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BUCKLING OF TWO-PHASE INHOMOGENEOUS COLUMNS AT
ARBITRARY PHASE CONTRASTS AND VOLUME FRACTIONS

MOHAMMED G. ALDADAH, SHIVAKUMAR I. RANGANATHAN AND FARID H. ABED

Buckling is an instability encountered in a wide variety of problems, both in engineering and biology.
Almost all engineering structures are designed with adequate safety factors to prevent failure due to
buckling, yielding or dynamic loads. In a classical sense, design for buckling is done by carefully
controlling the modulus of elasticity, moment of inertia and the length of the structure. Further, such an
approach assumes the material to be homogeneous and does not generally account for the microstruc-
tural details of the column. In this paper, we study the buckling of inhomogeneous columns with a
two-phase checkerboard microstructure. Monte Carlo simulations are used to generate microstructures
with arbitrary volume fractions and phase contrasts (ratio of the modulus of individual phases). An
analytical form is obtained for the ensemble averaged critical buckling load based on the results of over
18,000 eigenvalue problems at arbitrary volume fractions, phase contrasts and distributions. Further,
microstructural realizations that correspond to the highest buckling load (best design) and the lowest
buckling load (worst design) are identified and the corresponding distribution of individual phases is
determined. Finally, the statistical nature of the critical buckling load is discussed by computing the
statistical moments that include the mean and coefficient of variation.

1. Introduction

Buckling is an instability phenomenon that leads to failure of slender members typically subjected to
compressive loads. Perhaps the most widely used criterion for the buckling instability is Euler’s buckling
solution, which predicts the maximum axial compressive load that a slender, homogeneous and ideal
column can carry. This classical result states that the critical buckling load is directly proportional to
the modulus of elasticity, area moment of inertia, boundary conditions, and is inversely proportional
to the square of the column length. This result is limited to long columns and does not account for
material inhomogeneity. In reality, inhomogeneous materials are ubiquitous in nature and most materials
exhibit inhomogeneity when the microstructural details are taken into account. Such materials can also
be engineered to design columns with performance better than their homogeneous counterparts (for
instance using 3D printing to create a functionally graded microstructure). Thus, there is an inherent
need to understand the effect of material inhomogeneity on the overall response of such columns.

Although the buckling of inhomogeneous and functionally graded columns is still an ongoing area
of research, there have been a few important studies that are noteworthy. Elishakoff and Rollot [1999]
investigated columns with variable stiffness. In their study, Euler’s buckling equation was modified to
allow for variable stiffness across the length of the material. Then, using a preselected variable stiffness,
the modified Euler equation was solved to obtain the critical buckling load. As a continuation of their
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study, Elishakoff [2001] posed the same problem as an inverse buckling problem. The inverse method
determined the stiffness distribution k(x) and the critical buckling load P for a nonuniform beam with
specified boundary conditions by using a preselected function for the buckling mode. Such a method
produces results for a certain class of inhomogeneous materials, yet does not provide exact solutions for
general heterogeneity.

Li [2001] derived a solution for the buckling load of nonuniform columns subjected to concentrated
axial and distributed loads. In this approach, the governing equations were initially reduced using func-
tional transformation and later solved using Bessel functions. The analytical solution provided results for
twelve different cases that are important in engineering applications, such as high-rise buildings subjected
to distributed loads. In yet another study, Huang and Li [2012] presented an analytical approach to
determine the critical buckling load of a nonuniform column with or without continuous elastic restraint.
Their study identified an optimal ratio between the radius in the middle of the cylinder and the radius at
the end for maximum carrying load capacity.

Altus et al. [2005] introduced a new method for obtaining the buckling load analytically for linear in-
homogeneous materials using the functional perturbation method (FPM). According to them, this method
provided more accurate results for linear inhomogeneous materials than the conventional Galerkin and
Rayleigh–Ritz methods. Along similar lines, Huang and Luo [2011] derived a solution for the buckling
of inhomogeneous beams by using power series to represent the mode shapes. The power series method
used was illustrated by studying a composite beam under various end supports. In addition, Morimoto
and Tanigawa [2006] investigated the buckling of inhomogeneous rectangular plates subjected to uniform
in-plane shear. In their study, an inhomogeneity parameter was introduced which in turn contributed to
the bending rigidity. Also, as the inhomogeneity parameter was increased, the buckling load increased,
whereas the buckling mode shape was unaffected. Furthermore, Earls [2007] emphasized the numerical
limitations of using finite element modeling and eigenvalues in the solution of buckling equations. The
limitations included differing results for the same structures using different software packages, and the
stability of the results. This indicated the necessity to carefully assist the finite element solution with
closed form analytical solutions or experiments wherever possible.

More recently, Li et al. [2011] solved the buckling equation for composite nonuniform columns with
distributed axial loads or tip forces and used the solution to tailor materials such that the ratio of the
buckling load to the weight is maximized for axially graded inhomogeneous composite columns with
uniform cross-section. The optimization technique was performed on a column with a clamped end and a
free end and resulted in the need to increase material density around the free end to increase the maximum
load carrying capacity. Also, Singh and Li [2009] formulated a transcendental eigenvalue problem for
elastically restrained functionally graded columns. In the problem they approximated a nonhomogeneous
column with a piecewise function with constant geometrical and material properties. The resulting eigen-
value problem was then solved using a new numerical algorithm with different boundary conditions.

This paper presents a new study investigating the buckling capacity of inhomogeneous columns with
two-phase checkerboard microstructures at arbitrary phase contrasts and volume fractions. To the best
of our knowledge, the buckling of such two-phase checkerboard columns has not been investigated in
the past. The microstructure of this column is made up of two materials with very different elastic
moduli. A Monte Carlo technique is used to generate checkerboard microstructures at arbitrary phase
contrasts, volume fractions and spatial distributions of the phases. After generating the microstructure,
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the eigenvalue problem is then solved numerically using linear perturbation analysis that is implemented
in the commercial finite element software ABAQUS [2004]. This procedure is repeated for all microstruc-
tural realizations, with the following objectives: (i) determine the critical buckling load for checkerboard
columns as a function of the volume fraction; (ii) study the effect of phase contrast on the critical buckling
load; (iii) identify the microstructural realizations (spatial distribution of individual phases) that result in
achieving the highest and the lowest buckling loads for a given volume fraction.

2. Problem formulation

2.1. General buckling equation. The governing equation for the buckling of an inhomogeneous long
column is given by the equation

E(x)I
∂2v

∂2x
+ Pcrv = 0, (1)

where E(x) indicates the spatial dependence of the modulus of elasticity, I represents the area moment
of inertia, v is the transverse deflection and Pcr is the critical buckling load. It is well-known that for a
homogeneous column with E(x) = E , the critical buckling load is given by Pcr = Cπ2 E I/L2. Here,
C is a constant representing the type of boundary condition and L is the column length.

In the present study, the microstructure is a two-phase material with a random checkerboard mi-
crostructure. Such a random checkerboard can be considered as a set of deterministic checkerboards:
B= {B(ω) : ω ∈�} (see [Ostoja-Starzewski 1998]). Here, � is the realization space (�= 2100) and ω is
the specific microstructural realization under consideration. For a two-phase checkerboard column with
phases 1 and 2, B(ω) = B1 ∪ B2, with the local moduli of elasticity given by E1 and E2, respectively.
Mathematically, the microstructure can be defined completely using the indicator function defined as
[Ostoja-Starzewski 1998]

χ1(Ex, ω)=
{

1 if Ex ∈ B1,

0 if Ex ∈ B2.
(2)

Using (2), the local modulus of elasticity at any point in the column can be identified as follows:

E(Ex, ω)= χ1(Ex, ω)E1+ [1−χ1(Ex, ω)]E2, (3)

where Ex is a position vector and E1 and E2 are the moduli of elasticity of the individual phases. The
volume fraction of phase 1 can be simply recovered by the ensemble averaging of the indicator function

α = 〈χ1〉. (4)

Due to the randomness introduced in the distribution of the individual phases as well as the volume
fraction, it is difficult to find an analytical solution to (1) that simultaneously satisfies continuity of
displacement and tractions between the individual phases. Thus, in this study we use Monte Carlo runs
along with finite element analysis to solve (1) and obtain the critical buckling load for each realization.

2.2. Finite element modeling using linear perturbation analysis. As mentioned previously, a Monte
Carlo technique is employed to generate checkerboard microstructures at arbitrary phase contrasts, vol-
ume fractions and the spatial distributions of the phases. After generating the microstructure, the eigen-
value problem is then solved numerically using linear perturbation analysis using the finite element
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Figure 1. Two-phase checkerboard column with circular cross section.

software ABAQUS due to its versatility in handling such problems. A linear perturbation analysis step
provides the linear response of the system about the base state, and estimates elastic buckling load
via eigenvalue extraction. Eigenvalue buckling is generally used to approximate the critical buckling
loads of stiff structures. Usually the loading on stiff structures is either an axial or membrane loading.
The response to such loading involves small deformation before buckling. A simple example of stiff
structure is the Euler column, which responds very stiffly to a compressive axial load until a critical
load is reached, when it bends suddenly and exhibits a much lower stiffness. However, estimation using
general eigenvalue extraction is useful, especially if the perturbation loads are elastic before the buckling
occurs. The eigenvalue solution is obtained by making the model stiffness matrix singular. The model
matrix is then described by K i jvi

= 0, where K i j is the tangent stiffness matrix and vi is the displacement
matrix [ABAQUS 2004].

In the proposed study, a column with a circular cross-section with diameter 50 mm and length of
4000 mm was used for the proposed analysis (see Figure 1). The dimensions were chosen such that
elastic buckling is always ensured. Pinned connections were considered for both ends. The column is
modeled with different material configurations for each simulation using deformable Timoshenko beam
elements coded as B21 in ABAQUS. This type of line element accounts for the transverse shear stress.
This is because Schnabl and Planinc [2011] have demonstrated that the transverse shear stress does affect
the critical buckling load. Also, the B21 element is of much relevance to the current study as it provides
better results for slender beams [ABAQUS 2004]. As for the boundary condition used in the FE modeling,
the pin-pin connection was modeled by not allowing deformation in the axial and transverse directions
for the bottom end. The restriction of deformation was only applied on the transverse direction for the
top end to allow loading in the axial direction.

2.3. Materials combinations. In each analysis step, the column consists of two materials with different
elastic modulus (E). The choice of the two materials used is based on the contrast, which is the ratio
between the largest and the smallest elastic moduli, and can be calculated using the equation

k = E1/E2. (5)
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Material 1 Material 2 E1 (GPa) E2 (GPa) k

Steel Magnesium 200 45 4.44
Steel Wood 200 11 18.2

Magnesium Wood 45 11 4.1
Copper Aluminum 168 69 2.43

Table 1. Material combinations.

Table 1 presents the material combinations considered in the present study. The choice of materials
was purely on the basis of providing different levels of contrast varying from very low to very high
ratios. Columns made of steel and wood have the highest contrast, while columns made of aluminum
and copper hold the lowest contrast. The other two conditions have almost equal contrasts. The use of a
similar contrast helps in identifying behavioral similarities of the material combinations.

3. Methodology

For each analysis realization, the column is discretized into 100 segments, and each segment is assigned
a random combination of E1 and E2. The volume fraction is changed by increasing the fraction of E1

from 0% to 100% in increments of 10%. For each value of the E1 volume fraction (10%, . . . , 90%),
the numerical simulations are performed 500 times to account for material randomness; moreover, the
simulations are repeated for each material combination, with values of contrast k equal to, respectively,
2.43, 4.1, 4.4 and 18.2. Thus a total of 9× 4× 500= 18,000 runs were conducted, in order to determine
the critical buckling load and to identify the microstructural realizations (spatial distribution of individual
phases) that resulted in the highest and the lowest buckling loads for each volume fraction.

Figure 2 highlights the methodology employed in the current study. In step (a), a particular realization
of the checkerboard is sampled randomly and its finite element model is set up in ABAQUS. The pin-pin

Figure 2. Methodology employed: microstructure of the column (left), buckling mode
shape (middle), and statistical moments (right).
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boundary conditions are then applied at the column ends. Next, in step (b), a concentrated unit load was
applied and the eigenvalue problem was solved to obtain the mode-one critical buckling load and the
corresponding mode shape. The procedure was repeated over 18,000 times in order to cover the entire
realization space.

Subsequently, in step (c), the results were compiled to determine the minimum, maximum and en-
semble averaged buckling load for each volume fraction and contrast. Also, the spatial distributions of
the phases corresponding to the maximum and minimum buckling load were determined to identify the
microstructure that corresponds to the best and worst designs, respectively. Finally, statistical analysis
of the results was performed to obtain various statistical moments such as the mean and coefficient of
variation.

4. Results and discussion

4.1. Critical buckling load of the checkerboard column as a function of the volume fraction. Prior to
a discussion on the numerical results, it is convenient to define a rescaled buckling load, as follows:

Pc =
PcrL2

π2 I
, (6)

where Pcr is the numerically obtained mode-one critical buckling load and Pc is the rescaled buckling
load (typically in GPa). An alternative interpretation of Pc would be the equivalent effective elastic
modulus of the checkerboard column. Depending upon the context, Pc could either represent the mean,
minimum or the maximum rescaled buckling load.

Figure 3, left, presents the rescaled buckling load (average, maximum and minimum) for a checker-
board column made up of steel and wood. The modulus of elasticity for wood is 11 GPa and that of
steel is 200 GPa, and thereby the contrast of the microstructure is k = 18.2. It is evident from this figure
that the lower-modulus material (wood) affects the rescaled buckling load significantly more than the
material with higher modulus (steel). Even at 50% volume fraction, the average value of the rescaled
buckling load is only about 20.85 GPa. Similarly, the rescaled buckling load (average, maximum and

steel and wood microstructure (k = 18.2) steel and magnesium microstructure (k = 4.44)

Figure 3. Rescaled buckling load (average, maximum and minimum) as a function of
the volume fraction, for the first two material combinations.
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magnesium and wood microstructure (k = 4.1) ductile iron and aluminum (k = 2)

Figure 4. Rescaled buckling load (average, maximum and minimum) as a function of
the volume fraction, for the last two material combinations.

minimum) for checkerboard columns made up of steel and magnesium (k = 4.44) and magnesium and
wood (k = 4.1) are plotted in Figure 3, right, and Figure 4, left. The material properties for the individual
phase are given in Table 1. It is evident from these plots that as the volume fraction of the stiffer material
increases, the rescaled buckling capacity of the column increases. At a volume fraction of 50%, the
rescaled buckling loads are 73.46 GPa and 17.68 GPa, respectively. Further, it can be noticed that the
trends for the average, minimum and maximum rescaled buckling loads are identical for microstructures
with similar contrasts. Finally, the rescaled buckling load (average, minimum and maximum) for ductile
iron and aluminum is plotted in Figure 4, right. This particular microstructure has a contrast of 2.43.

Based on the numerical results obtained, it is possible to infer the analytical form for the average
value of the rescaled buckling load as well as the ensemble averaged critical buckling load, as given in
the equations

〈Pc〉 =
E1 E2

αE2+ (1−α)E1
(rescaled ensemble averaged buckling load), (7a)

〈Pcr〉 =
π2 I
L2

E1 E2

αE2+ (1−α)E1
(ensemble averaged buckling load). (7b)

Here, E1 and E2 are the individual phase elastic moduli, α is the volume fraction of the phase 1, and the
operator 〈 · 〉 indicates the ensemble averaging.

4.2. Effect of phase contrast on critical buckling load. In order to clearly understand the effect of
phase contrast, the notion of normalized buckling load is introduced. This is obtained by normalizing
the maximum and minimum buckling load for each material combination with the ensemble averaged
buckling load for the given combination:

Pn = Pcr/〈Pcr〉. (8)

In Figure 5, left, the normalized buckling load is plotted as a function of contrast and volume fraction
of the stiffer phase. When the volume fraction is 0% or 100%, all the curves converge to Pn = 1. This is
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Figure 5. Normalized buckling load (maximum and minimum) as a function of the
volume fraction of the stiffer phase. Left: differing contrasts. Right: similar contrasts.

because the microstructure is essentially homogeneous at these volume fractions. It is also evident from
this plot that with increasing contrast, the curves for maximum and minimum normalized buckling loads
are farther apart. Furthermore, from Figure 5, right, it is evident that these curves are identical when the
contrasts are similar. Based on these observations, one can postulate the following functional form for
the normalized buckling load:

Pn = f (α, k). (9)

4.3. Spatial distribution of individual phases. In order to determine the spatial distribution of individ-
ual phases corresponding to the maximum (best column design) and minimum (worst column design)
buckling loads, the corresponding buckling mode shapes are plotted as a function of volume fraction, as
shown in Figure 6. The top panel corresponds to a contrast of 2.43 and the bottom one to a contrast of
18.2. From these graphs, it is evident that for maximizing the buckling load, it is desirable to distribute

contrast k = 2.43

contrast k = 18.2

Figure 6. Buckling mode shapes corresponding to the maximum and minimum buckling
load as a function of volume fraction.
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Figure 7. Data statistics: coefficient of variation.

the phase with higher stiffness in the middle of the column and vice versa for the minimum buckling
load. This essentially implies that by allocating the phase with higher stiffness in the region with higher
deflection, the buckling capacity is enhanced.

4.4. Statistical analysis. The numerical simulations performed in this study resulted in 18,000 simula-
tions, and the pool of results for the buckling load is best analyzed using statistical tools that include
the mean and coefficient of variation. The result on the mean value of the buckling load has been
extensively discussed in the previous sections. The coefficient of variation for the data set is plotted
as a function of contrast and volume fraction in Figure 7. As expected, it is zero for a homogeneous
material that corresponds to 0% or 100% volume fraction. In general, as the contrast increases, the
coefficient of variation also increases. It is interesting to note that the coefficient of variation for the
steel-magnesium checkerboard (k = 4.44) and that of the magnesium-wood microstructure (k = 4.1) are
about the same when the magnesium volume fraction is kept the same. Finally, it is worthwhile to note
that the determination of higher moments such as the skewness and kurtosis would require significantly
more realizations and would be computationally very expensive.

5. Conclusion

In this paper, a Monte Carlo technique was used to generate checkerboard microstructures at arbitrary
phase contrasts, volume fractions and spatial distributions of the phases. Subsequently, the resulting
eigenvalue problems were solved numerically in ABAQUS using linear perturbation analysis. The maxi-
mum, average and the minimum values for the critical buckling load were determined and the correspond-
ing buckling mode shapes were identified under pin-pin boundary conditions. It was demonstrated that
the ensemble averaged rescaled buckling load 〈Pc〉 was simply the volume-fraction weighted harmonic
mean of the individual phase elastic moduli. Also, the normalized buckling load Pn was identical for
microstructures with similar contrasts. Furthermore, it was demonstrated that distributing the phase with
higher stiffness in regions of higher deflections (middle) maximizes the buckling capacity of the column
and vice versa. Finally, a statistical analysis on the numerical results was conducted by studying the mean
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and coefficient of variation as a function of contrast and volume fraction. To the best of our knowledge,
this is the first time an analytical result has been proposed for the critical buckling load of a column with
a random checkerboard microstructure.
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A NONLINEAR STRESS-STRETCH RELATIONSHIP
FOR A SINGLE COLLAGEN FIBRE IN TENSION

FRANCESCO GENNA

A new stress-strain equation for a single, stretched collagen fibre (bundle) is developed, based on the sta-
tistical description of the fibre microstructure, down to the tropocollagen molecule level. The derivation
follows previous work of Annovazzi and Genna (2010), but the modifications reported here both simplify
and improve the final result. The model is governed by physically meaningful parameters. Comparisons
between the model predictions and some available experimental results suggest that the proposed model
could be of value in bioengineering applications.

1. Introduction

In [Annovazzi and Genna 2010] (hereafter referred to as [AG]), a constitutive model for a single collagen
fibre was derived on the basis of assumptions concerning both the fibre microstructure and the mechanical
behaviour of the tropocollagen molecule. The present paper aims at simplification, improvement, and
better internal consistency with respect to what done in [AG].

The main motivation for this work is the relative scarcity of constitutive models for the stress-stretch
behaviour of a single collagen fibre in tension. The most commonly adopted assumptions for the collagen
fibre constitutive law are in fact still not fully adequate. They might be either unrealistic, such as linear
elasticity, or purely phenomenological, such as linear or nonlinear viscoelasticity, or hyperelasticity,
based on the definition of potential functions that depend on parameters having no physical meaning.
One reason for this could be the fact that the interest is often focussed on tissue analysis, so complicated
in itself that it leaves little space for an accurate description of the underlying constituents, i.e., the single
fibres. Examples of this type of difficulty can be found in [Grytz and Meschke 2009; Cacho et al. 2007;
Wang et al. 1997; Limbert 2011].

To the best of our knowledge, only one attempt — that of [AG] — has been made at deriving a micro-
structurally based stress-stretch law for a single collagen fibre. This could cover the whole range of
possible tensile loading, and described the microstructure of the fibre itself, which includes several levels
of subcomponents, down to the molecular level [Kastelic et al. 1978]. The fibre stress-strain relationship
presented in [AG] was based on the statistical description of the crimp properties of all the internal
levels — four, according to the available information — of the fibre itself. The results obtained in [AG],
however, could be improved in several respects:
• in the absence of data concerning the tropocollagen molecule, the equation for the elastic behaviour

at the molecular level was taken, in [AG], from a model developed for a DNA molecule, an extension
of the so-called WLC model of [Bustamante et al. 2000];

Work done within a research project financed by the Italian Ministry of Education and Research (MIUR)..
Keywords: collagen fibre, constitutive modelling, microstructure, statistical analysis.
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• the failure of the tropocollagen molecule was described in [AG] on the basis of uncertain force data
concerning the DNA molecule;

• the assumptions regarding the statistics of the waviness at the molecular level were inconsistent, in
[AG], which resulted in needless analytical complications;

• crosslinking was ignored;

• all the subfibrils, at all the sublevels, were assumed to be continuous and stress-carrying, ignoring
the existence of both interrupted subfibrils and of extra fibrous matter/voids;

• all the probability density functions for all the random variables, in [AG], were taken as Gaussian;
this created some inconsistency in the definition of the governing parameters.

Here, a modification of the model of [AG] is presented. It overcomes the quoted problems and, at the
same time, it is much simpler, and is better suited to be adopted even in large-scale applications, as
shown in an accompanying paper [Genna and Paganelli 2014]. The main features of the constitutive
model described here are of two types: those that follow what was already presented in [AG], and those
which modify and improve the previous approach. In summary:

Retained features:

• a collagen fibre, or bundle, is seen as having an internal hierarchy of 4 sublevels of wavy or crimped
subfibres, arranged in parallel at each sublevel; the waviness at each level is treated as a random
variable;

• all the random variables are considered as stochastically independent;

• no compressive or bending stiffness is considered;

• the tropocollagen molecules are seen as forming wavy cables, of which the stress-carrying ones are
treated as continuous, running from end to end of the bundle, and having an elastic-brittle behaviour.

New features:

• a bilinear elastic law is adopted for the tropocollagen molecule, as suggested in [Buehler and Wong
2007];

• the statistical aspects of the molecular failure are based on a simpler yet more consistent assumption,
expressed in terms of displacement instead of force;

• crosslinking is accounted for;

• a beta probability density function is chosen for the statistics of all the random quantities;

• account is taken of the possible coexistence, at any sublevel, of stress-carrying and non-stress-
carrying material.

The model herein proposed is valid for any material — and specially for soft tissues or tissue compo-
nents — whose internal microstructure is made by nested wavy thin cables. Its effectiveness, in the
context of collagen, is tested by comparing its predictions with the results of experiments available in
the literature for single collagen fibres. An indirect verification is also presented, obtained by inserting
the new fibre stress-stretch equation into a previously developed model for the mechanical behaviour in
tension of the periodontal ligament (PDL) [Genna 2006].
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2. Theory: the constitutive model

Figure 1 shows a sketch of the assumed hierarchy of subcomponents inside a collagen fibre, based on
the description presented, for instance, in [Kastelic et al. 1978]. This follows [AG]; Figure 1 also shows
the approximate geometrical scales of each level. The nomenclature adopted here is the following:

• Collagen fibre (or bundle, or fascicle): this is called here “level 0”, and it is the component for
which we desire to obtain a stress-stretch equation, starting from its uncoiled, unstretched configu-
ration. Its characteristic diameter is, for collagen types I, II, and III, of about 100µm. The uncoiled,
unstretched length of the fibre, inside the proposed model, is taken as deterministic, denoted by Lb.

• Fibril: this is called here “level 1”, and has a typical diameter of about 10 to 500 nm. This component
exhibits a typical banded structure, with a period of about 65 nm, that derives from the features of
the molecular arrangement [Petruska and Hodge 1964].

• Subfibril: this is called here “level 2”. According to [Kastelic et al. 1978], this entity, of diameter
ranging from 10 to 20 nm, has been described in previous literature; it seems hard to be distinguished
from the next one (see also [AG]).

• Microfibril, formed by five tropocollagen units joined together: this is called here “level 3”, and has
a typical diameter of 3.5 nm;

• Tropocollagen molecule, having a diameter of 1.5 nm: this is the lowest level considered here, i.e.,
“level 4”.

Level 3: microfibril
8= 3.5 nm

Level 2: subfibril
8= 20 nm

Level 4: molecule
8= 1.5 nm

Level 1: fibril
8= 100 nm

Level 2: subfibril
8= 20 nm

Level 0: fibre bundle/fascicle
8= 100µm

Figure 1. Schematic representation of the internal structure of a fibre-forming collagen
fibre, as proposed for instance in [Kastelic et al. 1978].
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List of abbreviations
Am Molecular cross-section area 1.7671 nm2

fi Volume fraction of fibrous matter in cable i
Fs Molecular force at the end of stiffness stage 2
Fm Molecular force

F4,A Force in cable 4 during molecular stiffness stage 2
F4,B Force in cable 4 during molecular stiffness stage 3

Ks Molecular stiffness in molecular stiffness stage 2 10 pN/nm
Km Molecular stiffness in molecular stiffness stage 3 30 pN/nm
L0,i Coiled end-to-end distance of a cable at level i Random

L0,m Coiled end-to-end distance of a single molecule Random
Lb Unstretched uncoiled length of a collagen fibre

Ld,i Unstretched uncoiled length of a cable at level i Random
Lm Unstretched uncoiled length of a single molecule 301.7 (204.9) nm
M Number of molecules in cable at level 4 Random
N Total number of levels (cables) in the cable microstructure 4 for a fibre of collagen

type I, II, and III
s Molecular displacement range spanned by stiffness stage 2

u1 Deterministic value of the displacement that stretches a collagen fibre
u f Failure molecular displacement Random
u∗f Difference between failure molecular displacement and displacement

at the end of the first (entropic) stiffness stage
ui Displacement of cable at level i starting from situation

when cable i−1 is uncoiled and unstretched
ui Displacement ui corresponding to complete uncoiling,

but with no stretching, of cable at level i
um Molecular displacement starting from rest (coiled) configuration
um Molecular displacement um corresponding to complete uncoiling,

but with no stretching, of a single molecule
us Molecular displacement um corresponding to the end of stiffness

stage 2 of a single molecule Random
X f Crosslink parameter affecting molecular failure

Xks Crosslink parameter affecting the stiffness in molecular stiffness stage 2
Xkm Crosslink parameter affecting the stiffness in molecular stiffness stage 3

yi Ratio between coiled end-to-end distance and unstretched uncoiled
length of cable at level i Random

z4 Product y1 y2 y3 y4 Random
z A Current value of variable z4 at the beginning of molecular

stiffness stage 2 for cable 4
zB Current value of variable z4 at the transition between molecular

stiffness stages 2 and 3 for cable 4
zC Current value of variable z4 at failure for cable 4

zC,0 Value of variable z4 at failure for cable 4 with zero crosslinking
8m Molecular diameter 1.5 nm
σ0 Cauchy stress in a collagen fibre Random
σ e

i Stress in the non-fibrous matter in a cable at level i 0
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Level 0

Level 1

Level 0

Tissue level

u1

Level 1

L0,0

Ld,0 = Lb = L0,1

u0

Figure 2. Symbols adopted for the top two levels in the assumed hierarchy. Level 0 is
the collagen fibre; level 1 is a collagen fibril; u1 is the deterministic input displacement
value, corresponding to actual stretching of the collagen fibre.

In the model presented here, all the stress-carrying subcomponents, at all levels, are assumed to be
continuous wavy cables, running from end to end of the collagen fibre. At each level i , a random number
of stress-carrying extensible cables exist, with a wavy/crimped geometry. They are characterised by their
uncoiled, unstretched length Ld,i , and by their coiled end-to-end distance, denoted by L0,i , never longer
than Ld,i . Both Ld,i and L0,i are defined in an undeformed configuration, taken at the instant when the
upper level, i − 1, is fully uncoiled but unstretched. Figure 2 shows the geometry assumed for the first
two levels, 0 and 1, defined above. A list of all the symbols adopted in the rest of this work is provided
on the previous page for convenience.

