

ec hc
ε

]
= 0

[
Cm

E −emT

em hm
ε

]
, (46)

where 0 is a factor that can be varied. 0 > 1 is equivalent to an inclusion material with stronger properties
than those of the matrix material (larger stiffness, dielectric and piezoelectric material constants), while
0 < 1 is equivalent to an inclusion with weaker properties.

Figure 5 shows the effect of b/a on σθ/σo, Dθ/σo, Eθ/σo and Er/σo along the inclusion periphery
with 0 = 0.5.

It can be seen from the figure that controlling the shape of the inclusions can result in varying the
distribution and the maximum absolute values of the circumferential stress and electric displacement, as
well as the circumferential and radial electric field, along the inclusion periphery. The effect of varying
0 on the aforementioned variables along the inclusion periphery is presented in [Bishay et al. 2014].

7.4. Evaluation of material properties of piezoelectric composites. Our 2D models can be used to es-
timate all effective material properties of composites with particles or voids, while for composites with
fibers, only effective properties in the plane perpendicular to the fiber axis can be obtained. In this
example, we determine the material properties of PZT-7A/LaRC-SI piezoelectric composite (PZT-7A
piezoelectric particles embedded in LaRC-SI polymide matrix) as functions of particle volume fraction.
PZT-7A is a ceramic that exhibits the piezoelectric effect with electric fields applied along all three
principle axes. LaRC-SI is a thermoplastic polymide that was developed for aerospace applications. The
material properties of all constituents are listed in Table 1 (taken from [Odegard 2004]).

In order to calculate the effective material properties, computational models that ensure the presence
of ε11, ε33, E1 or E3 alone in each model should be used. This is done by prescribing constant mechan-
ical displacement or electric potential on the right or upper sides of the sample while enforcing zero
electromechanical displacements on the other three sides. For more details about these computational
models and how to calculate the effective material properties, the readers are referred to [Bishay and
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Figure 5. Effect of b/a on σθ/σo (top left), Dθ/σo (top right), Eθ/σo (bottom left) and
Er/σo (bottom right) along the inclusion periphery.

Atluri 2014]. Here we just present the results. The three Young’s moduli Y1, Y2 and Y3 can be obtained
from the stiffness matrix constants Ci j .

The RVE used is composed of just one region (grain) that includes an inclusion. Plane strain assump-
tion is used in this study and the direction of polarization is vertically upward.

Figure 6 shows the predictions of the different effective material constants as functions of particle
volume fraction and compared with Mori–Tanaka (MT), self-consistent (SC), finite element models using
ANSYS (with large number of elements) and Odegard’s proposed analytical model, all presented in
[Odegard 2004].

It can be seen that, using only one MTCG, the proposed model gives very accurate predictions as
compared to those of Mori–Tanaka’s model. It is known that the self-consistent model deviates from
Mori–Tanaka’s model and gives unrealistic predictions as the volume fraction increases. The proposed
method is much more computationally efficient as well as numerically more accurate than the simple
finite element models (FEM) using ANSYS, and can be used to model piezo-composites even if the
arrangement of particles is not symmetrical which is the main assumption used in all the previously
mentioned analytical models.

7.5. Damage detection in porous piezoelectric materials with arbitrary oriented elliptical voids. We
consider a porous piezoelectric RVE made of 20 PZT-4 piezoelectric grains with arbitrary sized elliptical
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Figure 6. Predictions of effective piezoelectric material properties of PZT-7A/LaRC-SI
as functions of particle volume fraction.

voids whose b/a ratios are in the range of 0.7–1.3. The dimensions of the RVE are L = W = 1 mm
and the porosity volume fraction is 0.05. The direction of polarization is vertically upward in all grains.
The lower edge is prevented from motion in the vertical direction while the lower left corner node is
electrically grounded and constrained in the horizontal direction. A mechanical loading σo = 1 GPa is
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Figure 7. Porous piezoelectric material under mechanical loading: contour plot for prin-
cipal stress (upper), strain energy density (lower left), and dielectric energy density (lower
right).

applied on the upper edge. Contour plots of maximum principal stress, strain energy density (SED), as
well as dielectric energy density are shown in Figure 7.

As can be seen from the figures, high principal stress and strain energy density concentrations are
observed near the cavities, in the direction perpendicular to the loading direction. On the other hand, at
the locations near the voids, in the direction parallel to the loading direction, low stress and strain energy
density values are observed. Higher stress and strain energy density concentrations can be observed
around voids that have lower values of b/a (because these voids are sharper and are approaching the
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shapes of cracks). This gives us an idea about where damage is more likely to initiate and develop in
porous piezoelectric materials. It is also interesting to note that the dielectric energy concentrates around
the voids at angles ±45◦ from the mechanical loading direction, and decreases around the voids in the
direction perpendicular to the loading direction.

In this example there are 44 inner grain boundaries and 17 outer grain boundaries. Since the special
solution set is used, the number of collocation equations, according to (40), is 6×44×2+3×17×2= 630,
while the number of unknowns, according to (39), is 20× 18= 360. Solving the same problem using
a finite element analysis software like COMSOL Multiphysics and using regular triangular elements of
“normal” size to mesh the problem domain generates 10,163 elements corresponding to 5,360 nodes
and 16,080 degrees of freedom. COMSOL has nine levels of element sizes named: extremely coarse,
extra coarse, coarser, coarse, normal, fine, finer, extra fine and extremely fine. Refining the mesh by
selecting smaller element sizes in order to refine the results will definitely increase the number of nodes
and the size of the FE system of equations to be solved. If voids are replaced by inclusions, according
to Equations (39) and (40), the number of unknowns will be 1,680 and the number of equations will be
2,550. Solving it using COMSOL requires 12,189 regular elements of “normal” size corresponding to
6,153 nodes and 18,459 degrees of freedom. This is the case for a domain with only 20 voids/inclusions.
If it is required to analyze a domain with 200, 2000 or more grains with voids/inclusions in a direct nu-
merical simulation (DNS), the regular finite element method would be highly expensive and impractical
as compared to the MTCGs method and the newly developed methods presented in [Bishay and Atluri
2014; Bishay et al. 2014; Dong and Atluri 2012b; 2012c; 2012d].

8. Summary and conclusions

The Lekhnitskii formalism is presented here for the general plane electromechanical problems that can be
applied to coupled (piezoelectric) or uncoupled (elastic) materials. Multi-region Trefftz computational
grains (MTCGs) method is proposed based on this formalism to model different porous and composite
piezoelectric materials in the micro and meso scales where each computational grain has an irregular
polygonal shape that resembles the shape of a material grain with arbitrary number of sides and neighbor-
ing grains. Each grain also may contain a circular or an arbitrary oriented elliptical void or inclusion, and
may have its own direction of polarization. Collocation method is used to enforce the electromechanical
natural and essential boundary conditions, continuity and reciprocity conditions along grain boundaries,
and void/inclusion interface conditions. Applications of the proposed method include: (1) solving inverse
problems by predicting the electromechanical stress at some unreachable locations in structures (like
voids) using all the available or measured data even with noise (regularization methods should be used);
(2) determining the effective material properties of different piezoelectric composites; (3) optimizing
the material properties of piezoelectric composites by controlling the microstructure parameters (shapes
of voids/inclusions, orientations, spatial distributions, material properties, etc.); and (4) obtaining the
distribution of all secondary fields and the strain and dielectric energy densities in the microstructure to
predict locations of damage.
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