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B-SPLINES COLLOCATION EIGENANALYSIS OF 2D ACOUSTIC PROBLEMS

CHRISTOPHER G. PROVATIDIS

We continue our research on the performance of CAD-based global approximation to the analysis of
2D acoustic problems. In addition to previous “boundary-only” Coons and transfinite Gordon–Coons
interpolations, we now investigate the quality of the solution when utilizing “tensor product B-splines”
interpolation. For the latter, we propose a global collocation method that is successfully compared with
the well known Galerkin–Ritz formulation. Particular attention is paid to the handling of Neumann
boundary conditions as well as to the role of multiplicity of internal knots. The theory is supported by
two numerical examples, one for a rectangular and the other for a circular acoustic cavity in which the
approximate solution rapidly converges towards the exact solution.

1. Introduction

The tendency in contemporary computer methods in applied mechanics and engineering is to integrate
solid modeling (computer-aided-design or CAD) with analysis (computer-aided-engineering or CAE)
using NURBS interpolation, in such a way that both the geometry and the mechanical variables (dis-
placement, temperature, etc.) are mathematically expressed in a similar manner (global approximation)
[Cottrell et al. 2009]. In fact, though the nonuniform B-splines (NURBS) of today is, chronologically
speaking, the fifth important formulation applied to the mathematical description of CAD models, the
same integration can be achieved with using any of the previous formulations. The first bivariate formula
was proposed in 1964–1967 by Coons [1967], the second by Gordon [1971] and the third in 1966–1971 by
Bézier [1971]. Furthermore, B-splines are chronologically the fourth formula in CAD practice. Although
older mathematical formulations of splines were first published by Schoenberg [1946], they became very
popular only after 1972 when de Boor [1972] proposed his computationally efficient algorithms. Finally,
B-splines were later modified on the basis of weighting coefficients, thus producing the popular NURBS
of today, which are fully controlled sculptured surfaces [Piegl 1991; Piegl and Tiller 1995]. For a detailed
review we refer to [Farin et al. 2002].

Concerning mechanical analysis in problems of solids and structures including acoustics, it is well
known that there are three main methodologies: the popular finite element method (FEM), the boundary
element method (BEM), and the promising global collocation method ([Provatidis 2008b; 2009b; Prova-
tidis and Ioannou 2010] and about 300 references therein). For the sake of brevity, finite volume, finite
difference, mesh-less and mesh-free methodologies are not commented on. So far, FEM [Höllig 2003]
and BEM [Cabral et al. 1990; 1991] have been applied in conjunction with tensor product B-splines in
several engineering problems. Also, Coons–Gordon transfinite interpolation has been extensively used
in conjunction with the Galerkin–Ritz formulation; for an overview we refer to [Provatidis 2012] and
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literature therein. Our conclusion in that article is that rapid CAD-based global collocation methods have
to be applied instead of time-consuming domain Galerkin–Ritz methods.

For the first time, in 2005 the author expressed the above general idea of implementing a global
collocation scheme in conjunction with CAD-based approximation [Provatidis 2006, p. 6704], while
he continued with numerical applications in potential problems under Dirichlet [Provatidis 2008b] and
Neumann [Provatidis 2009b] boundary conditions, as well as in plane stress elastostatics [Provatidis and
Ioannou 2010]. Concerning eigenvalue and time response structural analysis, in 2008 he published a
couple of papers [Provatidis 2008a; 2008c] (1D problems), and also he supervised a thesis concerning
2D acoustics and 2D elastodynamics in conjunction with Lagrange polynomials [Filippatos 2010]. It is
worth mentioning that isogeometric collocation methods were recently presented by others [Auricchio
et al. 2010].

It is well known that B-splines collocation methods were initially developed by mathematicians, well
before engineers understood that CAD-based Galerkin–Ritz methods require high computing effort, a
fact that motivated them to investigate their replacement by isogeometric collocation schemes [Hughes
et al. 2010]. For a detailed review of 273 papers covering the period 1934–1989 we refer to [Fairweather
and Meade 1989], whereas recent works are cited in a survey [Bialecki et al. 2011]. A fair comparison
between B-spline collocation and Galerkin methods on the basis of the same bandwidth (and not the
same degree of shape functions) in one spatial dimension is [Kwok et al. 2001]. However, most works
are limited to one-dimensional problems [de Boor 2001, Chapter XV], where, for cubic B-splines, the key
point is to use two collocation points between any two breakpoints, thus resulting in as many equations as
the number of unknowns; this is strictly related to using double knots (de Boor, personal communication,
2007). On the other hand, excellent results have been obtained in some particular examples using for
collocation the images of either Greville or Demko abscissae [Auricchio et al. 2010].

It is remarkable that de Boor’s software, aiming at the solution of one-dimensional (1D) elliptic
nonlinear problems, although incorporated in Matlab (Spline Toolkit) long ago, is not still applicable
to the solution of eigenvalue and time-marching problems “as is”. As confirmed by the absence of
relevant publications, the need of a computational environment to solve 2D and 3D problems is of great
engineering interest.

Within this context, this paper reports on the performance of the B-splines-based global collocation
method for the eigenvalue analysis of two-dimensional acoustic cavities under arbitrary, Dirichlet or
Neumann boundary conditions. Particular attention is paid to the treatment of the free-free problem in
order to bypass the singularities that sometimes may appear at the four corner points of the reference
square. Moreover, the role of the multiplicity of internal knots is thoroughly investigated, and particularly
the performance of the proposed least-squares scheme in conjunction with single knots is studied. The
theory is sustained by two numerical examples, one for a rectangular and the other for a circular acoustic
cavity, in which the proposed collocation method is successfully compared with its competitive Galerkin–
Ritz scheme, using either tensor product B-splines or/and conventional finite elements, for the same mesh
density.

2. B-splines as a global 2D functional set

2.1. General. Let us consider a rectangular domain �= (ABCD)= [0, a]×[0, b] in R2. The axis origin
is chosen at the corner A, whereas the Cartesian axes x and y lie on the sides AB and AD, respectively.
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Sides AB and CD are uniformly divided into nx segments, while BC and DA are uniformly divided
into ny segments. This leads to nx + 1 breakpoints along AB and CD, and ny + 1 breakpoints along
BC and DA. Although it is possible to use different degrees for the spline polynomials in the x- and
y-directions, we will use a single degree px = py = p, with p ≥ 3, since we are dealing with a second
order PDE (acoustics). As a result, the univariate function u(x, 0) along the side AB can be interpolated
via a piecewise polynomial B-spline of p-th degree in x , and the function u(0, y) along the side DA via
a piecewise polynomial B-spline of p-th degree in y.

2.2. One-dimensional shape functions. This section refers to either the x- or y-directions (along the
sides AB and DA, respectively). Below, n corresponds to either subdivision nx or ny , whereas the domain
[0, L] corresponds to either of the intervals [0, a] or [0, b].

Let us assume a given number of n subdivisions of the interval [0, L], with breakpoints x0, . . . , xn ,
and a given polynomial degree p. In its original form [Schoenberg 1946; Schoenberg and Whitney
1953], the B-splines formula includes a complete polynomial of p-th degree for the entire domain [0, a],
plus (n− 1) truncated monomials 〈x − xi 〉

p
+, i = 1, . . . , n. In this way, the total number of coefficients

becomes (n + p), and we refer to a multiplicity of internal knots equal to one, which ensures C p−1-
continuity. Therefore, in the particular case of a cubic approximation (p = 3), the total number of
coefficients becomes (n+ 3), which ensures C2-continuity.

In contrast, if we alternatively consider the above complete polynomial of p-th degree for the entire
domain [0, L] plus the aforementioned (n− 1) truncated monomials 〈x − xi 〉

p
+, and additionally (n− 1)

truncated monomials 〈x − xi 〉
p−1
+ , i = 1, . . . , n, the total number of coefficients becomes (2n+ p− 1),

and then we refer to internal multiplicity equal to two, which ensures C p−2-continuity; for example,
C1-continuity and 2(n+ 1) coefficients, when p = 3.

In the modern approach [Piegl and Tiller 1995; de Boor 2001], these coefficients are associated with
what’s called control points. In more detail, we start with the above-mentioned breakpoints

{xb} = [x0, . . . , xn], (1)

and then we introduce the knot vector {V },

{V } = [v0, . . . , vm], (2)

which highly depends on the chosen multiplicity λ of internal knots (usually single or double):

• multiplicity λ= 1: {V }λ=1 = [x0, . . . , x0︸ ︷︷ ︸
p+1

, x1, x2, . . . , xn−1, xn, . . . , xn︸ ︷︷ ︸
p+1

], (3)

• multiplicity λ= 2: {V }λ=2 = [x0, . . . , x0︸ ︷︷ ︸
p+1

, x1, x1︸ ︷︷ ︸
2

, x2, x2︸ ︷︷ ︸
2

, . . . , xn−1, xn−1︸ ︷︷ ︸
2

, xn, . . . , xn︸ ︷︷ ︸
p+1

]. (4)

Therefore, Equations (3) and (4) lead to the unified relationship

m = 2(p+ 1)+ λ(n− 1)− 1, λ= 1, 2. (5)

Based on the above-mentioned computed knot vector {V }, the vector of control points is denoted by

{P} = [P0, . . . , Pnc ], (6)
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where the number of control points (nc+1) is related to the number of elements in the knot vector (m+1)
as

m = nc+ p+ 1. (7)

Then, for every position x ∈ [0, L], with normalized coordinate ξ = x/L ∈ [0, 1], we can determine
the values of nc+ 1 basis functions, Ni,p(x) or Ni,p(ξ), i = 0, . . . , nc:

(1) The Cartesian coordinate is approximated as

x(ξ)=
n∑

i=0

Ni (ξ) · xi . (8)

(2) The variable is approximated as

u(ξ)=
n∑

i=0

Ni (ξ) · ai . (9)

It is worth mentioning that the coefficients ai in (9) are generally different from the nodal values ui

associated to the breakpoints, except at the ends where a0 = u0 and an = un .

Remark. In the particular case in which there are no internal breakpoints (i.e., n = 1), (5) implies that
the knot vector consists of m+ 1= 2(p+ 1) elements, whence (7) implies that the number of control
points becomes nc = p. In other words, in case of Bézier (Bernstein polynomial) representation, the
number of coefficients is identical with those involved in a Taylor series, that is, a full polynomial of
degree p.

2.3. Two-dimensional global shape functions. Given the uniform subdivisions nx and ny of the inter-
vals [0, a] and [0, b], respectively, the breakpoints along each of the four sides (AB, BC , CD, and DA)
are determined. Moreover, given the multiplicity of internal knots, as well as the polynomial degrees px

and py , the control points in the x- and y-direction are also determined. If the patch is curvilinear, then
x- and y-coordinates have to be replaced by the ξ - and η-normalized coordinates, respectively.

While in the older B-splines formulation [Schoenberg 1946; Schoenberg and Whitney 1953] the de-
grees of freedom are associated to the (nx + 1)× (ny + 1) nodal points xi j lying at the intersections
of i-th and j-th lines perpendicular to the axes and passing through the breakpoints (xi , y j ), in this
“modern” formulation we have to deal only with the tensor product of q control points. Therefore,
in the case of cubic approximation (px = py = p = 3), we distinguish two cases. In the first case,
the multiplicity of internal knots is λ = 1, so the tensor product consists of q = (nx + 3)× (ny + 3)
coefficients ai j . In the second case, the multiplicity of internal knots is λ = 2, so the tensor product
consists of q = 4(nx + 1)(ny + 1) coefficients ai j .

Therefore, according to the selected value of multiplicity λ (1 or 2), the two-dimensional global shape
functions are given by

λ= 1: φi j (x, y)= Ni (x) · N j (y), i = 0, . . . , (nx + 3)∧ j = 0, . . . , (ny + 3), (10)

λ= 2: φi j (x, y)= Ni (x) · N j (y), i = 0, . . . , 2(nx + 1)∧ j = 0, . . . , 2(ny + 1) (11)

(the double subscript is to emphasize the two directions).
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The continuity of the approximation is prescribed by both the polynomial degree and the multiplicity.
For cubic splines, if the multiplicity is one, then the univariate approximation is C2-continuous (whereas
for 2D, u ∈ C2,2(�st)). In contrast, if the multiplicity is two, then the univariate approximation is C1-
continuous (whereas for 2D, u ∈ C1,1(�st)); �st = [0, 1]× [0, 1] is the standard reference square.

In the general case of higher polynomial degrees, p > 3, the B-splines approximation ensures C p−λ-
continuity when the multiplicity of inner knots is λ (1≤ λ≤ p−1). The most usual case for the numerical
solution of an ordinary differential equation by collocation is to require C1-continuity (multiplicity λ=
p− 1) and take λ collocation points between any two successive breakpoints. Under these circumstances,
after encountering the two boundary conditions we obtain as many equations as the number of unknowns
(this observation is useful to static problems, for which the reader is referred to Appendix A, and dynamic
ones). Therefore, the minimum value of multiplicity λ is 1 (C p−1-continuity), whereas the maximum
one is p− 1 (C1-continuity).

In general, the q control points are divided into two categories, that is, nc,in in the interior of the
domain � and nc,b near the boundary (q = nc,in + nc,b). In more detail, if a side of the quadrilateral
ABCD (e.g., AB) is straight, the corresponding control points lie on this side (AB). In contrast, if the
side is curved, then only the extreme control points (P0 and Pn) will belong to the boundary, and even
they coincide with the corners (e.g., A, B), whereas the rest will be either inside or outside the domain
� in accordance to the curvature of the curve AB.

3. The proposed global collocation procedure

3.1. General. For the given partial differential equation (PDE)

1
c2

∂2u
∂t2 −∇

2u = 0 in �, (12)

we seek an approximate solution to (12) which is a linear combination of the bivariate global basis
functions {φi (x, y)}, i = 1, 2, . . . , q:

ũ(x, y; t)=
q∑

j=1

α j (t) ·φ j (x, y). (13)

Based on the global shape functions φ j in (13), which are applied for the entire domain, we can apply
either the proposed global collocation or the well-known Galerkin–Ritz method.

Without loss of generality, the boundary consists of ñ1 breakpoints (which correspond to n1 control
points) under Dirichlet and ñ2 ones (which correspond to n2 control points) under Neumann boundary
conditions. Although many acoustical cavities have absorbing boundaries (e.g., mufflers) with mixed
boundary conditions (Robin-type) due to the acoustic impedance, for the sake of brevity below we limit
the discussion in the two typical cases of boundary conditions, that is, open boundary (Dirichlet-type)
and hard walls (Neumann-type).

3.2. The proposed global collocation approach. Fulfilling the PDE (12) at ncol collocation points, one
obtains the matrix formulation (the index “c” stands for collocation)

[Mc]{ä(t)}+ [Kc]{a(t)} = {0}, (14)
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where
mc

ij =
( 1

c2

)
φ j (xi ), kc

ij =−∇
2φ j (xi ). (15)

In (15), “i” corresponds to the collocation points and “j” to the control points. It can be noticed that in
this formulation no domain integral appears. This advantage comes at the cost of having to calculate the
stiffness elements ki j through the two components of the Laplace operator in (15), which are given by

∂2φ j

∂x2 =

(
∂ξ

∂x

)2
∂2φ j

∂ξ 2 + 2
∂ξ

∂x
∂η

∂x
∂2φ j

∂ξ∂η
+

(
∂η

∂x

)2
∂2φ j

∂η2 +
∂2ξ

∂x2

∂φ j

∂ξ
+
∂2η

∂x2

∂φ j

∂η
,

∂2φ j

∂y2 =

(
∂ξ

∂y

)2
∂2φ j

∂ξ 2 + 2
∂ξ

∂y
∂η

∂y
∂2φ j

∂ξ∂η
+

(
∂η

∂y

)2
∂2φ j

∂η2 +
∂2ξ

∂y2

∂φ j

∂ξ
+
∂2η

∂y2

∂φ j

∂η
.

(16)

The terms ∂ξ
∂x , ∂

2ξ

∂x2 , ∂ξ
∂y and ∂2ξ

∂y2 , as well as ∂η

∂x , ∂
2η

∂x2 , ∂η
∂y and ∂2η

∂y2 in (16), are calculated as usual, starting
from the inverse of the Jacobian matrix [Provatidis and Ioannou 2010, p. 400].

3.3. The well known Galerkin–Ritz approach. Applying the Galerkin method to (12), for the free vi-
bration problem, one obtains the well known matrix formulation [Höllig 2003]

[M]{ä(t)}+ [K ]{a(t)} = {0}, (17)

where [M] and [K ] are the mass and stiffness matrices, respectively, which are given by

mi j =
1
c2

∫
�

φiφ j d�, ki j =

∫
�

∇φi∇φ j d�. (18)

A B-splines implementation in conjunction with Equations (17) and (18) is not a novel task, as the
general procedure has been previously presented in a textbook ([Höllig 2003] and papers therein). For
the completeness of our description, we should mention that

(1) Dirichlet boundary conditions (near to n1 ≤ nc,b control points) are easily implemented eliminating
both the n1 rows and columns which correspond to the restrained coefficients;

(2) Neumann boundary conditions (near to n2 ≤ nc,b control points) make the “near-boundary” (outer)
control points be treated equally with the nc,in unrestrained internal ones. In the particular case of
a free-free problem, no matrix elimination is required.

3.4. Implementation of boundary conditions in global collocation. In general, we fulfill the PDE ap-
plying (15) at ncol collocation points in the interior of the domain.

In free acoustic excitation, the collocation leads to the following general matrix equations system

[
Mcol,1 Mcol,2 Mcol,I

]
·

ä1

ä2

äI

+ [Kcol,1 Kcol,2 Kcol,I
]
·

a1

a2

aI

=
F1

0
0

 , (19)

where a1 and a2 are vectors of coefficients that refer to the above-mentioned n1 and n2 control points
related to the boundary, respectively, while aI refers to the associated n I “internal” (with respect to the
reference square) control points.
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3.4.1. Dirichlet boundary conditions. Dirichlet boundary conditions (u = 0) are easily applied. These
conditions are readily implemented by eliminating the columns that correspond to the restricted nodes,
that is, the matrices Mcol,1 and Kcol,1 in (19). In most cases this task is trivial, particularly when one or
more entire sides, for example AB out of the whole boundary (= AB ∪ BC ∪CD ∪ DA), is restricted
(u = 0). Obviously this happens because the boundary condition u = 0 along the side AB implies that
all coefficients that correspond to it vanish (ai ≡ 0). If the entire boundary is under Dirichlet conditions,
then all relevant coefficients vanish (i.e., a1 = 0).

Therefore, eliminating the vectors a1 = ä1 = 0, and assuming that no other part of the boundary is
under Neumann conditions (a2 is absent), (19) becomes

Mcol,I · äI + Kcol,I · aI = 0. (20)

Equation (20) depicts that the resulting matrices Mcol,I and Kcol,I will be square (of order nc,in×nc,in)
only when the number of collocation points equals the number of control points nc,in in the interior.
Obviously, this condition is valid regardless of the multiplicity λ (= 1 or 2) of internal knots.

3.4.2. Neumann boundary conditions. Neumann boundary conditions (∂u/∂n = 0, n = unit normal
vector) impose a linear dependency between the coefficients associated to the control points in the
neighborhood of the boundary. A similar dependency had been previously found, however in conjunction
with Lagrange polynomials [Provatidis 2008a, p. 245]. In this way, the matrix elements in those columns
related to the free boundary are first reorganized and then condensed; details will be given below.

Taking the first derivative of (13) with respect to the unit normal vector n (at a boundary point), we
obtain

∂u
∂n
=

q∑
k=1

∂φk(ξ, η)

∂n
· ak . (21)

In the sum that appears in (21), nc,in out of the total number of q control points belong to the interior,
while n2 belong to the boundary (actually they are outside or inside the domain in accordance to the
curvature). For a smooth boundary, applying (21) to n2 boundary points (in the neighborhood of the
“close-to-the-boundary” control points), we derive the matrix equation[

B22︸︷︷︸
n2×n2

B2I︸︷︷︸
n2×n I

]
·

[
a2

aI

]
=

[
0
0

]
. (22)

Eliminating a2 from (22) and substituting into (19) in which the vector a1 is absent, we obtain

M∗ äI + K ∗aI = 0, (23)

where
M∗ = Mcol,I −Mcol,2 B−1

22 B2I , K ∗ = Kcol,I − Kcol,2 K−1
22 K2I . (24)

The imposition of Neumann boundary conditions in the case of nonsmooth boundary (e.g., corners ap-
pearing in a rectangular ABCD like that of Example 1, free-free boundary conditions) is performed as
follows. We select two opposite sides, for example AD and BC and impose the Neumann boundary
conditions at so many points along each of them as the number of the corresponding control points (the
end points (A, D) of the side AD, and (B, C) of BC are included). For the remaining two sides, AB
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and CD, the corner points are excluded, therefore for each of them Neumann boundary conditions are
applied to as many boundary points as the corresponding number of control points minus two. This is
the minimum number of Neumann boundary conditions that can be applied in a straightforward manner.
However, if one wishes to apply Neumann boundary conditions at the ends of the sides AB and CD as
well, then the number of rows in (22) will increase by four, thus a least-squares procedure should be
applied to it in order to make possible the inversion of matrix B22.

3.4.3. Implementation to static problems. At this point, it is instructive to refresh those basics of the col-
location method related to nonhomogeneous boundary conditions for solving boundary value problems.
Details for the one-dimensional problem defined in the interval [0, L] are given in Appendix A.

3.4.4. Multiplicity of internal knots. As mentioned in Section 2.3, after the breakpoints along the bound-
ary are given, the next decisive step is to assign the multiplicity of internal knots.

In the case of λ = 2, in conjunction with p = 3, the golden rule is to take the collocation points at
the 2× 2 Gauss points in the (nx × ny) cells formed by the breakpoints, so that the number of equations
equals the number of unknowns, always related to the internal control points. For p > 3, the same occurs
when λ= p−1, whereas the aforementioned 2×2 is replaced by a (p−1)×(p−1) Gaussian quadrature.

In contrast, when λ= 1, in conjunction with p = 3, we can use more collocation points, for example,
the same as those for λ= 2. In such case the matrices Mcol,I and Kcol,I are nonsquare. For p > 3, we
can use the same as those for λ = p− 1 or smaller. This shortcoming is easily resolved applying the
least-squares technique, of which the academic implementation is to left-multiply (20) by the transpose
of the matrix Mcol,I , thus leading to

M︸︷︷︸
n I×n I

äI + K︸︷︷︸
n I×n I

aI = 0, (25)

where
M = (Mcol,I )

T
· (Mcol,I ), K = (Mcol,I )

T
· (Kcol,I ). (26)

In the case of adopting λ= 1 (C p−λ-continuity), another possibility is to collocate at the images of the
Demko’s or Greville’s abscissae [Auricchio et al. 2010; de Boor 2001, p. 192], thus skipping the above-
mentioned least-squares procedure. For the sake of brevity, in this paper a relevant choice is characterized
by the term “isogeometric” collocation.

3.4.5. Eigenvalues extraction. It can be noticed that (20) and (23) have the form of a standard problem in
dynamics and therefore can be calculated either taking the roots of the characteristic polynomial produced
by demanding that det(‖K −λM‖)= 0, or by any established algorithm for nonsymmetric matrices such
as QR.

4. Numerical implementation

4.1. Global collocation method. The proposed global collocation method was implemented using (p−1)
Gauss points per direction, between any two successive breakpoints. In the tensor product, the break-
points create nx × ny cells. Using (p− 1)2 collocation points per cell, the total number of collocation
points becomes ncol = (p− 1)2nx ny , which equals to the number of unknown coefficients.
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Clearly, in the case of multiple double knots (e.g., λ= 2 for p = 3) the total number of control points
(coefficients) in the tensor product is q = 4(nx + 1)× (ny + 1), of which nb = 4(nx + ny + 1) control
points (coefficients) lie on the boundary.

• For a Dirichlet problem (e.g., with p = 3), the aforementioned nb columns are eliminated, thus
nint = q − nb = 4nx ny coefficients remain (they correspond to the control points in the interior).
Therefore, the number of the collocation points ncol equals to the number of unknown coefficients,
a fact that leads to a square matrix of unknowns which can be easily solved.

• For a free-free problem, all coefficients that correspond to the boundary control points are again
eliminated, thus resulting in nint = q − nb = 4nx ny , exactly the same number as in the above-
mentioned Dirichlet problem.

Also, in case of simple knots (λ= 1), in conjunction with p = 3, the total number of control points
(coefficients) in the tensor product is q = (nx + 3)× (ny + 3), of which nb = 2(nx + ny + 4) control
points (coefficients) lie on the boundary. As previously, in both Dirichlet and Neumann problems all the
coefficients associated to the nb close-to-boundary control points are eliminated thus nint= q−nb= 4nx ny

coefficients remain and constitute the order of the final matrices.
Moreover, for any chosen multiplicity λ, in conjunction with a chosen number of breakpoint subdivi-

sions, the number q of control points is determined according to (7). In addition to the above schemes,
instead of using only Gaussian points this study reports about numerical experience using the images
of Demko’s and Greville’s abscissae for collocating points, previously applied in isogeometric analysis
[Auricchio et al. 2010].

4.2. Galerkin–Ritz global method. The elements mi j of the mass matrix are products of two basis func-
tions, each of piecewise p-th (i.e., third) degree. In the particular case of a rectangular domain, the
integrand becomes of piecewise sixth degree, thus it requires four-point Gauss quadrature per direction,
that is, sixteen Gauss points per integration cell. For p > 3, we use (p+ 1)× (p+ 1) Gauss points per
integration cell.

A Dirichlet problem, for p = 3, leads to mass and stiffness matrices of order nint = q − nb = 4nx ny ,
while a Neumann problem leads to matrices of order neq = 4(nx + 1)× (ny + 1), a fact that is entirely
different from the above-mentioned collocation technique.

5. Numerical examples

A Matlab code was developed on a standard PC Pentium IV. The basis functions Ni,p and their derivatives
were created using the “spcol” function, which exists in the Spline Toolkit. Demko’s abscissae were
determined using the “chbpnt” function. The eigenvalues were calculated using the standard “eig”
function.

The theory is now elucidated by two examples taken from the literature [Provatidis 2004; 2009a], in
which the exact analytical solution is known. The quality of the numerical solution ũ is evaluated in
terms of the relative error, which was calculated as

er =
ũ− uexact

uexact
× 100%. (27)
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Error (in %) of calculated eigenvalues

Collocation Galerkin–Ritz

Mode
Exact

(a) λ= 2 (b) λ= 1 (c) λ= 1

(m, n) ω2
(nx × ny) (nx × ny) (nx × ny)

2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4

1 (0, 0) 0 — — — — — — — — — — — —
2 (1, 0) 1.5791 0.23 0.02 0.00 0.00 0.26 0.02 0.00 0.00 0.06 0.00 0.00 0.00
3 (2, 0) 6.3165 −8.81 0.23 0.05 0.02 −8.81 0.26 0.05 0.02 0.10 0.09 0.01 0.00
4 (0, 1) 8.1567 −8.81 0.23 0.05 0.02 −8.81 0.26 0.05 0.02 0.06 0.06 0.00 0.00
5 (1, 1) 9.7358 −7.35 0.19 0.04 0.01 −7.34 0.22 0.04 0.01 0.06 0.05 0.00 0.00
6 (3, 0) 14.2122 −7.14 0.67 0.23 0.08 −7.14 1.83 0.26 0.08 1.91 1.91 0.10 0.01
7 (2, 1) 14.4732 10.35 0.23 0.05 0.02 — 0.26 0.05 0.02 88.07 0.65 0.00 0.00
8 (3, 1) 22.3689 4.65 0.51 0.16 0.06 — 1.26 0.19 0.06 58.17 1.61 0.07 0.01
9 (4, 0) 25.2662 — −8.81 0.55 0.23 — −8.81 1.01 0.26 93.83 0.12 1.01 0.11

10 (0, 2) 32.6268 — −8.81 0.55 0.23 — −8.81 1.01 0.26 51.98 0.10 0.84 0.09

Number of equations 8 32 72 128 6 15 28 45 20 35 54 77

Table 1. Example 1: calculated eigenvalues of a rectangular acoustic cavity (a = 2.5 m,
b = 1.1 m) under Neumann (free-free: ∂u/∂n = 0) boundary conditions, using various
nx × ny uniform subdivisions in conjunction with cubic B-splines (p = 3). Results are
shown as percentage errors for an approximation involving “tensor product B-splines”
using three alternative formulations: (a) collocation (with multiplicity λ= 2), (b) collo-
cation (with multiplicity λ= 1), and (c) Galerkin–Ritz (with multiplicity λ= 1).