The constitutive equation derived here concerns level 0, starting from the instant at which, upon a
prescribed fibre displacement, the fibre has become completely uncoiled. What happens before must be
described at the tissue level, since it concerns geometrical properties of the collagen fibre itself. Therefore,
the displacement of interest here, taken as the main input data of deterministic value, is the one denoted
as u1 in Figure 2, i.e., the displacement that causes an actual stretch in the collagen fibre. We assume
that if u1 ≤ 0, no stress exists in the fibre.

Figure 3 shows the geometrical features of the considered problem at a generic level i . At each
level, the subfibril displacement ui is defined starting from the coiled, unstretched configuration with
end-to-end distance L0,i . For each level i one has

Ld,i = L0,i+1, i = 0, . . . , N − 1, (1)

where N indicates the total number of sublevels in the considered microstructure; for a collagen fibre,
N will always be set equal to 4. Equation (1) implies, as shown in Figure 2, that the deterministic input
length Lb corresponds to

Lb = Ld,0 = L0,1. (2)
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Level i , coiled, unstretched

ui

Level i , uncoiled, unstretched

Level i , uncoiled, stretched

L0,i

Ld,i

ui

Figure 3. Symbols adopted for a generic internal level of the assumed microstructure.

The displacement ui contains a part that uncoils the subcomponent i without stretching it: this part is
denoted by ui , defined as

ui = Ld,i − L0,i ≥ 0. (3)

For each level i , the following nondimensional quantity is defined:

yi =
L0,i

Ld,i
, 0< yi ≤ 1, (4)

i.e., the ratio between the coiled end-to-end distance and the uncoiled, unstretched length of the subfibrils
at that level. The quantities yi are assumed to be random variables, governed by a probability density
function of the beta type [Ross 2004], because of their taking values in the interval [0, 1]. It is assumed
that (i) the quantities yi , for all i , are stochastically independent, and that (ii) a mean value E(yi ) and a
variance Var(yi ) of each yi are both known.

Exploiting (1)–(4), and following the same path taken in [AG] (where, though, a different definition
of the random variables was adopted), the following results can be obtained:

Ld,i =
Lb∏i
j=1 y j

, 1≤ i ≤ N , (5)

ui − ui = u1+ Lb

(
1− 1∏i

j=1 y j

)
, 1≤ i ≤ N . (6)

It is now necessary to define the mechanical behaviour at the tropocollagen molecule level, herein called
“level 4”.
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Single molecule, coiled, unstretched

um

Single molecule,
uncoiled, unstretched

Single molecule,
stretched

Single molecule,
failure point

L0,m

Ld,m = Lm

um

u∗f

u f

Figure 4. Symbols adopted for the displacements of a single tropocollagen molecule.
The uncoiled, unstretched length Ld,m of a single molecule coincides with its contour
length Lm .

Figure 4 shows the geometry and the symbology adopted for a single molecule. Note that all the
symbols previously introduced refer to continuous subcomponents, at all levels, running from end to end
of the collagen fibre. In Figure 4, the subscripts m and f refer instead to a single molecule, and um is
the molecular displacement defined from the coiled, unstretched configuration of a single molecule.

The contour length Lm is the uncoiled, unstretched length of the molecule, usually (but not always)
taken equal to Lm = 301.7 nm (see for instance [Buehler and Wong 2007]). It is the sum of the end-to-end
distance of the coiled molecule, L0,m , with the displacement um necessary to fully uncoil the molecule.
Both these quantities are assumed to be random variables. The displacement u∗f that brings the molecule
from its uncoiled state up to the brittle failure point (see for instance [Bozec and Horton 2005] and
[Buehler and Wong 2007] for experimental evidence of the aspect of a stress-strain curve in tension of
a tropocollagen molecule) is assumed to have a deterministic value; yet, the total failure displacement
u f = um + u∗f , defined as starting from the coiled configuration, is also a random variable.

The mechanical properties of a single molecule are defined on the basis of results presented in [Buehler
and Wong 2007], where three stages are recognised in the tensile force-displacement behaviour: a first
one, of entropic elasticity, up to an axial force of about 10–15 pN; a second one, corresponding to the
uncoiling of the molecule triple helix; and a third stage, where the molecular bonds are stretched, that
ends with brittle fracture, at a displacement u∗f of about 150 nm.

Here, the first stage is neglected, assuming that, for um ≤ um , the molecular force is zero. Next,
a bilinear elastic-brittle force-displacement law is assumed, illustrated in Figure 5. The molecule starts
furnishing stiffness when um > um ; at this instant a second stiffness stage begins, spanning a displacement
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Fm

Fs

Stage 1

Stage 2

Stage 3

Km

Ks

um s
us

u∗f

u f
um

Figure 5. Bilinear force-displacement law adopted for a single tropocollagen molecule.
Fm is the molecular force; um is the molecular displacement, defined from the initial
(coiled) state; u f indicates the brittle failure point. Both s and u∗f are assumed to be
deterministic quantities. Stage 1 corresponds to entropic elasticity, herein neglected.
Stage 2 corresponds to the helix uncoiling phase. Stage 3 corresponds to actual molecular
stretching.

range denoted by s. This stage 2 ends at a displacement us given by

us = um + s. (7)

During this stage 2, for um ≤ um ≤ us the molecular stiffness is denoted by Ks . For us < um ≤ u f the
molecular behaviour is in a third and final stiffness stage, still linear elastic, but governed by a different
stiffness value, indicated by Km .

We assume as deterministic, and known, beside the value of u∗f = u f − um , also (i) the two stiffnesses
Ks and Km , and (ii) the displacement interval s spanning the stiffness stage 2. Also the molecular
diameter 8m is assumed as deterministic and known, of value 8m = 1.5 nm; this value is assumed to
remain constant during the deformation.

The assumed force-displacement law for a single tropocollagen molecule is then as follows:

Fm = 0, um ≤ um (entropic elasticity, neglected);

Fm = Ks(um − um), um < um ≤ us (uncoiling);

Fm = Fs + Km(um − us), us < um ≤ u f = (um + u∗f ) (stretching);

Fm = 0, um > u f (failed),

(8)
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with
Fs = Kss = Ks(us − um). (9)

One needs next to describe the mechanical behaviour of a full cable at the molecular level, assumed
to run continuously from end to end of the considered collagen fibre. This subcomponent is made of a
series of a number M of tropocollagen molecules, given by

M =
Ld,4

Lm
� 1, (10)

which, accounting for (5), can also be written as

M =
Lb

Lm
∏4

i=1 yi
=

Lb

Lmz4
, (11)

where the new random quantity z4 was defined as

z4 =

4∏
i=1

yi , 0< z4 ≤ 1. (12)

In the lack of precise information, it is assumed that the molecules are connected sequentially in a
line which, however, has a waviness whose statistical properties are independent from those of a single
molecule; furthermore, it is assumed that the polymerisation along the whole collagen fibre is equal to
that of the molecule itself, and that both the stiffness and strength of the connection between molecules
are the same as those of the molecule itself.

It is now possible to write the force-displacement equations for a single, continuous cable, at level 4,
on the basis of the molecular equations (8), because the following hold:

u4 = Mum, (13)

u4 = Mum, (14)

u4− u4 = u1+ Lb

(
1− 1

z4

)
, (15)

(see (6)),
F4 = Fm . (16)

Hence, denoting by F4,A and F4,B the forces in molecular stiffness stages 2 and 3, respectively, one has:

F4,A = Ks(um − um)=
Ks

M
(u4− u4)= Ks Lm

[( u1
Lb
+ 1

)
z4− 1

]
, u4 < u4 ≤ us4, (17)

with us4 = Mus ;

F4,B = Fs + Km(um − us)= Fs +
Km

M
(u4− us4)

= Fs + Km Lm

[( u1
Lb
+ 1

)
z4−

(
1+

s
Lm

)]
, us4 < u4 ≤ Mu f ; (18)

and
F4 = 0, u4− u4 ≤ 0 or u4− u4 > Mu∗f . (19)
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From (17) and (18), it becomes apparent that the only random quantity that governs the mechanical
behaviour of each cable at level 4 is z4, defined by (12). The probability density function of z4 cannot be
defined in closed form, but it is assumed to be also a beta function, with known mean value and variance,
that can be computed, for the product of stochastically independent random variables, exploiting the
following expressions:

if x = yi y j , then E(x)= E(yi )E(y j ); (20)

if x = yi y j , then Var(x)= [E(yi )]
2 Var(y j )+ [E(y j )]

2 Var(yi )+Var(yi )Var(y j ) (21)

(see for instance [Goodman 1960; 1962]).
Denoting now by fz4(z4) the probability density function for z4, the expected value of F4, for each

assigned value of the collagen fibre displacement u1, must be computed through an integration over the
admissible values of z4, as follows:

E[F4(u1, z4)] =

∫ 0<zB≤1

0<z A≤1
F4,A(z4) fz4(z4) dz4+

∫ 0<zC≤1

0<zB≤1
F4,B(z4) fz4(z4) dz4 (22)

The integration limits z A, zB , and zC , all deterministic, are to be computed as follows:

• from (15) and (19) one has

F4,A 6= 0 if u1+ Lb

(
1− 1

z4

)
> 0 =⇒ z4 >

Lb

u1+ Lb
= z A; (23)

• from (17) it is seen that the transition from F4,A to F4,B occurs for u4 = us4, i.e., for

u4 = Mus = u4+Ms, (24)

which, recalling (11) and again (15), gives

zB =
Lb

u1+ Lb

(
1+ s

Lm

)
; (25)

• and from (11), (15), and (18) one has

F4,B 6= 0 if u1+ Lb

(
1− 1

z4

)
<

Lb

Lmz4
u∗f =⇒ z4 <

Lb

u1+ Lb

(
1+

u∗f
Lm

)
= zC . (26)

Note that, in order to account for the irreversibility of failure, in the calculation of integral (22) the upper
integration limit zC can not increase with increasing u1, i.e., one must always set dzC/du1 ≤ 0.

It is now possible to introduce into the previous equations some simple modifications in order to
account for the possible presence of crosslinking. For this complex aspect, no attempt is made here at
describing any physical feature of the substructural arrangement. The purpose is to model the main me-
chanical effects of crosslinking in a phenomenological way, through equations void of physical meaning,
but as simple as possible.

The main effects of crosslinking considered herein are (i) the increase of the apparent stiffness of a
single cable (see, for instance, [Thompson and Czernuszka 1995]); (ii) the influence of the brittle failure
of a cable on the surrounding ones.
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The first effect is described in a trivial way: the basic molecular stiffnesses, Ks and Km , are introduced
into the governing equations each multiplied by an independent dimensionless factor, denoted by Xks ≥ 1
and Xkm ≥ 1 respectively.

The second effect of crosslinking is recognised to be of reducing the failure displacement of the whole
collagen fibre. Such a reduction is quite significant, according to [Pins et al. 1997]: non-crosslinked fibres
are reported to fail at a strain (probably Biot, although this is not reported in [Pins et al. 1997]) that can
reach values up to 0.68, whereas crosslinked ones fail at strains of the order of 0.15. This phenomenon
could be explained considering that brittle failure is associated to a sudden release of elastic energy: if
the failed cable is crosslinked to other parallel cables, the surrounding ones might absorb a portion of
the released energy, and fail themselves, thus leading to a premature failure of the whole collagen fibre.

This effect has been taken into account by defining a progressive reduction of the upper integration
limit in (22), i.e., zC of (26). This reduction is proportional to the current value of the input displace-
ment u1 through a new nondimensional parameter X f ≥ 0. We have redefined zC as follows:

zC = zC,0− f (X f , u1),
dzC

du1
≤ 0, with zC,0 =

Lb

u1+ Lb

(
1+

u∗f
Lm

)
, (27)

and with

f (X f , u1)=
2 arctan(u1 X f /Lb)(zC,0− z A)

π
. (28)

These equations, which have no physical basis, when inserted into the governing equations allow one to
obtain the desired effect: with increasing u1, the upper integration limit zC tends to approach the lowest
one, z A. This reflects the progressive disappearance, among the various subcomponents, of the shorter
ones, at a rate that increases with increasing values of the parameter X f .

The expected value of the axial stress in a cable at level 4, i.e., in a cable made by a sequence of
tropocollagen molecules, for a given value of the collagen fibre displacement u1, is then

E(σ4)=
E(F4)

Am
=

4E(F4)

π82
m
. (29)

Elementary homogenisation theory is finally exploited to compute the corresponding expected value
of the macroscopic axial stress in the collagen fibre at level 0 of the assumed hierarchy, as shown in
Figure 1. At each level, in fact, the stress-carrying subfibrils coexist with noncontinuous subfibrils, with
some extra-fibrous (ground) matter, and with no matter at all.

Denote by σ e
i the tensile stress possibly transmitted by the nonfibrous matter at each level i , and by fi

the volume fraction of stress-carrying fibrous matter at each level i . Then fi = A f
i /Ai , where Ai is the

total area of a cable at level i , and A f
i is the area occupied by continuous fibrous matter in that very cable.

Then the elementary homogenisation theory allows one to calculate the average macroscopic stress σ0

at level 0 as follows:

σ0 = E(σ4) f3 f2 f1 f0+ σ
e
3 (1− f3) f2 f1 f0++σ

e
2 (1− f2) f1 f0+ σ

e
1 (1− f1) f0+ σ

e
0 (1− f0). (30)

From now on, for simplicity, we always assume that the extra-fibrous matter does not carry any mechan-
ical stress in tension, even though it could do so in compression. Therefore, we will set σ e

i = 0 for each
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i = 0, . . . , 3 in (30), which then reduces to

σ0 = E(σ4) f3 f2 f1 f0, (31)

with E(σ4) given by (29), with (22) and following. This is an explicit expression for the axial stress in a
single stretched collagen fibre for any corresponding value of the prescribed value of u1; this last could
be related to any conventional strain value through standard theory.

We note, finally, that the obtained stress-stretch equation, here derived explicitly for the case of N = 4,
could be easily extended to any other structural component, biological or not, having the same type
of microstructure of nested wavy cables, with any number N of subcomponents. Once the mechanical
properties of the most microscopic level — i.e., level N — are known, a straightforward extension of the
above equations will furnish the desired stress-stretch relationship. The only statistics to be described
would be that of a variable zN , defined as the product of the N random variables yi , defined by (4).
The expression for the average macroscopic stress that extends result (30) to an arbitrary number N of
sublevels is the following:

σ0 = E(σN )

N−1∏
i=0

fi +

N−1∑
i=0

[
σ e

i (1− fi )

i−1∏
j=0

f j

]
. (32)

The proposed stress-stretch equation, with the force-displacement law of (17) and (18), and with the mod-
ifications of (27) and (28), included to account for crosslinking, requires a total number of constitutive
parameters equal to 7+ 3N in general, and equal to 19 for the case N = 4.

3. Applicative examples

3.1. Sea cucumber collagen fibril, from [Eppell et al. 2006]. The first example considers a collagen
fibril, i.e., the subcomponent at level 1 of the hierarchy considered so far. Therefore, to obtain the
corresponding results one must adopt N = 3, and the molecular level corresponds now to i = 3 in (5)
and (6). This example was chosen both because it helps in setting a basis for the data concerning the
statistics at the lower levels of a fibre, and because there are experimental results available [loc. cit.].

Figure 6 shows tensile stress-strain curves: one as presented in [loc. cit.] (continuous), the other
(with white circles) as obtained from the analytical approach proposed here. In this case, unlike all the
remaining ones, the molecular length Lm has been set equal to Lm = 204.9 nm, instead of the commonly
adopted value Lm = 301.7 nm, following the results presented in [loc. cit.]. We note (we will return to
this in the next section) that a substantial uncertainty about experimentally measured quantities exists
already for the “simple” molecular length Lm . The Almansi strain employed for the abscissa, as done in
[loc. cit.], is defined as

εAlmansi =
λ2
− 1

2λ2 , λ=
Lb+ u1

Lb
. (33)

Table 1 shows the set of parameters adopted to obtain the analytical results for this and the next three
examples. The first ten parameters have values that will remain fixed in all the presented examples; the
remaining nine will have different values for each example. Note that, for (31), we have not defined
individual values for the stress-carrying fibrous matter volume fractions fi , but rather a single value for
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Material Sea cucumber fibril Engineered Rat tail Rabbit patellar tendon
parameter [Eppell et al. 2006] [Gentleman [Gentleman [Yamamoto et al. 1999]

et al. 2003] et al. 2003]

E(y2) 0.9952 0.9952 0.9952 0.9952
E(y3) 0.99779 0.99779 0.99779 0.99779
E(y4) 0.9979 0.9979 0.9979 0.9979

Var(y2) 4.9·10−5 4.9·10−5 4.9·10−5 4.9·10−5

Var(y3) 6.561·10−7 6.561·10−7 6.561·10−7 6.561 ·10−7

Var(y4) 2.5027·10−6 2.5027·10−6 2.5027·10−6 2.5027·10−6∏
fi 0.0768 0.05 0.05 0.05

Ks (pN/nm) 10 10 10 10
Km (pN/nm) 30 30 30 30

8m (nm) 1.5 1.5 1.5 1.5

Lm (nm) 204.9 301.7 301.7 204.9/301.7
u∗f (nm) 265 167 167 75

E(y1) - 0.99 0.99 0.99
Var(y1) - 1.7742·10−4 1.7742·10−4 8.281 ·10−5

Lb (mm) 5 76 76 15
Xks 1.8 3.64 15 6.5
Xkm 5 2.25 2 1

X f 0.12 9.85 6.8 15
s (nm) 115 23 32 5

Table 1. Values adopted for the material parameters of the collagen fibril and collagen fibres.
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Figure 6. Stress-strain curves in uniaxial tension for the collagen fibril studied in [Eppell
et al. 2006]. The blue curve is experimental [loc. cit.]; the red curve is obtained from the
proposed equations. The Almansi strain is defined as in (33). Material data as in Table 1.
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their product, based on the considerations presented in Section 4. A good agreement between experi-
mental and analytical results could be found for this special example. The analytical result provides the
expected value for the fibril stress; for this example, the peak stress expected value is 884 MPa, to which
a predicted standard deviation of 4157 MPa corresponds.

3.2. Engineered collagen fibre, from [Gentleman et al. 2003]. The next example concerns the engi-
neered collagen fibre studied in [loc. cit.]. Figure 7 shows tensile stress-strain curves: one as presented
in [loc. cit.], and the others as obtained from the proposed analytical approach. The Biot strain in the
abscissa — the same adopted in [loc. cit.] — is defined as

εBiot =
u1

Lb
. (34)

A good agreement between experimental results and analytical predictions can be observed. In this case,
the peak stress expected value is 70.8 MPa, and the corresponding standard deviation is 419.5 MPa.

The other curves, with white markers, refer to analytical results obtained from different choices of
material parameters, in order to provide a brief sensitivity analysis: each curve refers to the modification
of a single parameter, with respect to those listed in Table 1. The following effects, easy to predict on
the basis of the meaning of the considered parameters, are visible:

• a reduction of the molecular failure displacement, u∗f , causes a reduction of both the global peak
stress and strain, leaving the overall shape of the stress-strain curve unaltered;

• a reduction of the size of stage 2 of the molecular stiffness, through parameter s (see Figure 5),
causes a corresponding increase of the overall stiffness, as well as of the global peak stress;
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Figure 7. Stress-strain curves in uniaxial tension for the engineered collagen fibre stud-
ied in [Gentleman et al. 2003]. The solid curve is experimental, from [loc. cit.]; all the
other curves, with markers, are obtained from the proposed equations. The Biot strain
is defined in (34). Material data as in Table 1.
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Figure 8. Stress-strain curves in uniaxial tension for the rat tail collagen fibre studied
in [Gentleman et al. 2003]. The solid curve is experimental, from [loc. cit.]; the curve
with circles is obtained from the proposed equations. Material data as in Table 1.

• a reduction of the molecular stiffness Km has the opposite effect;

• a reduction of the expected value for the variable y1 of (4) causes a change of shape of the stress-
strain curve, as well as a reduction of the peak stress for the fibre;

• an increase of the parameter X f causes a significant loss of ductility, as expected.

The model is relatively insensitive to small variations of the variances for the single variables yi of (4).

3.3. Rat tail tendon collagen fibre, from [Gentleman et al. 2003]. Figure 8 shows a similar comparison,
concerning now a single collagen fibre extracted from a rat tail tendon, as reported in [loc. cit.]. In this
case, the peak stress expected value is 178.7 MPa, and the corresponding standard deviation is 1049 MPa.

3.4. Rabbit patellar tendon sample, from [Yamamoto et al. 1999]. Figure 9 illustrates results similar
to the previous ones for a collagen fibre taken from a rabbit patellar tendon, for which experimental
results are provided in [loc. cit.]. The figure shows two analytical curves, of which only the one adopting
Lm = 204.9 nm, as done for the fibril example, corresponds well to the experimental result. In this case,
the peak nominal stress (nominal stresses are shown in [loc. cit.]) expected value is 19.62 MPa, and the
corresponding standard deviation is 116 MPa.

3.5. Periodontal ligament sample, from [Genna et al. 2008]. Figure 10 shows again a stress-strain plot,
that now concerns the behaviour in tension of a small sample of swine periodontal ligament (PDL).
The details of the sample and of the testing modalities are described in [loc. cit.]. In this case, the
experiment concerns a tissue, not a single collagen fibre, and one has only an indirect validation of the
model proposed herein.
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Figure 9. Stress-strain curves in uniaxial tension for the rabbit patellar collagen fibre
studied in [Yamamoto et al. 1999]. The solid curve is experimental, from [loc. cit.]; the
curves with markers are obtained from the proposed equations, and refer to different
molecular lengths Lm as indicated. The nominal stress is force divided by initial cross-
section area. Material data as in Table 1.

4

3

2

1

0

S
tr

es
s 

[M
P

a]

0 0.5 1.0 1.5 2.0
Green-Lagrange strain [−]

Analytical
Experimental [Genna et al. 2008]

Figure 10. Stress-strain curves in uniaxial tension for one of the periodontal ligament
samples studied in [Genna et al. 2008]. The solid curve is experimental, from [loc. cit.];
the curve with circles is obtained by means of the model of [Genna 2006], in which the
equations developed in the present work have been inserted for the behaviour in tension
of a single collagen fibre. The Green–Lagrange strain is defined as in (35) of the text.
Material data as in Table 2.
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The Green–Lagrange strain plotted in abscissa in Figure 10, as adopted in [loc. cit.], is defined as

εGL =
1
2

[(
Lb+ u1

Lb

)2

− 1
]
. (35)

In this case, (31) is inserted into an interface model, presented in [Genna 2006], that allows one, by
means of yet another statistical integration over the waviness of the collagen fibres, to describe the tissue
features. The accompanying paper [Genna and Paganelli 2014] makes extensive use of this model for
studying the extraction of a tooth from its socket; we refer to [Genna 2006] and [Genna and Paganelli
2014] for more details of the interface description.

The main parameters required by the PDL model of [Genna 2006] are:

• the thickness w0 of the PDL layer;

• the angle β0 that defines the inclination of the collagen fibres in a longitudinal section of the tooth;

• the angle θ0 that defines the inclination of the collagen fibres in a transversal section of the tooth;

• the volume fraction fc of stress-carrying collagen fibres inside the PDL;

• statistical properties of the collagen fibres waviness in the PDL, described by the variable xc which
is the ratio between the uncoiled, unstretched length of a collagen fibre and its end-to-end distance
at rest, governed by w0, β0, and θ0;

• data for the constitutive law of a single collagen fibre, that here correspond to the 19 parameters
required by the proposed stress-stretch model;

• other parameters that define the compressive behaviour of the PDL, of no interest here.

Table 2 reports all the relevant data adopted to obtain the result shown in Figure 10. In Table 2 the
parameter Lb, denoting the uncoiled length of a collagen fibre at rest, is marked as a random variable,
since its value now depends on the statistics of the waviness of the fibre, i.e., on the current values of xc

during the integration process.

E(y2) 0.9952 u∗f 167 nm w0 0.66 mm
E(y3) 0.99779 E(y1) 0.995 β0 34◦

E(y4) 0.9979 Var(y1) 1.2078·10−4 θ0 76.8◦

Var(y2) 4.9·10−5 Lb random variable fc 0.05
Var(y3) 6.561·10−7 Xks 1 E(xc) 1.093
Var(y4) 2.5027·10−6 Xkm 1 Var(xc) 0.00397

f0 f1 f2 f3 0.05 X f 0
Ks 10 pN/nm s 50 nm
Km 30 pN/nm
8m 1.5 nm
Lm 301.7 nm

Table 2. Adopted values for the material parameters of the periodontal ligament sample
studied in [Genna et al. 2008].
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Figure 11. Stress-strain curves in shear for one of the periodontal ligament samples
studied in [Genna et al. 2008]. The solid curve is experimental, from [loc. cit.]; the curve
with circles is obtained by means of the model of [Genna 2006], in which the equations
developed in the present work have been inserted for the behaviour in tension of a single
collagen fibre. The shear strain is defined as the ratio between the displacement and the
width at rest of the sample. Material data as in Table 2 except for w0 = 0.33 mm and
β0 =−7◦.

It is worth remarking, here, that the failure Biot strain of a single collagen fibre, with the data adopted
to obtain the result of Figure 10, is εf ≈ 0.55. As already observed, this quite large value is an indication
of the probable lack of crosslinking in the PDL collagen.

Finally, Figure 11 shows a comparison obtained in the same way as the previous one, but on a different
swine PDL sample, and for a different type of loading, i.e., shear in a plane normal to the tooth axis
[Genna et al. 2008]. The curves in Figure 11 show a shear stress in ordinate, and, in abscissa, a shear
strain defined as the ratio between the shear displacement and the width w0 of the PDL sample. For
this case the adopted data are the same as in Table 2, with the exception of w0 and β0, which are now
w0 = 0.33 mm and β0 =−7◦.

4. Discussion

A main source of difficulty for the model proposed here is the choice of the material parameter values.
Results of a detailed sensitivity analysis, beside what was shown in Figures 7 and 9, are not reported
here for the sake of brevity.

All the data concerning the statistics of the quantities yi of (4), shown in Tables 1 and 2, have been
rederived following the same approach adopted in [AG]. A partial confirmation of their usability derives
from the result shown in Figure 6, which refers to a subcomponent of the fibres.

A precise evaluation of the volume fractions fi of stress-carrying cables at the various sublevels can
hardly be given. The following approach was therefore followed: a single cable at level i is assumed to
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have a circular cross-section; fibrous matter is assumed to be present in cables, at level i + 1, also having
a circular cross-section. For a full packing of infinite equal circles, the volume fraction of fibrous matter
would be equal to π/

√
12 ≈ 0.907, at each sublevel. Assuming a large but finite number of internal

circles, one can adopt a smaller value, that we chose equal to 0.85. Furthermore, it was necessary to
define what part of the fibrous subcomponents, at each level, was continuous, i.e., stress-carrying: we
assumed that only one half of the fibrous matter was continuous, thus obtaining a value fi ≈ 0.425.
Therefore, one finds f0 f1 f2 f3 ≈ 0.4254

= 0.033, rounded to f0 f1 f2 f3 = 0.05, and f1 f2 f3 = 0.0768 for
the fibril, with N = 3, as shown in Tables 1 and 2.

More difficulties arise in defining several molecular parameters. We started by reasoning on the case
of the periodontal ligament (PDL), in order to exclude the effects of crosslinking: in this tissue, in fact,
the stress-carrying fibres seem to behave as if little or no crosslinking at all were present. This could
be inferred from (i) the very low stiffness values, and the very large failure strains, compared to other
tissues, observed in PDL samples [AG], and (ii) as said in Section 3.3, from the high value of the single
fibre failure strain. No quantitative description of this aspect could be found; [Berkovitz et al. 1995]
reports that PDL has “unique” crosslinking features, with respect to all other tissues, but no information
is given about the relevance of this property with respect to mechanical behaviour.

Thus, the stress-carrying collagen fibres of the PDL were assumed to be uncrosslinked. This implies,
in the approach illustrated here, to adopt Xks = Xkm = 1 and X f = 0, which allows one to reason about
raw molecular data.

In order to obtain a good match with the experimental result in tension of Figure 10, the values
Ks = 10 pN/nm, Km = 30 pN/nm, u∗f = 167 nm, and s = 50 nm were adopted (see Table 2).

The displacement values agree reasonably well with the corresponding ones reported in [Buehler and
Wong 2007], which are u∗f = 150 nm and s = 90 nm. On the contrary, the molecular stiffness ones do
not, since our Km is ten times smaller than the one obtained in [Buehler and Wong 2007], and Ks is
about 1/5. It is extremely difficult to obtain coherent information about these data from the literature,
for several reasons. A relationship exists that relates the bending stiffness of a tropocollagen molecule
to its persistence length, but this seems to hold for the entropic regime only, neglected here. Another
relationship which provides the molecular stiffness in the stretching range derives from standard truss
theory, and is

Km =
Em Am

Lm
, (36)

where Em denotes the molecule Young modulus. According to several sources (see, for instance, [Gau-
tieri et al. 2012]), the Young modulus of a collagen molecule takes values in the range Em = 300–
16000 pN/nm2 (i.e., MPa), depending both on the evaluation modalities and on the considered strain rate,
both in experiments and in numerical simulations based on molecular dynamics theory.

