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SOLUTION OF A RECEDING CONTACT PROBLEM
USING AN ANALYTICAL METHOD AND A FINITE ELEMENT METHOD

ERDAL ÖNER, MURAT YAYLACI AND AHMET B İRİNCİ

In this study, a receding contact problem for two elastic layers supported by a Winkler foundation is
handled using two different methods such as an analytical method and a finite element method. Firstly,
the problem is solved analytically using linear elasticity theory. Then, in order to solve the same problem
in a different way, a finite element model of the problem is created by ANSYS software, and finite
element analysis of the problem is performed. The contact stresses and the contact areas at the interfaces
between punch–Layer 2 and Layer 1–Layer 2 are obtained for both solutions, and it is shown that the
finite element method indicates a good agreement with the analytical method.

1. Introduction

Although in the majority of cases the contact zone increases after the application of the load, there are
others where the final contact zone is smaller than the original. This type of contact problem is termed as a
receding contact problem [Garrido and Lorenzana 1998]. As a different point of view, a receding contact
is one where the contact surface in the loaded configuration is contained within the initial contact surface
[Johnson 1985]. The studies considering receding contact problems have been performed by various
researchers in the literature [Stippes et al. 1962; Wilson and Goree 1967; Weitsman 1969; Margetson and
Morland 1970; Chan and Tuba 1971; Keer et al. 1972; Ratwani and Erdogan 1973; Jing and Liao 1990;
Porter and Hills 2002]. Furthermore, Zhu [1995] studied a finite element–mathematical programming
method for elastoplastic contact problems with friction. Papadopoulos and Solberg [1998] investigated a
novel Lagrange multiplier–based formulation for the finite element solution of the quasistatic two-body
contact problem in the presence of finite motions and deformations. BEM solution of two-dimensional
contact problems by weak application of contact conditions with nonconforming discretizations was
carried out by Blázquez et al. [1998]. The mortar finite element method for contact problems was
examined by Belgacem et al. [1998]. Guyot et al. [2000] presented coupling of finite elements and
boundary elements methods for study of the frictional contact problem. Çömez et al. [2004] solved
the plane symmetric double receding contact problem for a rigid stamp and two elastic layers having
different elastic constants and heights. A residual type a posteriori error estimator for finite element
approximations of a frictional contact problem for linearized elastic materials was analyzed by Bostan
and Han [2006]. The plane problem of a frictionless receding contact between an elastic functionally
graded layer and a homogeneous half-space when the two bodies were pressed together has been reported
by El-Borgi et al. [2006]. Solberg et al. [2007] studied a family of simple two-pass dual formulations for
the finite element solution of contact problems. Oysu [2007] investigated finite element and boundary
element contact stress analysis with remeshing technique.
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A frictionless receding contact problem between an anisotropic elastic layer and an anisotropic elastic
half-plane, when the two bodies were pressed together by means of a rigid circular stamp, was investi-
gated by Kahya et al. [2007]. Rhimi et al. [2009] extended work of El-Borgi et al. [2006] in the sense that
the receding contact problem was solved under axisymmetric conditions rather than plane stress or plane
strain conditions. Kuss and Lebon [2009] carried out stress-based finite element methods for solving
contact problems and comparisons between various solution methods. Finite element approximation to
a contact problem for a nonlinear thermoviscoelastic beam was considered by Copetti and Fernández
[2011]. A finite element method used in contact problems with dry friction was investigated by Pop
et al. [2011]. Rhimi et al. [2011] focused on a double receding contact axisymmetric problem between
a functionally graded layer and a homogeneous substrate. Zhang et al. [2012] reported a finite element
model for 2-D elastic–plastic contact analysis of multiple Cosserat materials. Adıbelli et al. [2013]
studied receding contact problem for a coated layer and a half-plane loaded by a rigid cylindrical stamp.
A numerical approximation by the finite element method of a quasistatic, frictionless, unilateral contact
problem between two thermoelastic bodies, in two dimensions, was examined by Copetti [2014]. An
axisymmetric Hertzian contact problem of a rigid sphere pressing into an elastic half-space under cyclic
loading was investigated by Kim and Jang [2014].