Example 1: eigenvalues of rectangular acoustical cavity. We consider a rectangular acoustical cavity
of dimensions a = 2.5 m, b = 1.1 m with sound velocity c = 1 m/s. Two types of boundary conditions
are considered: (a) Neumann (free-free), and (b) Dirichlet boundary conditions, for which the exact
analytical eigenvalues are given by

Free-free: ω2
mn = π

2c2
(

m2

a2 +
n2

b2

)
, m, n = 0, 1, 2, . . . , (28)

Dirichlet: ω2
mn = π

2c2
(

m2

a2 +
n2

b2

)
, m, n = 1, 2, . . . . (29)

In all cases a uniform mesh of (nx × ny) subdivisions of breakpoints along x- and y-directions, re-
spectively, has been used. The obtained results for p = 3 are shown in Tables 1–3. In more detail:

(1) Table 1 shows the results for Neumann boundary conditions, for three different formulations, that is,
B-splines collocation in conjunction with the usual multiplicity λ= 2 and the novel λ= 1, as well as
B-splines Galerkin–Ritz with the usual multiplicity λ= 1. It can be noticed that both formulations
are of similar quality. The proposed collocation method requires the most degrees of freedom when
λ= 2 and the least when λ= 1.

(2) Table 2 shows the results for Dirichlet boundary conditions, again for previous three different for-
mulations. It can be noticed that again the proposed collocation and the Galerkin–Ritz are of the
same quality. It can be also noticed that the alternative least-squares collocation (λ= 1) is almost
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Error (in %) of calculated eigenvalues

Collocation Galerkin–Ritz

Mode
Exact

(a) λ= 2 (b) λ= 1 (c) λ= 1

(m, n) ω2
(nx × ny) (nx × ny) (nx × ny)

2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4

1 (1, 1) 9.7358 18.12 0.19 0.04 0.01 18.12 0.19 0.04 0.01 1.11 0.02 0.01 0.00
2 (2, 1) 14.4732 21.59 0.23 0.05 0.02 25.38 0.24 0.05 0.02 3.53 0.06 0.01 0.00
3 (3, 1) 22.3689 15.74 0.51 0.16 0.06 15.74 0.67 0.18 0.06 4.36 0.45 0.07 0.01
4 (4, 1) 33.4229 −6.25 16.37 0.43 0.17 −6.25 31.89 0.64 0.20 8.58 8.58 0.57 0.09
5 (1, 2) 34.2059 −3.65 20.59 0.52 0.22 11.04 36.69 0.58 0.24 21.12 15.69 0.20 0.09
6 (2, 2) 38.9433 −3.88 18.12 0.47 0.19 17.41 25.40 0.52 0.21 27.85 5.37 0.18 0.08
7 (3, 2) 46.8390 −2.38 11.03 0.45 0.18 — 20.44 0.50 0.20 — 4.66 0.18 0.07
8 (5, 1) 47.6351 10.83 13.31 0.42 0.39 — 19.34 1.13 0.55 — 9.00 1.95 0.46
9 (4, 2) 57.8930 — 21.59 0.55 0.23 — 40.06 0.70 0.25 — 14.22 0.45 0.11

10 (6, 1) 65.0056 — 10.85 11.50 0.59 — 29.34 12.05 1.21 — 20.72 12.46 1.59

Number of equations 8 32 72 128 6 15 28 45 6 15 28 45

Table 2. Example 1: calculated eigenvalues of a rectangular acoustic cavity (a = 2.5 m,
b = 1.1 m) under Dirichlet (u = 0) boundary conditions, using various nx × ny uni-
form subdivisions in conjunction with cubic B-splines (p = 3). Results are shown as
percentage errors for an approximation involving “tensor product B-splines” using three
alternative formulations: (a) collocation (with multiplicity λ= 2), (b) collocation (with
multiplicity λ= 1), and (c) Galerkin–Ritz (with multiplicity λ= 1).

Error (in %) of calculated eigenvalues

Conventional finite elements (FEM)

Mode

(a) Free-free (b) Dirichlet
(nx × ny) (nx × ny)

2× 1 4× 2 6× 3 8× 4 2× 1 4× 2 6× 3 8× 4

1 — — — — — 18.93 8.27 4.60
2 21.59 5.24 2.30 1.29 — 21.59 9.43 5.24
3 21.59 21.59 9.43 5.24 — 35.00 17.15 9.54
4 21.59 21.59 9.43 5.24 — — 30.11 17.60
5 21.59 18.93 8.27 4.60 — — 35.19 20.65
6 23.82 23.82 11.44 7.17 — — 32.35 18.93
7 — 40.13 19.39 9.98 — — 32.17 18.68
8 — 35.00 17.15 9.54 — — 38.13 28.29
9 — 21.59 36.78 21.59 — — 36.78 21.59

10 — 21.59 33.28 20.47 — — 56.14 38.00

Number of equations 6 15 28 45 0 3 10 21

Table 3. Example 1: calculated eigenvalues of a rectangular acoustic cavity (a = 2.5 m,
b = 1.1 m) using various nx × ny uniform subdivisions. Results are shown as percentage
errors for conventional bilinear (four-node) finite elements under (a) free-free and (b)
Dirichlet boundary conditions.
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identical with the orthogonal collocation (λ= 2) and even it has the same (small) number of control
points as the Galerkin–Ritz formulation.

(3) For comparison, Table 3 shows the results obtained using conventional finite elements — for the
same mesh density, of course. It can be noticed that the minor differences appearing in Table 1 and
Table 2 are negligible, that is, of the same order of accuracy when compared with the conventional
finite element solution in Table 3. However, for the same number of breakpoints, the number of
DOFs in the conventional FEM is minimal.

In the sequence, the results of Tables 1–3 are enhanced as follows. First, the discretization of break-
points is extended from 8× 4 to 12× 6, 16× 8 and 32× 16 at maximum. Second, three additional
collocation schemes from recent literature were tested, involving, in order, Demko’s, Greville’s Tn- and
Greville’s Sn+2 abscissae (for definitions see [Auricchio et al. 2010]).

Comparative results for p= 3 and Neumann boundary conditions are shown in Figure 1, where one can

Figure 1. Rectangular under Neumann boundary conditions: Convergence of the first
four nonzero eigenvalues, ω2

i , i = 2, 3, 4, 5, in terms of number of equations using cubic
B-splines, p = 3 (the first eigenvalue, not shown, equals to zero: ω2

1 = 0).
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Figure 2. Rectangular under Neumann boundary conditions: convergence of the second
eigenvalue, ω2

2, in terms of number of equations, for higher polynomial degrees (p = 4,
5, 6 and 7).

notice the overall superiority of the Galerkin–Ritz B-splines method, in terms of accuracy. The proposed
single knot based (λ= 1) least-squares collocation closely follows the accuracy of Galerkin–Ritz method,
whereas the usual double knot based (λ= 2) collocation method is of adequate accuracy. Moreover, the
images of Demko’s and Greville’s abscissae as collocation points lead to rather poor results. Surprisingly,
Demko’s solution coincides with the conventional FEM solution (based on 4-node bilinear elements) up
to the twelfth decimal point at least.

For the same (Neumann) boundary conditions, the superiority of the proposed method (λ= 1) does
not continue when dealing with higher polynomial degrees (p = 4, 5, 6 and 7), where the choice of
multiplicity λ= p− 1 outperforms between all collocation methods tested in this study (Figure 2).

Comparative results for p = 3 and Dirichlet boundary conditions are shown in Figure 3, where one
can again notice the overall superiority of the Galerkin–Ritz B-splines method, in terms of accuracy. The
proposed single knot based (λ= 1) least-squares collocation is again the best accurate scheme between
all tested collocation methods. Moreover, the images of Demko’s and Greville’s (Tn-based) abscissae as
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Figure 3. Rectangular under Dirichlet boundary conditions: convergence of the first
four eigenvalues, ω2

i , i = 1, 2, 3, 4, in terms of number of equations using cubic B-
splines (p = 3).

collocation points are not applicable as they lead to singular dynamic matrices. This finding is justified
by the fact that the extreme collocation points of these two sets belong to the boundary and therefore
Dirichlet boundary conditions erase the dominating diagonal terms appearing in series expansion given
by (13). Only the Greville’s (Sn+2-based) abscissae are applicable but the quality of results is slightly
lower compared even with the conventional FEM solution (4-node bilinear elements).

For the same (Dirichlet) boundary conditions, the superiority of the proposed method (λ= 1) does
not continue when dealing with higher polynomial degrees (p = 4, 5, 6 and 7), where the choice of
multiplicity λ = p − 1 outperforms between all collocation methods tested in this study (Figure 4).
Concerning the other (isogeometric) sets of global collocation, only the images of Greville’s (Sn+2-based)
abscissae are applicable and of similar quality with the proposed least-squares scheme.

Example 2: eigenvalues of circular acoustical cavity. A circular cavity of radius a= 1 m under Dirichlet
or Neumann (free-free) conditions is considered. For the purposes of this study, a unit reference sound
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Figure 4. Rectangular under Dirichlet boundary conditions: convergence of the first
eigenvalue, ω2

1, in terms of number of equations, for higher polynomial degrees (p = 4,
5, 6 and 7).

velocity, c = 1 m/s, is considered. The theoretical eigenvalues are given by the formula

Dirichlet: Jm(ka)= 0, m = 0, 1, 2, . . . , (30)

Free-free (Neumann): J ′m(ka)= 0, m = 0, 1, 2, . . . , (31)

where J ′m(ka) is the first derivative of the Bessel function Jm(ka) of the first kind and order m and
k = ω/c the wavenumber.

Now the discretization consists of 4, 8, 16, and 32 breakpoints uniformly distributed along the entire
circumference. This corresponds to nx = ny = n= 1, 2, 4 and 8, subdivisions of every side in the reference
square ABCD, respectively. As previously, the control points for p = 3 were derived for multiplicity
λ= 1 and 2.

Tables 4 and 5 show the results for the Dirichlet and Neumann problems, respectively. It can be noticed
that for medium and fine meshes the results are of similar quality, especially when they are compared
with conventional finite elements. The latter elements have been previously studied in [Provatidis 2004,
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Error (in %) of calculated eigenvalues

Collocation Galerkin–Ritz

Mode
Exact

(a) λ= 2 (b) λ= 1 (c) λ= 1

m ω2
Number of subdivisions (4n) Number of subdivisions (4n) Number of subdivisions (4n)

4 8 16 32 4 8 16 32 4 8 16 32

1 0 5.7832 97.14 −3.48 0.00 0.00 98.68 −3.70 0.02 0.00 8.94 −0.01 0.01 0.00
2 1 14.6820 39.25 16.63 0.13 0.01 38.98 47.78 0.68 0.01 16.72 11.55 0.46 0.00
3 1 14.6820 39.25 16.63 0.13 0.01 38.98 47.78 0.68 0.01 16.72 11.55 0.46 0.00
4 2 26.3746 −1.59 21.84 −2.23 0.03 −2.54 34.75 −2.20 0.03 29.88 11.97 0.30 0.01
5 2 26.3746 — 33.12 0.88 0.07 — 49.23 3.38 0.09 — 30.32 2.02 0.02
6 0 30.4713 — 27.51 −3.31 0.05 — 195.80 −3.35 0.07 — 26.45 0.16 0.03
7 3 40.7065 — 9.04 −0.20 0.14 — 246.60 2.66 0.19 — 65.18 4.81 0.07
8 3 40.7065 — 9.04 −0.20 0.14 — 246.60 2.66 0.19 — 65.18 4.81 0.07
9 1 49.2185 — 23.30 11.63 0.14 — 327.16 13.92 0.23 — 121.01 20.60 0.17

10 1 49.2185 — 23.30 15.74 0.14 — — 80.75 0.23 — — 32.95 0.17

No. of equations 4 16 64 256 4 9 25 81 4 9 25 81

Table 4. Example 2: calculated eigenvalues of a circular acoustic cavity of radius 1.0 m
under Dirichlet (u = 0) boundary conditions, using various uniform subdivisions in con-
junction with cubic B-splines (p= 3). Results are shown as percentage errors for “tensor
product B-splines” approximation using three alternative formulations: (a) collocation
(with multiplicity λ= 2), (b) collocation (with multiplicity λ= 1), and (c) Galerkin–Ritz
(with multiplicity λ= 1).

Exact

Error (in %) of calculated eigenvalues

Collocation Galerkin–Ritz

Mode m ω2

(a) λ= 2 (b) λ= 1 (c) λ= 1
Number of subdivisions (4n) Number of subdivisions (4n) Number of subdivisions (4n)

4 8 16 32 4 8 16 32 4 8 16 32

1 0 0.00 — — — — — — — — — — — —
2 1 3.3900 −15.28 1.89 0.05 0.00 −15.04 4.27 −0.06 −0.01 0.09 0.29 0.00 0.00
3 1 3.3900 −15.28 1.89 0.05 0.00 −15.04 4.27 −0.06 −0.01 0.09 0.29 0.00 0.00
4 2 9.3284 −43.16 −9.76 −0.17 −0.06 −43.64 −9.77 −0.58 −0.10 −1.13 0.18 0.06 0.00
5 2 9.3284 — 8.61 0.18 0.00 — 23.17 0.42 0.01 50.37 2.71 0.09 0.00
6 0 14.6820 — −8.50 0.36 0.03 — −8.81 0.57 0.03 68.85 0.50 0.15 0.00
7 3 17.6500 — 0.44 0.09 −0.08 — 13.95 1.06 −0.11 63.78 9.68 0.76 0.00
8 3 17.6500 — 0.44 0.09 −0.08 — 13.95 1.06 −0.11 63.78 9.68 0.76 0.00
9 4 28.2764 — −9.27 −2.09 −0.27 — −1.97 −1.66 −0.43 67.23 9.80 0.45 0.02

10 4 28.2764 — 1.29 2.83 −0.01 — — 9.40 0.14 90.50 88.13 5.17 0.03

Number of equations 4 16 64 256 4 9 25 81 16 25 49 121

Table 5. Example 2: calculated eigenvalues of a circular acoustic cavity of radius 1.0 m
under Neumann (free-free) boundary conditions, using various uniform subdivisions in
conjunction with cubic B-splines (p = 3). See caption of previous table for details.
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p. 51]; briefly, for the Neumann problem in conjunction with 216 triangular elements and 127 nodes, the
error in the first three nonrigid modes was: ∼= 0.86%, 1.36%, and 1.79%, respectively.

Better insight is obtained when increasing mesh density into 40 breakpoints and again comparing
all those methods tested in Example 1. Concerning the FEM, the same mesh with that of breakpoints
considered in collocation methods was used. The results are as follows.

For the Dirichlet problem, it is clearly shown in Figure 5 that B-splines Galerkin–Ritz method outper-
forms and then the proposed collocation method (λ= 1) follows. The images of Demko’s and Greville’s
(Tn-based) abscissae lead to singular matrices, whereas Greville’s (Sn+2 based) abscissae work well but
perform slightly worse even that usual FEM.

For the Neumann problem, it is clearly shown in Figure 6 that B-splines Galerkin–Ritz method again
outperforms and then the proposed collocation method (λ = 1) follows. The images of Demko’s and
Greville’s (Tn-based) abscissae do not now lead to singular matrices but the errors are tremendously high
(some eigenvalues are even negative), whereas Greville’s (Sn+2-based) abscissae again work well but in
some cases hardly fight the FEM solution.

6. Discussion

The global B-spline collocation method has been previously applied in the 1960s mainly in 1D elliptic
problems [de Boor 2001], whereas preliminary eigenvalue analysis has been discussed by Jerome and
Varga [1969]. Collocation methods have been extensively used for 2D problems but they have been
implemented mostly in conjunction with small size elements; for details we refer to [Provatidis 2009b]
and papers therein. For cubic B-splines, the state-of-the-art is to use two collocation points between two
successive breakpoints (per direction). The latter matter is closely related to double knots (multiplicity
of internal knots equal to two: λ= 2), so as to produce as many equations as the number of the unknown
coefficients. In contrast, Galerkin–Ritz is usually applied on the basis of multiplicity of internal knots
equal to one (λ= 1) [Höllig 2003] (for the sake of brevity in this study the case of double knots was not
tested).

In the part of this study concerning cubic piecewise polynomials (p = 3), we found that the B-splines
based global collocation method is applicable for any multiplicity of internal knots, that is, the usual
(λ = 2) and the new (λ = 1). For the latter case (λ = 1), in which nx subdivisions of breakpoints per
direction lead to nx + 3 control points, we have initially tested to collocate at the centroids of the nx cells
defined by the breakpoints plus the ends and the middle of the domain in the corresponding direction,
ξ or η. Although in this way we derived as many equations as the number of the coefficients, the results
were not satisfactory. In contrast, when the collocation was performed taking 2×2 (Gauss) points per cell,
that is exactly the same as those used in case (λ= 2), the results became of equal quality as in case (λ= 2).
The increased number of equations, compared to the smaller number of control points (and associated
coefficients), was easily resolved applying a least-squares reduction of them (left-multiplication by a
transpose matrix) thus producing a matrix of order equal to the number of control points.

From the study of Example 1 it is concluded that the use of images of Greville (Sn+2-based) abscissae
is a good choice when applied in conjunction with polynomials of higher degree (p > 3). The images of
Demko and Greville (Tn-based) abscissae must never be applied to Dirichlet-type eigenvalue problems
in acoustics.
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Figure 5. Circular cavity under Dirichlet boundary conditions: convergence of the first
six eigenvalues in terms of number of equations, for cubic B-splines interpolation
(p = 3).
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Figure 6. Circular cavity under Neumann boundary conditions: convergence of the first
five nonzero eigenvalues in terms of number of equations, for cubic B-splines approxi-
mation (p = 3).
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It is worth repeating that the domain integration for calculating the matrices involved in B-splines
Galerkin–Ritz method was performed in conjunction with 4× 4 (in general: (p+ 1)× (p+ 1)) Gauss
points per cell of breakpoints; this is four times higher than the proposed global collocation method
(independently of the multiplicity of internal knots).

Concerning the elimination of the coefficients that are associated to the boundary, in the proposed
global collocation method they have to be eliminated independently on the type of boundary condi-
tions. In more detail, in the case of Dirichlet boundary conditions they are simply erased whereas in the
Neumann case they are properly incorporated into internal ones. In contrast, in the B-splines Galerkin–
Ritz formulation, only Dirichlet-type boundary conditions require the elimination of those coefficients
associated to the boundary, whereas in the free-free problem the mass and stiffness matrices remain as
they are.

Concerning the two examples of this study, we make some remarks:

Example 1: Rectangular cavity. No difficulty appeared in the implementation of the proposed theory
for both types of boundary conditions. Concerning the particular elimination required in the Neumann
problem, the standard equation (24) is generally applicable. It was found that, for both multiplicities, it
is sufficient to consider only one boundary equation at each of the four corners (A, B, C , D), which is
the derivative in either x- or y-direction. As previously mentioned at the end of Section 3.4.2, it is also
possible to consider both directions but then it becomes necessary to apply a least-squares procedure
so as to derive a square matrix B22; in this case the results did not change at all. Moreover, for the
particular case of a cubic polynomial (p = 3) and double knots (λ = 2), we can alternatively apply a
more schematic procedure as shown in Appendix B.

Example 2: Circular cavity. This study reduces to cubic B-splines (p = 3) only. Unlike the rectangular
cavity, this example requires a careful programming. First of all, the determination of the circle is not
a unique procedure. In all cases we have to divide the circumference into four equal parts: AB, BC ,
CD and DA. Then, for a given number of nx uniform subdivisions per side using (nx + 1) breakpoints
along (e.g., AB), and for a given multiplicity (λ= 1 or 2), there are either (nx + 3) or 2(nx + 1) control
points, respectively, to be determined. In all cases, the extreme control points coincide with the ends
of the corresponding side (e.g., AB). The internal control points were determined using boundary-only
Coons interpolation.

F In the case of double knots (λ = 2), it was found reasonable at every breakpoint to consider the
values of both the coordinates (x = r cosφ, y= r sinφ) and the slopes (dx/dφ=−r sinφ, dy/dφ=
r cosφ), with φ = (π/2)ξ, 0≤ ξ ≤ 1.

F In the case of single knots (λ= 1), it was found sufficient to consider nx + 1 uniformly arranged
internal breakpoints, that is, nx + 2 uniform segments.

Under these conditions, the following findings were noticed:

• For double knots (λ= 2), the derivative at the corners becomes singular due to the vanishing Jacobian
determinant. In more details, at the corner “A” it holds: (∂x/∂ξ = ∂x/∂η = 0). This shortcoming
was resolved considering one point before and one after the corner A (for example, in the midpoints
of the adjacent control points) and then taking the mean average of the normal derivatives.

• For single knots (λ= 1), no difficulty was observed.
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• When the internal control points were determined by smoothing the initial positions derived by
boundary-only Coons interpolation, the accuracy of the numerical solution decreased.

In summary, for both examples of this study, the quality of the B-splines Galerkin–Ritz solution
was the highest compared to that of the collocation schemes. Having said this, we must mention that the
same quality of results had been previously received when using the well known tensor product Lagrange
polynomials or Coons–Gordon transfinite interpolation (see [Provatidis 2006, p. 6702; Provatidis 2004,
p. 49; Provatidis 2009a, pp. 486–492], among others). In other words, the high quality of the numerical
solution is due more to the global character of any CAD-based interpolation (global approximation of
the acoustic pressure) and less on the individual methodology (Galerkin–Ritz or collocation).

Although it was a study in depth, this article has some weaknesses that must be cured in our ongoing
future research. One weak point is that the study does not focus on the bandwidth of the produced
matrices (or better on the required CPU-time) but only on the number of equations per numerical scheme,
a fact that may somehow influence the conclusions. A second point is that the second example (circular
cavity) has to be studied again using NURBS in conjunction with higher polynomial degrees. A third
point is that this paper refers only to cases where the basis functions have either maximum continuity
(multiplicity of 1) or continuity reduced by one (multiplicity of p− 1) at all internal knot lines. In the
future, cases where continuity is different at different knot lines should be tested.

7. Conclusions

The proposed global collocation method was based on tensor product B-splines, which are also used in
the Galerkin–Ritz formulation. Unlike the latter, the estimation of mass and stiffness matrices does not
need any domain integral to be computed, thus reducing the computer effort. The proposed method is
applicable using either single or multiple internal knots, where the maximum allowed multiplicity equals
the polynomial degree minus one. In general, multiple knots are preferred as they do not require any least-
squares scheme and they lead to a rather better quality. Alternatively, isogeometric collocation should be
carefully applied in conjunction with single knots, particularly in problems of Dirichlet-type boundary
conditions. Obviously, the extension of the proposed approach from acoustics to elastodynamics and
other types of partial differential operators as well as to three-dimensional problems is straightforward.

Appendix A: Solving boundary-value problems

The solution of the ordinary differential equation (ODE)

D(u(x))= f, x ∈ [0, L], (A.1)

by collocation is conducted as follows.
The variable is written as a B-splines series expansion

u(x)=
q∑

i=1

Ni,p(x) · ai , (A.2)

where q is the number of control points, Ni,p the basis functions, and ai the unknown coefficients.
Between alternatives, it is proposed to start with a mesh of (n+ 1) discrete breakpoints (i.e., n segments,
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uniform or not). For a given polynomial degree p, considering a given standard multiplicity λ of all inner
points (see [Piegl and Tiller 1995; de Boor 2001]), we have that

q = p+ 1+ λ(n− 1). (A.3)

For reasons that will be explained below, we use λ collocation points per cell, that is, between any two
successive breakpoints. Then the total number of collocation points becomes

ncol = λn. (A.4)

The overall computational procedure is as follows:

(1) First the ODE is fulfilled at the above-mentioned ncol collocation points (this procedure is identical
with that used in the eigenvalue problem), which leads to the matrix equation

[Acol]ncol×q ·

a1
...

aq

=
 f1

...

fncol

 . (A.5)

(2) Then the boundary conditions are imposed. We distinguish two cases:

(a) Two Dirichlet-type boundary conditions:

x = 0 ⇒ a1 =U0 and x = L ⇒ aq =UL . (A.6)

In this case, (A.6) are substituted into (A.5), the first (with elements ai1, i = 1, . . . , ncol) and
last (with elements aiq , i = 1, . . . , ncol) columns of matrix [Acol] are multiplied by the known
quantities U0 and UL and then these terms are transferred to the right-hand-side. In this way,
the dimensions of matrix [Acol] reduce from ncol× q to ncol× (q − 2) and the equations system
to be solved becomes

[Acol]ncol×(q−2) ·

 a2
...

aq−1

=
 f1− a11U0− a1qUL

...

fncol − ancol,1U0− ancol,qU L

 . (A.7)

In the sequence we shall seek for the conditions for which the aforementioned reduced matrix
[Acol] becomes square (with equal number of rows and columns). Actually, the combination of
(A.3) and (A.4) gives

q − 2= λn+ (p− 1− λ). (A.8)

Therefore, if one selects that
λ= p− 1, (A.9)

the parenthesis in (A.8) vanishes and gives that q − 2= λn, which in turn, by virtue of (A.4),
gives the desired relationship ncol = (q − 2), ensuring that matrix [Acol] is square.

(b) One Dirichlet- and one Neumann-type boundary condition:

a1 =U0 (A.10)
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and (
∂u
∂x

)
x=L
= q̄L . (A.11)

In this case, we take the first derivative of (A.2) over x and equate it with q̄L according to (A.11).
Thus the number of equations is increased by one and becomes equal to (ncol+ 1) while the first
column is erased (as previously), since all relevant elements are multiplied by the known value
U0, and is then transferred to the right hand side. Again the equations matrix is square, but in
this case it is of dimensions (ncol+ 1)× (ncol+ 1).

Remark. Another alternative is to consider a greater number of collocation points than previously, that is
ncol >λn. In this case, after the boundary conditions are imposed the obtained matrix [Acol] is nonsquare,
of dimensions ncol× (q − 2), that is with more equations than the unknowns. The remedy to obtain a
numerical solution is to apply a least-squares scheme, for example multiplying both parts of (A.7) by
the transpose of matrix [Acol]. However, the time-consuming transpose-matrix concept is always solved
by a QR-decomposition least-squares solver (which can be found in LINPACK, LAPACK, etc.). In this
way, the solution time increment is almost negligible when compared to a regular QR-decomposition for
a square matrix. Nevertheless, the built up of more rows (collocation points) than necessary is the main
source of increased computer time.

Appendix B: Elimination of boundary coefficients for the free-free problem in a rectangular

We deal with the particular case in which the polynomial degree is p = 3 whereas the multiplicity of
internal knots equals to two (λ= 2). In other words, we consider double knots.

Let us consider a rectangle ABCD as shown in Figure 7. The opposite sides AB and CD are divided
into nx uniform subdivisions, whereas the other opposite sides (BC and DA) are divided into ny uniform
ones. The axis origin is taken at the corner A.

In case of piecewise cubic polynomials (p = 3) the first control point P0 coincides with the corner A,
whereas P2nx+1 coincides with the corner B. The second layer consists of the control points (P2(nx+1)

up to P4(nx+1)−1), and so on. Obviously, the last control point is P4(nx+1)×(ny+1)−1, and it coincides with

Figure 7. A sketch, for nx ×ny = 4×2 subdivisions and double knots (λ= 2) for cubic
B-splines (p = 3), aiming at describing the procedure of eliminating the coefficients
associated to the boundary control points in a rectangular ABCD. The hatched area
indicates those internal control points that are not influenced by the aforementioned
elimination.
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the upper right corner C (Figure 7). Henceforth, for the sake of simplicity we limit the discussion for the
particular case of nx × ny = 4× 2 subdivisions, where we change the numbering of the control points,
starting from “1” (corner A) and ending at “60” (corner C).