Adopting an average value Em = 5000 pN/nm2, equation (36) yields Km = 29.98 pN/nm. On the other
hand, a value Em = 5000 pN/nm2 hardly agrees with further data reported in [Buehler and Wong 2007],
where the bending stiffness of a single molecule is reported to vary between Em Im = 1.247× 10−29 Nm2

and Em Im = 1.2× 10−28 Nm2, depending on the assumed strain rate, Im denoting the molecule moment
of inertia around its neutral axis. Assuming for the molecule a circular cross-section with diameter
8m = 1.5 nm, the first value corresponds to Em ≈ 50 pN/nm2, and the second to Em ≈ 500 pN/nm2.
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On yet another hand, in order to obtain the stiffness value Km = 294.8 pN/nm proposed in [Buehler and
Wong 2007] for the molecular stretching regime, (36) would require a value Em ≈ 50000 pN/nm2, well
outside the reported range of values. This uncertainty on the value of Km may arise from the intrinsic mea-
surement difficulties, from confusion between entropic and energetic behaviour, from presence/absence
of crosslinking, strain-rate effects, solvated/dry conditions during the test, and so on.

In order to obtain results from the stress-stretch model proposed in this work, it was arbitrarily decided
to assume as valid the average value Em = 5000 pN/nm2, which corresponds to Km ≈ 30 pN/nm, for the
uncrosslinked, basic molecular stiffness. All the choices for the molecular parameters are made very
difficult by the lack of reliable experimental results; even the basic molecular length Lm does not see
agreement on its values (here we have been forced to adopt the values Lm = 204.9 nm or Lm = 301.7 nm
in different cases.)

As for Ks , the molecular stiffness associated to the chain uncoiling, the situation is even less clear
than for Km . Its value could only be identified, and it was taken equal to Ks = 10 pN/nm, in a proportion
to Km about twice as that indicated in [Buehler and Wong 2007].

The numerical values of the three parameters Xks, Xkm , and X f , that govern crosslinking, in the results
of Figures 7, 8, and 9, had to be identified case by case.

As for the last rows in Table 2, that concern the data defining the PDL behaviour, we refer to [Genna
2006], except for fc of Section 3.3. In [loc. cit.] every single collagen fibre was supposed to run continu-
ously from end to end of the PDL layer, and the value for the fibre volume fraction fc was taken from the
literature as equal to fc = 0.5. Recent work [Trombetta and Bradshaw 2010] confirms that fc = 0.5 is a
reasonable estimate of the average value for the volume fraction of the fibrous component in the PDL. In
the new model, only the stress-carrying portion of it is considered, which, at least according to available
images of the PDL, is only a small fraction of the total. In order to obtain a good match with the
experimental stress-strain results, the value fc = 0.05 had to be adopted, as shown in Table 2.

An uncertainty remains about the shape of the stress-strain curves of both Figures 8 and 9, and the
relevant material data, shown in Table 1. Work by Gutsmann et al. [2004] suggests that a plateau in the
stress-strain curve of collagen might be due to crosslinking; the model proposed here might reproduce this
effect through the reduction of the upper integration limit zC ((27) and (28)), for increasing displacement
u1, until the stiffer portion of the molecular behaviour disappears from the picture. Nevertheless, with
the set of material parameters herein adopted, and especially in view of the narrow extension of the
molecular force-displacement law covered by the statistics of the variable z4 of (12), it was impossible
to obtain such an effect automatically. The only way to reproduce it was to adopt Xks Ks < Xkm Km as
shown by Table 1, whose meaning remains unclear.

The simplicity of the model proposed herein allows one to consider any type of mechanical behaviour
at the lowermost level — for instance, viscosity — with no conceptual difficulty.

Other considerations, similar to those already reported in [AG], remain still valid also for this modified,
simplified, and improved version of the same approach.

5. Conclusions

No attempt has been made, here, to propose a complete and accurate representation of the physical
microstructure of a single collagen fibre. The aim has been to obtain a simple and engineering-usable
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(for instance, in large-scale 3D finite element calculations) set of equations that describe the nonlinear
mechanical behaviour of this important biological component, based on a set of parameters having,
where possible, a clear physical meaning. Several features of the real arrangement of subcomponents are
explicitly taken into account, but several other important details still require more study. The ability to
reproduce experimental results on the basis of reasonable values of the material parameters is however
encouraging. An accompanying paper [Genna and Paganelli 2014] illustrates the performance of the
model presented herein in the context of finite element simulations at the macroscopic scale.
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FORCE–DISPLACEMENT RELATIONSHIP IN THE EXTRACTION
OF A PORCINE TOOTH FROM ITS SOCKET:

EXPERIMENTS AND NUMERICAL SIMULATIONS

FRANCESCO GENNA AND CORRADO PAGANELLI

Results of new investigations about the global tensile stiffness and strength of the periodontal ligament
are presented. Experimental results are reported first, referring to the extraction of swine teeth from their
sockets: force–displacement curves are shown, obtained from samples including a portion of the jaw and
a canine swine tooth. Numerical simulations of the same tooth extraction tests are then presented, which
exploit specific modelling techniques previously developed. In particular, use is made of an interface
finite element capable to describe the fibrous structure of the periodontal ligament, and of a stress–
stretch constitutive model, for a single collagen fibre, based on the multiscale nature of its subfibrillar
microstructure. The comparison between the new experimental results and the numerical ones helps in
understanding the soundness of the adopted mechanical models in the simulations. This study is expected
to be mainly useful in providing results usable for the indirect validation of mechanical models of both
the periodontal ligament and its basic constituent, the single collagen fibre.

1. Introduction

The periodontal ligament (PDL) is, among the components of the masticatory system, the one that most
profoundly influences and determines the mechanical behaviour of the system itself. This is because the
PDL is the most compliant component in this system, and because it exhibits a strongly anisotropic and
nonlinear response to applied mechanical actions.

Dental mechanics is still singularly lacking systematic and extensive contributions to the study of
the mechanical behaviour of the PDL, especially in humans. Some experimental results are available,
concerned with the behaviour in tension of rat, bovine, or swine PDL (see, for instance, [Alatli et al. 1997;
Pini et al. 2004; Dorow et al. 2003; Genna et al. 2008]). Some work exists concerning experiments on
the viscous tensile/compressive behaviour of the PDL: most of it done on whole teeth, thereby making it
difficult to isolate the purely mechanical contribution of the PDL [Qian et al. 2009; Papadopoulou et al.
2014], some on small samples with a relatively simple geometry [Sanctuary et al. 2005]. The dynamic
viscoelastic shear behaviour of PDL has been studied experimentally in [Tanaka et al. 2007]. A review
of the experimental work on PDL published until 2011 can be found in [Fill et al. 2011]. Nevertheless,
a tremendous uncertainty still exists about even the simplest tensile behaviour of the PDL at constant,
small loading velocity (appropriate, for instance, for orthodontic loading analyses), mainly due to the
difficulty in defining reliable testing standards.

It is felt that more experimental work, possibly more systematic, should be performed, in order to
obtain data useful both to dentists and to engineers. In this paper, the attention is mostly devoted to
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mechanical aspects, and, in its first part, the results of some experiments will be presented, possibly
useful to validate mechanical models. The results of these tests might also be useful in other related fields,
such as the forced orthodontic extrusion of fractured roots, or other fractured root extraction processes.

A method for the experimental study of the PDL properties that might furnish information about its
tensile stiffness and strength, but which might also provide some insight into a common activity in the
dental field, could derive from the analysis of the force–displacement relationship obtained during the
extraction of a tooth from its socket. Also this seemingly important aspect of dental mechanics has hardly
been explored. Some results, in terms of forces only, are reported in [Chiba et al. 1980; Komatsu et al.
1990; Lehtinen and Ojala 1980; Ahel et al. 2006]. Nothing seems to exist in terms of displacements
corresponding to applied forces. Numerical simulations of this process have been reported in [Gei et al.
2002] and [Genna 2006], but only as a way of verifying the performance of analytical models for the
mechanical behaviour of the PDL, with no experimental results to be compared with.

The first direct purpose of this work is to provide information concerning experimentally determined
force–displacement curves in the extraction of swine teeth from their sockets.

The second is to report the results given by the coupling of two separate models, developed previously,
applied to the simulation of the extraction of teeth from their sockets, by means of the finite element
method (FEM). The first model, illustrated in [Genna 2006], describes the PDL as a thin interface with a
fibrous microstructure. The second model, proposed in an accompanying paper [Genna 2014], concerns
a stress–stretch equation for a single collagen fibre, to be inserted as a basic ingredient into the first
model. In its original version [Genna 2006], the interface model for the PDL made use of a simple,
phenomenological equation for the stress–stretch behaviour of a single collagen fibre in tension, based
on physically meaningless constitutive parameters. The model proposed in [Genna 2014], on the contrary,
describes the mechanical behaviour of a collagen fibre in tension on the basis of constitutive parameters
that, for the most part, have a precise physical meaning.

Both these models, for the single collagen fibre and for the PDL seen as a fibrous tissue, once fully
developed and validated, could be of use for the study of several other situations of interest in biome-
chanics in general. With specific reference to dentistry, the first applications that come to the mind are
orthodontic loading, analysis of centre of rotation, analysis of mechanical fields produced by several
types of loading, both physiological and exceptional. Accurate information about the stress and strain
fields produced by loading upon healthy teeth is expected to be of use also for the design of innovative
dental implants, or similar devices, which should reproduce the physiological conditions much more
closely than what happens with the currently used designs.

Finally, this work provides indirect information about the mechanical strength in tension of swine
PDL, and, in general, about the dependence of the PDL mechanical behaviour in tension on several
parameters, both mechanical and geometrical, that govern the analysed system.

2. Materials and methods

The experimental activity concerns the extraction of single-rooted swine canine teeth. All the tests
have been run at the Dental Clinic of the University of Brescia, Italy. The testing machine was the
Instron MicroTester 5848, an electromechanical instrument designed for uniaxial tests in biomechanical
applications at low values of applied forces [Instron Corporation 2001].
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Figure 1. A typical sample of a swine canine and surrounding portion of jawbone.

Forty-seven samples have been tested, obtained from portions of jaws of 12–15 month old swine. The
choice of swine teeth derives from three main reasons:

• the Italian law forbids the use of human teeth for experimental research;

• after monkeys, pigs have the best compatibility with the human genome, and they have eating habits
reasonably close to humans’;

• the availability of freshly slaughtered material in the zone of Brescia.

Canines have been chosen so as to have roots as straight and smooth as possible, in order to facilitate
the experimental procedure.

All the tested jaws have been taken within one hour from the slaughter of the animal. The portions
including the canines have been cut (see Figure 1), polished of the largest possible portion of external
soft tissues, immersed in physiologic solution, and put in a refrigerator at +4.3◦ C for 24 hours. It was
impossible to immediately run the tests, owing to the necessity of waiting for the nowadays-mandatory
legal controls on the slaughtered animals before any research activity.

The jaw portions were clamped directly into the lower grips of the Instron MicroTester. The connection
of the teeth to the testing machine was obtained by drilling a small hole, of 1.2 mm of diameter, into
the tooth crown, therefore at a safe distance from the PDL, threading a metallic wire for orthodontic
applications into it, and connecting the wire to the Instron grips by means of a steel part specifically
designed. Figure 2 shows the final setup of a typical test.

The adopted wire type is made of a titanium alloy, with a rectangular cross-section of size 0.5334×
0.635 mm (0.021× 0.025 in). Preliminary tension tests on the wire gave an average material Young
modulus equal to Et ≈ 78000 MPa.



500 FRANCESCO GENNA AND CORRADO PAGANELLI

Figure 2. The testing setup.

It was not feasible, in the experimental arrangement devised so
far, to always have a perfectly constant setup for the connecting
wire, whose length was of about 50 mm, with possible small varia-
tions from test to test.

The smallness of the external portion of the tooth crown, together
with the presence of residual soft tissues around the jawbone, made
it impossible to connect an instrument capable of measuring the
relative displacement between tooth and bone. Therefore, the only
displacement measure available was the current distance between
the machine grips.

Before extraction, each tooth was subjected to syndesmotomy,
to a depth of 2 mm, using a Hu–Friedy syndesmotome. Without
this preliminary operation, it was impossible to obtain a clean ex-
traction, as either the wire, the tooth crown, or the jawbone broke
prematurely.

The tests have been conducted prescribing the displacement of
the upper grip in the machine, keeping the lower one fully fixed,
at a rate of 2 mm/min. Forces have been measured with a uniaxial
load cell with range of ±2 kN.

3. Numerical models

The extraction process performed experimentally has been simu-
lated by means of nonlinear FEM analyses. Several geometries
of a tooth plus a surrounding portion of the jawbone have been
considered, some of which describe swine canine teeth and others
human incisors or two-rooted molars.

3.1. Numerical techniques. All the numerical analyses have been run adopting the FEM as implemented
in the partially open commercial code ABAQUS [Hibbitt et al. 2013].

After an initial geometrically nonlinear step, in which the initial slack of the titanium alloy wire is
recovered, a second step applies traction to the tooth in a regime of small displacements, confining the
geometrical nonlinearity to the formulation of the interface element for the PDL.

An interface finite element has been developed and coded into a Fortran 90 user subroutine UMAT to
describe the nonlinear behaviour of the PDL, as proposed in [Genna 2006]. Each element is defined by
six nodes, three of which are shared with a tetrahedral element describing the jawbone, and the other
three with the adjacent tetrahedral element describing the tooth root. The nodal displacements are defined
in a local reference system n− t1− t2, where n is orthogonal to the bone surface, directed from bone
to tooth root; t1 is orthogonal to n and lies in a plane defined by n and the main axis of the tooth root;
t2 forms a right-handed reference system with the first two axes. The initial thickness of the PDL layer
is denoted by w0. Figure 3 shows both a sketch of a generic interface element and the microstructural
arrangement underlying the assumed mechanical behaviour.
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Figure 3. Sketch of the geometrical arrangement of the interface finite element for the
description of the periodontal ligament. Left: nodes, intrinsic reference system, Gauss
points. Right: diagram of the two wavy cables that define, at each Gauss point, the
mechanical behaviour of the tissue.

At each of the three Gauss points of each interface element, the mechanical behaviour is governed
by the existence of two cables. Both are inclined, in the undeformed configuration, by an angle β0 with
respect to the n axis, in the n− t1 plane, and by an angle ±θ0 with respect to the t2 axis, in the n− t2 plane.
In this way, at each Gauss point the two cables are arranged into an X-shaped configuration in a transverse
plane; this provides a torsional stiffness even for small displacements, since, upon the application of a
torque around the main axis of the tooth, one of the two cables starts elongating immediately (see [Genna
2006]).

Each cable, in this model, represents a large random number of collagen fibres, having a wavy ge-
ometry at rest; the uncoiled, unstretched length of a single collagen fibre is denoted by Lb, which will
be assumed to be a random variable. Each fibre starts furnishing an axial stiffness only when it is
fully uncoiled; bending stiffness contributions of the fibres are neglected. The definition of the PDL
compressive behaviour is obtained by a phenomenological equation devoid of physical meaning, and of
no interest here.

Denote by l0 the end-to-end distance between the extremities of each coiled fibre in the unstretched
configuration, i.e.,

l0 = w0

√
1+ tan2 β0+ 1/ tan2 θ0. (1)

Then the nondimensional variable xc is introduced, defined as

xc =
Lb

l0
, xc ≥ 1, (2)

and assumed to be a random variable, whose probability density function fxc(xc) is here assumed to be
of the gamma type, with known expected value and variance.

In order to obtain an expression for the expected value of the total macroscopic stress in each Gauss
point of each interface element, for a given vector δ of displacement jumps defined in the local reference
system, the forces F1 and F2 existing in the two cables are computed through a statistical integration
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over the admissible values taken by the random variable xc of (2); i.e., denoting by li (δ), i = 1, 2, the
current, stretched length of each cable, for li (δ) > Lb, we have

Fi (δ)= Ai

∫ li/ l0

1
σi (xc, δ) fxc(xc) dxc, i = 1, 2, (3)

where σi (xc, δ) indicates the local stress in a single collagen fibre for a given value of the displacement
vector δ, and Ai indicates the cross-section area covered by all the fibres.

From (3), simple analytic developments lead to explicit expressions for the normal and shear stresses
at each Gauss point of the interface element; in these expressions the areas Ai are accounted for by the
volume fraction fc of the stress-carrying portion of fibres, assumed to be known.

Equation (3) requires an expression for the local stress σi (δ) in a collagen fibre. In [Genna 2006]
such an expression was provided by a simple nonlinear equation, with no physical meaning. Here,
the microstructurally-based relationship proposed in the accompanying paper [Genna 2014] is adopted
instead. Such a relationship requires, essentially, the calculation of a statistical integral of the type (3)
also for obtaining the value of the local stress σi (xc, δ).

This same stress–stretch expression automatically accounts for the tensile failure of the PDL because,
after following a nonlinear increase of stress with elongation, it describes a stress peak and then a stress
decrease due to the progressive failure of the shortest subfibrils, and finally reaches an irreversible zero
stress value. From then on, the Gauss point gives no more mechanical contribution in tension.

According to these models, the mechanical behaviour of the PDL is nonlinear elastic–brittle, and time-
dependency is neglected. This is a necessity, since both the adopted models — for the single collagen
fibre, and for the PDL — are a first tentative description of the behaviour of these components, based on
their microstructure: study is under way to include, among the basic mechanisms, also viscosity. On the
other hand, and because of the short times involved by the tests, the specific problem herein analysed can
be considered as inviscid as long as the material properties are obtained from tests performed at about
the same loading velocity.

The reader is referred to [Genna 2006] for further details concerning the interface element formulation
and implementation, and to [Genna 2014] for further details concerning the microstructurally-based
stress–stretch equation for σi of (3).

3.2. Geometries. Figure 4 illustrates the four geometries considered in the numerical analyses. The first
one, labelled (a), refers to one of the swine teeth extractions. The sample geometry has been acquired
by means of a Sinergia Scan scanner, by Nobil–Metal Spa, which provides a surface point cloud with
a resolution of 5µm. The point cloud has been transformed into a surface mesh, smoothed, and finally
converted into a solid geometry by means of the code JRC 3D Reconstructor [Gexcel Src 2008].

The model includes the tested portion of the jaw, subdivided into cortical and spongious bones, the
extracted canine tooth, and the titanium alloy wire adopted to connect the tooth to the testing machine.
The jawbone is considered fully fixed to the reference system at a central portion that corresponds roughly
to the size of the grips, and the top node of the wire is subjected to a prescribed displacement in the
direction of the wire axis.

The remaining images in Figure 4 refer to human teeth. Image (b) refers to a two-rooted molar, whose
geometry is taken from previous work [Corradi and Genna 2003]; image (c) to an incisor, also taken
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Figure 4. Geometries considered in the numerical analyses. (a) Swine canine, taken
from a real sample; (b) human molar (schematic), taken from [Corradi and Genna 2003];
(c) human incisor (schematic), taken from [Corradi and Genna 2003]; (d) human incisor
(schematic), from [Genna 2006]. The cortical bone is shown in yellow, the spongious
bone in blue.

Tooth type Height [mm] Average diameter [mm] PDL surface area [mm2]

Swine canine (a) 29.32 4.26 292.04
Human molar (b) 15.04 6.50 240.76

Human incisor (c) 14.62 3.58 79.43
Human incisor (d) 21.19 4.22 160.18

Table 1. Geometrical data for the four tooth samples studied numerically.

from [Corradi and Genna 2003]; and image (d) corresponds to a different incisor, i.e., the same case,
studied, by means of a simpler model, in [Genna 2006]. In all these analyses the boundary conditions
are the same as described for the swine sample.

Table 1 reports the essential geometrical information about the four teeth studied numerically, i.e.,
sizes and areas of the root surfaces connected to the jawbone by the PDL.

3.3. Materials. In all the analyses, the bone, both cortical and spongious, and the dentine have always
been described as linear elastic; the relevant material parameters are the same as those already adopted in
[Genna 2006]. Also, the titanium alloy of the wire has been treated as linear elastic. The only nonlinear
material, in all the numerical analyses, is the PDL layer, for which the following material parameters
are required:

• the thickness w0 of the PDL layer;

• the angles β0 and θ0 as defined above;
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Material Young’s modulus [MPa] Poisson’s coefficient

Titanium alloy 78000 0.31
Dentine 20000 0.25

Cortical bone 13700 0.3
Spongious bone 1370 0.3

Table 2. Elastic properties of the jawbone and titanium alloy wire in the numerical models.

• the volume fraction fc of stress-carrying collagen fibres inside the PDL;

• the expected value E(xc) and variance Var(xc) of the PDL collagen fibres waviness, described by
the variable xc introduced in Section 3.1;

• the data for the stress–stretch constitutive law of a single collagen fibre, that here correspond to
the 19 parameters required by the model described in [Genna 2014]. The symbols and the relevant
meanings are summarised here for convenience:

– N = 4 is the number of internal levels defining the fibre microstructure;
– Ks, Km are the stiffnesses of a single tropocollagen molecule, described as a trilinear elastic–

brittle rod;
– Xks, Xkm ≥ 1 are nondimensional coefficients that account for the effect of cross-linking on the

fibre stiffness;
– X f ≥ 0 is a nondimensional coefficient that describes the effect of cross-linking on the collagen

brittle failure;
– s is a molecular displacement related to the end of the second molecular stiffness range;
– u∗f is a molecular displacement related to the molecule failure;
– 8m is the tropocollagen molecule diameter;
– Lm is the contour length of a single tropocollagen molecule;
– f0 f1 f2 f3 is the product of the volume fractions of the stress–carrying portion of internal sub-

fibrils at the various internal levels of the collagen fibre microstructure (see [Genna 2014]);
– E(yi ), Var(yi ) are the expected values and the variances, respectively, of the random variables

y(i), i = 1, . . . , N , i.e., the nondimensional ratios that describe the waviness of the collagen
subcomponents at the various internal levels;

• other parameters that define the compressive behaviour of the PDL, of no interest here.

Table 2 summarises the values of the elastic parameters for the two bone types, the dentine, and the
titanium alloy wire.

Table 3 reports the numerical values of all the adopted material parameters for the description of the
PDL. The thickness w0 of the PDL layer has been varied, in some analyses, to verify its effect on the
resulting force–displacement curves. Following the results presented in [Genna et al. 2008], for swine
PDL the value w0 = 0.50 mm has been adopted as a reference one, although in several cases higher
values — up to about 1 mm — have been measured.

The values adopted for the angle β0 depend on the position, along the tooth root axis, of each consid-
ered Gauss point, according to the geometrical information that can be found in the literature for human
teeth [Berkovitz et al. 1995], and are the same as those adopted in [Genna 2006]. In the absence of better
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Material Adopted Material Adopted Material Adopted
parameter value parameter value parameter value

w0 swine: 0.50 mm E(y2) 0.9952 8m 1.5 nm
human: 0.25 to 1.0 mm E(y3) 0.99779 Lm 301.7 nm

β0 −25◦ to 30◦ E(y4) 0.9979 s 50 nm
θ0 76.8◦ to 90◦ Var(y2) 4.9·10−5 u∗f 167 nm
fc 0.05 Var(y3) 6.561·10−5 Lb random variable

E(xc) 1.093 Var(y4) 3.387·10−5 Xks 1
Var(xc) 0.00397 f0 f1 f2 f3 0.05 Xkm 1

E(y1) 0.995 Ks 10 pN/nm X f 0
Var(y1) 2.5·10−5 Km 30 pN/nm

Table 3. Material parameters required by the periodontal ligament model.

information, the same values have been adopted also for the swine canine.
In Table 3, the parameter Lb, which denotes the uncoiled, unstretched length of a single collagen fibre

at rest, is marked as a random variable, since its value depends on the statistics of the waviness of the
fibres, i.e., on the current values of xc of (2) during the integration process.

4. Results

4.1. Experimental results. Of the forty-seven tests, only sixteen concluded with the successful extrac-
tion of the tooth from its socket. All the other ones ended prematurely either because of wire failure or
because of the failure of the tooth crown, due to the propagation of a crack initiated by the drilled hole.

Of these successful sixteen tests, all producing scattered results because of the inevitable differences
among specimens, only seven cases have been considered as fully significant. The other ones produced
even more dispersed results, either because the teeth were somehow defective or too small, so as to
produce extraction forces far too small, or because they were affected by an excessive interference with
the tissues — including soft ones — surrounding the extracted tooth, as indicated by the extremely large
values of the displacement corresponding to the peak forces.

Figure 5 shows the obtained force–displacement curves for the best seven cases. The peak forces
found experimentally are in the range 100 to 450 N, and the corresponding displacements are in the
range 1 to 4.6 mm.

Beside the absolute values of stiffness (from about 20 to about 150 N/mm, depending on the samples,
in the initial region), peak force, and peak displacement, another significant feature of all the curves of
Figure 5 is the presence of several local peaks of force, both before and after the absolute maximum.
Some of the peaks after the absolute maximum force may have little importance, since they are probably
due to the existence of gingival or bone tissue that stays connected to the tooth even after its detachment
from the socket, as shown in Figure 6. This residual connection might also be responsible for some
extremely large displacement values found before the full drop of the force value to zero.

The force peaks before the absolute maximum, and some after it, are due to the variable inclination
of the PDL collagen fibres along the tooth root, as will be shown in Section 5.
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Figure 5. Experimental results from the tests on swine canines. In ordinate: force
measured by the testing machine; in abscissa: grip opening displacement.

Figure 6. Tissues remaining connected to the swine canine after its extraction from the socket.

4.2. Numerical results. Figure 7 illustrates the first numerical result, which refers to the simulation of
the extraction of a swine canine, performed on the geometry of Figure 4(a). In this analysis, the PDL
thickness was set equal to w0 = 0.5 mm. Figure 8 compares the numerical results obtained for the
simulation of the extraction of human teeth on the geometries of Figure 4(b), (c), and (d); in all these
cases the PDL thickness was set equal to w0 = 0.25 mm.
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Figure 7. Swine canine extraction: comparison between experimental and numerical
results. The thick solid curve is obtained numerically, from the approach presented in
this work. All the remaining curves, with black circles, are experimental results already
shown in Figure 5.

Figure 8. Numerical results: comparison among different geometries for human teeth.
The solid curve refers to the molar of Figure 4(b); the curve with white squares refers to
the geometry of Figure 4(c); and the curve with black diamonds refers to the geometry
of Figure 4(d).

Figures 9 and 10 show, respectively, the influence of the PDL thickness on the computed force–
displacement extraction curve, and the influence of the wire stiffness on the same curve. Figure 9 shows
results obtained from the same geometry (that of Figure 4(c)), by varying the adopted value for the PDL
thickness w0. Figure 10 presents two plots, both referring to the same simulation, i.e., the case of the
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Figure 9. Numerical results: effect of the PDL thickness w0 on the computed force–
displacement curves. The geometry is that of Figure 4(c) (human incisor).

Figure 10. Numerical results: effect of the stiffness of the connecting wire on the com-
puted force–displacement curves. The geometry is that of Figure 4(c) (human incisor).

human incisor of Figure 4(c), with w0 = 0.25 mm: the first curve is the same as in Figure 8, the second
curve plots the same force as a function of the relative displacement between the root crown and the top
surface of the cortical bone around the tooth itself.

Finally, Figure 11 illustrates the effect produced by the variation of the PDL fibre inclination, along
the tooth root, on the force–displacement curve. The plots refer to the case of the human incisor of
Figure 4(c), with w0 = 0.25 mm; the first one coincides with that of Figure 8, the second one is obtained
by setting β0 = 0 and θ0 = 90◦ in the PDL constitutive parameters, i.e., fixed fibre direction, orthogonal
to the root external surface, and with no X-shaped transversal arrangement.
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Figure 11. Numerical results: effect of the inclinations β0 and θ0, shown in Figure 3, on
the computed force–displacement curves. The geometry is that of Figure 4(c) (human
incisor). The curve with white squares is the same as the one in Figure 8, with “realistic”
values for both β0 and θ0. The curve with black dots is obtained by setting β0 = 0◦ and
θ0 = 90◦ at all the interface elements.

Figure 12. Numerical results: effect of the stiffness of a thin layer of soft tissue around
the jawbone on the computed force–displacement curves. The geometry is that of
Figure 4(c) (human incisor).