In this paper, a receding contact problem for two elastic layers supported by a Winkler foundation is
solved using an analytical method and a finite element method. Thus, it is aimed to see whether FEM
results are in an agreement with analytical results and how much the degree of approximation for the
two methods is. For this purpose, the problem is firstly solved analytically using linear elasticity theory.
Then, a finite element model of the problem is created by ANSYS software, and finite element analysis
of the problem is performed. Finally, the contact stresses and the contact areas at the interfaces between
punch–Layer 2 and Layer 1–Layer 2 are obtained for both solutions and the results obtained from two
different methods are compared with each other.

2. Analytical solution of the problem

Consider the plane strain problem described by the insert in Figure 1, in which the x = 0 plane is assumed
to be a plane of symmetry. The problem consists of two infinitely long layers of thicknesses h1 and h2.
The layers are isotropic, homogeneous and linearly elastic. A concentrated load with magnitude P is
subjected to the Layer 2 by means of a rigid circular punch. The Layer 1 is supported by a Winkler
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Figure 1. Geometry of the receding contact problem.



SOLUTION OF A RECEDING CONTACT PROBLEM USING ANALYTICAL AND FINITE ELEMENT METHODS 335

foundation. It is assumed that friction and gravity forces are neglected. Since the contact between the
two bodies is assumed to be frictionless and layers are not adhered to each other, then only compressive
normal tractions can be transmitted in the contact area. Where applicable, the germane quantities are
reckoned per unit length in the z direction. Observing that x = 0 is a plane symmetry, it is sufficient to
consider the problem in the region 0≤ x <∞ only.

The stress and the displacement components needed for the application of the boundary conditions
can be obtained using linear elasticity theory and integral transform technique as

ui (x, y)= 2
π

∫
∞

0
{[Ai+Bi y]e−αy

+[Ci+Di y]eαy
} sin(αx) dα, (1)

vi (x, y)= 2
π

∫
∞

0
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Ai+Bi

(
χi
α
+y

)]
e−αy
+

[
−Ci+Di

(
χi
α
−y

)]
eαy
}

cos(αx) dα, (2)

1
2µi
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π
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(3−χi
2

)
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]
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2

)
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]
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π

∫
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α(Ai+Bi y)+

(
χi−1
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]
e−αy
+

[
α(Ci+Di y)−
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)
Di

]
eαy
}

×sin(αx) dα, (5)

where u and v are the x and y components of the displacement vector, respectively; σx , σy and τxy are
the stress components; µi is shear modulus; χi is an elastic constant and χi = (3− 4νi ) for plane strain;
and νi is Poisson’s ratio (i = 1, 2). The subscripts 1 and 2 refer to Layer 1 and Layer 2, respectively.
Ai , Bi , Ci and Di (i = 1, 2) are the unknown coefficients that will be determined from continuity and
boundary conditions prescribed on y = 0, y = h1 and y = h.

The receding contact problem outlined above as shown in Figure 1 must be solved under the following
boundary conditions:

σy2(x, h)=
{
−p1(x)
0

(0≤ x < a),

(a ≤ x <∞),
(6)

τxy2(x, h)= 0 (0≤ x <∞), (7)

σy2(x, h1)=

{
−p2(x)
0

(0≤ x < b),

(b ≤ x <∞),
(8)

τxy2(x, h1)= 0 (0≤ x <∞), (9)

σy1(x, h1)= σy2(x, h1) (0≤ x <∞), (10)

τxy1(x, h1)= 0 (0≤ x <∞), (11)
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τxy1(x, 0)= 0 (0≤ x <∞), (12)

σy1(x, 0)= k0v1(x, 0) (0≤ x <∞), (13)

v2(x, h)= F(x) or ∂

∂x
v2(x, h)= f (x) (0≤ x < a), (14)

∂

∂x
[v2(x, h1)− v1(x, h1)] = 0 (0≤ x < b), (15)

where a is the half-width of the contact area between rigid circular punch and Layer 2; b is the half-width
of the contact area between Layer 1 and Layer 2; p1(x) is the unknown contact stress under the rigid
circular punch; p2(x) is the unknown contact stress between Layer 1 and Layer 2; k0 is the stiffness of
the Winkler foundation; and f (x) is the derivative of the function F(x) that characterizes surface profile
of the rigid punch. In the case of circular punch, f (x) can be written as