Taking the first derivative of (13) with respect to the unit normal vector n (at a point along the side
DA), we obtain

∂u
∂n

∣∣∣
DA
=

q∑
k=1

∂φk(0, η)
∂n

· ak, (B.1)

where, as already explained, it holds that

q = 4(nx + 1)× (ny + 1). (B.2)

First, (B.1) is applied at the control point P0 ≡ A, and due to the free-free boundary conditions we
obtain

q∑
k=1

∂φk(0, 0)
∂x

· ak = 0. (B.3)

Due to the compact support of the basis functions Ni,p(ξ) and N j,p(η), (B.3) is written as

2(nx+1)∑
l=1

blx · al = 0, (B.4)

with

blx =
∂φl

∂x
(0, 0), l = 1, . . . , 2(nx + 1). (B.5)

Applying (B.3) at all control points along the boundary, we can obtain several relationships:

between “1” and “2”: b1xa1+ b2xa2 = 0. (B.6)

Equation (B.6) induces a linear relationship between the coefficients a1 and a2 associated to control
points “1” and “2”, respectively.

Moreover, we can write one identical relationship between the control points “11” and “12”:

between “11” and “12”: b1xa11+ b2xa12 = 0 ⇒ a11 =−
b2x

b1x
a12. (B.7)

In an analogous way, taking the derivatives in the y-direction, we can write:

between “1” and “11”: b1ya1+ b2ya11 = 0, (B.8)

between “2” and “12”: b1ya2+ b2ya12 = 0 ⇒ a2 =−
b2y

b1y
a12. (B.9)

Equations (B.6)–(B.9) impose four equations for the four variables: a1, a2, a11 (to be eliminated) and
the a12 (to be kept). Therefore, it is anticipated that one of them is redundant. In fact, substituting (B.6),
which is related to the derivative in the x-direction, into (B.9) one obtains the relationship between the
corner “1” and the close-to-corner “12” control point as

a1 =
b2x

b1x
·

b2y

b1y
· a12. (B.10)
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Obviously, the same relationship is also derived starting from the derivative at the corner “1” in the
y-direction, that is, substituting (B.8) into (B.7):

a1 =−
b2y

b1y
a11 =−

b2y

b1y
·

(
−

b2x

b1x
· a12

)
=

b2y

b1y
·

b2x

b1x
· a12. (B.11)

The above fact (identity between (B.10) and (B.11)) depicts that it is not necessary to consider both
fluxes at the corner. Therefore, we can ignore, for example, (B.8) and derive unique expression between
points 11 and 12 (B.7), as well as between “2” and “12” (B.9). Moreover, the relationship between the
control points “3” with “13” is similar to that between “2” and “12”. Generally, all intermediate control
points along AB are slaves of the master points along the internal boundary A′B ′ (Figure 7). In an
analogous way, we can obtain master-to-slave relations for the control points along the remaining sides
AB, BC , and CD. In this way, all control points along the boundary are slaves and are substituted by
the master control points along the line A′B ′C ′D′ shown in Figure 7.

In order to analytically perform the elimination, let us now consider an arbitrary collocation point “i”
(not shown in Figure 7). The i-th row of the matrix equation is written as(
mi,1ä1+mi,2ä2+ · · ·+mi,11ä11+mi,12ä12+ · · ·+mi,60ä60

)
+
(
ki,1a1+ ki,2a2+ · · ·+ ki,11a11+ ki,12a12+ · · ·+ ki,60a60

)
= 0. (B.12)

In (B.12) we substitute the boundary values such as a1 using (B.10), a2 using (B.9), a11 using (B.7)
and so on. In this way, the coefficient a12 appears as a factor of four terms, the coefficients a13 to a18

appear as factors of two terms, the coefficient a19 appears as a factor again of four terms, and so on. In
more detail, after the above-mentioned subsitutions equation (B.12) is written as

ä12

[
mi,1

(
b2y

b1y
·

b2x

b1x

)
+mi,2

(
−

b2y

b1y

)
+mi,11

(
−

b2x

b1x

)
+mi,12

]
+ ä13

[(
−

b2y

b1y

)
mi,3+mi,13

]
+ · · ·+ ä18

[(
−

b2y

b1y

)
mi,8+mi,18

]
+ · · ·

+ a12

[
ki,1

(
b2y

b1y
·

b2x

b1x

)
+ ki,2

(
−

b2y

b1y

)
+ ki,11

(
−

b2x

b1x

)
+ ki,12

]
+ a13

[(
−

b2y

b1y

)
ki,3+ ki,13

]
+ · · ·+ a18

[(
−

b2y

b1y

)
ki,8+ ki,18

]
+ · · · = 0. (B.13)

Obviously, the implementation of (B.13) and its analogue reduces the order of each matrix from
4(nx + 1)(ny + 1) to 4(nx − 1)(ny − 1).

In summary, those control points deeply in the interior (large black circles) are not influenced by the
Neumann conditions and keep their columns. The remaining internal control points (small black circles)
that are in the first layer parallel to the boundary are divided into two categories. The first category
consists of only the four control points A′, B ′, C ′, and D′ that lie in the neighborhood of the four
corners; the corresponding condensed matrix elements are composed of four values (cf. a12 in (B.13)).
The second category consists of those intermediate control points along the internal boundary A′B ′C ′D′

(Figure 7); the corresponding condensed matrix elements are composed of two values (cf. a13 in (B.13)).



284 CHRISTOPHER G. PROVATIDIS

References

[Auricchio et al. 2010] F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, “Isogeometric collocation
methods”, Math. Models Methods Appl. Sci. 20:11 (2010), 2075–2107.

[Bézier 1971] P. E. Bézier, “Example of an existing system in the motor industry: the Unisurf system”, Proc. R. Soc. Lond. A
321:1545 (1971), 207–218.

[Bialecki et al. 2011] B. Bialecki, G. Fairweather, and A. Karageorghis, “Matrix decomposition algorithms for elliptic boundary
value problems: a survey”, Numer. Algorithms 56:2 (2011), 253–295.

[de Boor 1972] C. de Boor, “On calculating with B-splines”, J. Approx. Theory 6 (1972), 50–62.

[de Boor 2001] C. de Boor, A practical guide to splines, Revised ed., Applied Mathematical Sciences 27, Springer, New York,
2001.

[Cabral et al. 1990] J. J. S. P. Cabral, L. C. Wrobel, and C. A. Brebbia, “A BEM formulation using B-splines, I: Uniform
blending functions”, Eng. Anal. Bound. Elem. 7:3 (1990), 136–144.

[Cabral et al. 1991] J. J. S. P. Cabral, L. C. Wrobel, and C. A. Brebbia, “A BEM formulation using B-splines, II: Multiple knots
and non-uniform blending functions”, Eng. Anal. Bound. Elem. 8:1 (1991), 51–55.

[Coons 1967] S. A. Coons, “Surfaces for computer-aided design of space forms”, Technical Report MIT/LCS/TR-41, Mas-
sachusetts Institute of Technology, Cambridge, MA, June 1967, Available at http://publications.csail.mit.edu/lcs/pubs/pdf/
MIT-LCS-TR-041.pdf.

[Cottrell et al. 2009] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs, Isogeometric analysis: toward integration of CAD and
FEA, Wiley, Chichester, 2009.

[Fairweather and Meade 1989] G. Fairweather and D. Meade, “A survey of spline collocation methods for the numerical
solution of differential equations”, pp. 297–341 in Mathematics for large scale computing, edited by J. C. Díaz, Lecture Notes
in Pure and Appl. Math. 120, Dekker, New York, 1989.

[Farin et al. 2002] G. Farin, J. Hoschek, and M.-S. Kim (editors), Handbook of computer aided geometric design, North-
Holland, Amsterdam, 2002.

[Filippatos 2010] A. Filippatos, Derivation of eigenfrequencies in acoustic cavities and elastic structures using the global
collocation method, thesis, National Technical University of Athens, October 2010.

[Gordon 1971] W. J. Gordon, “Blending-function methods of bivariate and multivariate interpolation and approximation”,
SIAM J. Numer. Anal. 8 (1971), 158–177.

[Höllig 2003] K. Höllig, Finite element methods with B-splines, Frontiers in Applied Mathematics 26, Society for Industrial
and Applied Mathematics, Philadelphia, 2003.

[Hughes et al. 2010] T. J. R. Hughes, A. Reali, and G. Sangalli, “Efficient quadrature for NURBS-based isogeometric analysis”,
Comput. Methods Appl. Mech. Eng. 199:5-8 (2010), 301–313.

[Jerome and Varga 1969] J. W. Jerome and R. S. Varga, “Generalizations of spline functions and applications to nonlinear
boundary value and eigenvalue problems”, pp. 103–155 in Theory and applications of spline functions (Madison, WI, 1968),
edited by T. N. E. Greville, Academic Press, New York, 1969.

[Kwok et al. 2001] W. Y. Kwok, R. D. Moser, and J. Jiménez, “A critical evaluation of the resolution properties of B-spline and
compact finite difference methods”, J. Comput. Phys. 174:2 (2001), 510–551.

[Piegl 1991] L. Piegl, “On NURBS: a survey”, IEEE Comput. Graph. Appl. 11:1 (1991), 55–71.

[Piegl and Tiller 1995] L. Piegl and W. Tiller, The NURBS Book, Springer, London, 1995.

[Provatidis 2004] C. G. Provatidis, “On DR/BEM for eigenvalue analysis of 2-D acoustics”, Comput. Mech. 35:1 (2004), 41–
53.

[Provatidis 2006] C. G. Provatidis, “Transient elastodynamic analysis of two-dimensional structures using Coons-patch macroele-
ments”, Int. J. Solids Struct. 43:22–23 (2006), 6688–6706.

[Provatidis 2008a] C. G. Provatidis, “Free vibration analysis of elastic rods using global collocation”, Arch. Appl. Mech. 78:4
(2008), 241–250.

http://dx.doi.org/10.1142/S0218202510004878
http://dx.doi.org/10.1142/S0218202510004878
http://dx.doi.org/10.1098/rspa.1971.0027
http://dx.doi.org/10.1007/s11075-010-9384-y
http://dx.doi.org/10.1007/s11075-010-9384-y
http://dx.doi.org/10.1016/0021-9045(72)90080-9
http://dx.doi.org/10.1016/0955-7997(90)90037-A
http://dx.doi.org/10.1016/0955-7997(90)90037-A
http://dx.doi.org/10.1016/0955-7997(91)90036-S
http://dx.doi.org/10.1016/0955-7997(91)90036-S
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-041.pdf
http://dx.doi.org/10.1002/9780470749081
http://dx.doi.org/10.1002/9780470749081
http://www.sciencedirect.com/science/book/9780444511041
http://dx.doi.org/10.1137/0708019
http://books.google.com?id=jSVeF8FgYD8C
http://dx.doi.org/10.1016/j.cma.2008.12.004
http://dx.doi.org/10.1006/jcph.2001.6919
http://dx.doi.org/10.1006/jcph.2001.6919
http://dx.doi.org/10.1109/38.67702
http://dx.doi.org/10.1007/978-3-642-97385-7
http://dx.doi.org/10.1007/s00466-004-0600-2
http://dx.doi.org/10.1016/j.ijsolstr.2006.02.002
http://dx.doi.org/10.1016/j.ijsolstr.2006.02.002
http://dx.doi.org/10.1007/s00419-007-0159-4


B-SPLINES COLLOCATION EIGENANALYSIS OF 2D ACOUSTIC PROBLEMS 285

[Provatidis 2008b] C. G. Provatidis, “A global collocation method for two-dimensional rectangular domains”, J. Mech. Mater.
Struct. 3:1 (2008), 185–193.

[Provatidis 2008c] C. G. Provatidis, “Time- and frequency-domain analysis using lumped mass global collocation”, Arch. Appl.
Mech. 78:11 (2008), 909–920.

[Provatidis 2009a] C. G. Provatidis, “Eigenanalysis of two-dimensional acoustic cavities using transfinite interpolation”, J.
Algorithms Comput. Technol. 3:4 (2009), 477–502.

[Provatidis 2009b] C. G. Provatidis, “Integration-free Coons macroelements for the solution of 2D Poisson problems”, Int. J.
Numer. Methods Eng. 77:4 (2009), 536–557.

[Provatidis 2012] C. G. Provatidis, “Two-dimensional elastostatic analysis using Coons–Gordon interpolation”, Meccanica
(Milano) 47:4 (2012), 951–967.

[Provatidis and Ioannou 2010] C. G. Provatidis and K. S. Ioannou, “Static analysis of two-dimensional elastic structures using
global collocation”, Arch. Appl. Mech. 80:4 (2010), 389–400.

[Schoenberg 1946] I. J. Schoenberg, “Contributions to the problem of approximation of equidistant data by analytic functions,
A: On the problem of smoothing or graduation. A first class of analytic approximation formulae”, Quart. Appl. Math. 4 (1946),
45–99. Available in I. J. Schoenberg: selected papers, Vol. 2, pp. 3–57, edited by C. de Boor, Birkhäuser, Boston, 1988.

[Schoenberg and Whitney 1953] I. J. Schoenberg and A. Whitney, “On Pólya frequency functions, III: The positivity of trans-
lation determinants with an application to the interpolation problem by spline curves”, Trans. Amer. Math. Soc. 74 (1953),
246–259.

Received 19 Oct 2011. Revised 10 Mar 2014. Accepted 21 Mar 2014.

CHRISTOPHER G. PROVATIDIS: cprovat@central.ntua.gr
School of Mechanical Engineering, Mechanical Design and Control Systems Department, National Technical University of
Athens, Heroon Polytechniou 9, Zografou Campus, 157 80 Athens, Greece

mathematical sciences publishers msp

http://dx.doi.org/10.2140/jomms.2008.3.185
http://dx.doi.org/10.1007/s00419-008-0203-z
http://dx.doi.org/10.1260/174830109789621383
http://dx.doi.org/10.1002/nme.2424
http://dx.doi.org/10.1007/s11012-011-9489-y
http://dx.doi.org/10.1007/s00419-009-0317-y
http://dx.doi.org/10.1007/s00419-009-0317-y
http://dx.doi.org/10.1007/978-1-4899-0433-1_1
http://dx.doi.org/10.1090/S0002-9947-1953-0053177-X
http://dx.doi.org/10.1090/S0002-9947-1953-0053177-X
mailto:cprovat@central.ntua.gr
http://msp.org




JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 9, No. 3, 2014

dx.doi.org/10.2140/jomms.2014.9.287 msp

MULTI-REGION TREFFTZ COLLOCATION GRAINS (MTCGS)
FOR MODELING PIEZOELECTRIC COMPOSITE AND POROUS MATERIALS

IN DIRECT AND INVERSE PROBLEMS

PETER L. BISHAY, ABDULLAH ALOTAIBI AND SATYA N. ATLURI

A simple and efficient method for modeling piezoelectric composite and porous materials to solve direct
and inverse 2D problems is presented in this paper. The method is based on discretizing the problem
domain into arbitrary polygonal-shaped regions that resemble the physical shapes of grains in piezoelec-
tric polycrystalline materials, and utilizing the Trefftz solution functions derived from the Lekhnitskii
formulation for piezoelectric materials, or for elastic dielectric materials, to express the mechanical and
electrical fields in the interior of each grain or region. A simple collocation method is used to enforce the
continuity of the inter-region primary and secondary fields, as well as the essential and natural boundary
conditions. Each region may contain a void, an elastic dielectric inclusion, or a piezoelectric inclusion.
The void/inclusion interface conditions are enforced using the collocation method, or using the special
solution set which is available only for the case of voids (traction-free, charge-free boundary conditions).
The potential functions are written in terms of Laurent series which can describe interior or exterior
domains, while the negative exponents are used only in the latter case. Because Lekhnitskii’s solution for
piezoelectric materials breaks down if there is no coupling between mechanical and electrical variables,
the paper presents this solution in a general form that can be used for coupled (piezoelectric) as well as
uncoupled (elastic dielectric) materials. Hence, the matrix or the inclusion can be piezoelectric or elastic
dielectric to allow modeling of different types of piezoelectric composites. The present method can be
used for determining the meso/macro physical properties of these materials as well as for studying the
mechanics of damage initiation at the micro level in such materials. The inverse formulation can be used
for determining the primary and secondary fields over some unreachable boundaries in piezoelectric
composites and devices; this enables direct numerical simulation (DNS) and health monitoring of such
composites and devices. Several examples are presented to show the efficiency of the method in modeling
different piezoelectric composite and porous materials in different direct and inverse problems.

1. Introduction and literature review

Piezoelectric composites possess some enhanced properties over monolithic piezoelectric materials that
enable them to be used in different industrial applications. Bigger range of coupled properties, better
acoustic properties or figures of merit, and less brittleness are among these enhanced properties. Both
“subtractive” and “additive” approaches were used to develop piezoelectric composites where, in the
“subtractive” approach, controlled porosity is induced in piezoelectric materials to form porous piezo-
electric materials with reduced density [Li et al. 2003]. These porous piezoelectric materials found

Bishay is the corresponding author.
Keywords: piezoelectric, composites, porous, Trefftz, Lekhnitskii, Voronoi cells, void, inclusion, collocation, inverse

problems.
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applications such as miniature accelerometers, vibration sensors, contact microphones and hydrophones.
Porous piezoelectric materials have several advantages such as lack of possibility of destructive chemical
reactions between the piezoelectric ceramic and the second phase (the air) during production, ability to
control pore size, shape and distribution, light weight compared to monolithic piezoelectric materials and
other piezoelectric composites, reduced price of production compared to other piezoelectric composites,
and low acoustic impedances compared to dense ceramics, hence they could be used to improve the
mismatch of acoustic impedances at the interfaces of medical ultrasonic imaging devices or underwater
sonar detectors [Kumar et al. 2006]. Porous ceramics are classified by the International Union of Pure
and Applied Chemistry (IUPAC) according to their pore size (or diameter d) as follows: macroporous
(d > 50 nm), meso-porous (2 nm< d < 50 nm), and microporous (d < 2 nm). Also, they are classified
according to the pore geometry [Araki and Halloran 2005] as: foam, interconnected, pore spaces between
particles, plates and fibers, and large or small pore networks.

On the other hand, in the “additive” approach, the effective properties of the composite are optimized
by combining two or more constituents. The second phase is used to modulate the overall properties of
piezoelectric composites and could be dielectric ceramic [Jin et al. 2003], metal [Li et al. 2001], polymer
[Klicker et al. 1981], or another piezoelectric material. Piezoelectric ceramics are also used in smart
composite materials where piezoelectric rods (fibers) or particles are embedded in an elastic matrix.

Analytical models for porous piezoelectric materials are only available for simple geometries such
as an infinite plate with circular or elliptical hole as presented in [Sosa 1991; Xu and Rajapakse 1999;
Chung and Ting 1996; Lu and Williams 1998] using either the Lekhnitskii formalism [Lekhnitskii 1957]
or the extended Stroh formalism [Stroh 1958]. However for more complicated geometries and practical
problems, numerical methods such as finite elements, boundary elements, meshless or Trefftz methods
should be used.

Modeling domains with defects (holes, inclusions or cracks) using the ordinary finite element method
needs mesh refinement around defects in order to achieve acceptable results for the gradients of fields;
hence it is very complex, time-consuming, and costly. Thus, special methods should be used to model
defects. Special methods for direct numerical simulation (DNS) of micro/mesostructures were developed
by Bishay and Atluri [2014] for porous piezoelectric materials; by Bishay et al. [2014] for piezoelectric
composites; and by Dong and Atluri as 2D and 3D Trefftz cells [Dong and Atluri 2012b; 2012c; 2012d]
and SGBEM cells [Dong and Atluri 2012e; 2013] for heterogeneous and functionally graded isotropic
elastic materials, where each cell models an entire grain of the material, with elastic/rigid inclusions or
voids, for direct numerical micromechanical analysis of composite and porous materials. Also 2D and
3D radial basis functions (RBF) grains were successfully used to model functionally graded materials
(FGM) and the switching phenomena in ferroelectric materials by Bishay and Atluri [2012; 2013]. Finite
elements with elliptical holes, inclusions or cracks in elastic materials were also developed by Zhang
and Katsube [1995; 1997], Piltner [1985; 2008], and Wang and Qin [2012]. Hybrid-stress elements
were developed by Ghosh and his coworkers (see [Moorthy and Ghosh 1996] for instance). Readers
are referred to [Dong and Atluri 2012b] for a critical comparison between Ghosh’s hybrid-stress ele-
ments and the hybrid-displacement and Trefftz elements presented in the aforementioned papers. For
piezoelectric materials, Wang et al. [2004] developed a hybrid finite element with a hole based on the
Lekhnitskii formalism, while Cao et al. [2013] developed a hybrid finite element with defects based
on the extended Stroh formalism. The boundary element method was also used by Xu and Rajapakse
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[1998] to analyze piezoelectric materials with elliptical holes. In addition, Trefftz methods were used to
model microstructures with defects, using multi-source-point Trefftz method in [Dong and Atluri 2012a]
for plane elasticity, and Trefftz boundary collocation method for plane piezoelectricity macromechanics
developed by Sheng et al. [2006] based on the Lekhnitskii formalism.

The basic idea of the various Trefftz methods is to use the so-called Trefftz functions which satisfy
the homogenous governing equations of the relevant physical phenomenon as the trial and/or weight
functions. A complete set of Trefftz functions that satisfy only the homogenous governing equations
is termed as a basic solution set. A complete set of Trefftz functions that satisfy both the homogenous
governing equations and the homogenous boundary conditions is termed as a special solution set. To
formulate any Trefftz method, Trefftz functions must be available. For the case of impermeable voids,
the special solution set that satisfies the traction-free, charge-free conditions can be used. Hence there is
no need to enforce the void boundary conditions by collocation or any other method. Using the special
solution set is more efficient. However, for the case of grains with pressurized voids or inclusions, the
special solution set does not exist and collocation/least squares method should be used instead to enforce
the void/inclusion boundary conditions.

In this paper, multi-region Trefftz collocation grains (MTCGs) are developed for modeling porous
piezoelectric materials as well as piezoelectric composites where the materials of the matrix and the
inclusion could be piezoelectric or elastic dielectric (anisotropic in general). The formulation is very
simple and efficient since there are no simple polynomial-based elements in the finite element sense.
Each grain has an arbitrarily polygonal shape to mimic the physical shape of grains in the microscale.
Each grain may contain a circular or an arbitrarily oriented elliptical void or inclusion and has its own
crystallographic orientation (poling direction). Each grain may be surrounded by an arbitrary number
of neighboring grains; hence MTCGs are expected to show field distributions that cannot be obtained
using regular triangular and four-sided polynomial-based finite elements. Dirichlet tessellation is used to
construct the mesh or the geometric shapes of the grains. The formulation is also very effective in inverse
problems where the boundary conditions over some portions of the problem boundary are completely
unknown while on other portions extra conditions are known or measured. The Lekhnitskii formalism
is employed here due to the relatively explicit nature of the derived Trefftz functions.

The paper is organized as follows: Section 2 introduces all governing equations and boundary condi-
tions. Lekhnitskii’s solution for coupled/uncoupled plane electroelastic problem is presented in Section 3
while the multi-region Trefftz collocation grains (MTCGs) formulation for piezoelectric composites with
and without voids/inclusions is introduced in Section 4 for direct problems and in Section 5 for inverse
problems. The advantage of using MTCGs to model representative volume element (RVE) for obtaining
the overall material properties of piezoelectric composites is discussed in Section 6. Numerical examples
are provided in Section 7 and conclusions are summarized in Section 8.

2. Governing equations and boundary conditions

Consider a domain � filled with a piezoelectric composite. On the boundary of the domain, denoted ∂�,
we can specify displacements on Su or tractions on St (not both at any point, i.e., Su ∩ St =∅). Similarly
we can specify electric potential on Sϕ or electric charge per unit area (electric displacement) on SQ

(where again Sϕ ∩ SQ =∅). So ∂�= Su ∪ St = Sϕ ∪ SQ . The whole domain � can be divided into N
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Figure 1. Left: 2D irregular polygon (grain) with an elliptical void/inclusion and its local
coordinates (x1-x3) as well as the global (X1-X3), grain local (x̂1-x̂3) and crystallographic
(x ′1-x ′3) Cartesian coordinate systems. Right: elliptical void/inclusion with the local coor-
dinate system as well as the poling direction of the piezoelectric material.

regions �=
∑N

e=1�
e (where each region may represent a grain in the material). The intersection of the

boundary of region e, denoted ∂�e, with Su , St , Sϕ and SQ is Se
u , Se

t , Se
ϕ and Se

Q , while the intersection
with the boundaries of the neighboring regions is denoted Se

g. Hence ∂�e
= Se

u ∪ Se
t ∪ Se

g = Se
ϕ ∪ Se

Q ∪ Se
g.

The domain of each region, �e, may contain a void or an inclusion filling the domain �e
c and has a

boundary ∂�e
c such that �e

c ⊂�
e and ∂�e

c ∩ ∂�
e
=∅. In this case, the region outside the void/inclusion

domain in region e is called the matrix domain �e
m =�

e
−�e

c. Figure 1 (left) shows one grain (irregular
polygonal region for the 2D case) with an arbitrarily-oriented elliptical void/inclusion. The figure also
shows the crystallographic coordinates and the poling direction.

Adopting matrix and vector notation and denoting uα (2 components), εα (3 components) and σ α

(3 components) as the mechanical displacement vector, strain and stress tensors written in vector form
respectively, and ϕα (scalar), Eα (2 components) and Dα (2 components) as the electric potential, electric
field and electric displacement vectors respectively, where the superscript α = m or c (for matrix or
inclusion), the following equations should be satisfied in the matrix and inclusion domains (�e

m and �e
c):

(1) Stress equilibrium and charge conservation (Gauss’s) equations:

∂T
uσ

α
+ b̄α = 0; σ α = (σ α)T , ∂T

e Dα
− ρ̄αf = 0, (1)

where b̄α is the body force vector, and ρ̄αf is the electric free charge density (which is approximately zero
for dielectric and piezoelectric materials).

(2) Strain-displacement (for infinitesimal deformations) and electric field-electric potential relations:

εα = ∂uuα, Eα
=−∂ eϕ

α, (2)
where

∂u =

[
∂/∂x1 0 ∂/∂x3

0 ∂/∂x3 ∂/∂x1

]T

, ∂ e =
[
∂/∂x1 ∂/∂x3

]T
.

The representation of the electric field in (2), as gradients of an electric potential, includes the assump-
tion that Faraday’s equation (∇ × Eα

=−∂Bα/∂t = 0, where B is the magnetic flux density) is satisfied
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for electrostatics. Note that we consider only two equations (Gauss’s and Faraday’s equations) from the
four Maxwell’s equations. The remaining two equations (Gauss’s law for magnetism and Ampere’s law
with Maxwell’s correction) are not considered in the electrostatic analysis of piezoelectric materials.

(3) Piezoelectric material constitutive laws:

σ α = Cα
Eε

α
− eαT Eα,

Dα
= eαεα + hαε Eα,

or
εα = SαDσ

α
+ gαT Dα,

Eα
=−gασ α +βασ Dα,

(3)

where Cα
E , hαε , SαD, βασ are, respectively, the elastic stiffness tensor measured under constant electric field,

dielectric permittivity tensor measured under constant strain, elastic compliance tensor measured under
constant electric displacement, and inverse of the dielectric permittivity tensor measured under constant
stress. eα and gα are piezoelectric tensors measured under constant strain and stress respectively.

The SI units of the mentioned fields are as follows: stress σ α (Pa or N/m2), strain εα (m/m), electric
displacement Dα (C/m2), electric field Eα (V/m or N/C), and the SI units of the material matrices
are: Cα

E (Pa or N/m2), SαD (m2/N), hαε (C/Vm), βασ (Vm/C), eα (C/m2), and gα (m2/C). Note that
SαD 6= (C

α
E)
−1 and βασ 6= (hαε )−1.

If the matrix or the inclusion material is elastic (not piezoelectric), then Equations (1) and (2) should
be satisfied in the corresponding domains, and the coupling piezoelectric matrices eα = gα = 0 in (3).

2.1. Matrix boundary conditions.

(1) Mechanical natural (traction) and essential (displacement) boundary conditions:

nσσm
= t̄ at St or Se

t ,

um
= ū at Su or Se

u,
(4)

(2) Electric natural and essential boundary conditions:

ne Dm
= Q̄ at SQ or Se

Q,

ϕm
= ϕ̄ at Sϕ or Se

ϕ.
(5)

where

nσ =
[

n1 0 n3

0 n3 n1

]
, ne =

[
n1 n3

]
, (6)

t̄ is the specified boundary traction vector, Q is the specified surface density of free charge. n1 and n3,
the two components present in nσ and ne are the components of the unit outward normal to the grain
boundary ∂�e. We designate ū as the specified mechanical displacement vector at the boundary Su (or
Se

u), and ϕ̄ as the specified electric potential at the boundary Sϕ (or Se
ϕ).