The size of the discretised numerical problem has always been in the range of 30 000 to 50 000 degrees
of freedom, depending on the considered model. The CPU times, on a Hewlett–Packard workstation
xw9300, with 2 AMD Opteron 64-bit dual-core processors, but no parallel processing exploited, have
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been of the order of 3 hours for all the cases. This demonstrates the practical usability of the constitutive
model adopted for the single collagen fibre proposed in [Genna 2014].

5. Discussion

The experimental force–displacement curves shown in this paper are obtained by means of a technique
that differs from the one adopted in real dental practice: the tooth has simply been pulled out of the
socket, whereas the standard procedure involves applying a luxation, with leverage and torsion. It is
currently impossible to understand the extent of the possible differences in the force and displacement
values due to this discrepancy.

Moreover, the choice of extracting only single-rooted canines has somehow limited the range of results
that could possibly be obtained. On the other hand, it has to be considered that, quite often, the extraction
of two- or three-rooted teeth, or of teeth having roots with a complex/defective geometry, results in
breaking either the socket bone or the root itself: this would have been a useless complication in our case.

Both a significant dispersion even in the best experimental results, and a lack of an established standard
for the experimental technique are apparent. The last difficulty could not be avoided, in view of the
complete novelty of the performed tests; it would be desirable to establish a standard procedure even for
tooth extraction laboratory tests, but the extreme variability of all the factors involved makes this a quite
difficult task, and anyway outside the scope of this work.

As for the scatter in the measured force–displacement curves, it should be noted that each curve refers
to a completely different sample, taken from a different animal, each with its own physical and geomet-
rical properties. The dispersion of the results is similar to that obtained in the past from experiments, in
a much more controlled regime, performed on small PDL samples, such as those of [Genna et al. 2008]
and [Pini et al. 2004]. The situation, in the case of large mandible blocks and full teeth, is understandably
more dispersed.

The experimental setup seems to influence mainly the displacement values, but to provide reliable
values for the extraction forces. This is also confirmed by considering the average stress values cor-
responding to the peak extraction force, obtained by dividing the force by the root area. Adopting an
average value for the root surface area equal to 143 mm2 as given by the tests, and considering the
observed range of peak force values, i.e., 100 to 450 N, one obtains average values for the fracture
stresses of the PDL in the range 0.7 to 3.2 MPa, in good agreement with the experimental results on
swine PDL samples reported in [Genna et al. 2008].

Both the observed and the computed peaks of force fall within the range of values that can be found in
the literature; nevertheless, the results presented here seem to be the first that have been obtained directly
from an extraction test performed by means of a standard testing machine capable of measuring both
forces and displacements. The few results previously available are all obtained in somewhat indirect
ways, such as, for instance, those presented in [Ahel et al. 2006], where a forceps was instrumented in
such a way as to obtain “pressure and rotation measurements”.

Figure 9 shows that larger values of the PDL thickness produce larger displacements at about the same
force values. This might help in explaining some of the larger values of displacements recorded in the
laboratory tests: swine PDL can be much thicker than human one, according to the available information,
and its thickness gives a clear contribution to the overall stiffness of the tooth-PDL-bone system.
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The comparison of the curves shown in Figure 11 illustrates an important effect of the PDL collagen
fibre inclination, and especially so for single-rooted teeth. In the real situation the fibres are arranged so
as to withstand all the possible types of loading, always offering stiffness due to their being stretched.
The fibres that first offer stiffness, upon an axial pulling displacement of the tooth, are those more aligned
with the loading direction, while all the others will undergo either a rigid rotation, or milder stretching.
Increasing the tooth axial displacement will eventually lead to the failure of the most stretched fibres, thus
causing a local drop in the global extraction force. Thereafter, other groups of fibres will start becoming
aligned with the loading direction, and offering stiffness, thus causing a new force increase. This effect
is shown by the numerical results, which, for the case of a fixed fibre inclination along the root, do not
show any local force maximum.

In the case of molars, the variable inclination of the collagen fibres is less important, because the root
surface is not convex. In fact, even considering β0 = 0◦ and θ0 = ±90◦, in a numerical simulation of
the extraction of molars, one would obtain at least a local peak of force before the absolute maximum,
corresponding to the failure of the interradicular fibres located between the roots, in the internal concave
zone under the tooth crown. These fibres, with β0 = 0◦, are practically aligned with the root axis in the
undeformed configuration, and would be the first to stretch and break.

The numerical simulations are based on mathematical models for both the PDL as a tissue, and a
single collagen fibre as its basic constituent, developed from the same basic idea, i.e., to describe in the
simplest possible way both the tissue and the fibre microstructure. Of course, for both the PDL and
the collagen fibres many other mathematical models exist in the literature, although, to the best of our
knowledge, none of them has a micromechanical basis. There is no space here (and this is not the proper
place, also) to review the existing literature; the interested reader is referred to the list of references in
[Genna 2014] for collagen, and to [Fill et al. 2012; Romanyk et al. 2013], and the list of references in
[Genna 2006], for the PDL.

In all the force–displacement plots illustrated in the previous section, the influence of the wire stiffness
and initial slack is quite important, as explicitly shown also by Figure 10. Beside this aspect, one must
also consider that, in the experiments, the lower grips of the testing machine were connected to a block
of bone which contained residual portions of soft tissues, whose influence on the recorded displacements
might be nonnegligible. In order to quantify this aspect, a second FEM analysis for the case of the human
incisor of Figure 4(c) was run, in which the cortical bone was surrounded by a thin layer (0.5 mm thick)
of soft tissue, whose mechanical behaviour was simulated by means of a hyperelastic model of the Ogden
type, with a quadratic potential function.

Figure 12 shows the comparison between the force–displacement curves obtained with and without the
soft tissue around the cortical bone: it is apparent that even a very thin layer of very compliant material
can increase the displacement at the peak force by about 60%, with a slight decrease of peak force value.

It is also interesting to observe that the numerical simulations, even when they take into account
several factors that might increase the overall compliance, always tend to underestimate the displacement
corresponding to the maximum force, with respect to the experimental results. It must be recalled that the
material parameter choice in the description of the PDL collagen corresponds to a very large ductility,
with uniaxial Green–Lagrange strain at peak stress of the order of 1.2 for the PDL layer, as shown
in Figure 8 of [Genna 2014], and uniaxial Biot strain at peak stress of the order of 0.55 for a single
collagen fibre, as was also necessary when adopting the different model presented in [Genna 2006]. In
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the numerical simulations presented here, cross-linking in the PDL collagen has always assumed to be
absent, which corresponds to the highest possible values of strains at failure in the collagen fibres [Pins
et al. 1997] in the adopted model; yet, the global behaviour obtained from the FEM simulations, as said,
always shows an underestimated ductility with respect to the experimental one. Even the case expected
to produce the largest displacement at the force peak, i.e., one in which both the wire and the thin layer
of soft tissue are present, with the largest among the adopted values of the PDL thickness (w0 = 1 mm),
yields a displacement value of 2.3 mm at the force peak, smaller than most of the experimental values.

The large displacement values obtained experimentally seem therefore to confirm the corresponding
high strain values that can be reached by the PDL collagen fibres before failure.

6. Conclusions

For the first time, to the best of the authors’ knowledge, force–displacement curves have been obtained
experimentally from the process of extraction of swine teeth from their sockets. The experimental setup
adopted allows the use of a standard testing machine, thus providing direct values of both forces and
displacements. Nevertheless, at the current stage of development it is not yet fully standardised so as to
provide results substantially independent of the testing apparatus itself. Work is in progress in two main
respects: the inclusion of a “rigid” connection between tooth and machine grip, and the measurement of
the relative displacement between tooth and bone, possibly through optical devices.

The results herein presented are expected to be useful to developers of mathematical models for the
PDL, since they provide at least some indirect information (for instance, about the fibre inclination) on
the mechanical and geometrical properties of the PDL.

The numerical analysis of the same problem has shown the ability to obtain meaningful results, and
has also proven the practical applicability of the constitutive model for a single collagen fibre proposed
in an accompanying paper [Genna 2014].

Further work, in this respect, should tackle the problem of the PDL behaviour under small and cyclic
loading, which will require taking into account irreversible and time-dependent effects. With respect to
these last, we point out that, for simplicity in this initial stage, the experimental program carried out so
far did not investigate the effect of the loading, i.e., displacement, rate, which was always kept constant,
at 2 mm/min. Although slower loads could be successfully applied with the adopted setup, faster ones
could not, since they would produce premature ending of the experiment due to fracture either of the
wire or of the tooth crown.
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NONUNIFORM SHEAR STRAINS IN TORSIONAL KOLSKY BAR TESTS
ON SOFT SPECIMENS

ADAM SOKOLOW AND MIKE SCHEIDLER

We investigate inertial effects in torsional Kolsky bar tests on nearly incompressible, soft materials. The
results are relevant for materials with instantaneous elastic shear modulus on the order of 1–1000 kPa
and density on the order of water. Examples include brain tissue and many other soft tissues and tissue
surrogates. We have conducted one- and three-dimensional analyses and simulations to understand the
stress and strain states that exist in these materials in a torsional Kolsky bar test. We demonstrate that
the short loading pulses typically used for high strain-rate (e.g., 700/s) tests do not allow the softer
specimens to “ring-up” to uniform stress and strain states and that consequently the shear stress versus
shear strain data reported in the literature are erroneous. We also show that normal stress components,
which are present even in quasistatic torsion of nonlinear elastic materials, can be amplified in dynamic
torsion tests on soft materials.

1. Introduction

Kolsky bar tests are widely used to study strain-rate effects in inelastic solids [Gray 2000; Chen and Song
2011]. In a compression Kolsky bar test, a relatively thin specimen is sandwiched between two bars.
Impact at one end of the incident bar generates a compressive wave that travels along the bar, through
the specimen, and into a transmission bar. The goal of this test is to subject the specimen to uniform
uniaxial stress and uniform (biaxial) strain at a prescribed axial strain-rate. These uniform conditions can
often be achieved after an initial “ring-up” period involving multiple wave reflections from the specimen-
transmission bar and specimen-incident bar interfaces. Once uniform conditions have been achieved in
the specimen, the axial stress, axial strain, and axial strain-rate histories in the specimen can be deduced
from strain gage measurements on the elastic bars: the axial stress is proportional to the strain in the
transmission bar, and the axial strain-rate is proportional to the strain in the incident bar generated by the
wave reflected from the specimen and transmission bar. A similar approach utilizes a torsional wave in
the Kolsky bar instead of a compressive wave [Gilat 2000; Hartley et al. 1985]. Typically, a number of
test are performed at different strain-rates, and the data are presented as a family of stress-strain curves
with each curve corresponding to a different (approximately constant) strain-rate.

The standard Kolsky bar techniques work well on metals, composites, and stiff polymers and have
provided useful data for the calibration of viscoplastic constitutive models and rate-dependent failure
models. More recently, Kolsky bar tests have been performed on gelatins and soft biological specimens
with the goal of providing data for the calibration of viscoelastic constitutive models for these mate-
rials. However, considerable difficulties have been encountered with these softer specimens. Radial
accelerations in compression tests may result in stress states that are not uniaxial, that is, radial and

Keywords: torsion, Kolsky bar, soft materials, incompressible, Mooney–Rivlin.
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incident bar load cell (fixed)

strain gage specimen

striker bar

Figure 1. Schematic (not to scale) of the experimental setup for the modified torsional
Kolsky bar described in [Nie et al. 2013]. Only the specimen is included in the simulations.

hoop stresses that are a significant fraction of the axial stress but cannot be measured [Scheidler and
Kraft 2010; Scheidler et al. 2011; Warren and Forrestal 2010]. Studies utilizing compression Kolsky bar
techniques purportedly removed radial inertia effects by switching from disk-shaped specimens to annular
specimens [Chen and Song 2011]. It was later shown that annular specimens are also plagued by radial
inertia effects and that the observed increases in axial stress at high strain-rates were falsely attributed to
viscoelastic properties of the specimen [Scheidler and Kraft 2010; Sanborn 2011; Sanborn et al. 2012].

Recently, a variation of the torsional Kolsky bar test has been developed for studying the strain-rate
sensitivity of very soft materials and applied to bovine brain tissue [Nie et al. 2013; Sanborn et al. 2012].
In this modified torsion test, the transmission bar is replaced with a torque load cell in order to generate a
stronger signal than could be obtained from strain gage measurements on a transmission bar; see Figure 1.
The faces of thin annular specimens are glued to the incident bar and the load cell. Strain gage measure-
ments in the incident bar are used to infer the rate of the angle of twist at the specimen-incident bar inter-
face and consequently a volumetric average of the shear strain-rate in the specimen. Integration yields the
angle of twist at the interface and consequently a volumetric average of the shear strain in the specimen.
The radially averaged shear stress at the specimen-load cell interface is deduced from the torque measured
at the load cell. The stress-strain curves in [Nie et al. 2013] are obtained by plotting this radially averaged
shear stress at the load cell versus the volume averaged shear strain in the specimen. Comparison of
stress-strain curves at different strain-rates could (in principle) yield information on the rate-sensitivity of
the shear stress. Nie et al. [2013] performed Kolsky bar tests on bovine brain tissue at an average shear
strain-rate of 700/s. Analogous quasistatic tests at strain-rates of 0.01/s and 1/s were performed for
comparison, and the results appeared to indicate a substantial increase in shear stress in the dynamic test.

The effects of radial inertia in this torsional Kolsky bar test are expected to be much lower than in
a compression test at the same strain-rate. However, for specimens as soft as brain tissue, the effects of
axial inertia (i.e., torsional wave propagation) may be significant. The shear wave speeds in the softer
specimens are so low that even for thin (i.e., 1–2 mm thick) specimens there may be insufficient time for
the specimen to “ring-up” to an axially uniform state of stress, strain, and strain-rate. In particular, if the
shear strain has large axial variations, then the shear strain at the specimen-load cell interface may not
be close to the average shear strain used to generate the stress-strain curves in [Nie et al. 2013], in which
case their “stress-strain curves” would not provide valid constitutive data. Likewise, the shear strain-rate
at the specimen-load cell interface may not be close to the reported average shear strain-rate.

Torsion and compression tests on soft materials differ in another significant way. As noted above, for
compression tests, the desired uniaxial stress state may be impossible to achieve dynamically, but uniaxial
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stress can always be achieved quasistatically if frictional effects at the specimen faces are negligible.
However, even in a quasistatic torsion test, the desired state of pure shear stress is impossible to achieve
except for infinitesimal deformations. Significant normal stresses can develop in finite deformation qua-
sistatic torsion. While radial stresses can be reduced by the use of annular specimens, axial and hoop
stresses may not be negligible. Furthermore, the glued boundary conditions for annular specimens can
be expected to result in axial variations in the stress and strain state even in a quasistatic test since radial
deformations are prohibited at the ends of the specimen but not in the interior. Thus, unlike quasistatic
compression tests, the stress state in quasistatic torsion tests on soft materials is already quite complicated,
and inertial effects in the corresponding dynamic test will further complicate these stress states. Even
if the full stress state could be measured in a dynamic torsion test, it would be difficult to sort out the
role of inertial effects from nonlinear elastic or viscoelastic effects without results for the corresponding
quasistatic case for comparison. This problem is compounded by the fact that in the torsional Kolsky bar
test only the torsional (θ z) stress component can be inferred from the test data, and this is known only
on the face of the specimen in contact with the load cell.

In view of these issues, we have undertaken numerical simulations of both dynamic and quasistatic
torsion tests on soft and nearly incompressible materials. To simplify the dynamic simulations, the
incident bar and the load cell are not included; they are replaced with appropriate boundary conditions
at the specimen ends. Unlike a real torsion test, the simulations provide the complete stress and strain
states at each point in the specimen although a constitutive model must necessarily be assumed. A
linear elastic constitutive model was used in our one-dimensional simulations, and a nonlinear elastic
constitutive model was used in most of our three-dimensional simulations.

Of course, soft tissues are viscoelastic (and poroelastic as well), and the goal of Kolsky bar tests
on these inelastic materials is to quantify their strain-rate sensitivity. However, performing numerical
simulations with elastic constitutive models is a particularly useful way of revealing inertial effects in
dynamic tests. The stress in an elastic material is rate-independent. Thus, any differences between
quasistatic and dynamic simulations of torsion on elastic specimens must necessarily be due to inertial
effects: gradients in stress and strain resulting from acceleration of the specimen. As discussed above,
axially nonuniform shear strains in the specimen would invalidate the analysis used to generate the
stress-strain curves from the experimental data. Use of viscoelastic models in the simulations will add
strain-rate effects but not alter the presence of inertial effects; as we will demonstrate, the main issue
here is the slow shear wave speed in the specimen.

Finally, we emphasize that the purpose of this paper is not to propose or examine particular constitutive
models for brain tissue or other soft materials but rather to investigate the validity of a particular dynamic
test that was developed in an attempt to characterize the high strain-rate response of brain tissue.

The paper is organized as follows. First, in Section 2, we provide an overview of the loading pulses, ma-
terial properties, and simulation parameters. Next, in Section 3, we discuss our one-dimensional analysis
and simulations of torsional waves in a linear elastic specimen. In Section 4, we present the results of our
quasistatic analysis and simulations of a full three-dimensional isotropic nonlinear elastic specimen. Here
we used a compressible version of the well-known Mooney–Rivlin model for incompressible materials
with bulk and shear moduli chosen to yield a nearly incompressible material. Section 5 contains the
results of our three-dimensional dynamic simulations of the torsion test, most of which also used the
Mooney–Rivlin model. However, Section 5B contains a brief summary of three-dimensional dynamic
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simulations that used a nonlinear viscoelastic model for the specimen. Finally, Section 6 contains our
major conclusions and their implications on the experimental data collected from torsional Kolsky bar
tests. These should be relevant to other dynamic test techniques that attempt to generate a (locally)
simple shear such as a double-lap shear test [Saraf et al. 2007; Trexler et al. 2011] or a circular shearing
test [Nie et al. 2011]. In Appendix A, we provide some additional details of the numerical methods that
were used. Appendix B contains the mathematical details of the loading pulses used in these simulations.

2. Overview of specimen properties, loading pulses, and simulations

We tailored our simulations to be relevant to the experimental loading conditions and specimen geome-
tries considered in [Nie et al. 2013]. In Sections 2A–2C, we discuss how we arrived at our material
parameters, boundary conditions, and loading pulse shapes. We also provide an overview of the set of
simulations in Sections 2D and 2E.

2A. Material properties. From the 0.01/s and 1/s quasistatic tests on bovine brain tissue in [Nie et al.
2013], we estimated small strain shear moduli of µ= 4.5 and 9 kPa, respectively.1 In most of this paper,
we use a shear modulus µ= 8 kPa as representative of brain tissue.2 This is near the upper limit of the
quasistatic shear moduli reported for brain tissue in the literature, the lowest values being around 2 kPa
[Donnelly and Medige 1997; Hrapko et al. 2006; Miller and Chinzei 1997; Nicolle et al. 2004; Saraf et al.
2007; Shuck and Advani 1972]. In view of the high water content of brain tissue, we assumed that the
density of the brain tissue specimens was that of water (1 g/cm3). This specimen density was used in all
simulations although the shear modulus was varied considerably (as described in Sections 2D and 2E).

2B. Specimen geometry and boundary conditions. The annular specimen was defined as a hollow cylin-
der of outer radius Ro = 9.5 mm, inner radius Ri = 7.35 mm, and relatively short length L = 1.7 mm,
giving a small length-to-diameter ratio of 0.09.3 Let R denote the arithmetic average radius and 1 the
corresponding difference in radii:

R =
Ro+ Ri

2
, 1=

Ro− Ri

2
= Ro− R = R− Ri (2-1)

so that Ri = R −1 and Ro = R +1. Table 1 summarizes the geometrical parameters for all of the
simulations performed.

In the Kolsky bar tests, the faces of the specimen were glued to the incident bar and load cell, and
for soft specimens, the twist at the specimen-load cell interface should be negligible compared to the
twist at specimen-incident bar interface. Thus, for all simulations, one face of the annular specimen was
subjected to a rigid rotation while the other face was fixed so that material points on either face could
not undergo axial or radial displacements.

Relative to a cylindrical coordinate system, let (r, θ, z) and (R,2, Z) denote the coordinates of a
material point in the deformed configuration and undeformed reference configuration, respectively. The

1 In view of the difficulties in extracting an initial slope from stress-strain data, these estimates are reasonably close to their
estimates of 5.9 and 10.4 kPa.

2 An instantaneous elastic shear modulus of 40 kPa was used in the viscoelastic simulations discussed in Section 5B. The
motivation for this choice is discussed there and in Section 3D.

3 No information is provided in [Nie et al. 2013] as to the variability in specimen dimensions in the five samples they tested.
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Ro (mm) Ri (mm) R (mm) 1 (mm) 1/R L (mm) L/2Ro

9.5 7.35 8.425 1.075 0.13 1.7 0.09
Table 1. Summary of geometrical parameters for all simulations conducted.

end of the specimen at Z = L is taken to be the fixed face and thus corresponds to the specimen-load
cell interface. The other end (Z = 0) corresponds to the specimen-incident bar interface; it is rotated by
an angle −9(t), where 9 ≥ 0 is measured in radians and t denotes time. Thus,

θ |Z=0(t)=2−9(t), θ |Z=L(t)=2. (2-2)

The average angle of twist per unit length is given by

ψ(t)=
θ |Z=L(t)− θ |Z=0(t)

L
=
9(t)

L
≥ 0. (2-3)

A measure of the average shear strain-rate in the specimen often used in the experimental literature
on torsional Kolsky bar tests is

γ̇s(t)=
θ̇ |Z=L(t)− θ̇ |Z=0(t)

L
R =

9̇(t)
L

R = ψ̇(t)R, (2-4)

where a superposed dot denotes the time derivative and R is the average radius introduced above [Gilat
2000; Nie et al. 2013]. This average shear strain-rate is typically inferred from strain gage measurements
on the bar(s) and then integrated to give an average shear strain in the specimen:

γs(t)=
θ |Z=L(t)− θ |Z=0(t)

L
R =

9(t)
L

R = ψ(t)R ≥ 0. (2-5)

While other measures of average shear strain are often used in the theoretical literature (see Section 4B),
we will use γs(t) and its rate in order to simplify comparison with the experimental data in [Nie et al.
2013]. For the dynamic simulations considered here, we applied an angular displacement at Z = 0 that
delivered the desired average strain-rate history γ̇s(t) for the particular simulation. In view of (2-2) and
(2-5), this displacement history is given by

θ |Z=0(t)−2=−9(t)=−
L

R
γs(t). (2-6)

2C. Loading pulse shapes. We use the term loading pulse to refer to the average strain-rate history
imposed on the specimen. The key features of a typical loading pulse4 are summarized in panel a of
Figure 2. These loading pulses are intended to mimic those generated in Kolsky bar experiments. The
pulse ramps up smoothly over the time interval [0, tr ] to a maximum average strain-rate γ̇max, which is
held constant for the plateau duration tp. We assume a symmetric unloading of the pulse; that is, the
unloading time is equal to the rise time tr so that the total duration td of the loading pulse is given by

td = 2tr + tp. (2-7)

The average strain accumulated during the constant strain-rate portion is tpγ̇max. For the loading pulse
shapes considered here, the strains accumulated during the initial rise and during the unloading are

4 A complete mathematical description of this idealized loading pulse is included in Appendix B.
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Figure 2. Key features of a typical average strain-rate history for the dynamic simula-
tions (panel a). Average strain-rate histories (panel b) and strain histories (panel c) for
Simulations I–IX.

each 1
2 tr γ̇max. Thus, the total average strain is

γmax = 2
( 1

2 tr γ̇max
)
+ tpγ̇max = (tr + tp)γ̇max. (2-8)

Nie et al. [2013] reported stress-strain curves from quasistatic and torsional Kolsky bar tests on five
samples of bovine brain tissue. The Kolsky bar tests in [Nie et al. 2013] are described as being at a
strain-rate of 700/s with a pulse duration of 600µs. The final average shear strain for their tests was
about 0.3. No additional details of the loading pulse are provided with the following exception. The
reader is referred to their Figure 4 for “a typical set of Kolsky torsion bar result”. This figure has plots of
output voltage versus time for the two gages. The only information that we could infer from this figure
is that the rise time of the loading pulse shown was about 250µs.5

An average strain-rate history γ̇s(t) consistent with the key features described above was obtained
by choosing the imposed maximum (average) strain-rate γ̇max to be 700/s, the rise time tr to this 700/s
plateau to be 250µs, and the maximum (average) strain γmax to be 0.3. These conditions, together with
(2-7) and (2-8), yield a plateau duration of tp = 179µs and a loading pulse duration of td = 679µs. The
curves for the one-dimensional Simulations I–III in Figure 2 show the average strain-rate history γ̇s(t)
(panel b) and the corresponding average strain history γs(t) (panel c) obtained from this construction. The
other two curves in these panels are the average strain and strain-rate histories for the one-dimensional
Simulations V, VII, and IX and Simulations IV, VI, and VIII.

5 From the discussion in [Nie et al. 2013], it is not clear whether the data in this figure corresponds to any of the tests in that
paper or whether the data is taken from an earlier study by Nie et al. [2011] that is cited frequently in the 2013 paper. The earlier
paper describes a circular shearing test, but it is referred to as a torsion test. Results from that paper are cited as providing
evidence that the specimens were “undergoing uniform deformation” for the 700/s tests in [Nie et al. 2013], a claim that is
contradicted by the results presented here.
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Simulation
parameter unit I II III IV V VI VII VIII IX
γmax 0.3 — — — — — — — —
γ̇max 1/s 700 700 700 200 500 200 500 200 500

tr µs 250 — — — — — — — —
tp µs 179 179 179 1250 350 1250 350 1250 350
td µs 679 679 679 1750 850 1750 850 1750 850
ρ g/cm3 1 — — — — — — — —
µ kPa 800 80 8 8 8 80 80 800 800
c mm/µs 0.0283 0.0089 0.0028 0.0028 0.0028 0.0089 0.0089 0.0283 0.0283

ttravel µs 60.1 190.1 601 601 601 190.1 190.1 60.1 60.1

Table 2. Summary of material and loading pulse parameters for nine one-dimensional
simulations. Long dashes (—) indicate parameters that were not changed.

2D. One-dimensional torsion simulations. The one-dimensional linear elastic simulations described in
Sections 3C, 3D, and 3F were conducted with the primary focus on the effects of the shear modulus
and the loading pulse on the quality of the experiment. Table 2 summarizes the parameters specific to
the nine one-dimensional simulations in Sections 3C and 3D. Columns 1 and 2 list the parameters and
respective units, and the remaining columns give the values of the parameter used. The shear modulus
was varied by two orders of magnitude: 800, 80, and 8 kPa, the latter being on the order of brain tissue, as
discussed in Section 2A. These shear moduli are used in Simulations I, II, and III, respectively, together
with the 700/s loading pulse discussed above. In Section 3C, the spatial and temporal variation of the
actual shear strain and shear strain-rate in the specimen are compared for these three simulations.

In Section 3D, we compare the “stress-strain curves” for the same three shear moduli and three maxi-
mum (average) strain-rates (200, 500, and 700/s) for a total of nine simulations (Simulations I–IX). The
200/s and 500/s loading pulses had the same rise time (250µs) and maximum strain (0.3) as the 700/s
case but different plateau durations and total pulse durations (see Table 2 and Figure 2). The “stress-
strain curves” presented here are obtained by plotting the average shear stress at the load cell versus the
average shear strain in the specimen as in the experimental results reported by [Nie et al. 2013]. The errors
introduced by this procedure are illustrated by comparison with the actual (linear) stress-strain curves that
would have been obtained if the specimen were undergoing a uniform (i.e., pure torsional) deformation.

In Section 3F, we explore the plausibility of improving the quality of experimental results by changing
the parameters of the loading pulse, specifically the rise time tr and plateau duration tp. In these studies,
tr took on the thirteen values 125, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750,
and 3000µs and tp took on the eleven values 1, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000µs
for a total of 143 additional one-dimensional simulations. These simulations were conducted on a soft
material with the same geometry and material properties as in Simulation III.

Additional details about the numerical methods for the one-dimensional simulations are included in
Appendix A.

2E. Three-dimensional torsion simulations. In all of our three-dimensional simulations, stress-free
boundary conditions were used on the outer surface R = Ro and the inner surface R = Ri of the annular
specimen. With the exception of the viscoelastic results in Section 5B, the constitutive relation for the
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specimen was a compressible version of the nonlinear elastic Mooney–Rivlin model (see Section 4). We
used a bulk modulus of 2.3 GPa for all simulations; this is the bulk modulus of water and approximates
the bulk modulus of many gelatins and soft tissues (such as brain tissue).

For the quasistatic simulations in Section 4F, the shear modulus was varied by almost three orders
of magnitude: µ = 800, 80, 8, and 2 kPa. The corresponding ratios of bulk to shear modulus varied
from 2875 to 1.15× 106 so that in all cases the material was nearly incompressible. For each value of
the shear modulus, simulations were performed for three values of the nondimensional parameter ω in
the Mooney–Rivlin model: 0.3, 0.6, and 1 (neo-Hookean model).