F(x)= h− δ− [(R2
− x2)1/2− R], (16)

f (x)=
d

dx
[F(x)] = −

x
(R2− x2)1/2

, (17)

where δ is the maximum displacement that occurs on the layer under the punch at the axis of symmetry
(x = 0) and R is the radius of the rigid circular punch. By making use of the boundary conditions
(6)–(13), eight of the unknown coefficients Ai , Bi , Ci and Di (i = 1, 2) appearing in (1)–(5) may be
obtained in terms of the unknown functions p1(x)and p2(x).

By substituting these coefficients into (14) and (15), after some routine manipulations and using the
symmetry conditions p1(x) = p1(−x) and p2(x) = p2(−x) and replacing ω = αh and r = h1/h, the
system of integral equations for p1(x) and p2(x) is obtained as

1
π

∫ a
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[ 1
t−x
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]
p1(t) dt + 1

π

∫ b

−b
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f (x), (18)
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π
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where
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h
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1= 4K11K14, (24)

K11 = K ∗∗K11A+ 4(ω/h)K11B, (25)

K12 = e−4ωr
− e−4ω

+ e−2ωe−2ωr (4ω− 4ωr), (26)

K13 = e−2ωr (1+ω−ωr)+ e−2ω(−1+ω−ωr), (27)

K14 = e−4ωr
+ e−4ω

− 2e−2ωe−2ωr (1+ 2ω2
+ 2ω2r2

− 4ω2r), (28)

K11A = 1− 4ωre2ωr
− e4ωr , (29)

K11B =−1+ e2ωr (2+ 4ω2r2
− e2ωr ), (30)

m =
(1+χ1)µ2

(1+χ2)µ1
, (31)

K ∗∗ = k(1+χ1), (32)

k =
k0

µ1
. (33)

In the system of singular integral equations (18) and (19), in addition to the contact stresses p1(x) and
p2(x), the half-width of the contact areas a and b are also unknown. These two unknowns a and b are
determined from the equilibrium conditions, which can be written as∫ a

−a
p1(t) dt = P,

∫ b

−b
p2(t) dt = P. (34)

We will use (x1, t1) to denote the variables (x, t) on the boundary y = h, and likewise (x2, t2) on the
boundary y = h1. We also define the following dimensionless quantities:

x1 = ar1, t1 = as1, dt1 = a ds1, x2 = br2, t2 = bs2, dt2 = b ds2,

g1(s1)=
p1(t1)
P/h

, g2(s2)=
p2(t2)
P/h

,

M1(r1, s1)= k1(x1, t1), M2(r1, s2)= k2(x1, t2), M3(r2, s2)= k3(x2, t2), M4(r2, s1)= k4(x2, t1).

(35)

By substituting (35) into the system of integral equations (18) and (19) and equilibrium conditions (34),
the system of integral equations and equilibrium conditions may be obtained as

1
π

∫ 1

−1

[ 1
s1−r1

+
a
h

M1(r1, s1)
]
g1(s1) ds1+

1
π

b
h

∫ 1

−1
M2(r1, s2)g2(s2) ds2 =−

4µ2

(1+χ2)P/h
f (r1),

(36)
1
π

∫ 1

−1

[ 1
s2−r2

+
b
h

M3(r2, s2)
]
g2(s2) ds2+

1
π

a
h

∫ 1

−1
M4(r2, s1)g1(s1) ds1 = 0, (37)

a
h

∫ 1

−1
g1(s1) ds1 = 1,

b
h

∫ 1

−1
g2(s2) ds2 = 1. (38)

Since (36)–(37) have no closed-form solution, an effective numerical solution may be obtained by
using [Erdogan and Gupta 1972]. This method is a standard and necessary step in handling the integral
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equation part of the solution. So one may notice that because of the smooth contact at the end points
a and b, the contact stresses p1(x) and p2(x) are zero at the end points, and the index of the integral
equations (36) and (37) is “−1”. Let

g1(s1)= G1(s1)(1− s2
1)