The following conditions should also be satisfied at each (inter-region) boundary Se
g:

(1) Mechanical displacement and electric potential compatibility conditions:

um+
= um−,

ϕm+
= ϕm−. (7)
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(2) Mechanical traction and electric charge reciprocity conditions:

(nσσm)++ (nσσm)− = 0,

(ne Dm)++ (ne Dm)− = 0.
(8)

2.2. Impermeable void boundary conditions. The dielectric constants of piezoelectric materials are
three orders of magnitude higher than that of air or vacuum inside the void. This means that charges do
not accumulate on the void boundary and the impermeable assumption can be adopted. We then have
traction-free, charge-free conditions along the void boundary ∂�e

c:

tm
= nσσm

= 0,

Qm
= ne Dm

= 0.
(9)

2.3. Inclusion boundary conditions. If the matrix and inclusion materials are elastic and nonconducting
(dielectric or piezoelectric), we have the following conditions along the inclusion boundary ∂�e

c:

(1) Mechanical displacement and electric potential continuity conditions:

um
= uc, ϕm

= ϕc. (10)

(2) Traction reciprocity and charge continuity conditions:

−nσσm
+ nσσ c

= 0, ne Dm
= ne Dc, (11)

where the normal unit vector whose components, n1 and n3, appear in ne and nσ (see Equation (6)) along
the inclusion boundary is directed away from the inclusion domain.

These inclusion boundary conditions can be used for the case of piezoelectric particles or fibers in a
nonpiezoelectric matrix (polymer, say) or in a piezoelectric matrix made up of different material. They
can also be used to model elastic particles or fibers in a piezoelectric matrix.

3. General solution of coupled/uncoupled plane electroelasticity using Lekhnitskii’s formulation

Let (x ′1, x ′3) be the principal material (crystallographic) coordinates, x ′3 be the poling direction (for piezo-
electric materials) and (x1, x3) be the set of coordinates obtained by rotating (x ′1, x ′3) through an anti-
clockwise rotation ζ (see Figure 1, right). Using the Lekhnitskii formalism [Lekhnitskii 1977], Xu and
Rajapakse [1999] derived the general solution of plane piezoelectricity with respect to (x1, x3) coordinate
system. This formulation is generalized here to be applicable to uncoupled electromechanical problems
as for the case of isotropic or transversely-isotropic elastic dielectric materials (in the isotropic case, there
is no unique crystallographic coordinate system; any coordinate system can be considered as such).

The constitutive equations with respect to the crystallographic axes x ′1− x ′3 for plane stress and plane
strain problems, with stress and electric displacement as objectives of the equations, can be written in
compact form as: {

ε′

E′

}
=

[
S′ g′T

−g′ β ′

]{
σ ′

D′

}
, (12)

where superscripts, α, in (3) that indicate whether we are talking about the matrix or the inclusion, as
well as the subscripts of S′ and β ′, are omitted for simplicity.
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By invoking tensor transformation rule, the constitutive relations can be written with respect to (x1, x3)

coordinate system as:
ε1

ε3

ε5

E1

E3

=


S11 S13 S15 g11 g31

S13 S33 S35 g13 g33

S15 S35 S55 g15 g35

−g11 −g13 −g15 β11 β13

−g31 −g33 −g35 β13 β33



σ1

σ3

σ5

D1

D3

 or
{
ε

E

}
=

[
S gT

−g β

]{
σ

D

}
, (13)

in which
S= T T

2 S′T2, g = T T
1 g′T2, β = T T

1 β
′T1, (14)

and in the above equations,

T1 =

[
cos ζ −sin ζ
sin ζ cos ζ

]
and T2 =

 cos2 ζ sin2 ζ −2 sin ζ cos ζ
sin2 ζ cos2 ζ 2 sin ζ cos ζ

sin ζ cos ζ −sin ζ cos ζ cos2 ζ − sin2 ζ

 .
It can be seen that the coefficients S, g and β are functions of the angular rotation ζ . Again, for

nonpiezoelectric materials, there is no coupling between the elastic and the electric fields, and g′ = g = 0.
Here we summarize the expressions used to describe the primary and secondary fields in absence of

body force and free-charge density (b= 0, ρf = 0) using the Lekhnitskii formalism. For more details, the
reader is referred to [Bishay and Atluri 2014; Sheng et al. 2006]. However, if the material is not piezo-
electric and there is no coupling (gi j = 0), the expressions presented in the aforementioned references
break down. Hence, the following expressions are modified to account for both coupled and uncoupled
materials: 

u1

u3

ϕ

= 2 Re
3∑

k=1


pk

qk/µk

sk

ωk(zk), (15)


σ1

σ3

σ5

= 2 Re
3∑

k=1


γkµ

2
k

γk

−γkµk

ω′k(zk),

{
D1

D3

}
= 2 Re

3∑
k=1

{
λkµk

−λk

}
ω′k(zk),


ε1

ε3

ε5

= 2 Re
3∑

k=1


pk

qk

rk

ω′k(zk),

{
E1

E3

}
=−2 Re

3∑
k=1

{
sk

tk

}
ω′k(zk), (16)

where zk = x1+µk x3, ωk(zk) are three complex potential functions, the prime denotes differentiation
with respect to zk and

pk = γk(S11µ
2
k + S13− S15µk)+ λk(g11µk − g31),

qk = γk(S13µ
2
k + S33− S35µk)+ λk(g13µk − g33),

rk = γk(S15µ
2
k + S15− S55µk)+ λk(g15µk − g35),

sk = γk(g11µ
2
k + g13− g15µk)− λk(β11µk −β31),

tk = γk(g31µ
2
k + g33− g35µk)− λk(β13µk −β33),
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λk =
g11µ

3
k−(g15+g31)µ

2
k+(g13+g35)µk−g33

β11µ
2
k−2β13µk+β33

, γk = 1 for piezoelectric material,

λk = δk3, γk = δk1+ δk2 for nonpiezoelectric material,

where δi j is the Kronecker delta. For piezoelectric materials, µk (k = 1, . . . , 6) are the roots of the
characteristic equation

c6µ
6
+ c5µ

5
+ c4µ

4
+ c3µ

3
+ c2µ

2
+ c1µ+ c0 = 0, (17)

where

c0 = S33β33+ g2
33,

c1 =−2S35β33− 2S33β13− 2g33(g13+ g35),

c2 = S33β11+ 4S35β13+β33(2S13+ S55)+ 2g33(g31+ g15)+ (g13+ g35)
2,

c3 =−2g11g33− 2S15β33− 2S35β11− 2β13(2S13+ S55)− 2(g31+ g15)(g13+ g35),

c4 = S11β33+ 4S15β13+β11(2S13+ S55)+ 2g11(g13+ g35)+ (g31+ g15)
2,

c5 =−2S11β13− 2S15β11− 2g11(g31+ g15),

c6 = S11β11+ g2
11,

while for elastic dielectric materials, µ1, µ2, µ4 and µ5 are obtained from the elasticity equation (18),
and µ3 and µ6 are obtained from the electrostatics equation (19):

S11µ
4
− 2S15µ

3
+ (2S13+ S55)µ

2
− 2S35µ

3
+ S33 = 0, (18)

β11µ
2
− 2β13µ+β33 = 0. (19)

In general, the roots of (17) or those of (18) and (19) are complex with three conjugate pairs:

µ1 = Aµ1+ i Bµ1, µ2 = Aµ2+ i Bµ2, µ3 = Aµ3+ i Bµ3, µ4 = µ̄1, µ5 = µ̄2, µ6 = µ̄3, (20)

in which i =
√
−1, Aµk and Bµk (k = 1, 2, 3) are all distinct. Over-bar denotes complex conjugate.

3.1. Basic solution sets. For an elliptical void/inclusion as shown in Figure 1(right), the following con-
formal mapping can be used to transform an ellipse in zk-plane into a unit circle in ξk-plane [Lekhnitskii
1977]:

ξk =
zk ±

√
z2

k − (a2
o +µ

2
kb2

o)

ao− iµkbo
, k = 1, 2, 3, (21)

where ao and bo are the half lengths of the void/inclusion axes as shown in Figure 1 (right) and the sign
of the square root (±) is chosen in such a way that |ξk | ≥ 1. The inverse mapping has the form

zk =
ao− iµkbo

2
ξk +

ao+ iµkbo

2
ξ−1

k , k = 1, 2, 3. (22)

Along the void/inclusion boundary which is a unit circle in the ξk-plane, we have |ξk | = 1 or ξ1 = ξ2 =

ξ3 = ei2 where 2 ∈ [−π, π].
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The basic set of Trefftz functions for electromechanical displacements u = {u1, u3, ϕ}
T , electrome-

chanical stresses and strains σ =
{
σ1 σ3 σ5 D1 D3

}
T , ε =

{
ε1 ε3 ε5 E1 E3

}
T for interior or exterior

domains, respectively, can be obtained as

u = 2
M∑

n=Ms

3∑
k=1

[(
Re Dk Re Zn

k − Im Dk Im Zn
k

)
a(n)k −

(
Re Dk Im Zn

k + Im Dk Re Zn
k

)
b(n)k

]
, (23)

σ = 2
M∑

n=Ms

3∑
k=1

[(
Re Gk Re nY n−1

k − Im Gk Im nY n−1
k

)
a(n)k −

(
Re Gk Im nY n−1

k + Im Gk Re nY n−1
k

)
b(n)k

]
, (24)

ε = 2
M∑

n=Ms

3∑
k=1

[(
Re Hk Re nY n−1

k − Im Hk Im nY n−1
k

)
a(n)k −

(
Re Hk Im nY n−1

k + Im Hk Re nY n−1
k

)
b(n)k

]
. (25)

In the above,

Dk = {pk, qk/µk, sk}
T , Gk = {γkµ

2
k, γk,−γkµk, λkµk,−λk}

T ,

Hk = {pk, qk, rk,−sk,−tk}T ,

and
Ms = 0, Zk = zk, Y n−1

k = zn−1
k for simply connected domains,

Ms = 0, Zk = ξk, Y n−1
k = ξ n−1

k for ellipse-interior domains,

Ms =−M, Zk = ξk, Y n−1
k =

ξ n−1
k

A− Bξ−2
k

for ellipse-exterior domains,

where A = 1
2(ao− iµkbo), B = 1

2(ao+ iµkbo).
For interior/exterior solutions, when M is increased by one, six/twelve Trefftz functions with their

corresponding undetermined real coefficients
{
a(±n)

1 , b(±n)
1 , a(±n)

2 , b(±n)
2 , a(±n)

3 , b(±n)
3

}
are added to the

solution. So the number of Trefftz functions mT (which is also equivalent to the number of undetermined
real coefficients) is:

mT =

{
6(M + 1) for interior domain solution,
6(2M + 1) for exterior domain solution.

(26)

Because of the exponential growth of the term Zn
k as n is increased, we introduce a characteristic length

to scale the Trefftz solution set in order to prevent the system of equations from being ill-conditioned.
For an arbitrary polygonal grain as shown in Figure 1 (left), where the coordinates of the nodes are(
x j

1 , x j
3

)
, j = 1, 2, . . . ,m, the center point of the polygon has coordinates (xc

1, xc
3). Relative to the local

coordinates at the center point, we have ẑk = x̂1 + µk x̂3 = (x1 − xc
1)+ µk(x3 − xc

3), k = 1, 2, 3 and
correspondingly,

ξ̂k =
ẑk ±

√
ẑ2

k − (a2
o +µ

2
kb2

o)

ao− iµkbo
.

Now, Zk (zk for interior domains or ξk for exterior domains) will be replaced by Ẑk/Rc where

Rc =max(Rck), Rck =max
j

√[
Re Ẑ j

k

]2
+
[
Im Ẑ j

k

]2
, j = 1, 2, . . . ,m. (27)
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This is done only for terms with positive exponents. In this way, the exponential growth of Zn
k is

prevented as n is increased because 0< |(Ẑk/Rc)
n
|< 1 for any point within the grain or along the grain

boundaries.

3.2. Special solution set for impermeable elliptical voids. Trefftz special solution set accounts for the
homogeneous boundary conditions of voids, cracks, etc. Wang et al. [2004] constructed a special solution
set of Trefftz functions for elliptical voids with axes parallel/perpendicular to poling direction. Sheng
et al. [2006] extended this to the case of arbitrarily oriented impermeable elliptical voids.

By enforcing traction-free, charge-free boundary conditions along the void surface, we can express
a(−n)

k and b(−n)
k in terms of a(n)k and b(n)k , as (see [Stroh 1958])

a(−n)
k =

3∑
j=1

(
Re(Ek j )a

(n)
j − Im(Ek j )b

(n)
j

)
, b(−n)

k =−

3∑
j=1

(
Im(Ek j )a

(n)
j +Re(Ek j )b

(n)
j

)
, (28)

where E11 E12 E13

E21 E22 E23

E31 E32 E33

=−
 γ1 γ2 γ3

γ1µ̄1 γ2µ̄2 γ3µ̄3

λ̄1 λ̄2 λ̄3

−1 γ1 γ2 γ3

γ1µ1 γ2µ2 γ3µ3

λ1 λ2 λ3

 .
So the number of Trefftz functions mT (which is also equivalent to the number of undetermined real

coefficients) is reduced to mT = 6(M + 1).
Substituting (28) into (23)–(25) yields the following special set of Trefftz functions:

uvoid =

M∑
n=0

3∑
k=1

(
8(n)ak

a(n)k +8
(n)
bk

b(n)k

)
,

σ void =

M∑
n=0

3∑
k=1

(
9(n)

ak
a(n)k +9

(n)
bk

b(n)k

)
,

εvoid =

M∑
n=0

3∑
k=1

(
0(n)ak

a(n)k +0
(n)
bk

b(n)k

)
,

(29)

where

8(n)
ak
= χ (n)ak

+

3∑
j=1

(
Re(E jk)χ

(−n)
a j
− Im(E jk)χ

(−n)
b j

)
, 8

(n)
bk
= χ

(n)
bk
−

3∑
j=1

(
Im(E jk)χ

(−n)
a j
+Re(E jk)χ

(−n)
b j

)
,

9(n)
ak
=6(n)

ak
+

3∑
j=1

(
Re(E jk)6

(−n)
a j
− Im(E jk)6

(−n)
b j

)
,9

(n)
bk
=6

(n)
bk
−

3∑
j=1

(
Im(E jk)6

(−n)
a j
+Re(E jk)6

(−n)
b j

)
,

0(n)ak
= ϒ (n)

ak
+

3∑
j=1

(
Re(E jk)ϒ

(−n)
a j
− Im(E jk)ϒ

(−n)
b j

)
, 0

(n)
bk
= ϒ

(n)
bk
−

3∑
j=1

(
Im(E jk)ϒ

(−n)
a j
+Re(E jk)ϒ

(−n)
b j

)
, (30)

and in (30):
χ (±n)

ak
= 2 Re Dk Re ξ±n

k − 2 Im Dk Im ξ±n
k ,

χ
(±n)
bk
=−2 Re Dk Im ξ±n

k − 2 Im Dk Re ξ±n
k ,
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6(±n)
ak
=±2n

(
Re Gk Re

ξ±n−1
k

z′k
− Im Gk Im

ξ±n−1
k

z′k

)
,

6
(±n)
bk
=∓2n

(
Re Gk Im

ξ±n−1
k

z′k
+ Im Gk Re

ξ±n−1
k

z′k

)
,

ϒ (±n)
ak
=±2n

(
Re Hk Re

ξ±n−1
k

z′k
− Im Hk Im

ξ±n−1
k

z′k

)
,

ϒ
(±n)
bk
=∓2n

(
Re Hk Im

ξ±n−1
k

z′k
+ Im Hk Re

ξ±n−1
k

z′k

)
.

4. Multi-region Trefftz collocation grain (MTCGs) formulation for direct problems

Consider a 2D irregular m-sided polygonal grain with/without void/inclusion as shown in Figure 1 (left).
The basic solution set in Equations (23)–(25) can be used as the interior/exterior fields, which satisfy
the constitutive law, the strain-displacement relationship, the electric field-electric potential relationship
and the equilibrium and Maxwell’s equations. For the case of impermeable elliptical voids, the special
solution set in Equations (29) which additionally satisfies the void stress-free charge-free boundary con-
ditions can be used instead. In matrix and vector notation, these interior/exterior fields in �e when α =m,
and in �e

c when α = c, can be written in the form{
uα

ϕα

}
=

{
Nα

u
Nα
ϕ

}
cα,

{
σ α

Dα

}
=

{
Mα
σ

Mα
D

}
cα,

or

uα = Nαcα, σ α = Mαcα,

(31)

where Nα are the Trefftz functions in the order of Ms, . . . , 0, 1, . . . ,M and cα denotes the unknown real
coefficients (a(±n)

k , b(±n)
k , k = 1, 2, 3 and n = Ms, . . . ,M) associated with Trefftz functions. If there is

no void/inclusion, only the nonnegative exponents are used in the basic solution set.
The tractions and density of free charge on the boundaries ∂�e when α = m, and ∂�e

c when α = c,
can be written as

tα = nσσ α = nσ Mα
σ cα, Q = ne Dα

= ne Mα
Dcα,

or

tα =
{

tα

Qα

}
=

[
nσ 0
0 ne

]{
σ α

Dα

}
= nσ α = nMαcα.

(32)

Now the following conditions should be enforced:

(1) Continuities of primal fields (electromechanical displacements), in (7), as well as reciprocity condi-
tions, in (8), at all boundaries, Se

g, between a grain and its neighboring grains, if any.

(2) Essential boundary conditions (in (4) and (5)) if prescribed on boundaries Se
u and Se

ϕ ,

(3) Natural boundary conditions ((4) and (5)) if prescribed on boundaries Se
t and Se

Q .

(4) Void/inclusion interface conditions as mentioned in Section 2 (when an inclusion is present in the
grain or when a void is present in the grain and the basic solution set is to be used).
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In this work, we use the simple collocation/least squares method to enforce all these conditions.
Galerkin method can also be used and may yield a slightly better accuracy, but it is more susceptible
to round-off errors [Sheng et al. 2006] as compared to the straightforward collocation method. When
the void/inclusion boundary ∂�e

c shrinks to zero, the grain is reduced to the case of a grain with no
void/inclusion.

For the case of an impermeable void, using the special solution set, which already satisfies the void
traction-free charge-free boundary conditions, is clearly more efficient than using the basic set because
there is no need to enforce any conditions on the void boundary, however if the void is pressurized, filled
with conducting fluid or replaced by any type of inclusions, the basic set should be used as mentioned
earlier (there is no special solution set in this case).

The first three of the aforementioned conditions are enforced in a strong sense at several preselected
collocation points along the grain boundary ∂�e. nc points, (x(r), r = 1, 2, . . . nc), are selected along
each side of the grain’s outer boundary. Also when using the basic solution set, (Equations (23)–(25)),
void/inclusion boundary conditions are enforced by dividing the void/inclusion periphery into a number
of curved segments, ns , along the void/inclusion boundary ∂�e

c=
∑ns

j=1 ∂�
e
cj , and enforcing the boundary

conditions on each segment, or on the center point of each segment. So,

(1) Continuity of electromechanical displacements and reciprocity of electromechanical tractions along
Sab

g , the boundary side that separates any two neighboring grains a and b:

um(�a)(x(r), cm
a )− um(�b)(x(r), cm

b )= 0, x(r) ∈ Sab
g , r = 1, 2, . . . nc,

tm(�a)(x(r), cm
a )+ tm(�b)(x(r), cm

b )= 0, x(r) ∈ Sab
g , r = 1, 2, . . . nc.

(33)

(2) Essential boundary conditions along the boundaries Se
u and Se

ϕ in grain e:

um(x(r), cm
e )= ū, x(r) ∈ Se

u, r = 1, 2, . . . nc,

ϕm(x(r), cm
e )= ϕ̄, x(r) ∈ Se

ϕ, r = 1, 2, . . . nc.
(34)

(3) Natural boundary conditions along the boundaries Se
t and Se

Q in grain e:

tm(x(r), cm
e )= t̄, x(r) ∈ Se

t , r = 1, 2, . . . nc,

Qm(x(r), cm
e )= Q̄, x(r) ∈ Se

Q, r = 1, 2, . . . nc.
(35)

(4) Void/inclusion interface conditions along ∂�e
c (when using the basic solution set):

(a) Impermeable void: traction-free and charge-free conditions along ∂�e
c:∫

∂�e
cj

tm(x, cm
e ) ds = 0, j = 1, 2, . . . ns . (36)

(b) Inclusion: primal fields’ continuity, traction reciprocity and charge-continuity conditions along ∂�e
c:

um(x( j), cm
e )− uc(x( j), cc

e)= 0, j = 1, 2, . . . ns,

tm(x( j), cm
e )+ tc(x( j), cc

e)= 0, j = 1, 2, . . . ns .
(37)
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Combining all these conditions for N grains in a matrix/vector form leads to

Ac= b or c= A−1b, (38)

where c is a column matrix containing the unknown coefficients of the matrix and inclusion of all grains.
The length of the vector c can be expressed as

NT =

N∑
e=1

((mT )e+ (mT c)e), (39)

where (mT )e is the number of Trefftz functions in the matrix of grain e, and (mT c)e is the number of
Trefftz functions in the inclusion of grain e (if applicable). These numbers depend on M , the highest
order of Zk in (23)–(25) or (29), used in the matrix and inclusion of each grain. In this study, we use the
following (according to (26)):

M = 4 (for matrix of a grain with void or inclusion):
(mT )e = 6(2M + 1)= 54 (basic solution set, ellipse-exterior domain)

M = 4 (for inclusions):
(mT c)e = 6(M + 1)= 30 (basic solution set, ellipse-interior domain)

M = 2 (for matrix of a grain with impermeable void):
(mT )e = 6(M + 1)= 18 (special solution set).

Since we are collocating six variables at each collocation point on each of the inner boundaries (bound-
aries shared by any two neighboring grains), and three variables at each collocation point on each of the
outer boundaries (grain boundaries on the outer frame of the domain), the number of collocation equations
can be expressed as:

NE = nc(6Ni + 3No)+

N∑
e=1

pe(ns)e, (40)

where Ni is the number of inner grain boundaries (sides) in the whole domain, No is the number of outer
grain boundaries (sides) in the whole domain, and (ns)e is the number of segments used to divide the
void periphery in grain e (only if the basic solution set is used) or the number of collocation points along
the inclusion periphery in grain e, and pe = 0 if we are using the special solution set, pe = 3 if grain e
contains a void and the basic solution set is used, while pe = 6 if grain e contains an inclusion.

In order for the system of equations (38) to be solved, we need NT ≤ NE . In the last three examples
we present in Section 7, we use two uniformly distributed collocation points on each side of the outer
boundary of each grain (nc = 2) and 16 points or segments on the void/inclusion boundary in each grain
((ns)e = 16). This ensures that the number of equations is larger than the number of unknowns; hence the
system is over-constrained and is solved using singular value decomposition (SVD). The SVD method
can solve even the singular system of equations and produces the least squares solutions to the over-
constrained systems. The distribution of collocation points along each side of a grain’s outer boundary
could be selected as the Gaussian points [Bishay and Atluri 2012]. However this makes no significant
difference in the solution.
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5. Multi-region Trefftz collocation grain (MTCG) formulation
for inverse problems with regularization

If both electromechanical displacements and tractions are specified or known only on a part of the prob-
lem boundary, the inverse problem is to determine the electromechanical displacements and tractions in
the domain as well as the other part of the boundary where everything is unknown. The same can be
said if “tractions” is replaced by “strains” in the previous sentence. One example is in health monitoring
of piezoelectric composites and devices when data are known or measured on the outer boundaries, but
not available at the inaccessible cavities in the domain.

Now let Se
c be a part of the boundary of grain e (outer boundaries for a grain containing an inclusion,

and both inner and outer boundaries for a grain with a void) where electromechanical displacements
and tractions (or strains) are known. We use the available data and select enough collocation points
(x(p) ∈ Se

c , p = 1, 2, . . . P) along Se
c to get

um(x(p), cm
e )= ū, ϕm(x(p), cm

e )= ϕ̄, p = 1, 2, . . . P, (41)

and
tm(x(p), cm

e )= t̄, Qm(x(p), cm
e )= Q̄, p = 1, 2, . . . P, (42)

or
εm(x(p), cm

e )= ε̄, Em(x(p), cm
e )= Ē, p = 1, 2, . . . P. (43)

Combining (41) and (42) or (43) in addition to the continuity of electromechanical displacements and
reciprocity of electromechanical tractions along Sab

g in (33), and the inclusion boundary conditions in
(37) for grains with inclusions, represent the measured or known data in all grains. This can be written
in matrix form as

AI cI = bI . (44)

This equation cannot be solved directly using the least squares method because the system of equa-
tions in inverse problems is known to be ill-posed and generally very-sensitive to perturbation in the
measurement data on the boundary Se

c . Hence, regularization techniques should be used to mitigate this
ill-posedness. There are several regularization methods that were used in the literature, among which are
the truncated singular value decomposition (TSVD), selective singular value decomposition (SSVD), and
the Tikhonov regularization [Hansen 1994; Tikhonov and Arsenin 1974]. In this work, TSVD method
was used and the regularization parameter is obtained using the generalized cross-validation (GCV)
method. For details about the aforementioned methods, the reader is referred to [Hansen 1994].

This formulation is generally suitable for any selection of Se
c . For a plate with a hole modeled with

only one region (N = e = 1), for instance, Sc could be all or part of the outer boundary where all
measurements can be taken.

6. On using representative volume element (RVE) to predict
the effective material properties of piezoelectric composites

In order to determine the overall properties of piezoelectric composites from known properties of their
constituents (matrix and particles or fibers), two approaches were used in the literature: macromechanical
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and micromechanical. In the macromechanical approach, the heterogeneous structure of the composite is
replaced by a homogeneous medium with anisotropic properties, while in the micromechanical approach,
a periodic RVE or a unit cell model is used to obtain the global properties of the composite [Berger et al.
2006]. A unit cell is the smallest part that contains sufficient information on the geometrical and material
parameters at the microscopic level to allow for prediction of the effective properties of the composite.
The numerical methods, such as the finite elements, are well-suited to model the RVE and to describe
the behavior of these composite materials because there are no restrictions on the geometry, the material
properties, the number of phases, and the size of the composite constituents. When employing unit cell
models, the local fields in the constituent phases can be accurately determined by the numerical method,
and various mechanisms such as damage initiation and propagation can be studied through the analysis.
Numerical homogenization method is based on finding a globally homogeneous medium equivalent to
the original composite, where the strain energy stored in both systems is approximately the same. In
order to do so, first, a representative volume element which captures the overall behavior of a composite
structure is created. Then the effective material properties are calculated by applying periodic boundary
conditions and appropriate load cases, which are connected to specific deformation patterns, to the unit
cell [Kari et al. 2008].

It is known that the advantages of the analytical approaches over the FE analyses are their ability
to model statistical distributions of fibers/particles in the composite, and their low computational time,
while the FE analysis, in contrast, is appropriate for estimating the effective properties of composites with
a given periodic fiber/particle distribution and more complicated geometries (different shapes of fibers’
cross-section, more than two phases, etc.), and at the same time, the local fields can be obtained accurately.
Berger et al. [2006] found that in order to get sufficiently accurate results from the FE model, the mesh
density should be chosen in such a way that the average element width is at least 5% of the unit cell
width. This means that at least 400 two-dimensional regular elements are required to accurately model
a two-dimensional unit cell that includes only one fiber or particle. Finite element results are sensitive
to mesh density; hence it could be a difficult task to find appropriate meshes for the RVE [Berger et al.
2005]. The disadvantages of the numerical models can be avoided if we resort to the newly developed
techniques such as those presented in this article and in [Bishay and Atluri 2014; Bishay et al. 2014;
Dong and Atluri 2012a; 2012b; 2012c; 2012d] because these advanced methods can model a grain with
its inclusion using only one element or region whose geometric shape is arbitrary, hence any statistical
random distribution of fibers or particles can be accounted for with relatively very small computational
cost and with high resolution in local fields’ calculation.