The three-dimensional dynamic simulations (Simulations X–XVIII) with an elastic specimen are dis-
cussed in Section 5A. The material parameters for these simulations were varied in an analogous way
to the three-dimensional quasistatic simulations except that the µ= 2 kPa case was not considered. The
loading parameters were the same as in the one-dimensional Simulations I–III. Section 5B contains a brief
discussion of some three-dimensional dynamic simulations that used a nonlinear viscoelastic model for
the specimen.

Additional details about the numerical methods for both the quasistatic and dynamic three-dimensional
simulations are included in Appendix A.

3. One-dimensional treatment of dynamic torsion

Unlike traditional Kolsky bar tests where the force or torque is measured at both ends of the specimen,
in the modified torsional Kolsky bar test of [Nie et al. 2013], the torque is measured by a load cell at one
end of the specimen only, and a (radially averaged) shear stress at that end of the specimen is extracted
from this measurement. The test provides no means for determining whether an axially uniform state
of shear stress has been achieved in the specimen. This would not be an issue if the shear strain could
also be measured at the specimen-load cell interface, in which case a valid stress-strain curve could be
obtained. However, it is not possible to measure the shear strain at any specific location in the specimen.
Only an average measure of shear strain in the specimen, γs(t) in (2-5), can be extracted from the test
data, and this represents a volumetric average.6

As pointed out in the introduction, the stress-strain curves reported by [Nie et al. 2013] were obtained
by plotting the (radially averaged) shear stress at the load cell versus the average shear strain γs(t) in the
specimen. Clearly, this is meaningful only if γs(t) is close to the actual shear strain at the specimen-load
cell interface. Such a condition can be expected to hold over some time interval only if the shear strain
in the specimen is axially uniform on that time interval. In an effort to determine when a state of uniform
shear strain can be achieved, we have performed one-dimensional simulations of dynamic torsion on lin-
ear elastic specimens. Although the goal of the torsional Kolsky bar tests is to measure strain-rate effects
due to viscoelastic properties of the material, a study of one-dimensional linear elastic wave propagation
in the torsion specimens reveals the difficulty in achieving uniform conditions in soft specimens.

In Section 3A, we discuss the one-dimensional wave equation that is solved in our simulations. Section
3B contains a brief discussion of dynamic equilibrium. An overview of the simulations in Sections 3C,
3D, and 3F was given in Section 2D. In Section 3E, we consider some ways of improving the quality of
the torsion experiments.

6 In this regard, see also (3-11) below.
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3A. The wave equation for dynamic torsion. To investigate the possibility of axially nonuniform shear
strains in dynamic torsion tests, we consider the torsional deformation

r = R, θ = θ(Z , t)=2+ δ(Z , t), z = Z (3-1)

so that
δ(z, t)≡ θ(z, t)−2 (3-2)

is the angular displacement at the axial location z at time t . Note that for the deformation (3-1) there are
no axial or radial displacements in the specimen. The boundary conditions (2-2) imply that the angular
displacements at the ends of the specimen are

δ(L , t)= 0, δ(0, t)= θ(0, t)−2=−9(t)=−Lψ(t). (3-3)

Recall that ψ(t) is the average angle of twist per unit length (see (2-3)).
We assume that the displacement vector u and its spatial gradient ∇u are infinitesimal. Let ε denote

the infinitesimal strain tensor: ε = 1
2(∇u+ (∇u)T ). Then for the deformation (3-1), the only nonzero

components7 of u and ε relative to the cylindrical coordinate system are

uθ = rδ(z, t), εzθ = εθ z =
1
2
∂uθ
∂z
=

1
2

r
∂δ

∂z
. (3-4)

We also assume that the specimen satisfies the isotropic linear elastic constitutive relation

T = λ(tr ε)I + 2µε, (3-5)

where T is the Cauchy stress tensor and the constants λ and µ are the Lame modulus and shear modulus,
respectively. Then for the deformation (3-1), the only nonzero components of T are

Tzθ = Tθ z = 2µεθ z = µ
∂uθ
∂z
= µr

∂δ

∂z
. (3-6)

In this case, the equations for momentum balance in cylindrical coordinates reduce to

∂Tθ z

∂z
= ρ

∂2uθ
∂t2 , (3-7)

where ρ is the specimen density. Then by (3-6), it follows that uθ satisfies the one-dimensional wave
equation; hence, by (3-4)1 and (3-2), δ and θ satisfy the same equation.8 For example,

∂2δ

∂t2 = c2 ∂
2δ

∂z2 , c =
√
µ

ρ
. (3-8)

That is, a small angular displacement will propagate axially along the specimen at the linear elastic shear
wave speed c.9

7 Here and elsewhere in the paper, we use the physical components of vectors and tensors, that is, their components relative
to the unit basis vectors along the cylindrical coordinate directions. See [Graff 1975, §A.9.1] for the physical components of ε

and the momentum balance equations for infinitesimal strains.
8 These results also follow from strength-of-materials approximations [Graff 1975, §2.6; Wylie 1975, §8.2].
9 A shear wave propagating into an initially unstrained, nonlinear elastic material also travels at the linear elastic wave speed

[Truesdell and Noll 1965, §73, 74, 77]. The shear wave speed may change after the wave is reflected and begins to travel into
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The results above hold for both disc-shaped specimens and annular specimens.10 In either case, the
outer lateral surface r = Ro, and for annular specimens the inner lateral surface r = Ri , is stress-free
since Trr = Trθ = Tr z = 0. The shear strain εθ z and the shear stress Tθ z vary linearly with the radius as
shown above. Restricting attention to annular specimens, we see from (3-6) that the arithmetic average
of the shear stress at the outer and inner lateral surfaces is

σ(z, t)≡
Tθ z|r=Ro + Tθ z|r=Ri

2
= µR

∂δ

∂z
= µγ (z, t), (3-9)

where

γ (z, t)≡ R
∂δ

∂z
= R

∂θ

∂z
. (3-10)

Note that, by (3-4), γ (z, t) is twice the arithmetic average of εθ z(z, t) at the outer and inner lateral
surfaces.11 In interpreting the results of our one-dimensional simulations, we have chosen to use γ (z, t)
as a measure of the radially averaged shear strain at the axial location z for consistency with the average
shear strain γs(t) used in the experimental literature. Indeed, by (3-10), (3-3), and (2-5), γs(t) is the axial
average value of γ (z, t):

1
L

∫ L

0
γ (z, t) dz =

1
L

∫ L

0
R
∂δ

∂z
dz =

R
L
[δ(L , t)− δ(0, t)] = ψ(t)R

= γs(t). (3-11)

Note that since γ (z, t) represents a radial average of the shear strain at z, γs(t) represents a volumetric
average of the shear strain in the specimen.

Recall that, in the dynamic torsion tests, the angle of twist 9(t) imparted to the face of the specimen
(at z = 0) is typically determined in such a way that a desired average strain-rate history γ̇s(t) is delivered.
By (3-2) and (2-6), the angular displacement history necessary to deliver that average strain-rate history is

δ(0, t)=−
L

R
γs(t). (3-12)

The average strain histories shown in Figure 2c, when substituted into (3-12), yield the angular displace-
ment boundary conditions that are actually applied at the loading end of the specimen (z = 0) in our
simulations. These simulations involve the numerical solution12 of the one-dimensional wave equation
(3-8) for δ with zero initial conditions and boundary conditions (3-12) and (3-3)1 (i.e., δ(L , t)= 0).

A pure torsional deformation satisfying the boundary conditions (2-2) is given by (3-1) with angular
displacement

δ(z, t)= ψ(t)(z− L), ψ ≥ 0. (3-13)

a strained portion of the material. For the strains considered here, nonlinearity could introduce small variations in wave speeds
that would be minor compared with other effects discussed later.

10 Because of the small length-to-diameter ratio of the specimens considered here, namely 0.09, the more common terms
“rod” and “tube” do not seem appropriate.

11 For the annular specimens considered here, the shear strain should be approximately radially uniform. See the discussion
of pure torsional deformation in Section 4B.

12 Additional details about the numerical methods for the one-dimensional simulations are included in Appendix A.
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In this case, by (3-4), the only nonzero components of the infinitesimal strain tensor are

εzθ = εθ z =
1
2ψ(t)r ≥ 0. (3-14)

And by (3-10) and (2-5), the shear strain γ is axially uniform and equal to the average shear strain γs:

γ (z, t)= ψ(t)R = γs(t) for pure torsion. (3-15)

However, a state of pure torsion might not be achieved in a given test so that γ (z, t) 6= γs(t) in general.
The degree to which γ (z, t) differs from its measured average value γs(t) is a critical point of this paper
and is discussed in the following sections.

3B. Dynamic equilibrium. In the experimental literature, the terms “force equilibrium”, “stress equi-
librium”, “dynamic stress equilibrium”, or simply “dynamic equilibrium” are used to indicate that the
axial forces (compression tests) or torques (torsion tests) on the two ends of the specimen are balanced
[Gray 2000; Chen and Song 2011]. This condition is clearly necessary (but not sufficient) for an axially
uniform state of stress and strain within the specimen, and in the experimental literature, these uniform
conditions are often (implicitly) assumed to hold on any time interval for which dynamic equilibrium is
achieved. We will use the term “dynamic equilibrium” in this stronger sense of axially uniform stress
and strain states.

Whether or not dynamic equilibrium is reached depends on many factors, including the properties of
the loading pulse, the specimen wave speed, and the specimen length. In particular, a critical factor in
achieving dynamic equilibrium in torsion tests is the travel time of the shear wave:

ttravel =
L
c
= L

√
ρ

µ
, (3-16)

that is, the time it takes for the shear wave to travel from one end of the specimen to the other. For a
uniform strain state to exist in the material, key features of the loading pulse such as the rise time tr and
the plateau duration tp need to be much longer than the travel time to allow the specimen to “ring-up”
to dynamic equilibrium after multiple reflections.

Table 2 lists the three different travel times for Simulations I–IX; recall that we assume the density ρ
is that of water and the specimen length L is 1.7 mm. For the values of the shear modulus used in our
dynamic simulations (8–800 kPa), the travel time ranges from 601µs to 60.1µs. Since the travel time
is the delay in microseconds between the initial loading of the specimen at z = 0 and the arrival of the
wave at the load cell at z = L , the way this travel time is incorporated into the analysis of experimental
data is extremely important when generating stress-strain curves as we will demonstrate in Section 3D.
Assuming that the shear stress σ(L , t) at the load cell is being plotted against the measured averaged
shear strain γs(t), these signals would have to be shifted in time to synchronize them. However, we will
show that this procedure can introduce considerable errors.

3C. Failure of soft specimens to reach equilibrium. In this section, we examine the spatial and temporal
variation of the strain and strain-rate in the specimen for Simulations I–III. These simulations differ only
in the value of the shear modulus µ used for the specimen (see Table 2). The results are summarized in
Figure 3. False color images of the strain-rate (left panels) and strain (right panels) as a function of axial
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Figure 3. The average strain-rate history γ̇s(t) (panel a) and corresponding average
strain history γs(t) (panel b) imposed on the specimen for Simulations I–III. The first
black vertical dashed line corresponds to the rise time tr to constant strain-rate. The
second black vertical dashed line is the time (tr + tp) at which the strain-rate starts to
ramp down after a constant strain-rate plateau of duration tp. The remaining panel pairs
(c–d, e–f, and g–h) are false color images of the corresponding actual strain-rates γ̇ (z, t)
and strains γ (z, t) in specimens with shear moduli µ= 800, 80, and 8 kPa, respectively.
Note that the color scale varies for the three groups of plots. The vertical magenta lines
correspond to ttravel, which depends on the shear modulus.

position (vertical axis) and time are presented in panels c–h. Panels a and b show the average strain-rate
and strain histories that are imposed on the specimen.

Figure 3 illustrates the degree to which dynamic equilibrium has (or has not) been achieved. Shear
waves are initiated at the specimen–bar interface (z = 0) and propagate to the Load Cell (z = L). In each
panel, the first vertical black dashed line indicates the rise time tr . The two vertical black dashed lines
taken together represent the window of time during which the imposed average strain-rate is constant.
The vertical magenta dashed line indicates the travel time and thus the arrival of the shear wave at the
Load Cell, which increases with decreasing shear modulus (see (3-16)). Thus, the black dashed lines
indicate the key time scales of the loading pulse and the magenta line represents the critical travel time
of the specimen. Ideally, the magenta line should lie well before both black lines.

The results for µ = 800 kPa (Simulation I) are shown in panels c and d of Figure 3. These results
are close to what one might expect for a valid torsional Kolsky bar experiment. The strain-rate (panel c)
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increases to an approximately axially uniform (intended) plateau value of 700/s before dropping back
down to a zero strain-rate but nonzero final strain (panel d). From the false-color representation, one can
conclude that both the strain and strain-rate are fairly uniform along the length of the specimen at any
instant. This is indicated by a nearly uniform color in the vertical direction at any instant. The ringing
that can be seen, especially in the strain-rate, is one of the fundamental modes of the specimen. There is
moderate variability in the strain-rate due to the ringing, but the intended strain-rate and maximum strain
nearly match their imposed average values plotted in panels a and b. Thus, panels c and d in Figure 3 are a
representation of a strain state where dynamic equilibrium is nearly achieved. If dynamic equilibrium was
actually reached, the color representation of γ (z, t) and γ̇ (z, t) would not change in the vertical direction.

The results for the smaller shear modulus, µ = 8 kPa (Simulation III), are shown in panels g and h
of Figure 3. Clearly, the strain and strain-rate in Simulations III and I are considerably different both in
magnitude and uniformity. Recall that a shear modulus of 8 kPa is on the order of brain tissue, so the
specimen stiffness in this case most closely resembles the stiffness of the brain tissue specimens in the
tests of [Nie et al. 2013]. Since the linear elastic shear wave speed is proportional to the square root of the
shear modulus and the shear modulus in Simulation III is one hundred times smaller than in Simulation I,
the wave speed is ten times slower than in Simulation I. The travel time is therefore ten times longer,
i.e., 601µs instead of 60µs (compare the magenta lines for panels c and d against panels g and h in
Figure 3). For the µ= 8 kPa case, the travel time is so close to the pulse duration (td = 679µs) that the
shear strain and shear strain-rate within the specimen are nonuniform traveling pulses. Thus, the same
loading conditions that produced axially uniform shear strain and shear strain-rate in the µ= 800 kPa
case resulted in highly nonuniform shear strain and shear strain-rate within the 8 kPa specimen.

For the µ= 8 kPa case, it is grossly inaccurate to describe the strain and strain-rate at any location in
the specimen by their average values γs and γ̇s although these averages are all that can be inferred from
test measurements. The following features illustrate the degree of nonuniformity in the specimen:

(1) During the first 600µs of the simulation, that is, prior to reflection of the shear wave from the Load
Cell, the peak strain-rate and peak strain in the specimen are about 3200/s and 0.42, respectively.
These peak values occur at different axial locations at different times (see panels g and h) and well
exceed the maximum average strain-rate (γ̇max = 700/s) and maximum average strain (γmax = 0.3).

(2) The largest strain achieved in the specimen during the simulation is about 0.84. This occurs near
the end Z = 1.7 mm (i.e., adjacent to the Load Cell) at about 900µs (panel h). This peak strain is
nearly three times larger than the average strain γs at 900µs, which has already reached its final
value of γmax = 0.3.

(3) The largest strain-rate achieved in the specimen during the simulation is about 5800/s. This also
occurs at the Load Cell end of the specimen (Z = 1.7 mm) at about 730µs, by which time the
average strain-rate γ̇s has unloaded to zero. This peak strain-rate is more than eight times higher
than the maximum average strain-rate (700/s) imposed on the specimen.

(4) Large positive strain-rates and a zero average strain-rate at the same instant imply negative strain-
rates of large absolute value must also be experienced in some portions of the specimen. This is
evidenced by the blue bands in panel g.

(5) The doubling of the peak strains (from 0.42 to 0.84) and the near doubling of the peak strain-rates
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(from 3200/s to 5800/s) is due to the reflection of the shear wave from the fixed end (Z = 1.7 mm)
beginning at 601µs.13

(6) As an example of the large axial gradients, the strain at 300µs decreases from 0.275 to 0 over a
distance of 0.3 mm. However, the change in the angle of twist over this 0.3 mm length is quite
small: roughly 0.005 radians or about 0.3◦. This is well below the resolution of the high speed
camera images of the specimen in [Nie et al. 2011] that were often cited in [Nie et al. 2013] as
evidence that the specimens undergo uniform deformation.

The results for µ = 80 kPa (Simulation I) are shown in panels e and f of Figure 3. Even for this
intermediate case, dynamic equilibrium is not reached. Further evidence of this fact is given by the stress-
strain curves for µ= 80 kPa in the next section. Clearly, achieving dynamic equilibrium in specimens
with shear moduli substantially less than 800 kPa can be quite problematic.

3D. “Stress-strain curves” for linear elastic specimens. Up to this point, we have used the linear elastic
simulations only for predictions of the strain and strain-rate within the specimen. In this section, we
use the results of those simulations to construct “stress-strain curves” at several “constant strain-rates”,
analogous to the way that test data is typically analyzed and presented in the experimental literature.

Let σLoad Cell(t) and γLoad Cell(t) denote the (radially averaged) shear stress and shear strain at the
Load Cell:

σLoad Cell(t)= σ(L , t), γLoad Cell(t)= γ (L , t). (3-17)

In the torsional Kolsky bar test of [Nie et al. 2013], the torque is measured at the load cell and σLoad Cell(t)
can be extracted from this measurement. However, γLoad Cell(t) cannot be measured in this or any other
torsional Kolsky bar test — only the average shear strain γs(t) can be inferred as discussed in Section 2B.
Consequently, the stress-strain curves in [Nie et al. 2013] are plots of σLoad Cell versus γs. But while
γs(t) starts increasing at t = 0, that is, as soon as the twist is applied to the end z = 0, there is a delay
(equal to the travel time) before a nonzero strain is experienced by the specimen at the load cell (see
Figure 3). Since this travel time is a significant portion of the test duration for the soft specimens of
interest, it might seem reasonable to time-shift the σLoad Cell(t) history in order to synchronize it with
the γs(t) history (or vice versa) prior to plotting one against the other. On the other hand, a time shift
is unnecessary if the specimen is in dynamic equilibrium, a condition that Nie et al. [2013] assumed to
hold in their tests. Since the issue of travel time in the specimen was not discussed in their paper, it was
not clear to us whether a time shift had been performed in generating their stress-strain curves.

In this section, we utilize the results from Simulations I–IX (see Table 2) to generate “stress-strain
curves” (i.e., σLoad Cell versus γs) with and without time shifts. We compare the results of both approaches
in order to illustrate the different apparent “strain-rate effects” that each produces. Recall that the simu-
lations solve the one-dimensional wave equation (3-8) for the angular displacement δ with the boundary
condition at z = 0 determined by the appropriate average strain history (see (3-12) and Figure 2). Six
sets of “stress-strain curves” are plotted in Figure 4. Solid colored curves are shear stress measured at
the Load Cell plotted against the average shear strain γs. The colored curves in the left column do not
involve any time shifts of the data; i.e., they are parametric plots of σLoad Cell(t) versus γs(t). The colored

13 Another doubling would be expected to occur at the specimen-bar interface (Z = 0) if the simulation had been continued
to longer times.
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curves in the right column are parametric plots of σLoad Cell(t− ttravel) versus γs(t); i.e., the Load Cell data
has been time-shifted to synchronize it with the average strain data. Each row of plots is for a unique
shear modulus (800, 80, and 8 kPa), and each color within a panel represents a simulation taken at a
different intended maximum average strain-rate: γ̇max = 700/s (blue), 500/s (green), and 200/s (red).
The average strain-rate histories are shown in panel b of Figure 2. The maximum strain γmax and rise
time were held constant at 0.3 and 250µs, respectively, and only the plateau time and the total duration
were changed to accommodate the various strain-rates (see Table 2).

In the simulations the stress and strain at the Load Cell are linearly related: setting z= L in (3-9) gives

σLoad Cell(t)= µγLoad Cell(t). (3-18)

Thus, regardless of the strain and strain-rate histories experienced by the specimen, a parametric plot
of σLoad Cell(t) versus γLoad Cell(t) should be linear with slope µ. We cannot actually plot the linear relation
in (3-18) in Figure 4 since the variable on the horizontal axis is γs(t), which (as shown in Section 3C)
is generally not equal to γLoad Cell(t). However, if the shear strain were uniform, then γs would coincide
with γLoad Cell, in which case the shear stress at the Load Cell would vary linearly with γs: σLoad Cell=µγs.
This linear curve is shown by the black dashed lines in each panel in Figure 4. It represents the correct
stress-strain curve against which the colored “rate-dependent” curves should be compared. That is, while
each of the colored curves are valid plots of σLoad Cell versus γs (with or without time shifts), they represent
the σLoad Cell versus γLoad Cell curve only to the extent to which they agree with the black dashed lines
in Figure 4. Recall that the shear strain γ (z, t) is uniform for a specimen undergoing a pure torsional
deformation (see the discussion at the end of Section 3A). Hence, the black dashed lines represent the
stress-strain curves that would be obtained for pure torsion.

Panel a in Figure 4 corresponds to a shear modulus of 800 kPa without a time shift. Note that all
four curves lie nearly on top of each other. Here the blue curve represents the results from Simulation I.
As discussed earlier, this was considered a “valid” Kolsky bar test, and that conclusion is confirmed
here. Panel b is the same set of stresses shifted by the travel time (60µs). This has the appearance of
valid Kolsky bar data. Note, however, that all these curves are vertically offset from the true (dashed)
response, implying an apparent rate-dependence. Despite the vertical offset, their slopes capture the true
linear behavior of the material.

We emphasize that if a linear elastic specimen is in dynamic equilibrium, there should be absolutely
no strain-rate effects. However, Figure 4 clearly shows that, for the smaller shear moduli of 80 and
8 kPa, the apparent “rate effects” are substantial regardless of whether the Load Cell data is time-shifted.
It is unclear what information could have been inferred from these plots if the true linear stress-strain
relation were unknown with the exception that, for µ= 80 kPa, a linear fit to the unshifted curves or to
the time-shifted 200/s curve might return a slope close to µ.

When the shear stress is plotted without a time shift, there is an initial strain interval for which the
stress is zero. The strain duration of this initially flat portion of the stress-strain curve increases with
the strain-rate and decreases with increasing shear modulus. These initially flat regions are present even
for the µ = 800 kPa case (panel a) although they cannot be observed on the scale of that figure. This
nonphysical behavior is most profound for the softest specimen (µ= 8 kPa, panel e). In particular, for
the 700/s case in that panel, there is no measured stress until γs(t) is close to 0.3. Recall that it takes
601µs for the shear wave to arrive at Load Cell whereas the average strain has reached its final value
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Figure 4. Panel pairs a–b, c–d, and e–f show apparent “strain-rate effects” in three
linear elastic materials with shear moduli µ= 800, 80, and 8 kPa, respectively. Note the
differences in the vertical scales for the three groups of panels. Solid colored curves are
shear stress measured at the Load Cell plotted against the average shear strain γs. The
black dashed lines correspond to the stress-strain curve that results for a pure torsional
deformation in dynamic equilibrium.

of 0.3 by 679µs (the pulse duration). For t > ttravel = 601µs, the strain at the Load Cell increases to
roughly 0.8 (see panel h in Figure 3) and subsequently falls to zero strain, and of course, the stress at
the Load Cell is proportional to this strain. Thus, a parametric plot of σLoad Cell(t) versus γs(t) becomes
essentially a vertical line at γs = 0.3, where a single average shear strain maps to infinitely many stresses.

When the µ= 80 and 8 kPa data is plotted with a time shift (panels d and f in Figure 4), the data appears
more reasonable but is still completely erroneous. In particular, the “initial” shear moduli (that is, the
slopes of the stress-strain curves at the origin) are substantially higher than the actual shear modulus of the
linear elastic specimen, which is the slope of the dashed curve. For strains up to 0.05, our 700/s curves
(for µ= 8 and 80 kPa) agree qualitatively, though not quantitatively,14 with the 700/s stress-strain curves
for bovine brain tissue in Figures 5 and 6 of [Nie et al. 2013]. In particular, their stress-strain curves have
no initially flat region of the type in panels c and e in our Figure 4. Based on these observations, it would
appear that Nie et al. [2013] time-shifted the Load Cell data to synchronize it with the average strain
data in order to generate the stress-strain curves for the “700/s” tests that they reported. But regardless

14 Our linear elastic simulations for γ̇max = 700/s were not intended or expected to fit the 700/s stress-strain curves in [Nie
et al. 2013]. Their quasistatic curves show large nonlinear elastic effects that would be expected to persist in dynamic tests.
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of whether they time-shifted their Load Cell data, the results in this section indicate that the stress-strain
curves reported for bovine brain tissue in [Nie et al. 2013] most likely have large systematic errors in the
strains. The results in the next paragraph lend further support for this conclusion.

The 700/s curve in Figure 6 of [Nie et al. 2013] is an average of the 700/s stress-strain curves for
their five samples. From this curve, they estimated an (average) initial shear modulus of 53.5 kPa. If this
were an accurate estimate of the instantaneous elastic shear modulus of a viscoelastic specimen, then
the shear wave speed in the specimen would be controlled by this modulus, giving a travel time in the
specimen of 232µs. Our µ = 80 kPa elastic simulations are closest to this case with an even shorter
travel time of 190µs. However, as panels c and d in Figure 4 and panels e and f in Figure 3 show,
dynamic equilibrium is not reached even for this stiffer case.

It is clear that the apparent “rate effects” discussed here are not due to viscoelastic or viscoplastic
behavior in the specimen. Rather, they are due to the fact that the average shear strain, which is used
to construct the stress-strain curves, is significantly different from the strain at the location where the
stress is measured. However, in a Kolsky bar test on specimens that exhibit rate-dependent behavior,
the distinction between the actual material response and apparent “rate effects” would be lost. Thus,
one might falsely attribute the apparent rate effects discussed above to either viscoelastic or viscoplastic
properties of the specimen.

After this portion of the paper had been completed, private communications with Xu Nie (the first
author of [Nie et al. 2013]) suggested some possibilities that were not considered above. Nie stated
that in generating their stress-strain curves, they did not time-shift the Load Cell data to synchronize
it with the average strain data.15 Furthermore, he estimated that the travel time in the specimen was
approximately 30µs. This estimate was obtained from the difference between the arrival time of the
loading wave at the specimen and the onset of a signal at the Load Cell. These times were estimated
from oscilloscope traces from one test.16 Clearly, a travel time of 30µs is inconsistent with the results
presented here for a specimen as soft as brain tissue. Indeed, it would imply an instantaneous elastic
shear modulus of 3.2 MPa, which is totally unreasonable for brain tissue.

On examining a snapshot of the oscilloscope traces provided to us by Xu Nie, we noticed that there
was a discontinuity in the slope of the Load Cell signal at about 260µs.17 Subsequently, the Load Cell
signal exhibits a substantial increase in noise. We suspect that the travel time of the torsional shear wave
in the specimen was (approximately) 260µs and that the onset of the Load Cell signal at 30µs is due to
some other source. Note that a travel time of 260µs would imply an instantaneous elastic shear modulus
of 42 kPa, which is not unreasonable. The early Load Cell signal would also explain why the stress-strain
curves in [Nie et al. 2013] do not exhibit an initially flat region even though they claim that the data was
plotted without a time shift. Indeed, no such region is observable in panel a of Figure 4 even though the
travel time in that case was 60µs. If our conjecture is correct, then the shear stress inferred from the

15 They did, of course, perform the necessary time shift of the strain gage data to account for the time it takes the shear wave
to propagate from the strain gage to the specimen end of the incident bar.

16 Nie points out (and we agree) that such estimates for arrival and onset times, and particularly for their differences, are
subject to errors that are difficult to bound. Our estimate of the actual travel time of the shear wave, and consequently our
estimate for the instantaneous elastic shear modulus for the specimen, are subject to even more uncertainty. However, it is only
the order of magnitude of these estimates that are essential for the arguments given here.

17 To simplify the discussion, we take the arrival time of the loading wave at the specimen to be t = 0 as has been assumed
previously this paper.
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Load Cell signal would be erroneous from 30–260µs (and hence for the smaller strains), and possibly
for later times as well, depending on how long this spurious signal persisted.

A possible explanation for the early onset of the Load Cell signal is the presence of bending or
longitudinal waves in the incident bar, which would travel faster than the torsional shear wave. Another
possible explanation is the longitudinal precursor wave that is generated in the specimen by the shearing
deformation from the torsional wave. This precursor wave is a real effect as discussed in the analysis of
our three-dimensional dynamic simulations in Section 5. But it is not clear to us whether any of these
waves could even generate a measurable signal in the torque sensor, so at the moment, the early onset of
this signal remains unresolved.