1/2 (−1< s1 < 1), (39)

g2(s2)= G2(s2)(1− s2
2)

1/2 (−1< s2 < 1). (40)

Using the appropriate Gauss–Chebyshev integration formula, (36)–(38) become

N∑
k=1

1− s2
k
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1
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]
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}
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4µ2

(1+χ2)P/h
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(41)
N∑
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[
1
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+

b
h

M3(ri2, sk2)

]
+

a
h
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}
= 0, (42)

a
h

N∑
k=1

1− s2
k

N + 1
G1(sk1)=

1
π
,

b
h

N∑
k=1

1− s2
k

N + 1
G2(sk2)=

1
π
, (43)

where

sk = cos
(

kπ
N + 1

)
(k = 1, . . . , N ), (44)

ri = cos
(

2i − 1
N + 1

π

2

)
(i = 1, . . . , N + 1). (45)

As the value of N is increased, more accurate results can be obtained. Hence, the value of N is chosen
as 60 in this study because, after a value of N = 60, change in the results is very small and insignificant.
It can be seen that the extra equations in (41) and (42) correspond to the consistency condition of the
original integral equations (36) and (37). It can also be shown that the (N/2+ 1)-th equations in (41)
and (42) are automatically satisfied [Erdogan and Gupta 1972]. Thus, (41)–(43) give 2N + 2 algebraic
equations to determine the 2N + 2 unknowns G1(sk1), G2(sk2) (k = 1, . . . , N ), a and b. The system of
equations are linear in G1(sk1) and G2(sk2) but highly nonlinear in a and b. Therefore, an interpolation
and iteration scheme had to be used to obtain these two unknowns. In this iterative procedure, firstly
2N equations (i = 1, . . . , N/2, N/2+2, . . . , N+1) are chosen from (41)–(42). After predicting values
for a and b, G1(sk1) and G2(sk2) are calculated using previously determined (2N ) equations. If the
chosen a and b and obtained G1(sk1) and G2(sk2) values ensure (43), the solution would have been
found. Otherwise, G1(sk1) and G2(sk2) values are recalculated after predicting new a and b values.

3. The finite-element analysis of the problem

This section describes our FEM analysis of the receding contact problem using ANSYS Multiphysics.
The problem is considered as a two-dimensional contact problem, and the material of the layers are
assumed elastic and isotropic. The physical system under consideration exhibits symmetry in geome-
try, material properties and loading. It is computationally advantageous to model only a representative
portion. The geometry and the applied load are shown schematically in Figure 2, and the deformed
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Figure 2. The geometry for the analysis.

Figure 3. Deformed geometry for the preliminary analysis.

geometry for the preliminary analysis is shown in Figure 3. In the study, two-dimensional solid elements
(PLANE183) are used to model the layers. The PLANE183 element is defined by six nodes having two
degrees of freedom at each node: translations in the nodal x and y directions. The element may be used
as a plane element (plane stress, plane strain and generalized plane strain). The Winkler foundation is
modeled by a linear spring element (COMBIN14). The COMBIN14 element or the longitudinal element
spring-damper option is an uniaxial tension–compression element with up to two degrees of freedom at
each node: translations in the nodal x and y directions. No bending or torsion is considered [Al-Azzawi
et al. 2010].

The contact region is meshed by surface-to-surface CONTA172 and TARGE169 contact elements.
CONTA172 is used to represent that of the mechanical contact analysis. The target surface, defined by
TARGE169, was therefore used to represent 2-D “target” surfaces for the associated contact elements
CONTA172. Plane strain finite elements are used for the meshing of the entire geometry. Frictionless
surface-to-surface contact elements are used to model the interaction between the contact surfaces, and
the augmented Lagrangian method is used as the contact algorithm. The preliminary analysis is meshed
with 4435 elements and 8444 nodes, and the contacting line is meshed with 75 elements.
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4. Results and discussion

This section presents some of the calculated results obtained from analytical and FEM solution of the
receding contact problem for various dimensionless quantities such as R/h, µ2/(P/h), µ2/µ1 and
k = k0/µ1. Also, in this section, the results obtained from the analytical method are compared with
those of the finite element method.