In Section 7.4, we show the ability of MTCGs method to predict the effective material properties of a
piezoelectric composite using only one region, while in Section 7.5, we show the ability of the proposed
method to model random distributions of the second phase, and to obtain high resolution of local fields
that enables studying damage initiation mechanisms in the microlevel.

7. Numerical examples

The formulation described above is programmed using Matlab in a 64-bit Windows operating system,
and executed on a PC computer equipped with Intel Q8300 2.5 GHz CPU, and 8 GB RAM. The material
properties of the materials used in the examples in this section are listed in Table 1.
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Property C11 C12 C13 C22 C23 C33 C44 C55

PZT-4 139 77.8 74.3 139 74.3 113 25.3 25.3
PZT-7A 148 76.2 74.2 148 74.2 131 25.4 25.4
LaRC-SI 8.1 5.4 5.4 8.1 5.4 8.1 1.4 1.4

Property C66 e31 e32 e33 e15 h11 h22 h33

PZT-4 30.6 −6.98 −6.98 13.84 13.44 6 6 5.47
PZT-7A 35.9 460 460 235 9.2 −2.1 −2.1 9.5
LaRC-SI 1.4 0 0 0 0 2.8 2.8 2.8

Table 1. Material properties used in the numerical examples: Ci j in GPa, ei j in C/m2,
hi i in pC/(Vm).

Simple problems that use grains with no voids or inclusions, such as patch test and bending of a
piezoelectric panel, can be easily and accurately modeled using any number of grains (with no voids or
inclusions) to mesh the problem domain, and the error in the whole structure is less than 1%. Patch test
with any number of grains containing inclusions having the same material properties as that of the matrix
can also be passed with error less than 1%.

In the following, we show some numerical examples using the proposed MTCGs. In the first example
we present inverse problem where the electromechanical displacements and tractions are all measured
with white noise on the outer boundary of a piezoelectric domain with an impermeable elliptical void
under mechanical loading, and the variables on the unreachable void surface are predicted. Then we
study the convergence of this inverse problem as the accessible part on the outer boundary of the domain
shrinks. The problem of a piezoelectric inclusion in an infinite piezoelectric matrix is then studied.
This is followed by evaluation of material properties of a piezoelectric particulate composite material as
functions of particle volume fraction. Finally we present contour plots that detect damage-prone sites in
porous piezoelectric material samples with arbitrary elliptical voids. Comparisons with other analytical
and computational results are presented whenever possible.

7.1. Piezoelectric panel with impermeable void: inverse problem. Consider a piezoelectric panel with
an arbitrarily oriented elliptical void whose semi-axes are a and b and the inclination angle between the
elliptical void minor axis and the poling direction is ζ as shown in Figure 2 (left). The local coordinate
system of the ellipse is denoted x1-x3, while the global coordinate system is denoted X1-X3. The poling
direction is aligned with the global vertical X3 axis (shown in blue in the figure). The material is PZT-
4 whose properties are presented in Table 1 (taken from [Xu and Rajapakse 1999]) and plane strain
assumption is used in this problem. Now consider that the electromechanical displacements and tractions
are all measured at the outer boundary and that there is some white noise in the measurements. The
inverse problem is to use these available measurements to predict the electromechanical tractions and
displacements at the inner cavity. In this example, we use the analytical solution presented in [Xu and
Rajapakse 1999] for an elliptical void in an infinite piezoelectric panel as the prescribed (or measured)
data on the outer boundary after adding certain level of white noise. Mechanical load σo = 1 Pa is applied
on the panel’s upper and lower edges. In this example we take L =W = 6a, b/a = 0.6, ζ = 0, M = 4
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Figure 2. Left: a finite rectangular domain with arbitrarily oriented elliptical void.
Right: collocation points considered in Section 7.2.
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Figure 3. Variations of σθ/σo (left), Dθ/σo (right) along the periphery of an elliptical void.

(equivalent to 54 unknown coefficients) and we use 3 collocation points per side (giving 72 collocation
equations). Hence, in this case Sc, mentioned in Section 5, is all the outer boundary of the plate where
all data are measured.

Figure 3 and Figure 4 show the computed circumferential distributions of σθ , Dθ , Eθ and Er divided
by σo obtained from the solution of the inverse problem with different levels of white noise added to
the measured electromechanical displacements and tractions. The figures show that when there is no
noise present, this approach can always exactly reproduce the electromechanical tractions in the domain.
When white noise of 40 dB and 30 dB signal-to-noise ratio (SNR), which is equivalent to 1% and 3.3%
amplitude of noise in the measurements, is added, only limited error is obtained in the predicted stress,
electric displacement and electric field on the void periphery.

The effects of varying ζ , a/b and W/a ratios on the stress, electric displacement and electric field are
presented in [Xu and Rajapakse 1998].



304 PETER L. BISHAY, ABDULLAH ALOTAIBI AND SATYA N. ATLURI

0 50 100 150
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

θ (degree)

E
θ
/σ

o
 [

m
2
/C

]

 

 

Direct

Inverse

Inverse with SNR = 40 dB

Inverse with SNR = 30 dB

0 50 100 150
−0.04

−0.02

0

0.02

0.04

0.06

θ (degree)

E
r/σ

o
 [

m
2
/C

]

Figure 4. Variations of Eθ/σo (left), Er/σo (right) along the periphery of an elliptical void.

7.2. Convergence study for the inverse problem. In this study, the same problem presented in Section 7.1
is considered again when the outer boundary is not fully accessible. Hence we rely on measurements
taken from only a limited part of the outer boundary. Ten collocation points are used along each side of the
outer boundary as shown in Figure 2 (right) and we keep removing collocation equations corresponding
to these points from side 2 first (starting from point 11 in the figure) followed by side 3, then side 4.
Every time we remove two points, we solve the problem and calculate the discrete extreme mechanical
and electrical errors, expressed as

Emech = max
xr∈∂�c

(
|σθ (xr )− σ̃θ (xr )|

σ̃max

)
, Eelect = max

xr∈∂�c

(
|Dθ (xr )− D̃θ (xr )|

D̃max

)
, (45)

where σ̃θ (xr ) and D̃θ (xr ) are the exact solutions at boundary points xr along the periphery of the void;
σ̃max and D̃max are respectively the maximum magnitudes of σ̃θ (xr ) and D̃θ (xr ).

It was found that when there is no noise in the prescribed (measured) data, only nine points (equivalent
to 54 collocation equations, which is equal to the number of unknown coefficients when M = 4 is used)
are required to get accurate results with Emech and Eelect less than 0.001. These nine points could be
prescribed on only a small part (quarter) of side 1 only, side 3 only, or on both sides 2 and 4 such that at
least one point is on one of these two sides and the remaining points are on the other side. However when
there is a white noise in the prescribed (measured) data, errors increase as we remove more points (or take
our measurements from only a limited part of the outer boundary). The mechanical and electrical discrete
extreme errors are presented in Table 2, when white noise of 40 dB signal-to-noise ratio (SNR) is added
to the prescribed data, as more points are removed from the collocation points in Figure 2. It is clear
from the table that the errors increase as more collocation points are removed from the outer boundary.
When all collocation points on side 2 are not used, we get Emech ≈ 3%, and Eelect ≈ 12%. When all
collocation points on both side 2 and side 3 are not used, we get Emech ≈ 17.5%, and Eelect ≈ 51%.
Removing additional points from side 4, results in highly increasing Eelect.

It should be noted that the numbers in Table 2 change slightly every time we change the added random
white noise. In addition, errors increase as the noise level increases.
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Points removed None 11–12 11–14 11–16 11–18 11–20 11–22

Emech 0.0045 0.0106 0.0177 0.0225 0.0260 0.0297 0.0392
Eelect 0.0117 0.0525 0.0642 0.1030 0.1133 0.1207 0.1570

Points removed 11–24 11–26 11–28 11–30 11–32 11–34 11–36

Emech 0.0423 0.0875 0.1004 0.1753 0.2807 0.4458 1.9738
Eelect 0.2393 0.2825 0.3373 0.5123 2.1058 5.4703 8.0255

Table 2. Discrete extreme mechanical and electrical errors as more collocation points are
removed from the outer boundary (white noise of 40 dB SNR is added to the prescribed
data on the outer boundary).

7.3. Infinite piezoelectric domain with elliptical inclusion. Consider an infinite piezoelectric plane with
an elliptical inclusion subjected to vertical mechanical loading in the far field. For numerical implemen-
tations, the infinite domain is truncated into a rectangle with length L and width W , as shown in Figure 2
(left) with ζ = 0, L = W = 6a, and σo = 1 Pa. The matrix material is PZT-4 whose properties are
presented in Table 1 and plane strain assumption is used. The properties of the inclusion are given as:[

Cc
E −ecT

ec hc
ε

]
= 0

[
Cm

E −emT

em hm
ε

]
, (46)

where 0 is a factor that can be varied. 0 > 1 is equivalent to an inclusion material with stronger properties
than those of the matrix material (larger stiffness, dielectric and piezoelectric material constants), while
0 < 1 is equivalent to an inclusion with weaker properties.

Figure 5 shows the effect of b/a on σθ/σo, Dθ/σo, Eθ/σo and Er/σo along the inclusion periphery
with 0 = 0.5.

It can be seen from the figure that controlling the shape of the inclusions can result in varying the
distribution and the maximum absolute values of the circumferential stress and electric displacement, as
well as the circumferential and radial electric field, along the inclusion periphery. The effect of varying
0 on the aforementioned variables along the inclusion periphery is presented in [Bishay et al. 2014].

7.4. Evaluation of material properties of piezoelectric composites. Our 2D models can be used to es-
timate all effective material properties of composites with particles or voids, while for composites with
fibers, only effective properties in the plane perpendicular to the fiber axis can be obtained. In this
example, we determine the material properties of PZT-7A/LaRC-SI piezoelectric composite (PZT-7A
piezoelectric particles embedded in LaRC-SI polymide matrix) as functions of particle volume fraction.
PZT-7A is a ceramic that exhibits the piezoelectric effect with electric fields applied along all three
principle axes. LaRC-SI is a thermoplastic polymide that was developed for aerospace applications. The
material properties of all constituents are listed in Table 1 (taken from [Odegard 2004]).

In order to calculate the effective material properties, computational models that ensure the presence
of ε11, ε33, E1 or E3 alone in each model should be used. This is done by prescribing constant mechan-
ical displacement or electric potential on the right or upper sides of the sample while enforcing zero
electromechanical displacements on the other three sides. For more details about these computational
models and how to calculate the effective material properties, the readers are referred to [Bishay and
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Figure 5. Effect of b/a on σθ/σo (top left), Dθ/σo (top right), Eθ/σo (bottom left) and
Er/σo (bottom right) along the inclusion periphery.

Atluri 2014]. Here we just present the results. The three Young’s moduli Y1, Y2 and Y3 can be obtained
from the stiffness matrix constants Ci j .

The RVE used is composed of just one region (grain) that includes an inclusion. Plane strain assump-
tion is used in this study and the direction of polarization is vertically upward.

Figure 6 shows the predictions of the different effective material constants as functions of particle
volume fraction and compared with Mori–Tanaka (MT), self-consistent (SC), finite element models using
ANSYS (with large number of elements) and Odegard’s proposed analytical model, all presented in
[Odegard 2004].

It can be seen that, using only one MTCG, the proposed model gives very accurate predictions as
compared to those of Mori–Tanaka’s model. It is known that the self-consistent model deviates from
Mori–Tanaka’s model and gives unrealistic predictions as the volume fraction increases. The proposed
method is much more computationally efficient as well as numerically more accurate than the simple
finite element models (FEM) using ANSYS, and can be used to model piezo-composites even if the
arrangement of particles is not symmetrical which is the main assumption used in all the previously
mentioned analytical models.

7.5. Damage detection in porous piezoelectric materials with arbitrary oriented elliptical voids. We
consider a porous piezoelectric RVE made of 20 PZT-4 piezoelectric grains with arbitrary sized elliptical
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Figure 6. Predictions of effective piezoelectric material properties of PZT-7A/LaRC-SI
as functions of particle volume fraction.

voids whose b/a ratios are in the range of 0.7–1.3. The dimensions of the RVE are L = W = 1 mm
and the porosity volume fraction is 0.05. The direction of polarization is vertically upward in all grains.
The lower edge is prevented from motion in the vertical direction while the lower left corner node is
electrically grounded and constrained in the horizontal direction. A mechanical loading σo = 1 GPa is
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Figure 7. Porous piezoelectric material under mechanical loading: contour plot for prin-
cipal stress (upper), strain energy density (lower left), and dielectric energy density (lower
right).

applied on the upper edge. Contour plots of maximum principal stress, strain energy density (SED), as
well as dielectric energy density are shown in Figure 7.

As can be seen from the figures, high principal stress and strain energy density concentrations are
observed near the cavities, in the direction perpendicular to the loading direction. On the other hand, at
the locations near the voids, in the direction parallel to the loading direction, low stress and strain energy
density values are observed. Higher stress and strain energy density concentrations can be observed
around voids that have lower values of b/a (because these voids are sharper and are approaching the



MTCGS FOR MODELING PIEZOELECTRIC COMPOSITE AND POROUS MATERIALS 309

shapes of cracks). This gives us an idea about where damage is more likely to initiate and develop in
porous piezoelectric materials. It is also interesting to note that the dielectric energy concentrates around
the voids at angles ±45◦ from the mechanical loading direction, and decreases around the voids in the
direction perpendicular to the loading direction.

In this example there are 44 inner grain boundaries and 17 outer grain boundaries. Since the special
solution set is used, the number of collocation equations, according to (40), is 6×44×2+3×17×2= 630,
while the number of unknowns, according to (39), is 20× 18= 360. Solving the same problem using
a finite element analysis software like COMSOL Multiphysics and using regular triangular elements of
“normal” size to mesh the problem domain generates 10,163 elements corresponding to 5,360 nodes
and 16,080 degrees of freedom. COMSOL has nine levels of element sizes named: extremely coarse,
extra coarse, coarser, coarse, normal, fine, finer, extra fine and extremely fine. Refining the mesh by
selecting smaller element sizes in order to refine the results will definitely increase the number of nodes
and the size of the FE system of equations to be solved. If voids are replaced by inclusions, according
to Equations (39) and (40), the number of unknowns will be 1,680 and the number of equations will be
2,550. Solving it using COMSOL requires 12,189 regular elements of “normal” size corresponding to
6,153 nodes and 18,459 degrees of freedom. This is the case for a domain with only 20 voids/inclusions.
If it is required to analyze a domain with 200, 2000 or more grains with voids/inclusions in a direct nu-
merical simulation (DNS), the regular finite element method would be highly expensive and impractical
as compared to the MTCGs method and the newly developed methods presented in [Bishay and Atluri
2014; Bishay et al. 2014; Dong and Atluri 2012b; 2012c; 2012d].

8. Summary and conclusions

The Lekhnitskii formalism is presented here for the general plane electromechanical problems that can be
applied to coupled (piezoelectric) or uncoupled (elastic) materials. Multi-region Trefftz computational
grains (MTCGs) method is proposed based on this formalism to model different porous and composite
piezoelectric materials in the micro and meso scales where each computational grain has an irregular
polygonal shape that resembles the shape of a material grain with arbitrary number of sides and neighbor-
ing grains. Each grain also may contain a circular or an arbitrary oriented elliptical void or inclusion, and
may have its own direction of polarization. Collocation method is used to enforce the electromechanical
natural and essential boundary conditions, continuity and reciprocity conditions along grain boundaries,
and void/inclusion interface conditions. Applications of the proposed method include: (1) solving inverse
problems by predicting the electromechanical stress at some unreachable locations in structures (like
voids) using all the available or measured data even with noise (regularization methods should be used);
(2) determining the effective material properties of different piezoelectric composites; (3) optimizing
the material properties of piezoelectric composites by controlling the microstructure parameters (shapes
of voids/inclusions, orientations, spatial distributions, material properties, etc.); and (4) obtaining the
distribution of all secondary fields and the strain and dielectric energy densities in the microstructure to
predict locations of damage.
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ANALYTICAL SOLUTION FOR DUCTILE AND FRC PLATES ON ELASTIC
GROUND LOADED ON A SMALL CIRCULAR AREA

ENRICO RADI AND PIETRO DI MAIDA

The problem of a large FRC slab resting on a Winkler-type elastic foundation and subject to a transversal
load distributed over a small circular area is investigated in the present work. The mechanical behavior
is described by the Kirchhoff theory of elastic-perfectly plastic plates obeying Johansen’s yield criterion
and associative flow rule. The governing equations within both the inner elastic-plastic circular region
near to the loaded area and the outer elastic region are found in terms of the transversal displacement and
solved in closed form, under the hypothesis of proportional loading. After the formation of positive yield
lines, namely radial cracks at the bottom side of the plate, the onset of a negative yield line, namely a
circumferential crack at the upper side of the, defines the load-carrying capacity of the slab on grade. Two
possible configurations are envisaged, depending on whether the circumferential crack occurs within the
inner elastic-plastic region, where radial cracks take place on the bottom side thus activating a plastic
mechanism, or within the outer uncracked elastic region. The ratio between the subgrade modulus and
flexural rigidity of the plate allows introducing a characteristic length. The influence of both material
and geometrical parameters on the load-carrying capacity of the plate is then investigated. Based on the
analytical results, a simplified method for the calculation of the load-carrying capacity of FRC slabs on
grade is also proposed and compared with previously developed models.

1. Introduction

Concrete slabs on ground floor of factory buildings are designed to support heavy concentrated loads
transmitted by columns, vehicle wheels and machinery arranged on them. To prevent cracking and
collapse of concrete industrial floors, the introduction of steel reinforcement and/or welded wire meshes
is a current practice. Alternatively, the addition of steel or polymeric fibers in the concrete mix may
totally or partially substitute the steel reinforcement. The latter solution is becoming widely used in the
construction of concrete slabs on grade, since it has proved to be efficient and cost-effective. Indeed, it can
provide crack control for shrinkage and temperature effects. Moreover, it may improve the mechanical
properties of concrete, as well as the flexural behavior and the fracture toughness of the slab, resulting
in significant load-carrying capacity after the concrete has cracked [Falkner et al. 1995]. Full advantage
of the addition of fibers to the concrete mix occurs for statically indeterminate structures, where plastic
hinges and redistribution of stress take place. In particular, the post cracking capacity of the FRC slabs
allows for a redistribution of moments after initial cracking, which let the FRC slab behave in a ductile
manner thus increasing its carrying capacity [Barros and Figueiras 1998; 1999; 2001]. However, a
valuable increase in the load-carrying capacity of the slab occurs only for a proper dosage of fibers.

Keywords: Kirchhoff plate theory, Winkler elastic subgrade, load-carrying capacity, yield lines, elastic-perfectly plastic
material, Johansen’s yield criterion, fiber reinforced concrete.
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Indeed, the results of large scale load tests [Bischoff et al. 2003] predict that a low dosage of fibers
provides little improvement when compared with unreinforced concrete slab and thus is not an effective
substitute for welded wire reinforcement in slabs on grade.

Due to the damping effect of the soil out of the loaded region, the problem of a concentrated load
acting on the top of a FRC slab on grade, or uniformly distributed over a small circular area, can be
modeled by considering an infinitely large Kirchhoff plate resting on an elastic foundation. Within these
assumptions, the elastic theory developed by Westergaard [1948] provides an approximate solution that
is reliable for small loads only. Westergaard approach is also not suitable for FRC slabs because it does
not take into account the post crack behavior. For a better evaluation of the load-carrying capacity of
FRC slabs, the nonlinear behavior of fiber reinforced concrete must necessarily be taken into account.
Following this approach, Meyerhof [1960; 1962] performed a limit analysis of the problem, by consid-
ering rigid-perfectly plastic behavior of the material. This author assumed that the slab is driven into
the subgrade until a conical plastic mechanism develops in the slab, consisting of an infinite number
of radial positive yield lines (centered fan) and an ultimate circumferential crack (i.e., a negative yield
line), whose radius is determined in an approximate way. According to the upper-bound theorem of limit
analysis, this kind of analysis should predict an upper bound to the collapse load, being performed under
the assumption of a kinematically admissible collapse mechanism, which does not necessarily coincide
with the effective one.

Generally, investigations based on the limit analysis theory [Meyerhof 1960; 1962; Gazetas and Tas-
sios 1978; Losberg 1978, Baumann and Weisgerber 1983, Rao and Singh 1986] supply statically inadmis-
sible distributions of bending moments and shear forces and/or introduce some degrees of arbitrariness
in the choice of the plastic mechanism, e.g., in the radius of the circumferential crack and distribution
of the subgrade reaction. Moreover, the limit analysis theory does not provide the plate deflection under
the ultimate load. Later, the finite element method was employed by Shentu et al. [1997] in order to
analyze the stress and deformation fields in concrete slabs on ground, by considering Ottosen’s failure
criterion. On the basis of these numerical investigations, a new analytical method was proposed [ibid.] for
computing the ultimate load-carrying capacity of concrete slabs on ground. However, the model requires
the measurement of the direct tensile strength of the concrete, which may introduce a high degree of
uncertainness. Belenkiy [2007] proposed an application of the principle of stationary total energy in
order to obtain an upper bound solution of bending problems for plates on elastic foundation.

A limited amount of work also exists on elastic-perfectly plastic plates on elastic foundations [Sokól-
Supel 1985; 1988; Kocatürk 1997]. By extending the analysis developed by Tekinalp [1957] for a ductile
plate under bending, Sokól-Supel performed analytical studies on the behavior of a metallic circular plate
with clamped, hinged or free edge on a tensionless Winkler foundation under axisymmetric, statically
increasing loading. In a preliminary work [Sokól-Supel 1985], the material is assumed to obey the
Johansen’s yield criterion with the associative flow rule. Then, a Tresca-type yield criterion is considered
in a following study [Sokól-Supel 1988]. Later, the investigations have been extended to elastic-plastic
subgrade under column load [Kocatürk 1997]. More general yielding criteria that can be adopted for
concrete and FRC have been recently formulated by Bigoni and Piccolroaz [2004], Piccolroaz and Bigoni
[2009] and Poltronieri et al. [2014]. These elastic-plastic constitutive models may correctly represent
triaxial test results at high confining pressure and thus they can be efficiently adopted to describe the
stress state arising under and in proximity of the loaded region.
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A refined analytical investigation of the load-carrying capacity for a large FRC slabs on grade loaded
on a small internal area is presented here. The model assumes elastic-perfectly plastic behavior of
the material in order to simulate the post cracking behavior of FRC. As well known, concrete is an
inhomogeneous and brittle material. Its stress-strain curve is nonlinear and appears somewhat ductile.
However, with a proper dosage of fibers, the degree of ductility in FRC concrete can be opportunely
improved [Concrete Society 2003]. After initial diffusion of radial cracks from the loaded area to the
outer elastic region, the post cracking capacity of the FRC slabs allows for a redistribution of moments,
which let the FRC slab behave in a ductile manner, thus remarkably increasing its carrying capacity with
respect to plain concrete. Failure of the plate is then due to the onset of a circumferential crack on the
top of the slab.

The governing ODEs for adjacent regions of the plate are derived and solved in closed form in
Section 2. Accordingly, the boundary conditions between adjacent regions at the onset of the circumfer-
ential crack are set in Section 3. Two admissible configurations are envisaged, depending on whether the
circumferential crack occurs within the inner radially cracked region or the outer elastic region. Some
details on the calculation of ultimate bending moments in FRC slab are recalled in Section 4, according
to the recommendations of the Concrete Society [2003]. Analytical results are presented in Section 5 for
different material and geometrical parameters. By matching the analytical results, a simplified equation
is also proposed for the calculation of the load-bearing capacity of FRC slab on grade and compared with
already known solutions. The obtained analytical results thus improve the findings of the rigid-plastic
analyses based on the upper-bound theorem of limit analysis and agree with widely adopted relations
derived from loading tests.

2. Governing equations

In the following, the load carrying capacity of an infinite FRP-concrete plate resting on a Winkler-type
elastic foundation is investigated by assuming elastic-perfectly plastic behavior of the plate obeying
Johansen’s yield criterion and associative flow rule. Moreover, bilateral contact is considered between
plate and subgrade, so that the plate cannot lift off the subgrade.

Reference is made to a polar coordinate system (r, θ) whose origin lays at the center of the loaded area
of radius a (Figure 1). The external load P is applied on the upper plate surface as a uniform pressure p
over a small circle of radius a centered at the origin of the polar coordinates system (Figure 1), so that
the distributed load intensity is p = P/πa2. In order to avoid punching failure, the radius a should not
be less than the thickness of the slab [Meyerhof 1960].

Both in the elastic and elastic-plastic regions of the plate, the equilibrium equations under axisymmet-
rical conditions require

(rmr )
′
−mθ + r tr = 0, (1)

(r tr )′+ r(kw− p)= 0, (2)

where the apex denotes derivative with respect to r , mr and mθ are the bending moments per unit length,
tr is the transverse shear force per unit length, whose positive directions are shown in Figure 2, right, w is
the out-of-plane displacement, positive if directed towards the subgrade, and k is the subgrade modulus.
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Figure 1. Loaded plate on elastic foundation, yield lines and plastic collapse mecha-
nism: (1) elastic-plastic loaded region; (2) elastic-plastic unloaded region; (3) elastic
region.

Under axisymmetrical conditions, all field variables depend on r only and, thus, they are independent of
the angular coordinate θ .

Johansen’s square yield criterion is assumed to hold for the plate (Figure 2, left), namely

−m−0 ≤ mr ≤ m+0 , −m−0 ≤ mθ ≤ m+0 , (3)

where m+0 and m−0 are the positive and negative yield moments per unit length.
According to the Kirchhoff plate theory, the material fibers orthogonal to the midplane do not change

their length but they just undergo a rigid rotation about the axes orthogonal to the radial direction, namely

φθ =−w
′

3. (4)
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If the plate is driven into the soil by increasing the load, at first positive plastic moments occur along
radial yield lines up to a distance c to the center of the loaded area, where the yield condition

mθ (r) = m+0 for r ≤ c (5)

is attained. Correspondingly, radial cracks form and propagate along the radial direction at the bottom
of the slab. In line with Meyerhof [1962], the ultimate bearing capacity of the plate is attained as a
circumferential crack takes place on the top of the slab at a distance b, which can be smaller, equal or
larger than c, where the radial bending moment becomes equal to the negative yield moment, namely

mr (b)=−m−0 , (6)

so that a circumferential crack originates on the top of the slab (Figure 1). Accordingly, the bending
moment mr attains a minimum at the radial distance r = b to the center, namely:

m′r (b)= 0. (7)

Outside the circular region of radius c, the plate behaves elastically. Therefore, the distance c of the
inner border of the elastic region is defined by the fulfillment of the yield condition (3), namely

mθ (c) = m+0 . (8)

Actually, the load-carrying capacity of the slab on grade is not exhausted after the formation of the
circumferential crack, since the grade may carry further load. However, the usefulness and serviceability
of the slab may be greatly impaired.