3E. Increasing the quality of the test. In the previous sections, we examined the axially nonuniform
strain and strain-rate states that may exist in the specimen in torsional Kolsky bar tests. For sufficiently
soft specimens, large systematic error in the stress-strain curves is associated with the loading conditions
and the specimen lengths considered. In this section, we discuss some alterations to the experiment that
might alleviate this error. Some dimensional analysis is particularly useful here and can indicate how to
improve the experimental setup.

Using parameters specific to our loading pulse, by (2-7) and (2-8), we see that the total average strain
and the pulse duration can be expressed as

γmax = (tr + tp)γ̇max, td = 2tr + tp = tr +
γmax

γ̇max
= 2

γmax

γ̇max
− tp. (3-19)

If we take γ̇max as fixed, we need only specify two of the three parameters tr , tp, and γmax in order to
determine the four parameters tr , tp, γmax, and td . We choose to track changes by altering the rise time tr
and the plateau duration tp.

Two quality measures of the test conditions are the ratio Qr of the rise time to the travel time and the
ratio Q p of the plateau time to the travel time:

Qr ≡
tr

ttravel
=

ctr
L
=

tr
L

√
µ

ρ
, Q p ≡

tp

ttravel
=

ctp

L
=

tp

L

√
µ

ρ
. (3-20)

Qr can be thought of as the number of wave reflections that occur during the initial rise time, and Q p can
be thought of as the number of reflections that occur during the plateau period. A high quality test would
be one for which both Qr � 1 and Q p� 1. We emphasize that these measures are dimensionless and
depend on the details of the loading pulse, the specimen length, and the shear wave speed of the specimen.

For a given range of values of the shear wave speed c, the parameters L , td , tr , tp, γmax, or γ̇max

can be chosen to ensure a large quality factor. The µ = 800 kPa case in Figure 4 (panel a) gave the
most accurate results; here Qr = 4.2 for all three cases, and Q p = 2.98, 5.82, and 20.8 for γ̇max = 700/s,
500/s, and 200/s, respectively. For our particular examples, transitioning from µ= 800 kPa to µ= 8 kPa
reduces the wave speed by a factor of ten. This also reduces Q by a factor of ten.18 Thus, to perform
a valid experiment, the parameters that determine Q need to be adjusted in the softer material case to
compensate for the slower wave speed and thus restore Q to a larger value.

An obvious change to make is reducing the specimen length. Although in practice this might be quite
difficult for brain tissue, reducing the length (i.e., thickness) of the specimen by a factor of 10 (from 1.7

18The symbol Q without an r or p subscript refers to both Qr and Q p .
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to 0.17 mm) would increase Q by a factor of 10. However, by reducing the length, inhomogeneities in
the tissue are more likely to influence measurements. There are also practical concerns: how to cut slices
that are submillimeter, how to handle them, and the effects of gluing them.

Another means of increasing the quality Qr is to increase the rise time of the loading pulse. To increase
Qr by a factor of 10 without reducing the specimen length, tr must also increase by a factor of 10; i.e., we
need tr = 2500µs. From (3-19)1, we see that this can be achieved by reducing the maximum (average)
strain-rate γ̇max or by increasing the maximum (average) strain γmax. However, in an actual torsion test,
buckling or tearing is likely to occur at sufficiently large strain. Similar comments apply to Q p and tp.

There are experimental constraints on the duration of the loading pulse, namely the bar length, bar
wave speed, and location of the strain gage on the bar. Attempting to accommodate a long (e.g., 7 ms)
loading pulse for an aluminum or steel bar by only increasing its length would yield impractical bar
lengths. However, a considerable increase in loading pulse duration can be gained by switching to
polymer bars without changing the length of the bar. For example, polycarbonate (PC) and polymethyl
methacrylate (PMMA) have shear wave speeds of 0.91 mm/µs and 1.3 mm/µs, respectively. Compared
to aluminum or steel bars, which have shear wave speeds on the order of 3 mm/µs, the longest pulse for
a fixed length of bar would be increased by 3.6 and 2.5 for a PC and a PMMA bar, respectively.

Additional gains can be made in accommodating longer loading pulses by replacing the strain gage
with an optical measurement of the angle of twist imposed on the specimen. The traditional analysis of
Kolsky bar test data uses the fact that the average strain-rate in the specimen is proportional to the strain
generated in the incident bar by the reflected wave, assuming the specimen is in dynamic equilibrium;
see (7) in [Gilat 2000] for torsion tests and [Gray 2000; Chen and Song 2011] for compression tests. For
sufficiently long loading pulses, however, the incident and reflected waves can overlap at the strain gage
location, in which case the reflected wave signal cannot be separated from the combined signal, making
it impossible to extract the strain in the incident bar associated with the reflected wave.19 This would no
longer be an issue with an optical measurement of the angle of twist at the end of the incident bar adjacent
to the specimen. Also, since the specimens could not have been in dynamic equilibrium in the tests of
[Nie et al. 2013], the method discussed above for determining the strain-rate in the specimen can be called
into question. This issue would also be bypassed by direct optical measurement of the angle of twist.

3F. A parametric study of test quality. In view of the discussion in the previous section, we conducted
a parametric study in which tr and tp were varied in an attempt to increase the quality of the test within
the experimental constraints. For these simulations, we used γ̇max = 700/s, µ= 8 kPa, and L = 1.7 mm.
With these parameters fixed, and varying only the rise time and plateau time, we present in Figure 5 the
results on the peak strain reached at the Load Cell during the simulation (panel a), the total duration of
the loading pulse (panel b), and the average error (panel c) as defined below.

Equation (3-19) predicts that, for a fixed maximum average strain-rate γ̇max, the maximum average
strain γmax depends linearly on the sum of tr and tp. In panel a, the actual peak strain in the specimen at
the Load Cell, max[γ ], i.e., the maximum value of γ (L , t) over the duration of the experiment, deviates

19 This was one of the difficulties encountered by Nie et al. [2013]. They partially bypassed the problem by substituting the
(negative of the) incident wave for the reflected wave, arguing that this is a good approximation for very soft specimens, which
in fact it may be. They could then use the measured strain in the incident bar due to the incident wave at least up until the time
of arrival of the reflected wave.
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Figure 5. Panels a–c show the effects of varying the rise time tr (horizontal axis) and the
plateau time tp (vertical axis) for γ̇max = 700/s tests on a linear elastic specimen with
shear modulus 8 kPa. Through false-color images, these panels show the peak strain
reached at the Load Cell during a simulation (max[γ ], panel a), the total loading pulse
duration td (panel b), and the average error 〈e〉 in the strain (see text, panel c). Panel d
shows the regions where the peak strain is less than 1.5, the total pulse duration less
than 5 ms, and the average error less than 40%, 20%, and 15% in darkening shades
of gray. The black dot represents Simulation III, which most closely resembles the test
conditions in [Nie et al. 2013]. The red, blue, and green circles are sample test conditions
taken in each region. Additional results for these test conditions are given in panels e
and f. Panel e is a plot of e(t) (the relative error in the strain at the Load Cell) versus
the average imposed strain γs(t). Panel f shows the resultant stress-strain curves. The
black dashed line represents the ideal to which these curves should be compared, that is,
the curve that would have been produced if γs(t) coincided with γLoad Cell.

from this simple behavior. This is most clearly seen for the smaller values of tr and tp. For example,
when tr = 250µs and tp = 179µs, the maximum average strain γmax = 0.3, but the peak strain is close
to 1 (Simulation III). These larger strains, as discussed in the previous section, are from a failure to
achieve dynamic equilibrium.

Panel b shows the dependence of the pulse duration td on the rise time and plateau time, also given
by (3-19). This panel is relevant to the constraints introduced from the lengths of the bars in a Kolsky bar
experiment. As discussed earlier, a 7 ms long pulse may be unmanageable in an aluminum or steel bar.
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Since there are nonuniform strains experienced in the specimen, there is an error associated with
assuming that the measured average shear strain γs(t) is equal to the shear strain at the Load Cell, γ (L , t).
We therefore take the relative error in the strain measurement at time t to be

e(t)=
|γ (L , t)− γs(t)|

γs(t)
. (3-21)

This error is time-dependent and is small when near-uniform conditions exist within the specimen. Since
γ (L , t)= 0 prior to the arrival of the shear wave at the Load Cell, the value of the error e(t) in (3-21)
is 1 for all times less than the travel time. We ignore the error during these early times since we hold
the travel time fixed in this section. We define an average error by using the time average of its value
starting after the travel time until a later time tmax

〈e〉 =
1

tmax− ttravel

∫ tmax

ttravel

e(t) dt. (3-22)

Qualitatively similar results were found for various values of tmax, and in what follows, we chose a
large integration window where tmax = 15 ms (roughly twice the value of the longest pulse duration
considered). Thus, the average error is an estimate of the sensitivity of a torsion test to the parameters
of the loading pulse.

Panel c in Figure 5 presents the dependence of the average error 〈e〉 on the rise time and plateau time.
This panel clearly shows that error is reduced by increasing both the rise time and the plateau time as
suggested by (3-20) although it depends most critically on the rise time. For sufficiently large rise times,
the effects of the plateau time become negligible.

Combining the limitations introduced by the specimen in terms of maximum allowable strain, the con-
straint from bar lengths in terms of total duration of the pulse, and the acceptable error in the measurement,
we can determine whether it is possible to design an experiment that reaches dynamic equilibrium for a
given imposed average strain-rate. The small dark gray region in panel d in Figure 5 (small triangular
region near tr = 2000µs) represents the rise and plateau times where the peak strain at the Load Cell is
less than 1.5, the loading pulse duration is less than 5 ms, and the average error is less than 15%. The
two neighboring lighter shades of gray correspond to the regions where rise and plateau times satisfy the
same requirements in peak strain and loading pulse duration but relax the average error constraint to 20
and 40%. Although not clear in the presentation of the colored regions, these regions overlap so that
the light gray region extends “underneath” the two darker shades of gray, and the medium gray region
extends under the dark gray region (but not under the light gray). An average strain of 1.5 corresponds to
roughly a 17◦ rotation of one end of the specimen with dimensions given in Table 2. Achieving a pulse
that is 5 ms long would require a polymer bar approximately 5 m long, depending on how the strain was
measured. The error bounds were taken fairly loosely since actual error is time-dependent and therefore
depends on the average imposed strain γs. The red, green, and blue circles in panel d are three sample
test conditions, one taken in each region of error. The black dot outside the gray regions represents
Simulation III, which most closely resembles the test conditions in [Nie et al. 2013].

Panel e in Figure 5 is the error e(t) plotted against the imposed average strain γs(t) for the three sample
test conditions discussed above. This panel shows that, even for the most accurate test (green line), the
initial ring-up period extends until moderate strains of about 0.4 are reached. This means that even in
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these experiments the small and moderate strain region of the stress-strain curve would be unreliable.
Panel f shows the resultant stress-strain curves from each of the color-coded simulations. Here, as in
Figure 4, the black dashed line represents the ideal to which these curves should be compared, that is, the
curve that would have been produced if γs(t) coincided with γLoad Cell. Long loading pulses20 and large
strains are necessary to reproduce the linear stress-strain curve in the most accurate test (green line).

4. Quasistatic torsion of isotropic nonlinear elastic specimens21

In this section, we examine the stress state in isotropic nonlinear elastic materials undergoing various
types of quasistatic torsional deformation. The general constitutive relation for incompressible isotropic
elastic solids is discussed in Section 4A. The strain state in pure torsion is considered in Section 4B. The
stress state for pure torsion of a general incompressible isotropic elastic solid is derived in Section 4C,
and the stress state for the special case of a Mooney–Rivlin material is considered in Section 4D. The
specimens in Sections 4B–4D may be either annular or disc-shaped. For incompressible annular speci-
mens, radially nonuniform torsional deformations are briefly discussed in Section 4E; such deformations
are necessary in order to satisfy the stress-free boundary condition on both the outer and inner surfaces.

In Section 4F, we present the results of our three-dimensional quasistatic torsion simulations for short,
nearly incompressible, annular specimens with glued ends and stress-free inner and outer surfaces. The
constitutive model used in these simulations is a compressible version of the Mooney–Rivlin model. The
boundary conditions in these simulations, which mimic those in the tests by Nie et al. [2013], do not
allow the annular specimens to undergo pure torsion or the radially nonuniform torsion considered in
Section 4E. The stress components obtained in the simulations are compared with the analytical results
for pure torsion from Sections 4C and 4D.

4A. Incompressible isotropic nonlinear elastic solids. The Cauchy stress tensor T can be decomposed
into a pressure (or hydrostatic stress) p and a deviatoric stress tensor S (i.e., tr S= 0):

T =−p I + S, p ≡− 1
3 tr T , S= dev T ≡ T − 1

3(tr T )I . (4-1)

Here I denotes the identity tensor. The standard sign convention for the Cauchy stress tensor is used in
this paper: normal stress components are taken positive in tension. However, the pressure p is positive
in compression. It is sometimes simpler to decompose T as

T =− p̂ I + Ŝ, (4-2)

where the tensor Ŝ need not be deviatoric, in which case the scalar p̂ need not equal the pressure p.22

Consistency with the relations (4-1) requires that

p = p̂− 1
3 tr Ŝ, S= dev Ŝ. (4-3)

20In this case, the notion of “constant strain-rate” should be modified to “peak strain-rate” since the plateau time is small
compared to the rise time.

21General background for some of the material in Sections 4A–4E can be found in the books [Green and Adkins 1960;
Truesdell and Noll 1965; Treloar 1975; Batra 2006] and the papers [Rivlin 1948b; 1949; Beatty 1987].

22 Nevertheless, some authors still refer to p̂ as “the pressure” in this case.
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For a compressible (i.e., unconstrained) material, a constitutive relation must be provided for T and,
equivalently, for p and S or for p̂ and Ŝ.

For an incompressible material, p and p̂ are indeterminate in the sense that they are not subject to any
constitutive relation. However, their values at each point in the material must be such that the boundary
conditions and momentum balance equations (or, in the quasistatic case, the equilibrium equations) are
satisfied. For an incompressible material, a constitutive relation need only be provided for S or Ŝ, which
are referred to as the determinate parts of the stress.

For an incompressible elastic material, the determinate stress Ŝ is, by definition, a function of the
deformation gradient F. If the material is also isotropic, then Ŝ is an isotropic function of the left
Cauchy–Green deformation tensor B = F FT . A general representation for such functions is given by

Ŝ= µ
[
ωB− (1−ω)B−1]

= 2C1 B− 2C2 B−1, (4-4)

where

C1 =
1
2µω, C2 =

1
2µ(1−ω), µ= 2(C1+C2), ω =

C1

C1+C2
. (4-5)

The elastic moduli C1, C2, and µ and the dimensionless parameter ω are scalar-valued functions of tr B
and tr B−1. In particular, µ= µ̃(tr B, tr B−1) can be interpreted as a (generally strain-dependent) shear
modulus.23 For infinitesimal deformations, the deviatoric part of the constitutive relation (4-4) reduces
to the linear elastic constitutive relation for the deviatoric stress tensor: S = 2µ0 dev ε, where ε is the
infinitesimal strain tensor and µ0 = µ̃(3, 3) since tr B = tr B−1

= tr I = 3 in the undeformed state. Thus,
µ0 is the linear elastic shear modulus that was denoted by µ in previous sections.

Specification of either set of constitutive functions µ,ω or C1,C2 determines a particular material
within the general class of incompressible isotropic elastic materials. At this point, we do not assume
that the material is hyperelastic since this condition is not necessary for any of the results on the stress
state in pure torsion in Section 4C.24 However, the incompressible Mooney–Rivlin model considered
in Section 4D and the compressible version of this model used in the three-dimensional simulations
(Sections 4F and 5A) are hyperelastic.

It has been found that the inequalities C1 > 0 and C2 ≥ 0 imply physically reasonable response and
are consistent with experimental data on many nearly incompressible isotropic elastic solids.25 These
inequalities, which are equivalent to

µ > 0, 0< ω ≤ 1, (4-6)

are assumed throughout this paper. Then 0≤ 1−ω < 1 also.

23 See also (4-16) below for the case of pure torsional deformations.
24 If the material is hyperelastic, then the stress tensor is derivable from a strain energy (per unit volume) W with W =

W̃ (tr B, tr B−1) for an incompressible isotropic elastic material. Consequently, the coefficient functions µ,ω and C1,C2 in
(4-4) are determined by W ; e.g., C1 = ∂W/∂(tr B) and C2 = ∂W/∂(tr B−1). It follows that C1 and C2 are not independent
although neither function completely determines the other. Similar comments apply to µ and ω although their expressions in
terms of the derivatives of W are more complicated.

25 See [Truesdell and Noll 1965, §49, §53] and [Beatty 1987], where these are referred to as the E-inequalities.
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4B. Pure torsional deformation. A pure torsional deformation satisfying the boundary conditions (2-2)
is given by (3-1) with the angular displacement δ as in (3-13):

r = R, θ = θ̂ (2, Z)=2+ψ(Z − L), z = Z . (4-7)

We assume that the angle of twist per unit length, ψ , is positive: ψ > 0. For this deformation, the
physical components26 of the deformation gradient F, the left Cauchy–Green tensor B ≡ F FT , and its
inverse B−1 are given by

[F] =

1 0 0
0 1 ψr
0 0 1

 , [B] =

1 0 0
0 1+ψ2r2 ψr
0 ψr 1

 , [B−1
] =

1 0 0
0 1 −ψr
0 −ψr 1+ψ2r2

 . (4-8)

Thus, pure torsion is radially inhomogeneous and isochoric (det F = 1). The Eulerian finite strain tensors
corresponding to B and B−1 are E = 1

2(B − I) and E = 1
2(I − B−1); the latter is known as the

Almansi strain tensor. For pure torsion, the only nonzero components of E and E are Eθθ = ψ2r2,
Ezz =−ψ

2r2, and
Eθ z = Ezθ = Eθ z = Ezθ =

1
2ψr, (4-9)

which is a measure of the shear strain in pure torsion.27

The volume average of the shear strain Eθ z is given by

〈Eθ z〉 ≡
1
V

∫∫∫
Eθ z dV = 1

3ψ
R2

o + Ri Ro+ R2
i

Ri + Ro
. (4-10)

Since Eθ z is independent of z, this is also the average over the annular cross-section at any given axial
location. 〈Eθ z〉 can also be expressed in terms of the average radius R and the radial difference 1
(see (2-1)):

〈Eθ z〉 =
1
3ψ
(3R2
+12)

2R
=

1
2ψR

[
1+ 1

3

(
1

R

)2
]
≈

1
2ψR, (4-11)

where the approximation is valid when 1/R� 1. The relative error in approximating Eθ z by 1
2ψR takes

on all values between the following bounds:

−1/R

1−1/R
≤

Eθ z −
1
2ψR

Eθ z
≤

1/R

1+1/R
. (4-12)

The relative error of largest absolute value occurs at the inner surface and is given by the absolute value
of the expression on the left. For the specimen dimensions considered here (see Table 1), the largest
relative error in approximating Eθ z by its average is 15%.

As discussed in Section 2B, for torsion tests, a measure of average shear strain often used in the
experimental literature is γs as defined in (2-5), that is, γs = ψR. By (4-11), it follows that

γs ≈ 2〈Eθ z〉 (4-13)

26 Recall that these are the components relative to the unit basis vectors along the cylindrical coordinate directions.
27 In general, both E and E reduce to the infinitesimal strain tensor ε in the limit of small displacement gradients. This fact,

together with (4-9), yields εθ z =
1
2ψr for infinitesimal deformations, consistent with (3-14).
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with the relative error in this approximation being given by

2〈Eθ z〉− γs

γs
=

1
3

(
1

R

)2
. (4-14)

For the specimen dimensions in Table 1, this is about 0.0056, that is, a relative error of about 0.56%.
Finally, note that, while annular specimens have been assumed in part of the discussion above, most

of the results in this section are also valid for disc-shaped specimens (Ri = 0). The approximation on
the right side of (4-11) is no longer valid in this case since 1/R = 1. Also, the lower bound in (4-12)
becomes −∞ since 1/R→ 1 from below as Ri → 0. This latter result also follows from the fact that
Eθ z = 0 at r = 0 whereas 1

2ψR > 0.

4C. Stress state in pure torsion of incompressible isotropic elastic specimens. In this and the next
section, we discuss the stress state in pure torsion of an incompressible, isotropic, nonlinear elastic solid.
The results in these sections are valid for both annular and disc-shaped specimens. In this section, we
consider the general constitutive relation (4-4)1 for the determinate stress Ŝ subject only to the inequalities
(4-6) for the coefficient functions µ and ω. In the next section, we consider the special case where these
functions are taken to be constants. Recall that µ and ω are generally scalar-valued functions of tr B
and tr B−1. Since tr B = tr B−1

= 3+ψ2r2 for pure torsion, we have

µ= µ̃(tr B, tr B−1)= µ̃(3+ψ2r2, 3+ψ2r2)≡ µ̂(ψ2r2) (4-15)

in this case and similarly for ω, C1, and C2.
For pure torsion, the shear stress components are given by [Rivlin 1947; 1948b; 1949]

Tθ z = µψr = 2µEθ z, Tr z = Trθ = 0, (4-16)

and the differences in the normal stress components are given by

Tθθ − Tzz = µψ
2r2, Tθθ − Trr = µωψ

2r2, Trr − Tzz = µ(1−ω)ψ2r2. (4-17)

These relations follow from (4-2), (4-4)1, and (4-8). It is clear that the stress state is radially inhomoge-
neous. We refer to the shear stress component Tθ z as the torsional stress. From (4-16), we see that µ
can be interpreted as a shear modulus and that Tθ z > 0 (since we assume ψ > 0) with the exception that
Tθ z = 0 at r = 0 for a disc-shaped specimen.

From the relations in (4-16) and (4-17), we see that the normal stress differences are proportional to
the torsional stress:

Tθθ − Tzz = ψr · Tθ z, Tθθ − Trr = ωψr · Tθ z, Trr − Tzz = (1−ω)ψr · Tθ z. (4-18)

The relation on the left in (4-18) is a universal relation between the hoop, axial, and torsional stress: it
does not explicitly involve the constitutive functions µ or ω in the representation (4-4)1 for the determi-
nate stress.

To determine the normal stress components (as opposed to just their differences), we need to utilize
the equilibrium equations and boundary conditions. Since Trθ and Tr z are zero throughout the specimen,
the radial component of the equilibrium equation reduces to

∂Trr

∂r
+

Trr − Tθθ
r

= 0, (4-19)
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and the assumption that the outer lateral surface (r = Ro) is stress-free reduces to the requirement that
Trr = 0 at r = Ro. On using (4-17)2 to evaluate the Trr − Tθθ term above, integrating from r to Ro, and
then using Trr |r=Ro = 0, we obtain the following relation for the radial stress:

Trr =−ψ
2
∫ Ro

r
µωr dr =−2ψ2

∫ Ro

r
C1r dr. (4-20)

Then from (4-17), we see that the hoop and axial stresses are given by

Tθθ = Trr +µωψ
2r2, Tzz = Trr −µ(1−ω)ψ2r2 (4-21)

with Trr as in (4-20). Since µ and ω are functions of ψ2r2, it follows that Trr , Tθθ , Tzz , and Tθ z depend
only on ψ and r while Trθ = Tr z = 0. These results imply that all terms in the θ and z components of the
equilibrium equation are identically zero. Thus, pure torsion is possible in any incompressible, isotropic,
nonlinear elastic specimen (disc-shaped or annular), and the outer surface R = Ro may be taken to be
stress-free [Rivlin 1947; 1948b; 1949].28

Since µ, ω and C1 are functions of ψ2r2, the integral for Trr cannot be evaluated unless C1 (equiv-
alently, the product µω) is specified. However, since µ and ω are positive and ω ≤ 1 and ψ 6= 0,29

important qualitative properties of the normal stress components may be inferred directly from (4-20)
and (4-21), as summarized below.30

For pure torsion of an incompressible, isotropic, nonlinear elastic specimen (disc-shaped or annular)
with stress-free outer surface r = Ro, we have:

Conclusion 1. Trr is negative for Ri ≤ r < Ro. Thus, the radial stress is compressive except at the outer
surface, where it is zero. Furthermore, the magnitude of the radial stress increases with increasing radial
distance from the outer surface.

Conclusion 2. Since Trr < 0 at r = Ri , for annular specimens (where Ri > 0), we see that a (nonzero)
compressive normal stress must be applied on the inner surface in order that radial equilibrium be satisfied.
If this compressive stress is not applied, then the specimen cannot undergo a pure torsional deformation.

Conclusion 3. Since Trr < 0 for Ri ≤ r < Ro, it follows that Tzz < 0 for Ri ≤ r < Ro and Tzz ≤ 0
at r = Ro with equality holding only if ω= 1 at r = Ro. Thus, the axial stress is compressive everywhere
except possibly at the outer surface r = Ro, where it is either compressive or zero.

Conclusion 4. Since Trr = 0 at r = Ro, it follows that Tθθ |r=Ro =µωψ
2r2 > 0. Thus, the hoop stress Tθθ

is positive (i.e., tensile) at the outer surface, and by continuity, Tθθ must be tensile for some radial distance
into the interior of the specimen.

Conclusion 5. The radial, hoop, and axial stresses depend on both constitutive functions µ= µ̂(ψ2r2)

and ω = ω̂(ψ2r2) while the torsional stress is independent of ω. It follows that no information on the di-
mensionless constitutive function ω can be inferred from measurements of the torsional stress Tθ z alone.31

28 Rivlin assumed that the material is hyperelastic although that assumption is not necessary for this conclusion [Truesdell
and Noll 1965, §57].

29 Actually, we have assumed that ψ is positive, but the sign of ψ does not affect Conclusions 1–5.
30 Many (but not all) of these conclusions can be found in the references cited previously.
31 This conclusion holds even if we assume (as is reasonable) that the material is hyperelastic although we omit the proof of

this result.
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4D. Pure torsion of Mooney–Rivlin materials. The classical Mooney–Rivlin model32 is a special case
of the general constitutive relation for an incompressible isotropic elastic solid. It is obtained by taking
the coefficient functions C1 and C2 (equivalently, µ and ω) in the expression (4-4) for the determinate
stress Ŝ to be constants.33 The special case C2 = 0 (i.e., ω = 1) is known as a neo-Hookean material.
For infinitesimal deformations, the deviatoric part of the Mooney–Rivlin constitutive relation reduces
to S= 2µ dev ε, where ε is the infinitesimal strain tensor. Thus, the constant µ in the Mooney–Rivlin
model agrees with the shear modulus in the linear elastic theory [Mooney 1940; Rivlin 1947].

The Mooney–Rivlin model is one of the simplest isotropic nonlinear elastic constitutive models, and
yet it still exhibits features that are in qualitative agreement with experimental data on many soft, nearly
incompressible materials under moderate deformations. For this model, there are explicit closed-form
expressions for all stress components in pure torsion (see below). Furthermore, a compressible version
of the Mooney–Rivlin model was available in the code that we intended to use for our three-dimensional
torsion simulations. For these reasons, all of our quasistatic torsion simulations (Section 4F) and most of
the three-dimensional dynamic simulations (Section 5A) used this compressible version of the Mooney–
Rivlin model. The following analytical results for pure torsion of an incompressible Mooney–Rivlin
material will be compared with the three-dimensional quasistatic torsion simulations in Section 4F.

For Mooney–Rivlin specimens, the relation (4-16) for Tθ z and the relations (4-17) and (4-18) for the
normal stress differences do not simplify further (aside from the fact that µ and ω are now constants).
However, the relations (4-20) and (4-21) for the normal stress components reduce to34

−Trr =
1
2µψ

2
·ω(R2

o − r2)= C1ψ
2(R2

o − r2), (4-22a)

Tθθ = 1
2µψ

2
·ω(3r2

− R2
o)= C1ψ

2(3r2
− R2

o), (4-22b)

−Tzz =
1
2µψ

2
·
[
ωR2

o + (2− 3ω)r2]
= ψ2[(C1− 2C2)(R2

o − r2)+ 2C2 R2
o
]
. (4-22c)

Of course, all of the conclusions at the end of Section 4C apply to the special case of Mooney–Rivlin
specimens. The (compressive) radial stress that must be applied to the inner surface r = Ri of an annular
specimen in order to maintain a pure torsional deformation is now given explicitly by

Trr |r=Ri =−
1
2µψ

2
·ω(R2

o − R2
i )=−ψ

2C1(R2
o − R2

i ) < 0. (4-23)

From (4-22b), it follows that Tθθ > 0 (i.e., the hoop stress is tensile) for all Ri ≤ r ≤ Ro if and only
if Ri > Ro/

√
3. This condition on the inner and outer radii is satisfied for the specimens in our quasistatic

and dynamic simulations (see Table 1). The relations (4-22), together with p = − 1
3(Trr + Tθθ + Tzz),

imply that the pressure is given by

p = 1
2µψ

2
·
[
ωR2

o +
1
3(2− 7ω)r2]. (4-24)

Since µ is constant, from the relation (4-16) for Tθ z , together with the expression (4-11) for 〈Eθ z〉 and

32 In some of the literature, this is referred to as the Mooney model [Mooney 1940; Rivlin 1947; 1948a; 1948b; 1949; Rivlin
and Saunders 1951; Green and Adkins 1960; Truesdell and Noll 1965, §95; Treloar 1975; Beatty 1987; Batra 2006].