Table 1 shows variation of half-widths of the contact areas with radius of punch (R/h). It is seen
from Table 1 that half-widths of the contact areas increase with increasing radius of punch. This is an
expected result. Variation of half-widths of the contact areas with load ratio µ2/(P/h) is given in Table 2.
Examination of Table 2 indicates that half-widths of the contact areas decrease with increasing of the
load ratio µ2/(P/h).

Table 3 illustrates the effect of µ2/µ1 on the half-widths of the contact areas. As seen in Table 3,
increasing the value of µ2/µ1 results in an increase of half-widths of the contact areas. Variation of
half-widths of the contact areas with k = k0/µ1 is presented in Table 4. This table demonstrates that, as
the stiffness of the Winkler foundation increases, half-widths of the contact areas decrease. Additionally,
when comparing the analytical and FEM results, it is seen from results that the finite element method

Parameter R/h = 50 R/h = 100 R/h = 250 R/h = 500
a/h b/h a/h b/h a/h b/h a/h b/h

Analytical 0.5057 0.7662 0.7079 0.9018 1.0614 1.1882 1.4034 1.4956
FEM 0.500 0.755 0.700 0.900 1.050 1.200 1.400 1.500

Error (%) 1.13 1.15 1.12 0.19 1.07 0.99 0.24 0.29

Table 1. Variation of half-widths of the contact areas with radius of punch (R/h)
(χ1 = χ2 = 2, µ2/(P/h)= 100, h1/h = 0.5, µ2/µ1 = 0.5, k = k0/µ1 = 2).

Parameter µ2/(P/h)= 50 µ2/(P/h)= 100 µ2/(P/h)= 200 µ2/(P/h)= 500
a/h b/h a/h b/h a/h b/h a/h b/h

Analytical 1.199 1.3707 0.8477 1.0959 0.5735 0.9253 0.3365 0.8236
FEM 1.200 1.375 0.850 1.100 0.575 0.925 0.3375 0.825

Error (%) 0.08 0.31 0.27 0.37 0.25 0.03 0.3 0.17

Table 2. Variation of half-widths of the contact areas with load ratio µ2/(P/h)
(χ1 = χ2 = 2, R/h = 100, h1/h = 0.5, µ2/µ1 = 0.5, k = k0/µ1 = 0.5).

Parameter µ2/µ1 = 0.1 µ2/µ1 = 0.5 µ2/µ1 = 2 µ2/µ1 = 5
a/h b/h a/h b/h a/h b/h a/h b/h

Analytical 0.6013 0.7445 0.7079 0.9018 0.9868 1.2616 1.3112 1.6763
FEM 0.600 0.750 0.700 0.900 0.9875 1.2625 1.3125 1.675

Error (%) 0.22 0.74 1.12 0.19 0.07 0.07 0.1 0.08

Table 3. Variation of half-widths of the contact areas with µ2/µ1 (χ1 = χ2 = 2,
µ2/(P/h)= 100, R/h = 100, h1/h = 0.5, k = k0/µ1 = 2).
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Parameter k = 0.5 k = 1 k = 2 k = 4
a/h b/h a/h b/h a/h b/h a/h b/h

Analytical 0.8477 1.0959 0.7622 0.9791 0.7079 0.9018 0.6743 0.8528
FEM 0.850 1.100 0.7625 0.975 0.700 0.900 0.675 0.850

Error (%) 0.27 0.37 0.04 0.42 1.12 0.19 0.1 0.33

Table 4. Variation of half-widths of the contact areas with k = k0/µ1 (χ1 = χ2 = 2,
µ2/(P/h)= 100, R/h = 100, h1/h = 0.5, µ2/µ1 = 0.5).
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Figure 4. Normalized contact stress distribution at the punch–Layer 2 interface (left)
and Layer 1–Layer 2 interface (right) for various values of R/h (χ1 = χ2 = 2,
µ2/(P/h)= 100, h1/h = 0.5, µ2/µ1 = 0.5, k = 2).

indicates a good agreement with the analytical method disagree by 0.03%–1.15%. It can be stated that
these values are at an acceptable level.