2.1. Elastic-perfectly plastic region. Let us consider the inner region of the plate for r ≤ c, which
undergoes elastic-perfectly plastic deformation and is subject to radial cracking at its bottom. Within
this region, the bending moment mθ attains its positive limit value m+0 according to the yield condition
(5), which corresponds to the side AB of the yield locus (Figure 2, left). Under proportional loadings,
the elastic-plastic constitutive equations for the bending moments are assumed in the integrated form

mr = D(ke
r + νke

θ ), mθ = D(ke
θ + νke

r ), (9)

being D= Eh3/12(1−ν2) the flexural rigidity of the plate, where h is the plate thickness, E is the Young
modulus and ν is the Poisson coefficient of the material (approximately 0.15). The curvature tensor has
been split into elastic and plastic contributions according to

kr = ke
r + k p

r =−w
′′(r), kθ = ke

θ + k p
θ =−w

′(r)/r. (10)

From (9) the following inverse constitutive relations can be derived for the elastic components of the
curvature tensor

ke
r =

mr − νmθ

D(1− ν2)
, ke

θ =
mθ − νmr

D(1− ν2)
, (11)

whereas the plastic components are given by the associative flow rule for the side AB of the yield locus,
namely

k p
r = 0, k p

θ ≥ 0, (12)
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where no previous plastic yielding is assumed to occur. Therefore, from (5), (10)–(12) and (1) the bending
moment and the transverse shear force per unit length in the elastic-plastic region turn out to be

mr = νm+0 − D(1− ν2)w′′, (13)

tr =
1− ν

r
[m+0 + D(1+ ν)(w′′+ rw′′′)], (14)

respectively. From equilibrium Equations (1) and (2) and yield condition (5) it follows that

(rmr )
′′
− r(kw− p)= 0. (15)

Introduction of (13) into (15) then provides

D(1− ν2)(rw′′)′′+ r(kw− p)= 0, (16)

namely

w′′′′+
2
r
w′′′+

1
`4(1− ν2)

(
w−

p
k

)
= 0, (17)

where

l = 4

√
D
k
, (18)

is the characteristic length of plates on elastic foundation. The general solution of the fourth-order linear
ODE (17) may be found by using the singular Frobenius method, implemented in Mathematica, in terms
of the generalized hypergeometric function 0 F3 and Meijer G function G20

04 defined in the Appendix,
namely

w1(r)=
p
k
+

m+0 `
2

D

{
b0 0 F3

(1
2
,

3
4
,

3
4
;−

(1− ν2)r4

256`4

)
+ b1

r
4` 0 F3

(3
4
, 1, 5

4
;−

(1− ν2)r4

256`4

)
+ b2

( r
4`

)2
0 F3

(5
4
,

5
4
,

3
2
;−

(1− ν2)r4

256`4

)
+ b3 G20

04

( 0 0 0 0
1/4 1/4 1/2 0

∣∣∣− (1− ν2)r4

256`4

)}
. (19)

The displacement field (19) holds for r ≤ a, namely within the inner circular region loaded by p,
whereas the displacement field

w2(r)=
m+0 `

2

D

{
c0 0 F3

(1
2
,

3
4
,

3
4
;−

(1− ν2)r4

256`4

)
+ c1

r
4` 0 F3

(3
4
, 1, 5

4
;−

(1− ν2)r4

256`4

)
+ c2

( r
4`

)2
0 F3

(5
4
,

5
4
,

3
2
;−

(1− ν2)r4

256`4

)
+ c3 G20

04

( 0 0 0 0
1/4 1/4 1/2 0

∣∣∣− (1− ν2)r4

256`4

)}
, (20)

holds for a ≤ r ≤ c, namely within the elastic-plastic annular region subject to the subgrade reaction
only (p = 0). The general solutions (19) and (20) of the ODE (17) agree with the results obtained by
Sokól-Supel [1985; 1988] and Kocatürk [1997] in terms of infinite power series. The derivatives up to
the third order of the functions w1(r) and w2(r) are supplied in the Appendix.
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2.2. Elastic region. Under axisymmetric bending, the Kirchhoff theory of elastic plates resting on a
Winkler-type elastic foundation [Timoshenko and Woinowsky-Krieger 1959] provides the following
ODE for the out-of-plane displacement w(r)

w′′′′+
2
r
w′′′−

1
r2w

′′
+

1
r3w

′
+

1
`4w = 0. (21)

The general solution of the ODE (21) vanishing as r becomes very large are given by Timoshenko
and Woinowsky-Krieger [1959] in the form

w3(r)=
m+0 `

2

D

(
d1 ker

r
`
+ d2 kei

r
`

)
, for r ≥ c, (22)

where ker and kei are the Kelvin functions [Abramowitz and Stegun 1964] and d1 and d2 are nondimen-
sional arbitrary constants of integration. The derivatives up to the third order of the function w3(r) are
supplied in the Appendix.

In agreement with the constitutive relations (9), bending moments per unit length for purely elastic
response of the plate can be written in terms of the total curvatures as

mr =−D
(
w′′3 +

ν

r
w′3

)
, (23)

mθ =−D
(
w′3
r
+ νw′′3

)
, (24)

whereas the transverse shear force per unit length can be obtained from the introduction of the bending
moments (23) and (24) into the equilibrium condition (1) as

tr = D
(
w′′′3 +

1
r
w′′3 −

1
r2w

′

3

)
. (25)

3. Boundary conditions

The nondimensional constants of integration bk , ck (k = 0, 1, 2, 3), d1 and d2 introduced in (19), (20)
and (22) can be determined by imposing the boundary conditions at r = 0 and r →∞ and continuity
conditions for the displacement w, rotation φθ , bending moment mr and shear force tr between the three
different regions delimited by the radii a and c, together with the yield condition (8) at the inner border
of the elastic region.

The yield condition (5) and symmetry at r = 0 require mr (0)= m+0 and tr (0)= 0. By using (13), (14)
and (19) both of these conditions provide

D(1+ ν)w′′1(0)+m+0 = 0, (26)

thus implying

b2 =−
8

1+ ν
. (27)

Moreover, boundedness of the rotation φθ at r = 0 necessarily requires

b3 = 0. (28)
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Continuity of displacement w, rotation φθ , bending moment mr and shear force tr across the bound-
aries at r = a and r = c, by using (4), (13), (14), (23) and (25) then requires the eight conditions

w1(a)= w2(a), w′1(a)= w
′

2(a), w′′1(a)= w
′′

2(a), w′′′1 (a)= w
′′′

2 (a), (29)

w2(c)= w3(c), w′2(c)= w
′

3(c), (30)

νm+0
D
− (1− ν2)w′′2(c)=−w

′′

3(c)−
ν

c
w′3(c), (31)

(1− ν)
m+0
D
+ (1− ν2)[w′′2(c)+ cw′′′2 (c)] = cw′′′3 (c)+w

′′

3(c)−
1
c
w′3(c). (32)

By using (24), fulfillment of the yield condition (8) as r approaches c from above then implies

νw′′3(c)+
1
c
w′3(c)=−

m+0
D
. (33)

The ultimate distributed load p = p0 is attained as soon as the bending moment mr obeys the yield
condition (6) at a distance b determined by the minimum condition (7). Let us first assume that the
circumferential crack occurs within the elastic plastic unloaded region, namely for a < b < c. Then, by
using (13), conditions (6) and (7) become

D(1− ν2)w′′2(b)= (ν+µ)m
+

0 , w′′′2 (b)= 0, (34)

with b ≤ c, where

µ= m−0 /m+0 , (35)

is the ratio between negative and positive yield moments. If conditions (34) provide b > c then the
minimum value of the radial bending moment mr =−m−0 is attained within the elastic region at r = b,
where a circumferential crack occurs on the top of the slab. In this case, by using (23) conditions (6) and
(7) require

w′′3(b)+
ν

b
w′3(b)= µ

m+0
D
, w′′′3 (b)+

ν

b
w′′3(b)−

ν

b2w
′

3(b)= 0, (36)

with c < b, instead of (34).
By introducing the derivatives of function wk (k = 1, 2, 3) provided in the Appendix, the boundary

conditions (29)–(33) yield a linear system of nine equations for the eight constants of integration b0, b1,
c0, c1, c2, c3, d1, d2 and the ultimate distributed load p0, which can be solved by using Mathematica.
Once these nine constants are known in terms of the parameters b and c, the two Equations (34) can
be solved numerically (using the command FindRoot in Mathematica) in order to obtain the last two
unknowns b and c. If conditions (34) provide b > c then conditions (36) must replace the former. Once
the values of b and c have been obtained, all the unknown constants can be consequently calculated. In
particular, the ultimate load is then given by

P0 = πa2 p0. (37)
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 Figure 3. Equivalent flexural strength (vertical axis) versus deflection determined from
a third-point loading beam.

4. Moment-carrying capacity for FRC slabs

As remarked, for design purposes it is assumed that the limiting criterion is the onset of cracking on the
top surface. While fibers increase the post-cracking behavior and thus the ductility of the slab they do not
affect the cracking stress, namely they do not increase the negative bending moment capacity [Soutsos
et al. 2012] which is therefore the same of the plain concrete

m−0 = mPC
0 = fct

h2

6
, (38)

where fct the maximum tensile stress derived from a third-point flexural test on a FRC beam.
According to the design method for industrial floor proposed by the Concrete Society [2003], the

difference between plain concrete and FRC slabs can be attributed to the post-cracking strength due to
the presence of the fibers, which provide an additional contribution to the bending moment capacity,
namely

mFRC
0 =

Re,3

100
fct

h2

6
, (39)

where Re,3 is the residual flexural strength ratio

Re,3 =
feq

fct
100, (40)

and feq is the equivalent flexural strength for a deflection of 1/150 of the test beam span (Figure 3), namely
δ = 3 mm for a span of 450 mm. The ratio Re,3 is related to the rate of improvement in the flexural
strength of FRC compared to plain concrete, according to standard third-point flexural test [Concrete
Society 2003].

The ductility of FRC slabs becomes effective after the first crack, namely in the plastic phase when
a positive plastic hinge is formed under loading. In this case due to the post-cracking behavior of the
fibers, the FRC slab can bear a further increase in the value of the positive bending moment with respect
to the plain concrete, so that the total value of the moment-carrying capacity is given by the sum

m+0 = mPC
0 +mFRC

0 =

(
1+

Re,3

100

)
fct

h2

6
, (41)
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where m+0 is the ultimate positive bending moment. Therefore, for FRC slabs the ratio µ between negative
and positive yield moments introduced in (35) turns out to be

µ=
100

100+ Re,3
. (42)

5. Results

The nondimensional variations of displacement w and bending moments mr and mθ along the radial
direction under the ultimate load p0 are plotted in Figure 4 for different sizes a of the loaded area, for
v = 0.15 and for two different values of the ratio µ between negative and positive yield moments, namely
µ= 0.5 and µ= 1. Figure 4 shows that the displacement w and thus the reaction kw of the subgrade
increase with the size a of the loaded area. Figure 4 also shows that all quantities of interest (deflection,
tangential and radial moments) become negligible at a distance larger than 4 to 5 times ` (denoted by
4–5`) from the applied load. Therefore, the assumption of an infinitely large plate is reliable also for
plates of finite size, if they are loaded at a distance larger than 4–5` from their edges.

The nondimensional variations of the ultimate load P0 and radii b and c with the radius a of the loaded
area are plotted in Figures 5 and 6, respectively, both for µ= 1 and µ= 0.5. From these figures it can be
observed that the ultimate load P0 increases with the radius a of the loaded area. Moreover, the radius
b of the circumferential crack turns out to be smaller than 2`. It must be remarked that the minimum of
the radial bending moment predicted by the elastic analyses of Meyerhof [1960] and Timoshenko and
Woinowsky-Krieger [1959] is attained at a distance 2` to the center of the loaded area, and this value
has been adopted as the radius of the circumferential crack in several investigations based on the limit
analysis theory [Westergaard 1948; Baumann and Weisgerber 1983].

As the size a of the loaded area becomes larger, the radius b of the circumferential crack increases more
rapidly than the length c of the radial cracks (Figure 6) and the latter two distances become coincident
for a special value of a. Then, the circumferential crack occurs within the elastic region for a larger
then this special value. In this case, however, the onset of the circumferential crack does not imply the
activation of a conical plastic mechanism as observed for a small value of a. However, the formation
of a circumferential crack on upper side of the plate defines the serviceability limit of industrial ground
floors according to current design standards [Concrete Society 2003].

For use in practice, the following simplified equation for calculating the load-carrying capacity of
slabs on grade is proposed on the basis of the analytical results here obtained:

P∗0 = 2πm+0 (1+µ)
(

1+ (1+µ)a
`

)
, (43)

where µ assumes the value in (42) for FRC slabs. From Figure 5 it can be established that the approximate
value P∗0 introduced in (43) approaches the load carrying capacity P0 obtained from the present exact
analysis. From Table 1, where the values of P0 and P∗0 are reported for different sizes of the loaded area,
it can be observed that the agreement between analytical and approximate results is excellent for µ= 1,
whereas for µ= 0.5 the approximate value P∗0 underestimates to some extent the ultimate load P0, thus
providing more conservative results.



DUCTILE AND FRC PLATES ON ELASTIC GROUND LOADED ON A SMALL CIRCULAR AREA 323

   

   

   r/��

0 3 5

f 

-0.2

0

0.4

1.2

1 4

v = 0.15      P = 0.5 

0.2

0.8

1.0

m
T
�/m

0
 +

2

0.6

 a/� = 0.01 

 = 0.10 

 = 0.30 

  = 0.50 

 = 0.80 

 = 1.00 

0 3 5

e 

-1.5

-1.0

0

1.5

1 4

m
r 
/m

0
 

v = 0.15      P = 0.5 

-0.5

0.5

1.0

+

2

0 3 5

d 

-1

0

2

4

1 4

w
D

/m
0
 �

2
 

v = 0.15      P = 0.5 

1

3

+

2

r/��

0 3 5

c 

-0.2 

0 

0.4 

1.2 

1 4

v = 0.15      P = 1 

0.2 

0.8 

1.0 

m
T
�/m

0
 +

2

0.6 

0 3 5

b 

-1.5 

-1.0 

0 

1.5 

1 4

m
r 
/m

0
 

v = 0.15      P = 1 

-0.5 

0.5 

1.0 

+

2

0 3 5

a 

-1 

0 

2 

6 

1 4

w
D

/m
0
 �

2
 

v = 0.15      P = 1 

1 

3 

4 

+

2

5 
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Figure 6. Nondimensional variations of the radii b and c with the radius a of the loaded area 
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Figure 6. Nondimensional variations of the radii b and c with the radius a of the loaded area.

5.1. Comparison with previous methods. In the following, the load-carrying capacities found in previ-
ous investigations are reported in order to compare them with the predictions of the present analysis. For
a large slab Meyerhof [1962] found the ultimate load

PML
0 =

4π(m+0 +m−0 )
1− a

3`
, for a > 0.2`, (44)

where the assumption b ≈ 3.9–4` is made. It must be specified that in the rigid-plastic analysis of
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µ= 1

a/` P0/m+0 P∗0 /m+0
0.01 13.6942 12.8177
0.05 14.8298 13.8230
0.10 15.9689 15.0796
0.20 18.0721 17.5929
0.30 20.1759 20.1062
0.40 22.3747 22.6195
0.50 24.7162 25.1327
0.70 29.9581 30.1593
0.80 32.9149 32.6726
1.00 39.5404 37.6991

µ= 0.5

a/` P0/m+0 P∗0 /m+0
0.01 10.2513 9.4247
0.05 11.0604 10.1316
0.10 11.8682 10.8385
0.20 13.3502 12.2522
0.30 14.8202 13.6659
0.40 16.2143 15.0796
0.50 17.5310 16.4934
0.70 20.3785 19.3208
0.80 21.9421 20.7345
1.00 25.4027 23.5619

Table 1. Ultimate load P0 and its approximate value P∗0 for different radii a of the
loaded area, for µ= 1 (left) and µ= 0.5 (right).

[Meyerhof 1962], the cracking radius b is assumed to coincide with the radius of the circular area loaded
by the subgrade reaction pressure. In the present elastic-perfectly plastic analysis the circumferential
crack is found to occur much inside the area loaded by the subgrade reaction pressure. The results
depicted in Figure 6 show that the assumption b≈ 3.9–4` [Meyerhof 1962] made in the derivation of (44)
may be acceptable for the size of the area loaded by the subgrade reaction pressure (see Figures 5(a) and
5(d)), but is rather inaccurate for the cracking radius. The present analysis, indeed, predicts a cracking
radius b about 1–1.5` (see Figure 6) and thus much smaller than the value assumed in the derivation
of (44). The load-carrying capacity (44) predicted by Meyerhof [1962] would remarkably increases if
values of b smaller than 4` are considered, e.g., b ≤ 2`, thus providing non conservative and unrealistic
results.

The load-carrying capacity of the plate under a concentrated load provided by Meyerhof [1962] is

PML
0 = 2π(m+0 +m−0 ) for a = 0. (45)

It can be observed that for a vanishing small size a of the loaded area, Equation (43) coincides with
the result (45) obtained by Meyerhof under a concentrated force.

The use of m−0 = 0 in Equations (44) and (45) is recommended for small slabs that can not develop
a negative bending moment along the negative circumferential yield line [Meyerhof 1962]. In this case,
the load-carrying capacity of small slabs PMS

0 is reduced to about one-half with respect to a large slab,
and thus expressions (44) and (45) may be too conservative if adopted for sufficiently large slabs with
m−0 = 0. However, similar expressions have also been accepted by the Concrete Society [2003], with no
specification about the extension of the slab.

On the basis of the results of both limit analysis theory and loading tests, the following simple and
conservative formula is suggested in [Meyerhof 1962] for a central load

P M
0 = 6(m+0 +m−0 )

(
1+ 2a

`

)
, (46)
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with a > h in order to avoid punching failure. Moreover, the following approximate relation for the
radius of the circumferential crack

b
`
= 1.63

√
a
`
, (47)

was also proposed by Meyerhof [1960]. Relations (46) and (47) reasonably agree with the analytical
results here obtained for elastic-perfectly plastic behavior of the plate, with µ= 1, as it can be verified
by comparing Equations (46) and (43) and the results plotted in Figures 5(a) and 7(b). In particular, the
difference between relations (46) and (43) is less than 5%, for µ= 1. On the contrary, the load carrying
capacity (44) predicted by Meyerhof for large slabs turns out to be much higher than the findings of the
present analysis. As already discussed, this result is expected according to the upper-bound theorem of
limit analysis, since the Meyerhof analysis is based on the assumption of a rigid-plastic mechanism.

The ultimate load proposed by Baumann and Weisgerber [1983] is

PBW
0 =

8π(m+0 +m−0 )
3(1− a

3`)
2

(
1− 11

32
a
`

)
, (48)

where the same cracking radius b = 2` predicted by the elastic solution [Westergaard 1948; Timoshenko
and Woinowsky-Krieger 1959] has been considered.

The ultimate load found by Rao and Singh [1986] for a single plastic hinge centered under the loaded
area becomes

PRS
0 = 2π(m+0 +m−0 )

1.8+ 6.9a/`
1.8+ 2.9a/`

. (49)

These authors evaluated the cracking radius b throughout the following relation

b
`
= 0.6+ 2.3

a
`
, (50)

derived from a hundred experimental observations made for plain and reinforced concrete.
The load-carrying capacities P0 and the cracking radius b predicted by the present model and by

previously developed analyses are compared for µ= 1 in Figures 7(a) and 7(b), respectively. From these
plots it can be observed that the present model provides higher load-carrying capacities than the other
models, except for the result (44) obtained by Meyerhof [1962] for large slabs. Moreover, the radius b
of the circumferential crack predicted by the present analysis closely agrees with the approximation (47)
proposed by Meyerhof [1960], at least for µ= 1, whereas it is clearly smaller than the value 2` predicted
by the elastic analyses and that adopted by Rao and Singh [1986] for the derivation of (50).

Unfortunately, experimental results are not easily available in the literature for slabs larger than 8–10`,
thus allowing the formation of a circumferential crack. Most of the performed tests concern small slabs
whose collapse mechanism consists of radial cracks reaching the edges of the slab, with no formation of
the circumferential crack on the top surface [Chen 2004; Roesler et al. 2004; 2006].

6. Conclusions

A refined model for the evaluation of the load-carrying capacity of large FRC slabs on ground has been
presented here. The model takes into account the post-crack strength of FRC slabs and the associated
ductile behavior. Compared with the approaches based on the limit analysis theory, the present model is
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Figure 7. Comparison between the load-carrying capacity P0 and cracking radius b 
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Figure 7. Comparison between the load-carrying capacity P0 and cracking radius b
predicted by the present model and by previous theories.

more accurate and complete, since it does not require the introduction of rough approximations on the
collapse mechanism and location of the yield lines. The proposed approach provides more conservative
results with respect to the prediction of the Meyerhof model for large slabs. However, it is in reasonable
agreement with the approximate formula (46) suggested by Meyerhof [1962] on the basis of loading
tests. Moreover, the load-carrying capacity provided by the present method turns out to be higher than
those recommended by conventional codes for industrial ground floors [Concrete Society 2003], which
are generally based on the results of Meyerhof analysis for small slabs on grade.

Differently from the investigations based on limit analysis, the present model is also able to predict the
deflection under the ultimate load, and thus it can be validated by comparison with experimental results.
Moreover, being deflection a crucial aspect for the design of ground slab, deflection limiting criteria can
be easily implemented within the framework of the present method.

The interaction between slab and subgrade has been here modeled by adopting the simple Winkler
elastic model. However, more refined approaches can be envisaged within the same framework, which
can take into account for tensionless subgrade reaction [Gazetas 1981; Silva et al. 2001], frictional contact
[Chen 2004] and nonlocal response of the foundation, like the model adopted by Nobili et al. [2014] and
Lanzoni et al. [2014] for the study of cracked elastic plates on Pasternak foundation.

Finally, it must be remarked that a large moment-rotation capacity after yielding must be assured, the
present approach being based on the yield line method, commonly used to determine the load capacity
of ductile and RC slabs. However, application of the present results to materials exhibiting brittle or
softening behavior, like lightly reinforced concrete, may be questionable.

Appendix

By using the following derivative rule for the hypergemeotric function 0 F3 and Meijer G function G20
04
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[Luke 1969; Lardner 1969]

d
dx 0 F3(α, β, γ ; x)=

1
αβγ

0 F3(α+ 1, β + 1, γ + 1; x),

d
dx

G20
04

(
0 0 0 0
α α β 0

∣∣∣ x
)
= G20

04

(
0 0 0 0

α− 1 α− 1 β − 1 0

∣∣∣ x
)
,

(A.1)

the derivatives up to the third order with respect to r of the function w1(r) introduced in (19) can be
written as

w′1(r)=
m+0 `

D

{
− b0

(1− ν2)r3

18`3 0 F3
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2
,

7
4
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7
4
;−

(1− ν2)r4

256`4
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, (A.2)
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respectively. Similar expressions hold for the derivatives of w2(r), but the constants bk are replaced by
ck (k = 0, 1, 2, 3). The derivatives of w3(r) with respect to r up to the third order are

w′3(r)=
m+0 `
√

2D
[d16(r)+ d21(r)], (A.5)
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respectively, where
6(r)= ker

r
`
+ kei

r
`
, 1(r)= ker

r
`
− kei

r
`
. (A.8)
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SOLUTION OF A RECEDING CONTACT PROBLEM
USING AN ANALYTICAL METHOD AND A FINITE ELEMENT METHOD

ERDAL ÖNER, MURAT YAYLACI AND AHMET B İRİNCİ

In this study, a receding contact problem for two elastic layers supported by a Winkler foundation is
handled using two different methods such as an analytical method and a finite element method. Firstly,
the problem is solved analytically using linear elasticity theory. Then, in order to solve the same problem
in a different way, a finite element model of the problem is created by ANSYS software, and finite
element analysis of the problem is performed. The contact stresses and the contact areas at the interfaces
between punch–Layer 2 and Layer 1–Layer 2 are obtained for both solutions, and it is shown that the
finite element method indicates a good agreement with the analytical method.

1. Introduction

Although in the majority of cases the contact zone increases after the application of the load, there are
others where the final contact zone is smaller than the original. This type of contact problem is termed as a
receding contact problem [Garrido and Lorenzana 1998]. As a different point of view, a receding contact
is one where the contact surface in the loaded configuration is contained within the initial contact surface
[Johnson 1985]. The studies considering receding contact problems have been performed by various
researchers in the literature [Stippes et al. 1962; Wilson and Goree 1967; Weitsman 1969; Margetson and
Morland 1970; Chan and Tuba 1971; Keer et al. 1972; Ratwani and Erdogan 1973; Jing and Liao 1990;
Porter and Hills 2002]. Furthermore, Zhu [1995] studied a finite element–mathematical programming
method for elastoplastic contact problems with friction. Papadopoulos and Solberg [1998] investigated a
novel Lagrange multiplier–based formulation for the finite element solution of the quasistatic two-body
contact problem in the presence of finite motions and deformations. BEM solution of two-dimensional
contact problems by weak application of contact conditions with nonconforming discretizations was
carried out by Blázquez et al. [1998]. The mortar finite element method for contact problems was
examined by Belgacem et al. [1998]. Guyot et al. [2000] presented coupling of finite elements and
boundary elements methods for study of the frictional contact problem. Çömez et al. [2004] solved
the plane symmetric double receding contact problem for a rigid stamp and two elastic layers having
different elastic constants and heights. A residual type a posteriori error estimator for finite element
approximations of a frictional contact problem for linearized elastic materials was analyzed by Bostan
and Han [2006]. The plane problem of a frictionless receding contact between an elastic functionally
graded layer and a homogeneous half-space when the two bodies were pressed together has been reported
by El-Borgi et al. [2006]. Solberg et al. [2007] studied a family of simple two-pass dual formulations for
the finite element solution of contact problems. Oysu [2007] investigated finite element and boundary
element contact stress analysis with remeshing technique.
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A frictionless receding contact problem between an anisotropic elastic layer and an anisotropic elastic
half-plane, when the two bodies were pressed together by means of a rigid circular stamp, was investi-
gated by Kahya et al. [2007]. Rhimi et al. [2009] extended work of El-Borgi et al. [2006] in the sense that
the receding contact problem was solved under axisymmetric conditions rather than plane stress or plane
strain conditions. Kuss and Lebon [2009] carried out stress-based finite element methods for solving
contact problems and comparisons between various solution methods. Finite element approximation to
a contact problem for a nonlinear thermoviscoelastic beam was considered by Copetti and Fernández
[2011]. A finite element method used in contact problems with dry friction was investigated by Pop
et al. [2011]. Rhimi et al. [2011] focused on a double receding contact axisymmetric problem between
a functionally graded layer and a homogeneous substrate. Zhang et al. [2012] reported a finite element
model for 2-D elastic–plastic contact analysis of multiple Cosserat materials. Adıbelli et al. [2013]
studied receding contact problem for a coated layer and a half-plane loaded by a rigid cylindrical stamp.
A numerical approximation by the finite element method of a quasistatic, frictionless, unilateral contact
problem between two thermoelastic bodies, in two dimensions, was examined by Copetti [2014]. An
axisymmetric Hertzian contact problem of a rigid sphere pressing into an elastic half-space under cyclic
loading was investigated by Kim and Jang [2014].

In this paper, a receding contact problem for two elastic layers supported by a Winkler foundation is
solved using an analytical method and a finite element method. Thus, it is aimed to see whether FEM
results are in an agreement with analytical results and how much the degree of approximation for the
two methods is. For this purpose, the problem is firstly solved analytically using linear elasticity theory.
Then, a finite element model of the problem is created by ANSYS software, and finite element analysis
of the problem is performed. Finally, the contact stresses and the contact areas at the interfaces between
punch–Layer 2 and Layer 1–Layer 2 are obtained for both solutions and the results obtained from two
different methods are compared with each other.

2. Analytical solution of the problem

Consider the plane strain problem described by the insert in Figure 1, in which the x = 0 plane is assumed
to be a plane of symmetry. The problem consists of two infinitely long layers of thicknesses h1 and h2.
The layers are isotropic, homogeneous and linearly elastic. A concentrated load with magnitude P is
subjected to the Layer 2 by means of a rigid circular punch. The Layer 1 is supported by a Winkler
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Figure 1. Geometry of the receding contact problem.
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foundation. It is assumed that friction and gravity forces are neglected. Since the contact between the
two bodies is assumed to be frictionless and layers are not adhered to each other, then only compressive
normal tractions can be transmitted in the contact area. Where applicable, the germane quantities are
reckoned per unit length in the z direction. Observing that x = 0 is a plane symmetry, it is sufficient to
consider the problem in the region 0≤ x <∞ only.

The stress and the displacement components needed for the application of the boundary conditions
can be obtained using linear elasticity theory and integral transform technique as

ui (x, y)= 2
π

∫
∞

0
{[Ai+Bi y]e−αy

+[Ci+Di y]eαy
} sin(αx) dα, (1)
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π
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where u and v are the x and y components of the displacement vector, respectively; σx , σy and τxy are
the stress components; µi is shear modulus; χi is an elastic constant and χi = (3− 4νi ) for plane strain;
and νi is Poisson’s ratio (i = 1, 2). The subscripts 1 and 2 refer to Layer 1 and Layer 2, respectively.
Ai , Bi , Ci and Di (i = 1, 2) are the unknown coefficients that will be determined from continuity and
boundary conditions prescribed on y = 0, y = h1 and y = h.