33 Equivalently, this is the hyperelastic material with strain energy function W = C1(tr B− 3)+C2(tr B−1
− 3).

34 The relations (4-22c)2 and (4-23)2 are some of the earliest results of [Rivlin 1947; 1948a].
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the fact that γs = ψR (see (2-5)), we see that the volume-averaged torsional stress is given by

〈Tθ z〉 = 2µ〈Eθ z〉 = µψR
[

1+ 1
3

(
1

R

)2
]
= µγs

[
1+ 1

3

(
1

R

)2
]
. (4-25)

For the specimen dimensions in Table 1, the term in square brackets differs from unity by only 0.0056.
Thus, the relative error in approximating 〈Tθ z〉 by µγs is 0.56%, a result which also follows directly
from (4-14).

4E. Radially nonuniform torsional deformations of annular specimens. Conclusion 2 in Section 4C
implies that for incompressible annular specimens a class of torsional deformations more general than
pure torsion must be considered if both the outer and inner lateral surfaces (r = Ro and r = Ri ) are stress-
free. Recall that the pure torsional deformation (4-7) does not involve any radial displacement. Here
we briefly consider more general torsional deformations for which the annular specimen may deform
radially:

r = r̂(R), θ =2+ψ(Z − L), z = Z . (4-26a)

Incompressibility requires that 1= det F = (∂r/∂R)(r/R)= ∂(r2)/∂(R2); consequently,

r =
√

R2+β, (4-26b)

where β is an arbitrary constant subject only to the condition that R2
i +β > 0. Note that the deformation

(4-26) reduces to pure torsion (r = R) if and only if β = 0.
Proceeding as in the case of pure torsion, it can be shown that the deformation (4-26) is possible in any

incompressible, isotropic elastic, annular specimen; that Tr z = Trθ = 0; and that the outer surface R = Ro

may be taken to be stress-free. This was first shown by Rivlin [1949].35 The radial stress is expressed in
terms of the undeformed radial coordinate by

Trr (R)=−
∫ Ro

R
µ

[
ψ2ωR+

1
R
−

R3

(R2+β)2

]
dR (4-27)

with the constitutive functions µ and ω generally dependent on ψ2, R2, and β. On letting R = Ri in this
relation and then setting the result to zero, we obtain an implicit relation for β that must be satisfied in
order that the inner surface R = Ri is stress-free. Clearly, this value of β depends on ψ , Ri , and Ro as
well as the constitutive functions µ and ω. The dependence on µ drops out if µ is a constant as in the
Mooney–Rivlin model. For that case, the integral can be evaluated and a simpler implicit relation for β
is obtained [Rivlin 1949, §8].36

4F. Three-dimensional quasistatic torsion simulations. Although the torsional deformation (4-26) is
of some theoretical interest, in practice, it would be difficult to apply a torque on the face of a soft
specimen while simultaneously admitting a radial deformation on that face. In the torsional Kolsky bar
tests in [Nie et al. 2013], the faces of the specimen are glued to the bar and the load cell, and analogous

35 Rivlin considered a slightly more general deformation that includes a superposed uniform axial extension. He assumed
that the material is hyperelastic, but this condition is not necessary [Truesdell and Noll 1965, §57].

36 Rivlin considered the more general case that includes a superposed uniform axial extension; see also (95.8) in [Truesdell
and Noll 1965].
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glued end conditions are used for their quasistatic torsion tests. Thus, for the actual torsion tests of
interest here, neither the pure torsion considered in Sections 4B–4D nor the torsional deformation (4-26)
can be expected to hold exactly. Nevertheless, it is clear from the discussion in Section 4E that, at
axial locations between the two faces, an annular specimen will have a tendency to deform radially in
order to satisfy the stress-free boundary conditions on the inner and outer surfaces. Since relatively short
annular specimens are used, the constraints at either end of the specimen can be expected to severely
restrict (though not completely eliminate) the radial deformation at axial locations in the interior. Thus,
in quasistatic torsion tests with glued ends, we expect some axial variation in the radial deformation and
consequently in the stress components as well as additional nonzero stress components such as Tr z . The
analytical results for the torsional, axial, and hoop stresses in pure torsion may still hold approximately,
but the accuracy of these approximations is not clear. Since a theoretical analysis of this problem is
intractable,37 we rely on numerical simulations for quantitative estimates of the stress state.

One face of the annular specimen was subjected to a rigid rotation while the other face was fixed so
that material points on either face could not undergo axial or radial displacements. Stress-free boundary
conditions were used on the outer surface R = Ro and the inner surface R = Ri . Details of the numerical
method are provided in Appendix A.

In these simulations, we used a compressible version of the Mooney–Rivlin model for the specimens.38

The equation of state for the pressure in this model is

p =−κ ln J ≈ κ(1− J ), J = det F. (4-28)

The constant κ is the bulk modulus. The constitutive relation for the Cauchy stress tensor T is given
by (4-2) with p̂ and Ŝ defined as follows:

p̂ = p+ 1
3 tr Ŝ, J Ŝ= µ

[
ω B̃− (1−ω)B̃−1]

= 2C1 B̃− 2C2 B̃−1. (4-29)

Here µ, ω, C1, and C2 are constants as in the incompressible version, and

B̃ =
B

(det B)1/3
=

B
J 2/3 (4-30)

is the distortional part of the left Cauchy–Green tensor B. Note that, regardless of the value of the
Jacobian J , det B̃= det B̃−1

= 1, analogous to the conditions det B= det B−1
= 1 for the incompressible

case. This relation for Ŝ is identical to the relation (4-4) for the incompressible Mooney–Rivlin model
except that B has been replaced by its distortional part and Ŝ is multiplied by the factor J .39 The
relation (4-29)1 for p̂ guarantees consistency with (4-3)1.

We used κ = 2.3 GPa for all simulations and varied the shear modulus by almost three orders of mag-
nitude: µ= 800, 80, 8, and 2 kPa. The corresponding ratios of bulk to shear modulus varied from 2875
to 1.15× 106 so that in all cases the specimen was nearly incompressible. For each of the four values

37 Some idea of the difficulty of this problem can be inferred from the paper [Hill and Lee 1989], which treats a slightly
different problem, namely combined compression and torsion of incompressible, disc-shaped, Mooney–Rivlin specimens with
glued ends. This work has been extended to torsional waves [Hill and Wegner 2004], but the results are not directly applicable
to the dynamic problem considered here since annular specimens are not considered.

38 Additional departures (perhaps small) from pure torsion will be introduced by the slight compressibility of the specimens.
39 This factor ensures that the material is hyperelastic. The strain energy function is given by W = κ J (ln J − 1) +

C1(tr B̃− 3)+C2(tr B̃−1
− 3).
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of the shear modulus, simulations were performed for three values of the nondimensional parameter ω:
0.3, 0.6, and 1. This resulted in twelve quasistatic simulations.

We have compared the stress states obtained from the numerical simulations (using the compressible
version of the Mooney–Rivlin model) with the stress states that would have been obtained in pure torsion
of an incompressible Mooney–Rivlin material (as determined from (4-22) and (4-24)). These compar-
isons are made at the same average angle of twist per unit length ψ (equivalently, at the same average
shear strain γs) and for the same set of twelve values for µ and ω. The results are plotted in Figure 6.
Each of the ten panels contains either thirteen or fifteen curves, but many (in panels a and b, all of them)
are indistinguishable. This is due (in part) to the normalization of the stress components as discussed in
the next paragraph. In each panel, there are twelve curves for the numerical simulations (solid lines) and
either one curve (panels a and b) or three curves for the theoretical pure torsion (dashed lines).
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Figure 6. Normalized stress states in torsion for Mooney–Rivlin specimens. Twelve
numerical simulations (solid lines) are compared with pure torsion (dashed lines). For
each of four values of the shear modulus µ (800, 80, 8, and 2 kPa), curves for ω = 0.3
(red), ω = 0.6 (blue), and ω = 1.0 (black) are shown. Curves for different shear moduli
are indistinguishable (either approximately or exactly) because of the normalizations.
The left panels examine the variation of the normalized stress with referential radius for
an angle of twist per unit length ψ = 0.059 radians/mm at the axial location Z = L/2.
The right panels are plots of normalized volume-averaged stress versus average shear
strain. The vertical line in the right column indicates the average shear strain for the
panels on the left.
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In order to condense the information from the simulations and the theoretical results and also to more
clearly display the relative magnitude of the stresses in each case, all stress components in Figure 6 have
been normalized by an appropriate “maximum” torsional stress. For the left column, the tilde on the
stresses indicates that they have been normalized by µψRo, which by (4-16)1 is the maximum torsional
stress that would occur in a pure torsional deformation. For the right column, the hat on the stresses
indicates that they have been normalized by the volume-averaged torsional stress 〈Tθ z〉 (see (4-25)) that
would occur in a pure torsional deformation, evaluated at the final average shear strain γs = 0.5. The
angle brackets on the stresses in the right column indicate that these normalized stresses have then been
volume-averaged.

In the left column of Figure 6, we examine the radial variation in the torsional stress, the normal stress
components, and the pressure at an axial location in the middle of the specimen (Z = L/2). In these plots,
the average angle of twist per unit length is ψ = 0.059 radians/mm= 3.38◦/mm, and the corresponding
average shear strain is γs = 0.38. Data from torsion tests is typically plotted as average shear stress
versus average shear strain γs with the average shear stress inferred from the measured torque. The right
column of Figure 6 displays the volume-averaged stress-strain curves. The vertical black lines in the
right column indicate the average shear strain (0.38) for the panels on the left.

Consider panel a for the radial variation of the torsional stress. Since Tθ z = µψr for pure torsion
of an incompressible Mooney–Rivlin material, the normalized torsional stress in this case is given by
T̃θ z = µψr/µψRo = r/Ro = R/Ro, independent of µ or ω. Thus, for pure torsion of an incompressible
Mooney–Rivlin material, there is a single normalized torsional stress versus radius curve, namely the
line R/Ro. This line and the twelve normalized torsional stress versus radius curves from the numerical
simulations are indistinguishable, the maximum relative difference being less than 1%.

A similar situation occurs for the average torsional stress versus average shear strain curves in panel b.
Since 〈Tθ z〉 is given by (4-25) for pure torsion of an incompressible Mooney–Rivlin material, the nor-
malized average torsional stress in this case is given by 〈T̂θ z〉 = γs/(γs|0.5). Thus, for pure torsion of
an incompressible Mooney–Rivlin material, there is a single normalized average torsional stress versus
average strain curve, namely the line γs/0.5. This line and the twelve normalized average torsional stress
versus average shear strain curves from the numerical simulations are indistinguishable, the maximum
relative difference again being less than 1%.

Thus, even though the annular specimens in our numerical simulations cannot undergo a pure torsional
deformation, the torsional stress in those simulations is indistinguishable from the torsional stress in
theoretical pure torsion of an incompressible Mooney–Rivlin material. On the other hand, it is clear
from Figure 6 that this conclusion does not hold for the normal stress components; that is, the normal
stresses and the pressure in the annular specimen simulations (solid lines) do not agree with the theoretical
predictions for pure torsion of an incompressible Mooney–Rivlin material (dashed lines).

For pure torsion of an incompressible Mooney–Rivlin material, the theoretical relations (4-22) and (4-24)
predict that the normal stress components and the pressure are proportional to the shear modulus µ and
depend on ω as well; consequently, the normalized stress components in panels c–j in Figure 6 are
independent of µ but still depend on ω. This results in three normalized stress curves (dashed lines) for
the case of pure torsion in each of these panels — one curve for each of the three values of ω.

The disagreement between the normalized stresses for pure torsion and those for the numerical sim-
ulations are most pronounced for the radial component (panels c and d). In fact, the normalized radial
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stresses for the simulations are so small that all twelve curves (solid lines) are indistinguishable from
the horizontal axis (T̃rr = 0 or 〈T̂rr 〉 = 0). Of course, the fact that the radial stress is essentially zero
throughout the annular specimen is not unexpected in view of the fact that it is zero on the inner and
outer lateral surfaces. This is one of the motivations for using annular specimens. The other motivation
for using annular (as opposed to disc-shaped) specimens in torsion tests is that, while torsional stress Tθ z

and the shear strain Eθ z are radially nonuniform, the total radial variation in these quantities is expected
to be smaller for annular specimens. For the torsional stress, this is verified in Figure 6a.

Unlike the radial stresses, the hoop stress, axial stress, and pressure (panels e–j) for the simulations
(solid lines) share some qualitative features with the theoretical predictions for pure torsion (dashed lines).
In particular, the normalized hoop stress, axial stress, and pressure for the simulations are (approximately)
independent of the shear modulus but depend strongly on the value of ω so that the twelve curves appear
to collapse into three curves. Furthermore, for both the simulations and the pure torsion case, the hoop
stress increases with increasing ω while the magnitude of the axial stress decreases with increasing ω.
For the axial and hoop stresses, the discrepancies between the simulations and the pure torsion case
increase with increasing ω.

Further consideration of (4-16) and (4-22) shows that, for pure torsion, the ratio of normal stress to
torsional shear stress increases with shear strain: the shear stress depends linearly on ψ while the normal
components depend quadratically on ψ and thus quadratically on the average shear strain γs. Comparison
of the solid curves in panel b with those in panels f and h in Figure 6 shows that the same conclusion
holds for the hoop and axial stresses (but not the radial stress) in the numerical simulations. Thus, for
sufficiently large angles of twist or for sufficiently thin specimens, the magnitude of the normal stresses
could exceed the shear stress. On the other hand, a smaller shear strain of 0.2, say, gives an average hoop
stress that is only 5 to 20% of the shear stress (depending on ω) and an average axial stress that is only
1 to 15% of the shear stress.

The glued-end boundary conditions in combination with the stress-free boundary conditions on the
inner and outer surfaces of the annular specimen resulted in axial variations in the stress components in
the torsion simulations although these results are not plotted here. For the normal stresses, these axial
variations were concentrated within approximately 0.25 mm of either face of the specimen and essentially
vanished away from the specimen faces. Both hoop and axial stresses varied by as much as 30% near
the faces whereas the variation in this region for the torsional stress Tθ z was typically less than 5%. The
other shear components, Tr z and Trθ , were also nonzero. They were smaller in magnitude (typically less
than 10% of the torsional stress) and varied throughout the length of the specimen.

Although the magnitude of Tr z is small, the fact that Tr z cannot be identically zero can be established
as follows. Using the assumption that the specimen is in equilibrium (so that div T = 0) together with the
stress-free boundary conditions on the inner and outer surfaces of the annular specimen, one could show∫

A(z)

1
r

Tθθ dA =
∂

∂z

∫
A(z)

Tr z dA, (4-31)

where A(z) is the annular cross-section at the axial location z.40 As observed above (see panel e in

40 We omit the proof of this relation. It is a fairly general result in the sense that no material symmetry conditions are
required, the specimen need not be homogeneous, and neither the initial nor deformed annular cross-sections need be axially
uniform or have circular boundaries.
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Figure 6), Tθθ is positive at each radial location. Hence, the integral on the left above is positive and
must be balanced by an axial gradient in the integral of Tr z over the cross-section A(z).

5. Three-dimensional dynamic simulations

In this section, we further supplement our one-dimensional dynamic simulations and three-dimensional
quasistatic analysis and simulations with three-dimensional dynamic simulations. Our dynamic torsion
simulations use the same glued-end boundary conditions and stress-free boundary conditions on the outer
and inner surfaces as in the quasistatic simulations discussed in Section 4F. With the exception of the
viscoelastic results discussed in Section 5B, we used the same constitutive model and the same model
parameters as in the three-dimensional quasistatic simulations except that the µ= 2 kPa case is not con-
sidered. Thus, we used κ = 2.3 GPa and varied the shear modulus by two orders of magnitude: µ= 800,
80, and 8 kPa. The corresponding ratios of bulk to shear modulus varied from 2875 to 2.875× 105 so that
in all cases the specimen was nearly incompressible. For each of the three values of the shear modulus,
simulations were performed for three values of the nondimensional parameter ω: 0.3, 0.6, and 1. The
nine simulations used the same 700/s loading pulse as the one-dimensional Simulations I–III; see Table 2
and panels a and b in Figure 3. Details of the numerical method are provided in Appendix A.

5A. Nonlinear elastic model for the specimen. We calculated the radially averaged stress at the Load
Cell for each of the six components Ti j of the stress tensor, i.e.,

1
π(R2

o − R2
i )

∫ Ro

Ri

Ti j (R, L)2πR dR.

These time histories are plotted for the nine simulations in Figure 7. The shear modulus µ changes with
the row, and ω changes with the column so that the nine panels span vastly different elastic responses.

In the quasistatic torsion simulations (see Figure 6), the torsional shear stress Tθ z is insensitive to the
dimensionless parameter ω in the Mooney–Rivlin model. This is also observed in the dynamic case:
comparing the shear stress Tθ z (green traces) for fixed shear modulus, i.e., panels a–c, d–f, and g–i
in Figure 7, we see little to no variation with ω. Similarly, in both the quasistatic and dynamic simula-
tions, the magnitude of the axial stress Tzz (black traces) decreases with increasing ω whereas the hoop
stress Tθθ (blue traces) increases with increasing ω with the exception of the hoop stress for the µ= 8 kPa
dynamic case. Since neither Tzz or Tθθ is measured in a Kolsky bar test, there would be no way to infer a
value for ω from the test data, namely the measured shear stress, even if it were known that the specimen
behavior was governed by the Mooney–Rivlin model.

Unlike the quasistatic simulations, for a given value of ω, the relative magnitude of the normal and
torsional shear stress components vary considerably with the shear modulus in the dynamic simulations.
In particular, the radial stress (red traces) is not negligible for the µ= 80 and 8 kPa dynamic simulations.
Also note that, for the µ = 8 kPa case with ω = 0.3 or 0.6 (panels g and h), all three normal stress
components begin to change well before the torsional stress increases. This effect cannot be due to
bending waves or longitudinal waves that might be generated in the incident bar as a result of the initial
impact since such effects are not included in the simulations. Rather, it is caused by a longitudinal
precursor wave in the specimen as discussed in the next paragraph. From Section 3, it is clear that
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Figure 7. The radially averaged stress components at the Load Cell (Z = L) versus
time for the nine simulations: two decades of shear modulus (µ= 800, 80, and 8 kPa)
and three values of dimensionless parameter (ω = 0.3, 0.6, and 1.0). All simulations
used the same 700/s loading pulse as the one-dimensional Simulations I–III; see Table 2
and panels a and b in Figure 3. The legend for the line colors is given in panel i and is
consistent throughout the figure. Note the change in vertical scales for the different rows.

dynamic equilibrium is not reached when µ≤ 80 kPa, and the three-dimensional simulations inform us
that the stress state is no longer simple as well.

The normal stresses produced by the shearing deformation propagate at the longitudinal elastic wave
speed,41 which far exceeds the shear wave speed for all cases in Figure 7. Indeed, the longitudinal wave
speed is about 1.52 mm/µs for all nine cases.42 Hence, this wave arrives at the Load Cell in about 1.1µs,

41This is a well-known nonlinear elastic effect [Davison 1966; Abou-Sayed and Clifton 1976; Scheidler 1998].
42 For a nonlinear elastic solid, a longitudinal wave propagating into undeformed material travels at the linear elastic wave

speed cL =
√

4
3 c2

S + c2
B , where cS is the shear wave speed and cB is the bulk wave speed, i.e.,

√
κ/ρ. For the bulk and shear

moduli considered here (κ = 2.3 GPa and µ≤ 800 kPa), the shear wave speed is negligible and cL ≈ cB = 1.52 mm/µs.
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which is essentially instantaneous on the time scale of Figure 7. But even though the normal stresses
begin to change at the Load Cell at this early time, their magnitude is initially quite small — on the
order of the square of the shear strain produced by the slower torsional wave. Consequently, these initial
changes cannot be observed on the scale of the plots until much later times. And it is only in panels g
and h that the magnitude of the normal stresses (relative to the torsional stress) is significant enough to
be observed prior to the arrival of the torsional wave.

5B. Nonlinear viscoelastic model for the specimen. Although the goal of the torsional Kolsky bar test
considered here is to quantify the strain-rate sensitivity of viscoelastic soft tissues, only elastic constitu-
tive models have been considered up to this point. Elastic models (linear or nonlinear) are particularly
useful for revealing inertial effects: since the stress in an elastic material is rate-independent, any dif-
ferences between the quasistatic and dynamic simulations of the torsion test must necessarily be due
to inertial effects. There is certainly no reason to expect that these inertial effects will disappear for
materials exhibiting viscoelastic response. Nevertheless, we have also performed some three-dimensional
dynamic simulations of torsional Kolsky bar tests using a nonlinear viscoelastic constitutive model43 for
the specimen.

We used an equilibrium elastic shear modulus of 2 kPa and an instantaneous elastic shear modulus
of 40 kPa,44 five times larger than the 8 kPa shear modulus that had been used as representative of brain
tissue in the elastic models. This gives a viscoelastic shear wave speed about 2.2 times the shear speed
for the µ = 8 kPa linear and nonlinear elastic cases.45 It should be clear from our results for these
elastic cases that this wave speed is much too slow for dynamic equilibrium to be achieved. Indeed,
while the stress histories in our simulations with the viscoelastic model differed both qualitatively and
quantitatively from those described above for the elastic model, we found that the viscoelastic stress
histories fell roughly between the µ= 80 kPa and 8 kPa elastic cases in Figure 7.

6. Discussion and conclusions

We have conducted one- and three-dimensional analyses and simulations to understand the deformations
and stress states that exist in nearly incompressible soft materials in a torsional Kolsky bar test. Here we
highlight the main conclusions of this study and also discuss some relevant issues that were not addressed
previously.

The use of (linear or nonlinear) elastic constitutive models for the specimen in numerical simulations
of Kolsky bar tests can reveal the presence of inertial effects in these tests. Using viscoelastic models in

43 See Appendix A for more details.
44 This is close to our rough estimate of 42 kPa for the 700/s tests in [Nie et al. 2013]; see the discussion at the end of

Section 3D. Recall that they estimated an initial shear modulus of 53.5 kPa from their average “700/s” shear stress versus shear
strain curve.

45 For a (linear or nonlinear) viscoelastic material, the speed of a shear wave propagating into an undeformed region is that
of a linear elastic material with shear modulus equal to the (small strain) instantaneous elastic shear modulus of the viscoelastic
material. This result also holds for any simple material with fading memory [Coleman et al. 1965]. However, the shear
wave in the torsion test initially propagates into a slightly deformed region caused by the longitudinal precursor wave and
then reflects from the Load Cell into a more complicated strain state. Nevertheless, the shear wave speed into an undeformed
material should yield a rough estimate for the wave speed in this test, and for the viscoelastic model considered here, this is
√

40 kPa/ρ =
√

5× 8 kPa/ρ or
√

5 times the shear speed for the µ= 8 kPa elastic cases.
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these simulations will add strain-rate effects to the stress histories but not substantially alter the inertial
effects since the main issue here is the slow shear wave speed in the specimen.

In soft specimens, the travel time of the torsional wave can be on the order of the loading pulse
duration, in which case there is insufficient time for ring-up to dynamic equilibrium. For the torsional
Kolsky bar tests on bovine brain tissue at a strain-rate of “700/s” that were reported in [Nie et al. 2013],
the specimen could not have been in dynamic equilibrium, contrary to statements made in that paper.
Consequently, their “stress-strain curves” are not valid — the average strain used in their plots does not
correspond to the strain at the load cell. In fact, throughout much of the test, the actual strain at the load
cell was likely several times larger than the average strain used in their stress-strain plots.

The stress history at the load cell should never be time-shifted to synchronize it with the history of
the average strain in order to produce a “stress-strain curve”. If the stress-strain curves produced from
unshifted data contain an initial strain interval for which the stress is zero (as in the left panels in Figure 4),
then this is a clear indication that the specimen is not in dynamic equilibrium and consequently that no
meaningful stress-strain curves can be inferred from the test data. Even if the “stress-strain curves”
produced by time-shifting the load cell data appear physically reasonable, they will necessarily contain
erroneous “strain-rate effects”.

It is not clear how to modify the experimental design to alleviate the inertial effects that exist when
testing with very soft specimens at high strain-rates. In Section 3E, we discussed the changes in the load-
ing pulse and the specimen geometry that would be necessary to improve the quality. These alterations
require longer bars, thinner specimens, and reductions of the maximum strain-rates considered. Ignoring
the practical difficulties that longer bars, polymer bars, or thinner specimens pose, the lower strain-rates
required would be on the order of 100–200/s (unless larger strains are considered) and are perhaps too
low for the ranges needed for the modeling effort.

Other Kolsky bar tests such as double-lap shear [Saraf et al. 2007; Trexler et al. 2011] or circular
shearing [Nie et al. 2011] will have similar issues with dynamic equilibrium. Similar dimensional argu-
ments can be made for each of these tests. With proper consideration of the direction of the shear wave
propagation and the relevant specimen length, the results of Section 3 would apply. Thus, inertial effects
are still an issue with high shear strain-rate Kolsky bar tests on soft materials.

In view of the remarks above, for tests on sufficiently soft specimens at sufficiently high strain-rates,
experimenters should abandon the practice of presenting their data as “stress-strain curves” and simply
report the measurements that are valid. For the torsional Kolsky bar test of Nie et al. [2013], this
consists of the torque history at the load cell and the history of the angle of twist at the other face of the
specimen. These histories should be provided for each valid test, not averaged over multiple tests. Such
data, in conjunction with numerical simulations of the tests, could be used in the process of validating
a constitutive model that has already been calibrated. In this regard, optical measurements of the angle
of twist at the end of the incident bar adjacent to the specimen should be used in place of the traditional
strain gage measurements on the incident bar. Unlike the analysis of strain gage data, the analysis of
optical data does not require that the specimen be in dynamic equilibrium or that the incident and reflected
pulses do not overlap at the measurement location.

The above procedure could not be used to actually calibrate the parameters in a viscoelastic consti-
tutive model unless the twist and torque histories are part of a larger data set for use with a numerical
inverse method. The issue here is nonuniqueness, for which there are several sources. Even if a numerical
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inverse method were used to optimize the fit to the measured stress and twist histories, it seems likely that
several different calibrations might fit the limited data equally well, particularly in view of the variability
that exists in biological specimens and the fact that several reasonable criteria for optimality could be
used. Each calibration would likely result in a different numerical prediction of the strain history at the
load cell. Since this strain history cannot be measured in the torsional Kolsky bar test, there would be no
criterion for selecting one of these calibrations over the other. Also, significant radial, hoop, and axial
stresses exist if the specimen is sufficiently soft and the strain-rate sufficiently high, yet these normal
stress components are not measured in the torsional Kolsky bar test.46 Furthermore, the measured torque
(or the torsional shear stress Tθ z) may be insensitive to some of the parameters that determine these normal
stresses as was demonstrated for the case of a Mooney–Rivlin model. Different model calibrations might
fit the twist and torque histories equally well or nearly as well and yet predict drastically different normal
stresses, but there would be no way to determine which (if any) of these predictions are correct.

Appendix A: Details of numerical methods

One-dimensional dynamic. We solve the wave equation (3-8) along with boundary conditions (3-3)1

and (3-12) numerically using a finite difference scheme. Initially, an explicit second-order, centered-
time and centered-space method was implemented. This method produced reasonable results but had
a tendency to be dispersive, creating erroneous ripples and other small oscillatory noise. The results
presented here use a Crank–Nicolson method applied to the centered-space differences, thus making it a
semi-implicit method; i.e., the approximations of the spatial derivatives were taken as an average of the
values for the current time step and the next time step. This alteration trades the dispersive error for a
slightly dissipative error. The length of the specimen (L = 1.7 mm) was divided up into equal intervals
(1z = 0.0085 mm) so that u(z, t) was evaluated at 200 points; a time step 1t was chosen to satisfy the
Courant stability criterion for the explicit method, c1t/1z ≤ 1.

Three-dimensional quasistatic. Meshes were generated in Cubit (V12.1, Sandia National Laboratory).
Simulations were performed using Sierra SolidMechanics (Adagio 4.24, Sandia National Laboratory).
Adagio is an implicit, nonlinear preconditioned conjugate gradient solver. Reduced integration on HEX8
element meshes was performed. Due to the highly constrained nature of the problem, extreme care had
to be taken to ensure the mesh was structured and symmetric to prevent mesh artifacts. Postprocessing
of simulation results was carried out in ParaView (V3.14.0, Kitware) and MATLAB (The MathWorks).