Figure 4 shows normalized contact stress distributions at the interfaces between the rigid punch–
Layer 2 and between Layer 1–Layer 2 for various values of R/h. As seen in this figure, the normalized
contact stress distributions decrease at both interfaces with increasing of R/h. The effect of the load
ratio µ2/(P/h) on the normalized contact stress distributions at the interfaces between the rigid punch–
Layer 2 and between Layer 1–Layer 2 is presented in Figure 5. It can be concluded from that figure that
increasing the value of µ2/(P/h) results in an increase of normalized contact stress distributions at both
interfaces. The normalized contact stress distributions at the interfaces between the rigid punch–Layer 2
and between Layer 1–Layer 2 for various values of µ2/µ1 appear in Figure 6. It is seen there that, as
µ2/µ1 increases, the normalized contact stress distributions at both interfaces decrease. Figure 7 shows
normalized contact stress distributions at the interfaces between the rigid punch–Layer 2 and between
Layer 1–Layer 2 for various values of k = k0/µ1. They demonstrate that the normalized contact stress
distributions at the interfaces between the rigid punch–Layer 2 and between Layer 1–Layer 2 increase
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Figure 5. Normalized contact stress distribution at the punch–Layer 2 interface (left)
and Layer 1–Layer 2 interface (right) for various values of µ2/(P/h) (χ1 = χ2 = 2,
R/h = 100, h1/h = 0.5, µ2/µ1 = 0.5, k = 2).
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Figure 6. Normalized contact stress distribution at the punch–Layer 2 interface (left)
and Layer 1–Layer 2 interface (right) for various values of µ2/µ1 (χ1 = χ2 = 2, R/h =
100, µ2/(P/h)= 100, h1/h = 0.5, k = 2).

with increasing of the stiffness of the Winkler foundation. All figures show that the normalized contact
stress distributions at the interfaces between the rigid punch–Layer 2 and between Layer 1–Layer 2
are symmetrical and their maximum values occur at the axis of symmetry. Also, the values of the
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 0,  0,
Figure 7. Normalized contact stress distribution at the punch–Layer 2 interface (left)
and Layer 1–Layer 2 interface (right) for various values of k = k0/µ1 (χ1 = χ2 = 2,
R/h = 100, µ2/(P/h)= 100, h1/h = 0.5, µ2/µ1 = 0.5).

normalized contact stresses are zero at the end contact points (−a,+a) and (−b,+b). This result shows
that boundary conditions given in the definition of the problem are provided. Finally, similar to results
of contact areas, a good agreement is found between the analytical method and FEM.

5. Conclusions

The presented study aims to solve a receding contact problem for two elastic layers supported by a
Winkler foundation using two different methods such as an analytical method and a FEM. For this
purpose, first of all, the problem is solved analytically using linear elasticity theory. Then, an initial finite
element model of the problem is developed by ANSYS software and finite element analysis is performed.
Finally, the results obtained from finite element analysis are compared with analytical results. The results
of the all analyses described in this paper allow the following conclusions to be drawn:

• Half-widths of the contact areas increase with increasing of R/h and µ2/µ1. On the contrary, they
decrease with increasing of µ2/(P/h) and k = k0/µ1.

• Normalized contact stress distributions at the interfaces between the rigid punch–Layer 2 and Layer 1–
Layer 2 increase with increasing of µ2/(P/h) and k = k0/µ1. But increasing the values of R/h
and µ2/µ1 result in a decrease of normalized contact stress distributions at both interfaces.

• Normalized contact stress distributions at the interfaces between the rigid punch–Layer 2 and be-
tween Layer 1–Layer 2 are symmetrical and their maximum values occur at the axis of symmetry.
Also, the values of normalized contact stresses are zero at the end contact points (−a,+a) and
(−b,+b).



344 ERDAL ÖNER, MURAT YAYLACI AND AHMET BİRİNCİ

• It is seen from all numerical results that finite element solution indicates a good agreement with
analytical solution.
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