The receding contact problem outlined above as shown in Figure 1 must be solved under the following
boundary conditions:

σy2(x, h)=
{
−p1(x)
0

(0≤ x < a),

(a ≤ x <∞),
(6)

τxy2(x, h)= 0 (0≤ x <∞), (7)

σy2(x, h1)=

{
−p2(x)
0

(0≤ x < b),

(b ≤ x <∞),
(8)

τxy2(x, h1)= 0 (0≤ x <∞), (9)

σy1(x, h1)= σy2(x, h1) (0≤ x <∞), (10)

τxy1(x, h1)= 0 (0≤ x <∞), (11)
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τxy1(x, 0)= 0 (0≤ x <∞), (12)

σy1(x, 0)= k0v1(x, 0) (0≤ x <∞), (13)

v2(x, h)= F(x) or ∂

∂x
v2(x, h)= f (x) (0≤ x < a), (14)

∂

∂x
[v2(x, h1)− v1(x, h1)] = 0 (0≤ x < b), (15)

where a is the half-width of the contact area between rigid circular punch and Layer 2; b is the half-width
of the contact area between Layer 1 and Layer 2; p1(x) is the unknown contact stress under the rigid
circular punch; p2(x) is the unknown contact stress between Layer 1 and Layer 2; k0 is the stiffness of
the Winkler foundation; and f (x) is the derivative of the function F(x) that characterizes surface profile
of the rigid punch. In the case of circular punch, f (x) can be written as

F(x)= h− δ− [(R2
− x2)1/2− R], (16)

f (x)=
d

dx
[F(x)] = −

x
(R2− x2)1/2

, (17)

where δ is the maximum displacement that occurs on the layer under the punch at the axis of symmetry
(x = 0) and R is the radius of the rigid circular punch. By making use of the boundary conditions
(6)–(13), eight of the unknown coefficients Ai , Bi , Ci and Di (i = 1, 2) appearing in (1)–(5) may be
obtained in terms of the unknown functions p1(x)and p2(x).

By substituting these coefficients into (14) and (15), after some routine manipulations and using the
symmetry conditions p1(x) = p1(−x) and p2(x) = p2(−x) and replacing ω = αh and r = h1/h, the
system of integral equations for p1(x) and p2(x) is obtained as
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1= 4K11K14, (24)

K11 = K ∗∗K11A+ 4(ω/h)K11B, (25)

K12 = e−4ωr
− e−4ω

+ e−2ωe−2ωr (4ω− 4ωr), (26)

K13 = e−2ωr (1+ω−ωr)+ e−2ω(−1+ω−ωr), (27)

K14 = e−4ωr
+ e−4ω

− 2e−2ωe−2ωr (1+ 2ω2
+ 2ω2r2

− 4ω2r), (28)

K11A = 1− 4ωre2ωr
− e4ωr , (29)

K11B =−1+ e2ωr (2+ 4ω2r2
− e2ωr ), (30)

m =
(1+χ1)µ2

(1+χ2)µ1
, (31)

K ∗∗ = k(1+χ1), (32)

k =
k0

µ1
. (33)

In the system of singular integral equations (18) and (19), in addition to the contact stresses p1(x) and
p2(x), the half-width of the contact areas a and b are also unknown. These two unknowns a and b are
determined from the equilibrium conditions, which can be written as∫ a

−a
p1(t) dt = P,

∫ b

−b
p2(t) dt = P. (34)

We will use (x1, t1) to denote the variables (x, t) on the boundary y = h, and likewise (x2, t2) on the
boundary y = h1. We also define the following dimensionless quantities:

x1 = ar1, t1 = as1, dt1 = a ds1, x2 = br2, t2 = bs2, dt2 = b ds2,

g1(s1)=
p1(t1)
P/h

, g2(s2)=
p2(t2)
P/h

,

M1(r1, s1)= k1(x1, t1), M2(r1, s2)= k2(x1, t2), M3(r2, s2)= k3(x2, t2), M4(r2, s1)= k4(x2, t1).

(35)

By substituting (35) into the system of integral equations (18) and (19) and equilibrium conditions (34),
the system of integral equations and equilibrium conditions may be obtained as

1
π

∫ 1
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[ 1
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+
a
h

M1(r1, s1)
]
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1
π
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a
h

∫ 1

−1
g1(s1) ds1 = 1,

b
h

∫ 1

−1
g2(s2) ds2 = 1. (38)

Since (36)–(37) have no closed-form solution, an effective numerical solution may be obtained by
using [Erdogan and Gupta 1972]. This method is a standard and necessary step in handling the integral
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equation part of the solution. So one may notice that because of the smooth contact at the end points
a and b, the contact stresses p1(x) and p2(x) are zero at the end points, and the index of the integral
equations (36) and (37) is “−1”. Let

g1(s1)= G1(s1)(1− s2
1)

1/2 (−1< s1 < 1), (39)

g2(s2)= G2(s2)(1− s2
2)

1/2 (−1< s2 < 1). (40)

Using the appropriate Gauss–Chebyshev integration formula, (36)–(38) become
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where

sk = cos
(

kπ
N + 1

)
(k = 1, . . . , N ), (44)

ri = cos
(

2i − 1
N + 1

π

2

)
(i = 1, . . . , N + 1). (45)

As the value of N is increased, more accurate results can be obtained. Hence, the value of N is chosen
as 60 in this study because, after a value of N = 60, change in the results is very small and insignificant.
It can be seen that the extra equations in (41) and (42) correspond to the consistency condition of the
original integral equations (36) and (37). It can also be shown that the (N/2+ 1)-th equations in (41)
and (42) are automatically satisfied [Erdogan and Gupta 1972]. Thus, (41)–(43) give 2N + 2 algebraic
equations to determine the 2N + 2 unknowns G1(sk1), G2(sk2) (k = 1, . . . , N ), a and b. The system of
equations are linear in G1(sk1) and G2(sk2) but highly nonlinear in a and b. Therefore, an interpolation
and iteration scheme had to be used to obtain these two unknowns. In this iterative procedure, firstly
2N equations (i = 1, . . . , N/2, N/2+2, . . . , N+1) are chosen from (41)–(42). After predicting values
for a and b, G1(sk1) and G2(sk2) are calculated using previously determined (2N ) equations. If the
chosen a and b and obtained G1(sk1) and G2(sk2) values ensure (43), the solution would have been
found. Otherwise, G1(sk1) and G2(sk2) values are recalculated after predicting new a and b values.

3. The finite-element analysis of the problem

This section describes our FEM analysis of the receding contact problem using ANSYS Multiphysics.
The problem is considered as a two-dimensional contact problem, and the material of the layers are
assumed elastic and isotropic. The physical system under consideration exhibits symmetry in geome-
try, material properties and loading. It is computationally advantageous to model only a representative
portion. The geometry and the applied load are shown schematically in Figure 2, and the deformed
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Figure 2. The geometry for the analysis.

Figure 3. Deformed geometry for the preliminary analysis.

geometry for the preliminary analysis is shown in Figure 3. In the study, two-dimensional solid elements
(PLANE183) are used to model the layers. The PLANE183 element is defined by six nodes having two
degrees of freedom at each node: translations in the nodal x and y directions. The element may be used
as a plane element (plane stress, plane strain and generalized plane strain). The Winkler foundation is
modeled by a linear spring element (COMBIN14). The COMBIN14 element or the longitudinal element
spring-damper option is an uniaxial tension–compression element with up to two degrees of freedom at
each node: translations in the nodal x and y directions. No bending or torsion is considered [Al-Azzawi
et al. 2010].

The contact region is meshed by surface-to-surface CONTA172 and TARGE169 contact elements.
CONTA172 is used to represent that of the mechanical contact analysis. The target surface, defined by
TARGE169, was therefore used to represent 2-D “target” surfaces for the associated contact elements
CONTA172. Plane strain finite elements are used for the meshing of the entire geometry. Frictionless
surface-to-surface contact elements are used to model the interaction between the contact surfaces, and
the augmented Lagrangian method is used as the contact algorithm. The preliminary analysis is meshed
with 4435 elements and 8444 nodes, and the contacting line is meshed with 75 elements.
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4. Results and discussion

This section presents some of the calculated results obtained from analytical and FEM solution of the
receding contact problem for various dimensionless quantities such as R/h, µ2/(P/h), µ2/µ1 and
k = k0/µ1. Also, in this section, the results obtained from the analytical method are compared with
those of the finite element method.

Table 1 shows variation of half-widths of the contact areas with radius of punch (R/h). It is seen
from Table 1 that half-widths of the contact areas increase with increasing radius of punch. This is an
expected result. Variation of half-widths of the contact areas with load ratio µ2/(P/h) is given in Table 2.
Examination of Table 2 indicates that half-widths of the contact areas decrease with increasing of the
load ratio µ2/(P/h).

Table 3 illustrates the effect of µ2/µ1 on the half-widths of the contact areas. As seen in Table 3,
increasing the value of µ2/µ1 results in an increase of half-widths of the contact areas. Variation of
half-widths of the contact areas with k = k0/µ1 is presented in Table 4. This table demonstrates that, as
the stiffness of the Winkler foundation increases, half-widths of the contact areas decrease. Additionally,
when comparing the analytical and FEM results, it is seen from results that the finite element method

Parameter R/h = 50 R/h = 100 R/h = 250 R/h = 500
a/h b/h a/h b/h a/h b/h a/h b/h

Analytical 0.5057 0.7662 0.7079 0.9018 1.0614 1.1882 1.4034 1.4956
FEM 0.500 0.755 0.700 0.900 1.050 1.200 1.400 1.500

Error (%) 1.13 1.15 1.12 0.19 1.07 0.99 0.24 0.29

Table 1. Variation of half-widths of the contact areas with radius of punch (R/h)
(χ1 = χ2 = 2, µ2/(P/h)= 100, h1/h = 0.5, µ2/µ1 = 0.5, k = k0/µ1 = 2).

Parameter µ2/(P/h)= 50 µ2/(P/h)= 100 µ2/(P/h)= 200 µ2/(P/h)= 500
a/h b/h a/h b/h a/h b/h a/h b/h

Analytical 1.199 1.3707 0.8477 1.0959 0.5735 0.9253 0.3365 0.8236
FEM 1.200 1.375 0.850 1.100 0.575 0.925 0.3375 0.825

Error (%) 0.08 0.31 0.27 0.37 0.25 0.03 0.3 0.17

Table 2. Variation of half-widths of the contact areas with load ratio µ2/(P/h)
(χ1 = χ2 = 2, R/h = 100, h1/h = 0.5, µ2/µ1 = 0.5, k = k0/µ1 = 0.5).

Parameter µ2/µ1 = 0.1 µ2/µ1 = 0.5 µ2/µ1 = 2 µ2/µ1 = 5
a/h b/h a/h b/h a/h b/h a/h b/h

Analytical 0.6013 0.7445 0.7079 0.9018 0.9868 1.2616 1.3112 1.6763
FEM 0.600 0.750 0.700 0.900 0.9875 1.2625 1.3125 1.675

Error (%) 0.22 0.74 1.12 0.19 0.07 0.07 0.1 0.08

Table 3. Variation of half-widths of the contact areas with µ2/µ1 (χ1 = χ2 = 2,
µ2/(P/h)= 100, R/h = 100, h1/h = 0.5, k = k0/µ1 = 2).
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Parameter k = 0.5 k = 1 k = 2 k = 4
a/h b/h a/h b/h a/h b/h a/h b/h

Analytical 0.8477 1.0959 0.7622 0.9791 0.7079 0.9018 0.6743 0.8528
FEM 0.850 1.100 0.7625 0.975 0.700 0.900 0.675 0.850

Error (%) 0.27 0.37 0.04 0.42 1.12 0.19 0.1 0.33

Table 4. Variation of half-widths of the contact areas with k = k0/µ1 (χ1 = χ2 = 2,
µ2/(P/h)= 100, R/h = 100, h1/h = 0.5, µ2/µ1 = 0.5).
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Figure 4. Normalized contact stress distribution at the punch–Layer 2 interface (left)
and Layer 1–Layer 2 interface (right) for various values of R/h (χ1 = χ2 = 2,
µ2/(P/h)= 100, h1/h = 0.5, µ2/µ1 = 0.5, k = 2).

indicates a good agreement with the analytical method disagree by 0.03%–1.15%. It can be stated that
these values are at an acceptable level.

Figure 4 shows normalized contact stress distributions at the interfaces between the rigid punch–
Layer 2 and between Layer 1–Layer 2 for various values of R/h. As seen in this figure, the normalized
contact stress distributions decrease at both interfaces with increasing of R/h. The effect of the load
ratio µ2/(P/h) on the normalized contact stress distributions at the interfaces between the rigid punch–
Layer 2 and between Layer 1–Layer 2 is presented in Figure 5. It can be concluded from that figure that
increasing the value of µ2/(P/h) results in an increase of normalized contact stress distributions at both
interfaces. The normalized contact stress distributions at the interfaces between the rigid punch–Layer 2
and between Layer 1–Layer 2 for various values of µ2/µ1 appear in Figure 6. It is seen there that, as
µ2/µ1 increases, the normalized contact stress distributions at both interfaces decrease. Figure 7 shows
normalized contact stress distributions at the interfaces between the rigid punch–Layer 2 and between
Layer 1–Layer 2 for various values of k = k0/µ1. They demonstrate that the normalized contact stress
distributions at the interfaces between the rigid punch–Layer 2 and between Layer 1–Layer 2 increase



342 ERDAL ÖNER, MURAT YAYLACI AND AHMET BİRİNCİ
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Figure 5. Normalized contact stress distribution at the punch–Layer 2 interface (left)
and Layer 1–Layer 2 interface (right) for various values of µ2/(P/h) (χ1 = χ2 = 2,
R/h = 100, h1/h = 0.5, µ2/µ1 = 0.5, k = 2).
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Figure 6. Normalized contact stress distribution at the punch–Layer 2 interface (left)
and Layer 1–Layer 2 interface (right) for various values of µ2/µ1 (χ1 = χ2 = 2, R/h =
100, µ2/(P/h)= 100, h1/h = 0.5, k = 2).

with increasing of the stiffness of the Winkler foundation. All figures show that the normalized contact
stress distributions at the interfaces between the rigid punch–Layer 2 and between Layer 1–Layer 2
are symmetrical and their maximum values occur at the axis of symmetry. Also, the values of the
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 0,

 

 
           

 0,  0,
Figure 7. Normalized contact stress distribution at the punch–Layer 2 interface (left)
and Layer 1–Layer 2 interface (right) for various values of k = k0/µ1 (χ1 = χ2 = 2,
R/h = 100, µ2/(P/h)= 100, h1/h = 0.5, µ2/µ1 = 0.5).

normalized contact stresses are zero at the end contact points (−a,+a) and (−b,+b). This result shows
that boundary conditions given in the definition of the problem are provided. Finally, similar to results
of contact areas, a good agreement is found between the analytical method and FEM.

5. Conclusions

The presented study aims to solve a receding contact problem for two elastic layers supported by a
Winkler foundation using two different methods such as an analytical method and a FEM. For this
purpose, first of all, the problem is solved analytically using linear elasticity theory. Then, an initial finite
element model of the problem is developed by ANSYS software and finite element analysis is performed.
Finally, the results obtained from finite element analysis are compared with analytical results. The results
of the all analyses described in this paper allow the following conclusions to be drawn:

• Half-widths of the contact areas increase with increasing of R/h and µ2/µ1. On the contrary, they
decrease with increasing of µ2/(P/h) and k = k0/µ1.

• Normalized contact stress distributions at the interfaces between the rigid punch–Layer 2 and Layer 1–
Layer 2 increase with increasing of µ2/(P/h) and k = k0/µ1. But increasing the values of R/h
and µ2/µ1 result in a decrease of normalized contact stress distributions at both interfaces.

• Normalized contact stress distributions at the interfaces between the rigid punch–Layer 2 and be-
tween Layer 1–Layer 2 are symmetrical and their maximum values occur at the axis of symmetry.
Also, the values of normalized contact stresses are zero at the end contact points (−a,+a) and
(−b,+b).
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• It is seen from all numerical results that finite element solution indicates a good agreement with
analytical solution.
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SLIDING OF A CUP-SHAPED DIE ON A HALF-SPACE: INFLUENCE OF
THERMAL RELAXATION, CONVECTION AND DIE TEMPERATURE

LOUIS MILTON BROCK

A rigid, cup-shaped die translates at constant subcritical speed on a thermoelastic half-space that exhibits
thermal relaxation and convection. The die surface is held at a temperature different from ambient tem-
perature, and sliding friction exists in a contact zone that is not simply connected. A three-dimensional
dynamic steady state model is assumed and, based on an approximation for inversion of integral trans-
forms, a solution in analytic form is obtained. Auxiliary conditions for sliding contact are satisfied; in
particular, contact zone traction is stationary with respect to compression force. Among other results,
it is found that a dynamic steady state is precluded if die-ambient temperature difference is too large.
Similar results are known, but only for die temperatures that exceed the ambient value.

Introduction

Sliding of a rigid die on the surface of elastic half-spaces is a basic model in isothermal [Craggs and
Roberts 1967; Churilov 1978; Ahmadi et al. 1983; Rahman 1996] and dynamic thermoelastic contact
[Jang 2000; 2005]. In [Brock 2012a] the 3D problem of an ellipsoid moving at constant sub critical
speed is considered. An exact solution for the dynamic steady state shows that the projection of the die
profiles onto the half-space is not necessarily replicated in contact zone shape. In particular, friction and
sliding speed play a role in contact zone shape. An asymptotic solution [Brock 2012b] is obtained for
the corresponding 3D case of a half-space governed by the Fourier model of thermoelasticity [Boley and
Weiner 1985]. Expressions in analytic form lead to conclusions about the contact zone that mirror those
in [Brock 2012a].

A more recent 3D study [Brock 2014b] treats various die shapes. Friction is neglected, but the half-
space exhibits both thermal relaxation and convection, and the dies are maintained at a fixed temperature.
Again expressions in analytic form are obtained by using an asymptotic transform inversion. It is found
that a dynamic steady state cannot in fact occur when die temperature exceeds ambient temperature by
a critical value. This result is consistent with transient work [Jang 2000; 2005].

In the aforementioned references, however, the die shapes considered give simply connected contact
zones. Such a situation is not always assured [Bayer 1994; Blau 1996]. Die surfaces may exhibit curva-
ture reversals that preclude simple connectivity and, as an example, this paper considers a cup-shaped
rigid die. The half-space exhibits thermal relaxation and convection, and the die surface is maintained at
a fixed temperature that differs from the ambient. A dynamic steady state is assumed, and sliding friction
exists. A contact zone traction distribution is not assumed and contact zone geometry parameters are
obtained by imposing standard [Barber 1992; Brock and Georgiadis 2000] auxiliary conditions. Here,

Keywords: thermoelasticity, 3D, relaxation, multiple connectivity, critical temperature, convection, 3D dynamic, sliding,
transverse isotropy, contact zone geometry.
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these conditions lead to algebraic equations of fifth- and sixth-order, but valid approximate solutions are
possible. Among other results, this analysis indicates that, in contrast to [Jang 2000; 2005; Brock 2014b]
restrictions apply for die temperature values both above and below ambient temperature.

The 3D analysis begins by considering the unmixed boundary value problem for surface loads applied
to an area that translates on the half-space surface. The area is ring-like, but axial symmetry is not
assumed. An exact solution for the integral transform is obtained in terms of (somewhat arbitrary) loads.
An approximate transform inversion technique that is especially valid when thermal relaxation effects are
of interest is applied. The resulting expressions are analytic, and their use reduces the mixed boundary
value problem for sliding contact to the solution of classical singular integral equations [Erdogan 1978].
Imposition of auxiliary conditions, and study of the results, follows.

Translating surface load: governing equations

In terms of Cartesian basis x = x(xk) a solid occupies region x3 > 0. The solid is isotropic, homogeneous
and linear thermoelastic. It is at rest at uniform (absolute) temperature T0, when a finite, ring-like area
C on surface x3 = 0 is subjected to traction and a temperature field TC 6= T0. Curves f (x1, x2) = 0
and =(x1, x2)= 0 define, respectively, the inner and outer boundaries of C . Neither curve is necessarily
circular, but is closed, with a tangent and normal that vary continuously. Each radius of curvature also
varies continuously, without inflection. Surface point (x1, x2)= 0 lies within contour f , and any straight
line through this point lies within contour =.

Area C then translates in the positive x1-direction with constant subcritical speed V . The geometry
of C does not change, and imposed temperature TC and the traction distribution remain invariant with
respect to C . It is assumed that a dynamic steady state ensues for which solid response is invariant in
the frame of translating C . Thus, by translating the Cartesian basis with C , displacement u(uk), traction
T (σik) and change θ in temperature vary only with x(xk), and time differentiation becomes −V ∂1, where
∂k signifies xk-differentiation. For x3 > 0 governing equations for (u, θ) can be written as [Brock 2009;
Ignaczak and Ostoja-Starzewski 2010]

u = uD + uS, (1a)

(∇2
− c2∂2

1 )uS = 0, ∇ · uS = 0, (1b)

(c2
D∇

2
− c2∂2

1 )uD −αV∇θ = 0, ∇ × uD = 0, (1c)[
h0(c2

+
∇

2
− c2∂2

1 )(c
2
−
∇

2
− c2∂2

1 )− c∂1(c2
F∇

2
− c2∂2

1 )
]
(uD, θ)= 0. (1d)

Here (∇,∇2) are the gradient and Laplacian. Traction T is defined by

1
µ

T = [(c2
D − 2)∇ · uD −αV θ ]1+ 2(∇u+ u∇). (2)

Term 1 is the identity tensor, and (c, cD, cF , c±) are dimensionless ratios

c =
V
VS
, cD =

VD

VS
, cF =

VF

VS
, c± =

V±
VS
. (3)

Here (V, VS, VD, VF , V±) are, respectively, translation speed, isothermal shear wave speed, isothermal
and Fourier dilatational wave speed and thermal relaxation speeds, where
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cD =

√
2

1− v
1− 2ν

, cF =

√
c2

D + ε, c± = 1
2(0+±0−), (4a)

0± =

√(
cD ±

√
h/h0

)2
+ ε, (4b)

h =
k

CV
√
µρ
, h0 = VSt0, ε =

T0

CV
(αV VS), (4c)

αV = (3c2
D − 4)α, VS =

√
µ/ρ. (4d)

In (2)–(4) (ν, µ, ρ) are Poisson’s ratio, shear modulus and mass density, respectively. Terms (k,CV , α, αV )

are thermal conductivity, specific heat at constant strain, and linear and volumetric thermal expansion
coefficients, respectively. Terms (ε, h) are dimensionless thermal coupling constant and thermoelastic
characteristic length. Terms (t0, h0) are thermal relaxation time and corresponding characteristic length
[Brock 2009]. They are features of the Lord and Shulman [1967] model for thermal relaxation that
is incorporated in (1)–(4). Calculations [Achenbach 1973; Brock and Georgiadis 2000; Brock 2009;
Ignaczak and Ostoja-Starzewski 2010] indicate that, in general, 1< cD < cF < c±.

On surface x3 = 0 heat flux and surface traction for (x1, x2) /∈ C are

hB∂3θ + θ = 0, σ31 = σ32 = σ33 = 0. (5a)

For (x1, x2) ∈ C , however:

hB∂3θ + θ = TC − T0 = θC , (5b)

σ31 = τ1, σ32 = τ2, σ33 = σ. (5c)

Field TC is bounded and continuous, and hB is a characteristic convection length that incorporates con-
ductivity and Biot number [Boley and Weiner 1985]. Traction (τ1, τ2, σ ) can be singular but integrable
on contours f (x1, x2) = 0 and =(x1, x2) = 0. In addition (u, T , θ) should remain finite for |x| → ∞,
x3 > 0.

General transform solution

A double bilateral transform [Sneddon 1972] can be defined as

F̂ =
∫∫

F(x1, x2) exp(−p1x1− p2x2) dx1 dx2. (6)

Integration is along the entire Re(x1) and Re(x2)-axes. Application of (6) to (1) gives

ûS = V exp(−Bx3), (7a)

ûD = U+ exp(−A+x3)+U− exp(−A−x3), (7b)

θ̂ = D+U+ exp(−A+x3)+ D−U− exp(−A−x3). (7c)

Coefficients D± and the components of vectors (V ,U±) are governed by

D± = c2
D(p

2
2 + A2

±
)+ (c2

D − c2)p2
1, (8a)

p1V1+ p2V2− BV3 = 0, U± = (p1, p2,−A±)αV U±. (8b)
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Terms (B, A±) are roots of the transforms of, respectively, (1b) and (1d):

B =
√
−p2

1 − p2
2 + c2 p2

1, (9a)

A± =
√
−p2

1 − p2
2 −

cp1

2hc2
D
(DF ± D), (9b)

DF = c2
F (1− h0cp1)− hcp1, D =

√
D2

F + 4hc2
D(1− h0cp1)cp1. (9c)

Equation (7) is bounded for x3 > 0 if branch cuts are introduced so that Re(B, A±) ≥ 0 in the cut
complex (p1, p2)-planes. Application of (6) to (2) and substitution of (8) and (9) gives for x3 = 0
quantities relevant to the transform of (5). In particular,

1
µ
σ̂31 =−2αV p1(A+U++ A−U−)+

1
B
[p1 p2V2+ (p2

1 − B2)V1], (10a)

1
µ
σ̂32 =−2αv p2(A+U++ A−U−)+

1
B
[p2 p1V1+ (p2

2 − B2)V2], (10b)

1
µ
σ̂33 =−αV (2B2

+ c2 p2
1)(U++U−)− 2(p1V1+ p2V2). (10c)

In view of (7c) and (9), the transform of (5) gives the four equations required to obtain (U±, V1, V2). The
transforms (û, T̂ , θ̂ ) then follow as linear combinations of (τ̂1, τ̂2, σ̂ , θ̂C). Displacement u for x3 = 0 is
required to address the mixed boundary value problem of the sliding die.

Transform inversion: general formulas

Inhomogeneous terms (τ1, τ2, σ, θC) arise only for (x1, x2) ∈ C . Thus, when x3 = 0 the inversion opera-
tion corresponding to (6) gives u, and also (T, θ), as linear combinations of expressions∫∫

C
6 dξ1 dξ2

1
2π i

∫
dp1

1
2π i

∫
K6 dp2 exp[p1(x1− ξ1)+ p2(x2− ξ2)]. (11)

Here 6 = 6(ξ1, ξ2) represents (τ1, τ2, σ, θC) and K6 = K6(p1, p2) is the corresponding coefficient.
Subscript C signifies integration over area C , and single integration is over the entire Im(p1) and Im(p2)-
axes. The form of (11) suggests definitions and transformations [Brock 2012a; 2012b].

p1 = p cosψ, p2 = p sinψ, (12a)[
x, ξ
y, η

]
=

[
cosψ sinψ
− sinψ cosψ

] [
x1, ξ1

x2, ξ2

]
. (12b)

In (12), Re(p) = 0+, |Im(p), x, y, ξ, η| <∞ and |ψ | < π/2. Parameters (p, ψ), (x, ψ; y = 0) and
(ξ, ψ; η = 0) resemble quasipolar coordinate systems, i.e.,

dξ1 dξ2 = |ξ | dξ dψ, dp1 dp2 = |p| dp dψ. (13)

In light of (12), (13) and conditions for contour functions ( f,=), (11) can be written as

1
iπ

∫
9

dψ
∫∫

C
dη dξ 6(ξ, η)

∫
|p| dp
2π i

K6(p, ψ) exp(p(x − ξ)). (14a)
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x3

x2

V

x3 = X3(x1, x2)

x1
r0

Figure 1. Schematic of area of revolution for sliding cup.

Here subscript 9 signifies integration over range |ψ |< π/2, p-integration is along the positive side of
the entire imaginary axis, and∫∫

±

dη dξ =
[ ∫ η−

N−
+

∫ N+

η+

]
dη
∫ X+

X−
dξ +

∫ η+

η−
dη
[ ∫
−

+

∫
+

]
dξ. (14b)

Here affixed symbol ± signifies integration over range x+ < ξ < X+ and X− < ξ < x−, respectively.
Limits N±(ψ) and η±(ψ) in (14b) are defined by

=(ξ1(ξ, N±), ξ2(ξ, N±))= 0,
d N±

dξ
= 0, (15a)

f (ξ1(ξ, η
±), ξ2(ξ, η

±)= 0,
dη±

dξ
= 0. (15b)

That is, for given ψ limits (N±, η±) are the maximum and minimum values of η on, respectively, the
outer and inner contours of C . For given η, therefore, limits X±(ψ, η) and x±(ψ, η) locate the ends of
lines that run parallel to the ξ -axis and span the interiors of, respectively, the outer and inner contours of
C . Conditions on C imply that these limits exist, are single-valued, and vary continuously in ψ .

Transform inversion: asymptotic results

Equations (9b), (9c) and (12a) suggest that, in general, a numerical procedure is required for p-integration
in (14a). This is a common situation in coupled thermoelasticity and often, for example, [Wang and
Dhaliwal 1993; Brock 2009], an asymptotic inversion is used to produce an analytic result. Calculations
[Brock and Georgiadis 2000; Ignaczak and Ostoja-Starzewski 2010] indicate that, typically,

h ≈ O(10−9)m, t0 ≈ O(10−13) s, VS ≈ O(103)m/s, 0.1< h0/h < 1.0.

Therefore, use of expansions for (8) and (9) in (14a) that are valid for |hp| � 1 give results that are
especially relevant [Brock 2009] to the study of thermal relaxation effects. In light of (12), (9) gives,
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respectively, the exact result and first-order expansion

B→ B
√

p
√
−p, B =

√
1− c2 cos2 ψ, (16a)

A±→ A±
√

p
√
−p+ O(1/hp), A± =

√
1− c2

c2
±

cos2 ψ. (16b)

Boundedness for x3 > 0 now requires that (c, ψ) give nonnegative arguments for radical (B, A±), branch
cuts Re(p) < 0, Im(p) = 0 and Re(p) > 0, Im(p) = 0 be introduced for

√
±p, respectively, and

Re(
√
±p) ≥ 0 in the corresponding cut p-plane. In view of (12) and (16), the linear combination of

products K6(p, ψ)6(ξ, η) in (14a) for displacement uk when x3 = 0 is

u1:
B

pRA
cosψ

[
2αV

hB pω
(A−− A+)θC − N

σ

µ

]
+

1
pωRA

(
N1
τ1

µ
+ N12

τ2

µ

)
, (17a)

u2:
B

pRA
sinψ

[
2αV

hB pω
(A−− A+)θC − N

σ

µ

]
+

1
pωRA

(
N2
τ2

µ
+ N12

τ1

µ

)
, (17b)

u3:
KαV

hB p2 RA
(A−− A+)θC +

N3

pωRA

σ

µ
+

N
pRA

(
cosψ

τ1

µ
+ sinψ

τ2

µ

)
. (17c)

In (17) τk = τk(ξ, η), σ = σ(ξ, η), θC = θC(ξ, η) and

ω =

√
−p
√

p
. (18)

Other terms in (17) are independent of p:

RA = K+A+R−− K−A−R+, (19a)

N = K+A+N−− K−A−N+, (19b)

N1 =−RA+M cos2 ψ, N2 =−RA+M sin2 ψ, N12 = M sinψ cosψ, (19c)

M = K+A+M−− K−A−M+, N3 = (K+− K−)A+A−c2 cos2 ψ. (19d)

Terms in (19) with ± subscript are given by

R± = 4A±B− K 2, N± = 2A±B+ K , M± = 4A±B+ K − B2, (20a)

K = c2 cos2 ψ − 2, K± = 1−
c2

D

c2
±

. (20b)

Equation (17) shows that K6-terms in (14a) have the forms (1/p, 1/p2, 1/pω). The respective p-inte-
gration in (14a) gives [Brock 2012a; 2012b]

−iδ(x − ξ), −i H(x − ξ),
1

iπ(x − ξ)
. (21)

Here (δ, H) is the Dirac and step function. Displacement u3 for x3 = 0 is of particular interest, and an
expression is given in an explicit form in Appendix A.

Component R± of RA in (20a) resembles in form the isothermal Rayleigh function [Achenbach 1973].
Indeed, for ψ = 0 RA exhibits roots c= 0 and c=±cA, where 0< cA < 1, and is positive for 0< |c|< cA,
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ξ2

η

η = N+(ψ)

C

η=η+(ψ)

ξ = X−(ψ, η)

ξ = x−(ψ, η)

f (ξ1(ξ, η), ξ2(ξ, η))= 0
=(ξ1(ξ, η), ξ2(ξ, η))= 0

η = N−(ψ)

η=η−(ψ)

ψ
ξ1

ξ = x+(ψ, η)

ξ

ξ = x+(ψ, η)

Figure 2. Schematic of translating area on surface.

and thus is also a Rayleigh function. Radicals (A±, B) have nonnegative arguments for 0< c cosψ < 1,
|ψ | ≤ π/2 and, as noted in connection to (4), 1 < cD < c− < c+. Therefore V = cAVS < VS < c±VS

is the critical speed for translation of area C . The results of this section are now applied to a study of
sliding contact with friction.

Sliding contact

Consider the half-space treated above, and a rigid die that is a body of revolution with a W-like profile,
i.e., it is cup-shaped. Surface temperature of the die is maintained at TC = T0+2C cosψ , where 2C

is constant. Constant compressive force F3 is applied to the die and, resisted by sliding friction, the die
translates at constant subcritical speed V in the positive x1-direction. A dynamic steady state is assumed,
and the process also satisfies (5a) and (5b). However (5c) is modified: For x3 = 0, (x1, x2) ∈ C , (τ1, τ2)

now represent frictional resistance and so are defined by

τ1 = γ σ, τ2 = 0. (22)

Here γ is the coefficient of sliding friction, and normal traction σ is now an unknown, the last condition
in (5c) being replaced by

u3 = u0
3 =U0− X3(x1, x2), (23a)

X3(x1, x2)=
1

2r0
(x2

1 + x2
2)

[
1−

1
2r2

0
(x2

1 + x2
2)

]
−

r0

4
. (23b)

Here u0
3 is the indentation imposed by the die, with U0 being the rigid body displacement of the die.

Polynomial X3(x1, x2) gives the die its W-like cross-section, where r0 is the radial distance between the
die axis of symmetry and the “feet” of the W. Results obtained above apply under several conditions:
First, area C includes the initial (U0 = 0) contact contour

√
x2

1 + x2
2 = r0. Then C has a ring thickness
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that, in light of the fourth-order nature of X3(x1, x2), is much smaller than r0. Finally, σ must be such
that (A1) and (22) give the displacement in (23a). In view of [Brock 2012a; 2012b]

u0
3 =−

1
π

∫
9

dψ
∫∫

C
dη dξ

dδ
dx
(x − ξ)u0

3(x1(ξ, η), x2(ξ, η)). (24)

So, σ is obtained by matching the integrands of (ψ, η)-integration. In σ(ξ, η) ξ is an integration variable
representing parameter x that itself depends on (x1, x2) and integration variable ψ . As noted in view of
(13) for y = 0 however, coordinates (x1, x2) can be replaced by (x, ψ). Thus, every point (x1, x2) ∈ C
lies on an integration path η = 0 that passes through all four limit points of the ξ -integral. Thus (A1)
and (22)–(25) give for x+ < x < X+ and X− < x < x−, respectively, singular integral equation

−
N3

µRAπ

[∫
−

+(vp)
∫
+

]
σ(ξ, ψ)

ξ − x
dξ +

γ N
RA

σ(x, ψ) cosψ =
x
r0

(
1−

x2

r2
0

)
−

T
r0
(X+− x), (25a)

−
N3

µRAπ

[
(vp)

∫
−

+

∫
+

]
σ(σ,ψ)

ξ − x
dξ +

γ N
RA

σ(x, ψ) cosψ =
x
r0

(
1−

x2

r2
0

)
−

T
r0
(x−− x), (25b)

T =−
r0KαV

hB RA
(A+− A−)2C cosψ. (25c)

In (25) affixed symbol ± signifies integration over, respectively, x+ < ξ < X+ and X− < ξ < x−, where
x± = x±(ψ) and X± = X±(ψ), and (vp) signifies Cauchy principal value integration. Equation (25) is
a classic type [Erdogan 1978], with inhomogeneous terms of polynomial form. The solution is a linear
combination of terms

x N cosπ�+
sinπ�
π

(
x − x−
x − X−

)�( X+− x
x − x+

)�
I+(x N ) (x+ < x < X+), (26a)

x N cosπ�+
sinπ�
π

(
X+− x
x+− x

)�( x−− x
x − X−

)�
I−(x N ) (X− < x < x−). (26b)

In (26) N = 0, 1, 3 and

I+(x N )=

∫
−

t N dt
t − x

(
x+− t
X+− t

)�( t − X−
x−− t

)�
+ (vp)

∫
+

t N dt
t − x

(
t − X−
t − x−

)�( t − x+
X+− t

)�
, (27a)

I−(x N )= (vp)
∫
−

t N dt
t − x

(
x+− t
X+− t

)�( t − X−
x−− t

)�
+

∫
+

t N dt
t − x

(
t − X−
t − x−

)�( t − x+
X+− t

)�
, (27b)

�=−
1
2
+

1
π

tan−1
(
−
γ N
N3

cosψ
)
. (27c)

For sliding contact at subcritical speed (see discussion above) it can be shown that N ≤ 0 and N3 ≥ 0,
so that dimensionless exponent satisfies − 1

2 < � < 0. Integration formulas (B1)–(B3) in Appendix B
lead to, for x+ < x < X+ and X− < x < x−, respectively, contact zone normal traction in analytic
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form:

σ+

µ
=−

RA

r0S

(
x − x−
x − X−

)�( X+− x
x − x+

)�[
(1+ T )G1(x)− T X+−

G3(x)
r2

0

]
, (28a)

σ−

µ
=−

RA

r0S

(
X+− x
x+− x

)�( x−− x
x − X−

)�[
(1+ T )G1(x)− T x−−

G3(x)
r2

0

]
, (28b)

S =
√
(γ N cosψ)2+ N 2

3 . (28c)

Equation (28) involves contact zone parameters (X±, x±). These can be determined by satisfying auxil-
iary conditions that must be imposed on the solution.

Auxiliary conditions

Because the die is not flat-bottomed, contact zone traction should be continuous at the zone boundaries:

σ±(X±, ψ)= σ±(x±, ψ)= 0. (29a)

Continuity of the contact zone contour functions (=, f ) requires that

X+(π/2)+ X−(−π/2)= 0, x+(π/2)+ x−(−π/2)= 0. (29b)

In light of (C1), (C2), (C3a) and (C4) in Appendix C, imposing (29) on (28) gives

σ+

µ
=

RA

S

(
z− z−
z− Z−

)�( Z+− z
z− z+

)�
(Z+− z)[T − (Z++ z−+�l)(z− z−)], (30a)

σ−

µ
=

RA

S

(
Z+− z
z+− z

)�( z−− z
z− Z−

)�
(z−− z)[T − (Z++ z−+�l)(Z+− z)]. (30b)

In (30) Equations (B3), (C2) and (C5) are used to introduce dimensionless parameters

z =
x
r0
, Z± =

X±
r0
, z± =

x±
r0
, (31a)

l+ = L+/r0 =
1
2(l + l̄), l− = L−/r0 =

1
2(l − l̄), (31b)

l̄ = 0 (|ψ | = π/2). (31c)

Here L± is the thickness of the two contact zone ring segments measured along a line that passes through
x = 0 at angle |ψ | ≤ π/2. Under the reasonable assumption that the contact zone ring is “thin” (l±� 1),
imposition of (29a) is shown in Appendix C to give the valid approximations

Z+ = 1+ 1
2�(T l − l − l̄), z+ = 1+ 1

2 [�T l − (1+�)(l + l̄)], (32a)

z− =−1+ 1
2�(T l − l + l̄), Z− =−1+ 1

2 [�T l − (1+�)(l − l̄)], (32b)

Z++ z−+�l =�T l. (32c)
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The resultant of contact zone traction must be the compressive force F3 on the die:∫∫
C
σ(x1, x2) dx1 dx2 = r2

0

∫
9

dψ
[ ∫
−

|z|σ−(z, ψ) dz+
∫
+

|z|σ+(z, ψ) dz
]
=−F3. (33)

Affixed symbol ± now signifies integration over range z+ < z < Z+ and Z− < z < z−. Traction σ±(z, ψ)
should be stationary with respect to F3 [Brock 2012a; 2012b; 2014b]:

δσ± =
∂σ±

∂z
δz+

∂σ±

∂ψ
δψ = 0. (34)

Because (δz, δψ) are arbitrary, (34) requires for |ψ |< π/2 that

∂σ±

∂z
(z, ψ)= 0(z = z∗

±
),

∂σ±

∂ψ
(z∗
±
, ψ)= 0. (35)

The process for obtaining z∗
±

is outlined in Appendix D. In keeping with (32), valid approximations are
sufficient:

z∗
+
= 1+

�

2
(T l−l−l̄)−

2(1+�)−T
2+(1−�)T

l+l̄
2
, (36a)

z∗
−
=−1+

�

2
(T l−l+l̄)−

2(1+�)−T
2+(1−�)T

l−l̄
2
. (36b)

Use of (32) and (36) in (30) give

σ ∗
±

µ
=

RA

2S
�− 2

2+ (1−�)T
[2(1+�)− T ]1+�

[−2�+ (2−�)T ]�
(l ± l̄). (37)

For sliding without surface bonding, the contact zone cannot be in tension. Moreover, the radicals in
(37) must have positive arguments. Thus unilateral constraints are required. Because (RA, S) defined in
(19a) and (28c) are positive for subcritical sliding, these are

−
2

1−�
<

2�
2−�

< T < 2(1+�) < 2. (38)

In view of (25c), therefore, sliding contact by the die has a dynamic steady state only if the difference
in ambient (T0) and die (TC) temperature satisfies (38). Similar phenomena are noted for a flat contact
surface [Jang 2000; 2005] and sliding dies of various profiles in the absence of friction [Brock 2014b].
However, contact zones are simply connected, and restrictions apply only if die temperature exceeds the
ambient value.

The second condition in (35) requires that σ ∗
±

be invariant with respect to ψ . In view of (19), (20),
(25c), (27c), (28c) and (31c), when |ψ | = π/2, we have

�=− 1
2 , T = 0, l̄ = 0,

RA

S
=

2(c2
D − 1)√

c4
D + γ

2
. (39)
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Thus (37) gives two equations for (l, l̄) at any |ψ |< π/2 in terms of the unknown l at |ψ | = π/2. We
identify it as l2, i.e., a measurement taken along the x2-axis, and find that

l =
2(c2

D − 1)S

RA

√
c2

D + γ
2

Ql2, l̄ = 0, (40a)

Q =
2+ (1−�)T

2− T
[−2�+ (2−�)T ]�

[2(1+�)− T ]1+�
. (40b)

A valid approximation to the z-integration in (33) involving (30) can, under (again) the expectation that
(l, l̄)� 1, be obtained. In view of (40a) this leads to an equation for the unknown l2. Introduction of the
integration variable t = c cosψ renders this as

F3

µr2
0
=
π(c2

D − 1)2

c4
D + γ

2
l2
2

∫ c

0

RA dt

S
√

c2− t2

�(1+�)
sinπ�

Q2. (41)

With l2 in hand, the solution process is complete.

Sample calculations

For insight into restriction (38), die-ambient temperature difference is examined along the translating
x1-axis, that is, ψ = 0, TC − T0 =2C . Values of parameter � and the relevant maximum and minimum
2±C defined by (25c) and (38), for subcritical (dimensionless) translation speed c and friction coefficient
γ , appear in Table 1. The half-space is modeled as a generic thermoelastic solid with properties

VS = 3094 m/s, µ= 75 GPa, αV = 89.6(10−6)K−1,

h = 2.1862(10−10)m, h0 = 2.3206(10−9)m, ε = 0.05794,

cD = 2.0, cF = 2.0144, c+ = 3.0856, c− = 2.3151, cA = 0.933.

The effect of die geometry and surface convection is represented by ratio

hB

r0
= 4(10−4).

Generic properties used in [Brock 2009; 2012b; 2014b] represent solids with more pronounced thermal
relaxation. Thus, the dimensionless speeds c± are somewhat larger than the values given above. Table 1
shows that die temperatures that lie below the ambient value are the more restricted. For given friction
level (γ ), the range of allowable 2C decreases as die translation speed (c) increases. For given translation
speed, the range decreases as friction level increases. Equations (25c) and (38) show, however, that
the range will increase when convection ratio hB/r0 is increased. The ranges indicated by Table 1
entries seems narrow, but the governing equations (1)–(4) themselves are based on the assumption that
temperature change in the solid renders a small ratio |θ/T0|.

For insight into contact zone geometry, calculations for ratio l/ l2 are given in Table 2 for the same
generic solid. Parameters (l, l2) are the widths of the ring formed by the contact zone as measured along
lines |ψ | 6= 90◦ and |ψ | = 90◦. In view of (40a), the ring of initial contact

√

x2
1 + x2

2 = r0 (approximately)
bisects these widths. Formulas such as (38) are based on the assumption that (l, l2)/r0� 1. Thus, Table 2
entries show that the contact zone ring generated by compression and die translation is only approximately
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c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5

γ = 0.1
� − 0.4920 − 0.4918 − 0.4915 − 0.4911 − 0.4905
2+C (

◦C) 27.255 26.244 25.715 24.751 23.391
2−C (

◦C) −10.594 −10.193 − 9.978 − 9.588 − 9.041

γ = 0.2
� − 0.4841 − 0.4837 − 0.4831 − 0.4822 − 0.481
2+C (

◦C) 27.682 26.665 26.142 25.184 23.828
2−C (

◦C) −10.456 −10.057 − 9.839 − 9.449 − 8.899

γ = 0.5
� − 0.4604 − 0.4594 − 0.4579 − 0.4558 − 0.4527
2+C (

◦C) 28.954 27.921 27.415 26.468 25.126
2−C (

◦C) −10.04 − 9.646 − 9.422 − 9.027 − 8.473

Table 1. Parameter �, maximum (+) and minimum (−) 2C for (γ, c)(ψ = 0).

l/l2 c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5

γ = 0.1
ψ = 0◦ 1.4247 1.4882 1.5654 1.6984 1.9199
ψ = 45◦ 1.4366 1.4578 1.4936 1.5490 1.6289
ψ = 90◦ 1.0 1.0 1.0 1.0 1.0

γ = 0.2
ψ = 0◦ 1.4243 1.4885 1.565 1.698 1.9194
ψ = 45◦ 1.4356 1.4567 1.4928 1.5481 1.6278
ψ = 90◦ 1.0 1.0 1.0 1.0 1.0

γ = 0.5
ψ = 0◦ 1.4213 1.4850 1.5625 1.6957 1.9179
ψ = 45◦ 1.4295 1.4506 1.4865 1.5417 1.6275
ψ = 90◦ 1.0 1.0 1.0 1.0 1.0

Table 2. Ratio l/l2 for (γ, ψ, c) when 2C = 10◦C (2−C <2C <2
+

C ).

circular. Parameter l2 is the minimum width, but l along the travel direction (ψ = 0) is not the maximum
width. This behavior is consistent with that for the simply connected contact zones considered in [Rah-
man 1996] and [Brock 2012a; 2012b; 2014b]. That is, the contact zone does not replicate the projection
of the die profile onto the surface, and friction and direction and speed of translation are factors. Table 2
data indicate that here the friction effect is not as noticeable as that for translation speed and direction.
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Summary comments

This 3D, thermoelastic study indicates that a simply connected and a ring-like contact zone created
by a sliding die share some characteristics: Die sliding speed and temperature, thermal relaxation and
convection, and friction influence zone shape. The projection of die profile onto the surface may not
adequately describe zone shape. In two respects, they may differ: For the simply connected zone, a
dynamic steady state will not occur if die temperature exceeds ambient temperature by a critical value.
For the ring-like zone, a critical value also exists for a die temperature that lies below ambient temperature.
The influence of friction is less pronounced for the ring-like zone.

A cup-shaped die implies the ring-like contact zone, and an asymptotic transform inversion process
renders solutions in analytic form. The assumption that contact zone size is “small” is manifest here in
terms of ring width, and is used to justify robust, but approximate, expressions for contact zone geometry
parameters. In [Brock 2012b] the asymptotic inversion process highlights solution behavior associated
with the Fourier model [Boley and Weiner 1985]. Here and in [Brock 2014b], the process highlights
behavior associated with the Lord and Shulman [1967] thermal relaxation model. In general, (see [Boley
and Weiner 1985; Wang and Dhaliwal 1993], for example), and corresponds to the inversion process for
the long-time transient solution. The latter is less so, and inversion corresponds to that for the short-time
transient solution.

This work is part of a dynamic steady state study of 3D contact problems on isothermal and thermoe-
lastic half-spaces. Anisotropy is also included, for example, [Brock 2014a]. The dynamic steady state
is simpler to analyze than the transient, and is often sufficient to model sliding contact processes [Bayer
1994; Blau 1996].

The study makes use of exact expressions for multiple integral transforms associated with a related
unmixed boundary value problem. The basis is Cartesian, but the inversion process — whether exact or
asymptotic — introduces quasipolar coordinates. This hybridization produces expressions that lead read-
ily to the formulation of the mixed 3D contact problem in terms of classical singular integral equations
[Erdogan 1978]. Axial symmetry is not required.

The study — including this work — does involve contact zones for which the singular integral equa-
tions hold over the span of the zone, in whatever direction that span is taken. Inflections in contact zone
contour, or multiple “holes” in the zone, create equation forms that are span-dependent. However, this
complication need not preclude use of the basic approach.

Appendix A

An expression for displacement u3 when x3 = 0 can be obtained from (12b), (14a), (17c) and (21) in an
explicit form:

u3 =−
1
π

∫
9

N3

µπRA
dψ ×

[ ∫ η−

N−
+

∫ N+

η+

]
dη
∫ X+

X−

σ(ξ, η)

ξ − x
dξ +

∫ η+

η−
dη
[ ∫
−

+

∫
+

]
σ(ξ, η)

ξ − x
dξ

+
αV

hB

∫
9

K
πRA

(A−− A+) dψ ×
[ ∫

η−

+

∫
η+

]
dη
∫ x

X−
θC(ξ, η) dξH(X+− x)

+

∫ η+

η−
dη
[ ∫
−

H(x−− x)+
∫
+

H(X+− x)
]
θC(ξ, η) dξ + (continued)
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+

∫
9

N cosψ
µπRA

dψ ×
[ ∫ η−

N−
+

∫ N+

η+

]
dη
∫
−

τ1(ξ, η)δ(ξ − x) dξ

+

∫ η+

η−
dη
[ ∫
−

+

∫
+

]
τ1(ξ, η)δ(ξ − x) dξ

+

∫
9

N sinψ
µπRA

dψ ×
[ ∫ η−

N−
+

∫ N+

η+

]
dη
∫
−

τ2(ξ, η)δ(ξ − x) dξ

+

∫ η+

η−
dη
[ ∫
−

+

∫
+

]
τ2(ξ, η)δ(ξ − x) dξ. (A1)

Here affixed symbol ± indicates that integration is over the range x+ < ξ < X+ and X− < ξ < x−. For
(x1, x2)∈C Cauchy principal value integration (vp) is necessary when x lies the range of ξ -integration for
σ . In corresponding fashion ξ -integration of (τ1, τ2) is replaced with τ1(x, η) and τ2(x, η), respectively.

Appendix B

Application of Cauchy theory to integrals (26a) and (26b) leads to the result

G N (x)= x N
(

x − X−
x − x−

)�( x − x+
X+− x

)�
cosπ�+

sinπ�
π

I+(x N )

G N (x)= x N
(

x+− x
X+− x

)�( x − X−
x−− x

)�
cosπ�+

sinπ�
π

I−(x N ).

(B1)

In (B1) we have

G0(x)= 1, (B2a)

G1(x)= xG0(x)+�L , (B2b)

G2(x)= xG1(x)+ 1
2�(�L2

− L2
+
− L2

−
)+�(X+L++ x−L−), (B2c)

G3(x)= xG2(x)+�[X+L+(X++�L − L+)+ x−L−(x−+�L − L−)] + 1
6�(1−�)(2−�)L

3.

(B2d)

In (B2) the lengths are

L = L++ L−, L+ = X+− x+, L− = x−− X−. (B3)

Terms L± give the thickness of the two sides of the contact zone ring measured along the line passing
through x = 0 at a given angle −π/2<ψ < π/2.

Appendix C

Because �< 0, (28) shows that (29a) is satisfied only if

X++ (1+ T )L −
G3(X+)

r2
0
= 0, x−+ (1+ T )L −

G3(x−)
r2

0
= 0. (C1)
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At this point it is convenient to introduce dimensionless parameters

z =
x
r0
, Z± =

X±
r0
, z± =

x±
r0
, l =

L
r0
, l± =

L±
r0
. (C2)

In light of (B2) and (B3), (C1) can be written as

Z++ (1+ T )l −G3(Z+)= 0, z−+ (1+ T )l −G3(z−)= 0, (C3a)

G1(z)= z+�l, (C3b)

G2(z)= zG1(z)+ 1
2�(�l2

− l2
+
− l2
−
)+�(Z+l++ z−l−), (C3c)

G3(z)= zG2(z)+�[Z+l+(Z++�l − l+)+ z−l−(z−+�l − l−)] + 1
6�(1−�)(2−�)l

3. (C3d)

Either of the equations in (C3a) can be replaced by the difference in the two:

Z2
+
+ z2
−
+ Z+z−+�l

(
Z++ z−+

�l
2

)
+�

[
l+
(

Z+−
l+
2

)
+ l−

(
z−−

l−
2

)]
− 1= 0. (C4)

Equation (C3a) are coupled equations for (Z+, z−) in terms of (dimensionless) contact zone ring thick-
ness (l, l±). Parameters (z+Z−) then follow as

z+ = Z+− l+, Z− = z−− l−. (C5)

Because (C4) is quadratic, it is not difficult to rewrite (C3a) as uncoupled sixth-order equations for Z+
and z−. For small deformation, however, (23b) implies that the ring is “thin”, with mean radius r0. That
is, l±� 1 and we assume that Z+ ≈ 1+ P+(l±)+ O(l2

±
, l+l−) and z− ≈−1+ P−(l±)+ O(l2

±
, l+l−). It

can then be shown that (C3a) and (C5) give

Z+ ≈ 1+�
(T

2
l − l+

)
, z− ≈−1+�

(T
2

l − l−
)
. (C6)

Parameters (l, l±) are not independent, so it is convenient to use (l, l̄), where

l = l++ l−, l̄ = l+− l−. (C7)

Then (C5) and (C6) give

l± = 1
2(l ± l̄), (C8a)

Z+ ≈ 1+ 1
2�(T l − l − l̄), z+ ≈ 1+ 1

2 [�T l − (1+�)(l + l̄)], (C8b)

z− ≈−1+ 1
2�(T l − l + l̄), Z− ≈−1+ 1

2 [�T l − (1+�)(l − l̄)]. (C8c)

In view of (25c) and (27c), Equation (C8) indicates that condition (29b) is satisfied when

l̄ = 0 (|ψ | = π/2). (C9)

Appendix D

Use of (28a) in the first equation in (35) gives the fifth-order equation for z∗
+

:
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(z∗
+
− z+)(Z+− z∗

+
)(z∗
+
− Z−)(z∗+− z−)2

+ (z∗
+
+�T l)(z∗

+
− z−)(Z+− z∗

+
)(z∗
+
− z+)[z∗++�z−− (1+�)Z−]

− (z∗
+
− z−)(z∗+− Z−)[z∗++�Z+− (1+�)z+]

+ T [�(z+− Z+)(z∗+− z−)(z∗+− Z−)+�(Z+− z−)(z∗+− z+)(z∗+− Z−)]

+ T [�(z−− Z−)(z∗+− z+)(z∗+− z−)− (z∗+− z+)(z∗+− z−)(z∗+− Z−)] = 0. (D1)

In the expectation that (l, l̄)� 1, approximations (C8) and z∗
+
≈ 1+ P∗(l, l̄) are employed in (D1), with

result

z∗
+
≈ 1+

�

2
(T l−l−l̄)−

2(1+�)−T
2+(1−�)T

l+l̄
2
. (D2a)

In similar fashion use of (28b) in (35) gives

z∗
−
≈−1+

�

2
(T l−l+l̄)−

2(1+�)−T
2+(1−�)T

l−l̄
2
. (D2b)
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