The solutions obtained from the fully three-dimensional simulations were rotationally symmetric and
enabled a reduction of the data. Variables were evaluated along five radial lines at a single angle and
equally spaced axial locations (2= 0 and Z = 0, 1

4 L , 1
2 L , 3

4 L , L). This postprocessing was performed in
ParaView to enable further analysis. The area integrals used a composite Simpson’s method in MATLAB.
Similarly, volumetric averages were calculated from the five area integrals utilizing a five-point Simpson
rule. Continuous plots over the radius of the specimens have been linearly interpolated between elements.

Three-dimensional dynamic. Several demanding simulation requirements arise when modeling shear
wave propagation in soft, nearly incompressible materials. Figure 3 (for the one-dimensional simulations)

46 Measurements of axial stress in quasistatic torsion tests are common, and such measurements could perhaps be done in
torsional Kolsky bar tests as well. However, it seems unlikely that radial or hoop stresses could ever be measured.
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shows that, when a specimen is far from dynamic equilibrium, large gradients in strain exist. These large
gradients cannot be captured in a numerical simulation without a sufficiently fine mesh. In Simulation I,
there were changes in strain of 0.4 over distances of approximately 0.6 mm. A large number of elements
along the shortest dimension of the specimen geometry requires extremely large meshes to model the
entire specimen in a three-dimensional simulation. A large reduction in the number of elements is gained
by utilizing the rotational symmetry of the problem and effectively changing it to a two-dimensional
problem by simulating a thin wedge with periodic boundaries. An explicit code would require very short
time steps for these small elements. Simulations were performed using Adagio with HHT integration
[Hilber et al. 1977]. This enabled taking larger time steps while maintaining stability and introducing a
small damping to higher frequencies.

The software used for meshing and postprocessing was the same as for the quasistatic simulations.
Utilizing the rotational symmetry of the problem, variables were evaluated along axial lines at a single
angle (2 = 0) and five equally spaced radial locations from Ri to Ro. For the simulations with a vis-
coelastic specimen, we used the Viscoelastic Swanson Model in Sierra SolidMechanics. The parameters
in the elastic part of that model were chosen so that it reduced to a Mooney–Rivlin model.

Appendix B: Mathematical formulation of a smooth loading pulse

The simulations of the torsional Kolsky bar test require a loading pulse (i.e., an applied average strain-
rate history γ̇s) that ramps up smoothly to a constant value before subsequently unloading (Figure 2a).
In this appendix, we formulate a parametrized loading pulse using a Hermitian smoothing spline. The
time integral of the average strain-rate γ̇s can then be used to obtain an applied average shear strain γs

and ultimately the applied displacement boundary condition (2-6).
We use a Hermitian smoothing spline of degree 5 as the basis for the ramp-up portion of the loading

pulse (see [Fitzpatrick and Scheidler 2013]):

H5(x)= 10x3
− 15x4

+ 6x5, 0≤ x ≤ 1. (B-1)

This function increases from 0 at x = 0 to 1 at x = 1 and has zero first and second derivatives at both of
these end points. Following [Fitzpatrick and Scheidler 2013], one can use H5(x) to construct a strain-rate
function that ramps up from zero to γ̇max over the time interval [0, tr ], maintains this constant value over
the time interval [tr , tr + tp], and then unloads to zero over the time interval [tr + tp, td ]:

γ̇s(t)=



0, t < 0,
γ̇max H5

( t
tr

)
, 0≤ t ≤ tr ,

γ̇max, tr < t < tr + tp,

γ̇max

[
1− H5

( t−(tr+tp)

tr

)]
, tr + tp ≤ t ≤ td ,

0, t > td .

(B-2)

Here tr is referred to as the rise time, i.e., the time it takes to reach a constant strain-rate, tp is the duration
of the constant strain-rate plateau, and td is the total duration of the pulse. In the simulations, we made
the additional assumption that the loading pulse is symmetric; that is, the unloading duration td− (tr + tp)

equals the rise time so that td = 2tr + tp.
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Note that

γ̈s(0)= γ̈s(tr )= γ̈s(tr + tp)= 0,
...
γs(0)=

...
γs(tr )=

...
γs(tr + tp)= 0. (B-3)

Since γ̈s and
...
γs are identically zero during the constant strain-rate plateau as well as for t < 0 and t > td ,

the conditions (B-3) guarantee that γ̇s is twice continuously differentiable. This degree of smoothness
was necessary to avoid an unwanted ringing in the simulations that would otherwise result from a lower
order polynomial.

An explicit expression for γs(t) is rather messy, and in practice, it is simpler to work with the integral
of H5:

H5(x)=
∫ x

0
H5(y) dy = x4(x2

− 3x + 5
2

)
. (B-4)

Integrating each case in (B-2) with respect to time, assuming a symmetric loading pulse, and using
H5(1)= 1

2 gives

γs(t)=



0, t < 0,

γ̇maxtr H5

( t
tr

)
, 0≤ t ≤ tr ,

γ̇max
[ 1

2 tr + (t − tr )
]
, tr < t < tr + tp,

γ̇max

[
1
2 tr + (t − tr )− tr H5

( t−(tr+tp)

tr

)]
, tr + tp ≤ t ≤ 2tr + tp,

γ̇max[tr + tp], t > 2tr + tp = td .

(B-5)

Equations (B-2) and (B-5) are smooth functions that qualitatively reproduce typical strain and strain-rate
loading conditions generated in Kolsky bar tests.
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TRANSIENT ELASTIC-VISCOPLASTIC DYNAMICS OF THIN SHEETS
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A model for the finite transient viscoplastic response of thin membranes is derived from three-dimensional
viscoplasticity theory for isotropic materials. This accommodates large elastic strains and is not limited
to conventional Kirchhoff–Love kinematics. In particular, we show that the Kirchhoff–Love hypothesis
need not obtain in the presence of plastic deformation. Numerical experiments exhibit large transient
elastic strains accompanied by small deviations from Kirchhoff–Love kinematics.

1. Introduction

The problem of the dynamic viscoplastic response of thin metallic sheets to impact and blast loads is
thoroughly reviewed in the classic monograph [Cristescu 1967]. In addition to a detailed overview of
experimental methods, a description of theoretical and numerical analyses of transient finite axisymmetric
motions is given in the setting of rate-independent and rate-dependent response. The present work may
be viewed as a further development of this subject, cast in the setting of the modern theory of finite
elastic-viscoplastic deformations.

In rate-independent plasticity theory the elastic strain is bounded by the diameter of an elastic range
associated with a yield criterion. Typically, this implies that elastic strains are small enough to justify the
use of classical linear relations between elastic strain and an appropriate measure of stress. In contrast,
formulations of viscoplasticity theory to model rate-dependent behavior are characterized by significant
excursions of the elastic strain (and associated stress) from the elastic range [Malvern 1951; Prager 1961;
Perzyna 1962/1963; 1966]. In this case the elastic strain cannot be regarded as small a priori and so
there is a need for an extended framework that accommodates finite elastic strain. To this end we adopt
the finite-elastic-strain model for isotropic materials proposed in [Krishnan and Steigmann 2014].

The basic framework of finite elastoplasticity theory is recalled in Section 2, both for the sake of
completeness and to set the stage for its subsequent application, in Section 3, to the dynamics of thin
sheets. We show that the kinematics of the sheet do not conform to classical Kirchhoff–Love kinemat-
ics, even in the case of isotropy. In Section 4 we describe numerical experiments conducted using a
two-dimensional spatial finite difference scheme based on Green’s theorem in conjunction with explicit
timewise integration of the equations of motion. This is applied to the simulation of the response of a
plane sheet to transverse blast pressure. The predictions exhibit small deviations from Kirchhoff–Love
kinematics and substantial transient elastic strains.

From the theoretical point of view it is advantageous to base the theory on the elastic stretch tensor
rather than conventional measures of elastic strain; this is explained in Section 2. Typically the use of

Keywords: viscoplasticity, membranes, transient response.
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stretch tensors is avoided in numerical work as they are not rational functions of the deformation gradient.
However, as shown in Section 4, this issue is easily addressed by using an appropriate version of the
Cayley–Hamilton formula.

We use standard notation such as At , A−1, A∗,Dev A, tr A and JA. These are, respectively, the trans-
pose, the inverse, the cofactor, the deviatoric part, the trace and the determinant of a tensor A, regarded
as a linear transformation from a three-dimensional vector space to itself, the latter being identified with
the translation space of the usual three-dimensional Euclidean point space. We also use Sym to denote
the linear space of symmetric tensors, Sym+ the positive-definite symmetric tensors and Orth+ the group
of rotation tensors. If JA > 0 then we have the unique polar decompositions A= RAUA = VA RA, with
RA ∈ Orth+ and UA, VA ∈ Sym+. The tensor product of 3-vectors is indicated by interposing the symbol
⊗, and the Euclidean inner product of tensors A, B is denoted and defined by A · B = tr(ABt); the
associated norm is |A| =

√
A · A. Finally, the notation FA, with a bold subscript, stands for the tensor-

valued derivative of a scalar-valued function F(A).

2. Elastoviscoplasticity theory for isotropic materials

In this section we recount the basic elements of the three-dimensional theory underpinning this work. Fur-
ther background may be found in [Cleja-T, igoiu and Soós 1990; Epstein and Elżanowski 2007; Rajagopal
and Srinivasa 1998; Gurtin et al. 2010; Gupta et al. 2007; Bigoni 2012].

2.1. Basic theory. The fields to be determined are the motion χ(x, t) and the plastic deformation ten-
sor K (x, t), where x is the position of a material point in a fixed reference placement κr of the body.
Commonly, the plastic deformation is identified with G = K−1. The values y = χ(x, t) are the positions
of material points at time t and generate the current placement κt of the body as x ranges over κr . The
deformation gradient, denoted by F, is the gradient of χ with respect to x; this is assumed to be invertible
with JF > 0. These variables combine to yield the elastic deformation

H = F K . (1)

Here we impose JH > 0 and thus require that JK > 0.
The basic elements of this framework were laid down by Bilby [1960], Kröner [1960], Noll [1967/1968]

and Lee [1969]. Reference may be made to [Gurtin et al. 2010] for a thorough and modern account of
the subject.

The strain energy of the body is

E =
∫
κt

ψ(H) dv, (2)

where ψ is the spatial strain-energy density. We consider materials that are uniform in the sense that this
function, and further constitutive functions to be discussed, do not involve x explicitly.

The local equations of motion, in the absence of body forces, are

Div P = ρr ÿ, P Ft
∈ Sym in κr , (3)

where P is the Piola stress, ρr is the fixed referential mass density, Div is the referential divergence (i.e.,
the divergence with respect to x), and superposed dots are used to denote material derivatives (∂/∂t at
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fixed x). The Piola stress is defined in terms of the Cauchy stress T by

P = T F∗. (4)

The strain-energy function referred to the local intermediate configuration κi is

W (H)= JHψ(H), (5)

and it generates the Cauchy stress via the formula [Gupta et al. 2007]

T H∗ =WH . (6)

Accordingly,
WH = P K ∗ (7)

Necessary and sufficient for the symmetry condition (3)2 is that W depend on H through the elastic
Cauchy–Green deformation tensor

CH = H t H . (8)

Thus,
W (H)= Ŵ (CH ). (9)

The associated second Piola–Kirchhoff stress, referred to κi , is S= Ŝ(CH ), where

Ŝ(CH )= 2ŴCH . (10)

We assume the local configuration κi to be natural in the sense that Ŝ(I) = 0; realistic constitutive
hypotheses [Gupta et al. 2007] then associate it with an undistorted state, in the sense of an undistorted
crystal lattice. The relevant symmetry group is thus a subgroup of the proper orthogonal group; i.e.,

W (H)=W (H R), (11)

where R ∈ Orth+. For isotropic materials the symmetry group coincides with the proper orthogonal
group, implying that this is satisfied for all R ∈ Orth+ .

The sum of the kinetic and strain energies of an arbitrary part p ⊂ κt of the body is∫
π

8 dv; 8=9 + 1
2ρr | ẏ|2, (12)

where π is the region occupied by p in κr , and

9(F, K )= J−1
K W (F K ) (13)

is the referential strain-energy density. In terms of this the Piola stress is given simply by [Epstein and
Elżanowski 2007; Gupta et al. 2007]

P =9F. (14)

The dissipation D is the difference between the mechanical power P supplied to p and the rate of
change of the total energy in p. Thus,

D= P − d
dt

∫
π

8 dv, (15)
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which may be reduced to [Gupta et al. 2011]

D=

∫
π

D dv, (16)

where
D = E · K̇ K−1, (17)

in which
E=9 I − Ft P (18)

is Eshelby’s energy-momentum tensor.
The dissipation is thus nonnegative for every sub-body if and only if D ≥ 0. It is convenient to use (17)

in the form
JK D = E′ · K−1 K̇ , (19)

where
E′ = JK K t EK−t (20)

is the pushforward of the Eshelby tensor to κi . This satisfies [Gupta et al. 2007]

E′ = Ŵ (CH )I −CH Ŝ(CH ), (21)

and is therefore purely elastic in origin.
In [Gupta et al. 2007] it is further demonstrated that if the strain energy and the dissipation are invariant

under superposed rigid-body motions with uniform rotation Q(t), and if plastic evolution is strictly
dissipative in the sense that D > 0 if and only if K̇ 6= 0, then the transformation rules for the elastic and
plastic deformations under superposed rigid-body motions are

H→ Q(t)H and K → K . (22)

These imply that CH , S and E′ are invariant.
In this work we consider strain-energy functions 9 that satisfy the strong ellipticity condition

a⊗ b ·9F F(F, K )[a⊗ b]> 0 for all a⊗ b 6= 0, (23)

and for all deformations. This is equivalent to [Sfyris 2011; Steigmann 2014]

a⊗m ·WH H(H)[a⊗m]> 0 for all a⊗m 6= 0, with m = K t b. (24)

It follows that 9 is strongly elliptic at F if and only if W is strongly elliptic at H = F K .

2.2. Isotropy. Isotropy of the constitutive response implies that the strain-energy function satisfies (11)
for all rotations R. The choice R= Rt

H yields the necessary condition W (H)=W (VH ). Invariance of W
under superposed rigid-body motions imposes the further restriction (see (22)1) W (VH )=W (QVH Qt)

for all rotations Q, which is satisfied if and only if W is expressible in the form

W (H)= w(h1, h2, h3), (25)
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where hi are the principal invariants of the elastic left-stretch VH . Because these are isotropic functions,
they are also the invariants of the elastic right-stretch UH ; i.e.,

h1 = tr UH , h2 = tr U∗H , h3 = det UH = JH , (26)

and this of course is a special case of (9) because UH is determined by CH . Equation (25) thus yields
the canonical representation of an isotropic, frame-invariant strain-energy function. A representation
formula derived in [Steigmann 2002] may then be used to arrive at

WH = RHσ , (27)

where
σ = (w1+ h1w2)I −w2UH +w3U∗H , (28)

in which
wi =

∂w

∂hi
(29)

is the Biot stress based on the use of κi as reference [Ogden 1997]. Using (7), (10) and (27) we have
CH S= UHσ , yielding (21) in the form

E′ =W I −UHσ = (w− h3w3)I − (w1+ h1w2)UH +w2U2
H . (30)

Our preference for a framework based on the stretch tensor and associated invariants is due to the
availability of simple sufficient conditions, expressed in terms of these variables, for the condition of
polyconvexity. This in turn guarantees strong ellipticity, which plays an important role in the considera-
tions of Section 3.

To elaborate, we write the strain energy of the body in the form

E =
∫
κr

9(∇χ , K ) dv, (31)

where (cf. (13))
9(∇χ , K )= J−1

K W ((∇χ)K ). (32)

The function 9( · , K ), with K (x) fixed, delivers the strain energy of an inhomogeneous elastic body.
Polyconvexity is the condition that there exists a (possibly nonunique) function 8(x)(F, F∗, JF ),

jointly convex in each argument, such that 8(x)(F, F∗, JF )=9(F, K (x)). This in turn is equivalent to
the polyconvexity of the function8′(x)=W , where8′(x)(H,H∗, JH )= JK8(x)(HK−1, (HK−1)∗, JH J−1

K )

with K fixed [Neff 2003]. In the case of isotropy, sufficient conditions are [Steigmann 2003]

(i) w(h1, h2, h3) is a convex function of all three arguments jointly,

(ii) w is an increasing function of h1 and h2;
(33)

that is,

w(h̄1, h̄2, h̄3)−w(h1, h2, h3) > (h̄1− h1)
∂w

∂h1
+ (h̄2− h2)

∂w

∂h2
+ (h̄3− h3)

∂w

∂h3
, (34)

together with
∂w

∂h1
> 0 and ∂w

∂h2
> 0, (35)
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in which hk and h̄k , respectively, are the invariants associated with H and the comparison deformation H ,
and the derivatives are evaluated at hk .

For example, strain energies of the form

w = c1(h1− 3)+ c2(h2− 3)+ g(h3), (36)

with c1 and c2 constant, have yielded explicit solutions to some boundary-value problems [Carroll 1988]
in the setting of finite elasticity theory. These satisfy (33) — and thus yield polyconvexity — if and only
if c1 > 0, c2 > 0 and g′′(h3) > 0. An example of such a function g( · ) is

g(h3)=−c3 log h3, (37)

with c3 a positive constant, and the associated Biot stress is (cf. (28))

σ = (c1+ h1c2)I − c2UH − c3U−1
H . (38)

To ensure that the intermediate configuration κi is stress-free, as required, and that the asymptotic for-
mula

σ = λ(tr ε)I + 2µε+ o(|ε|) (39)

is satisfied for small |ε|, where
ε = UH − I (40)

is the elastic Biot strain and where λ and µ are the usual Lamé moduli, we impose

c3 = c1+ 2c2, c2 = λ and 1
2(c1+ c2)= µ. (41)

The polyconvexity criteria (33) then imply the classical inequalities µ > 0 and κ > 0, where µ and
κ
(
= λ + 2

3µ
)
, respectively, are the conventional shear and bulk moduli. Accordingly, for materials

possessing a positive modulus λ, equations (36), (37) and (41) provide a simple nonlinear, polyconvex
extension of the strain-energy function of linear elasticity theory to finite elastic strains.

Finally, following [Krishnan and Steigmann 2014], we adopt the isotropic viscoplastic flow rule

ν ĠG−1
= F Dev(σUH ); F > 0, where F = 1−

√
2K

|Dev(σUH )|
, (42)

ν(> 0) is a material viscosity and K is the static yield stress in shear. This is an extension of the classical
over-stress models pioneered by Malvern [1951], Prager [1961] and Perzyna [1962/1963; 1966]. We
impose Ġ = 0 if UH belongs to the elastic range, defined by F ≤ 0. In the case of nontrivial plastic
evolution the elastic stretch is not bounded by the elastic range, in contrast to the situation in rate-
independent plasticity. For this reason it is generally necessary to account for finite elastic strain in the
presence of viscoplasticity.

We note that the skew part of ĠG−1, the so-called plastic spin, is suppressed in (42). That this entails
no loss of generality in the case of isotropic response has been established in [Epstein and Elżanowski
2007] and [Gurtin et al. 2010]. A general framework for addressing issues of this kind is discussed in
[Steigmann and Gupta 2011].
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Using K−1 K̇ =−ĠG−1, the dissipation D, defined by (19), is easily shown to vanish if F ≤ 0, and
to satisfy

D > 2F K 2/ν if F > 0, (43)

ensuring that plastic evolution is indeed strictly dissipative.

3. Membrane dynamics

We identify the reference configuration κr with the prismatic region �×
[
−

1
2 h, 1

2 h
]
, where � is the

midplane of the sheet and h is its thickness. To obtain the relevant model we restrict the exact equations
of motion (3) to � and invoke the exact traction conditions at the lateral surfaces ς =± 1

2 h. The resulting
system delivers equations of motion for the sheet valid to leading order in h [Steigmann 2009].

3.1. Equations of motion. Let k be a unit vector that orients the plane �. The associated projection
operator is

1= I − k⊗ k, (44)

where I is the identity for 3-space. This generates the orthogonal decomposition

P = P1+ P k⊗ k (45)

of the Piola stress, which may be used to cast the equation of motion (3) in the form

div(P1)+ P ′k = ρr ÿ, (46)

where div( · ) is the two-dimensional divergence with respect to position u ∈�, and ( · )′ = ∂( · )/∂ς is
the derivative with respect to the linear coordinate ς orthogonal to � in the representation x = u+ ςk.

This holds at all points in the interior of the body and hence at the midplane � defined by ς = 0; thus,

div(P01)+ P ′0k = ρr r̈, (47)

where r = χ0 and ( · )0 is used to denote the restriction of the enclosed variable to �. Here,

P0 =9F(F0, K0), (48)

where
F0 =∇r + d⊗ k, (49)

in which d = χ ′0 is the membrane director field and ∇( · ) is the two-dimensional gradient with respect
to u. This follows easily from the decomposition F = F1+ Fk⊗ k.

Equation (47) is the exact equation of motion for the midplane �. Approximations arise when using
it to represent material response in �×

[
−

1
2 h, 1

2 h
]
. Here we seek the leading-order model for small

thickness h, which is assumed to be much smaller than any other length scale in the considered problem.
The smallest of these is used as the unit of length, so that h� 1 when nondimensionalized. To this end
we impose lateral traction data at ς =± 1

2 h, obtaining [Steigmann 2009]

p++ p− = h P ′0k+ o(h) and p+− p− = 2P0k+ o(h), (50)

where p± =±P±k are the tractions at the major surfaces.
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In this work we prescribe

p+ = 0 and p− = p(F∗)−k, with p = h P + o(h) and P = O(1), (51)

corresponding to a pressure p of order O(h) acting at ς = −1
2 h. This is reconciled with (50) if and

only if
P0k = 0 and P ′0k = Pαn+ o(h)/h, (52)

where n is the unit normal to the image ω = χ(�, t) of the midplane after deformation and α is the areal
stretch, defined by Nanson’s formula

αn= F∗0 k, with α = |F∗0 k|. (53)

Here we have used the fact — valid for smooth deformations — that (F∗)− is approximated by F∗0 with
an error of order O(h).

Substitution of (52) into (47) delivers

div(P01)+ Pαn+ o(h)/h = ρr r̈, (54)

and passage to the limit yields the leading-order differential-algebraic system

div(P01)+ Pαn= ρr r̈ and P0k = 0. (55)

Combining this with (14) and the restriction to � of the flow rule (42), we arrive at a system for the
determination of the plastic deformation K0, the midplane motion r and the director field d.

To address the requirement JF0 > 0, we observe that

JF0 = F∗0 k · F0k. (56)

Accordingly, JF0 > 0 if and only if
d · n> 0. (57)

Henceforth we work exclusively with functions defined on � and thus drop the subscript ( · )0 for the
sake of convenience.

3.2. Elimination of the director field. The second equation in (55) requires that � be in a state of plane
stress. Using (7), this is seen to be equivalent to

{WH(H)}l = 0, where l = K t k. (58)

To prove that this system yields a unique d, we first show that any solution, d̄ say, minimizes W .
To this end we fix ∇r and K and define R(d) = W (H) with H = (∇r + d ⊗ k)K . Let d(t) be a
one-parameter family belonging to the half-space S+(d) defined by d · n> 0. This is the admissible set
associated with the restriction JF > 0. The derivatives of σ(t)= R(d(t)) are

σ̇ = ḋ · {WH(H)}l = ḋ · Rd (59)

and
σ̈ = d̈ · {WH(H)}l + ḋ⊗ l ·WH H(H)[ḋ⊗ l] = d̈ · Rd + ḋ · (Rdd)ḋ. (60)
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It follows that
Rd(d̄)= {WH(H)}l, (61)

with H = (∇r + d̄⊗ k)K , vanishes, and that Rdd(d) satisfies

{Rdd(d)}v = {WH H(H)[v⊗ l]}l, (62)

implying, by the strong ellipticity (cf. (24)) of the polyconvex energy (36), that it is positive definite.
Because S+(d) is a convex set, it contains the straight line d(t)= t d2+ (1− t)d1 with d1,2 ∈ S+(d)

and t ∈ [0, 1]. We have σ̈ > 0 on this line and hence σ̇ (t) > σ̇ (0) for t ∈ (0, 1]. Then σ(1)−σ(0) > σ̇ (0),
implying that the function R(d) is convex on S+; that is,

R(d2)− R(d1) > Rd(d1) · (d2− d1). (63)

Because such functions have unique stationary points, it follows that there exists a unique solution
d = d̄(∇r, K ) to (58), corresponding to the global minimizer of R(d).

Plastic deformation generally prevents the solution from conforming to classical Kirchhoff–Love kine-
matics with d = µn, where µ is the thickness distension. This stands in contrast to the ubiquitous
imposition of the constraint of Kirchhoff–Love kinematics throughout the literature on theories for the
plastic deformation of membranes and shells derived from three-dimensional considerations [Cristescu
1967; Lubliner 2008].

To prove the claim we invoke (58) in the form (cf. (27))

σ l = 0, (64)

where σ is the Biot stress. Thus, l is an eigenvector of σ with vanishing eigenvalue. Henceforth we
normalize l to be a unit vector without loss of generality. It follows from (38) that σ and UH are coaxial
in the case of isotropy, and hence that l is also an eigenvector of UH . The standard representation
H =

∑
λi mi ⊗ li , where λi (> 0) are the eigenvalues of UH , li are the associated (orthonormal) eigen-

vectors and mi = RH li , follows from the polar decomposition theorem and yields H∗ =
∑
λ∗i mi ⊗ li ,

where λ∗i = λi/JH .

Because l ∈ {li } we have H∗l = λ∗m, with λ∗ ∈ {λ∗i } and m ∈ {mi }. Using H∗ = F∗K ∗ we obtain
λ∗m = (JK /|K t k|)F∗k, which furnishes λ∗ = α JK /|K t k| and m = n. Accordingly, it follows from
λm = Hl and d = Fk (cf. (49)) that

(λ/|K t k|)n= F K K t F−1d, (65)

implying that d is not generally aligned with n. Exceptionally, such alignment occurs — and the director
then conforms to Kirchhoff–Love kinematics — if K is a rotation composed with a dilation, including
the case of pure elasticity; i.e., K = I .

Equation (65) does not account fully for the restrictions embodied in (64). In Section 4, (64) is solved
directly for d by using an iterative method.

The present formulation does not yield energetically optimal solutions in the specialization to equilib-
rium problems. This is due to the potential of the constitutive relations to supply a compressive state of
(plane) stress, in violation of a necessary condition for the existence of an energy-minimizing membrane
deformation [Pipkin 1986]. In such circumstances the model may be replaced by its quasiconvexification
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Figure 1. A unit cell of the finite-difference mesh.

[Dacorogna 1989], yielding states that automatically satisfy relevant necessary conditions for energy
minimizers. This is the conceptual basis of tension-field theory [Steigmann 1990], a model that accom-
modates finely wrinkled equilibrium states in the context of membrane theory. The same model follows
from the method of gamma convergence [Le Dret and Raoult 1996] in the zero-thickness limit. We
forego such modifications here, however, as we are concerned exclusively with dynamical states, which
of course are not energy minimizers. In particular, the method of gamma convergence is not applicable
in this setting. A similar point of view was adopted in [Yokota et al. 2001] in connection with a model
for the dynamics of nonlinearly elastic strings. There, dynamics characterized by transient compressive
states of stress were obtained via a direct numerical simulation, despite the intermittently nonhyperbolic
character of the equations. The present work proceeds in the same spirit.

4. Numerical experiments

4.1. Finite differences. We discretize (55)1 using a finite-difference scheme derived from Green’s theo-
rem. Applications to plane-strain problems in nonlinear elasticity theory are described in [Silling 1988].
The method was first applied by Wilkins [1963] to the simulation of plane plastic flow. Its application to
static problems in membrane theory is developed in [Haseganu and Steigmann 1994; Atai and Steigmann
1998]. Here, we present a brief outline of the method and its adaptation to the description of three-
dimensional viscoplastic membrane deformations.

The reference plane � is covered by a grid consisting of cells of the kind depicted in Figure 1. Nodes
are labeled using integer superscripts (i, j). Thus, ui, j

α are the referential Cartesian coordinates of node
(i, j), where uα = u · iα; α = 1, 2, and {iα} is an orthonormal basis in �. The four regions adjoining a
node and its nearest neighbors are called zones. Zone-centered points, identified by open circles in the
figure, are labeled using half-integer superscripts.

Green’s theorem may be stated in the form∫
D
σα,α da = eαβ

∫
∂D
σα duβ, (66)
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where σα(u1, u2) is a smooth two-dimensional vector field, eαβ is the two-dimensional permutation
symbol (e12 = +1, etc.), D is an arbitrary simply connected subregion of � and commas followed
by subscripts are partial derivatives with respect to the coordinates. To approximate the divergence σα,α
at node (i, j) we identify D with the quadrilateral bounded by the dashed contour of Figure 1. The
left-hand side of (66) is estimated as the nodal value of the integrand multiplied by the area of D; the
right-hand side as the zone-centered values of the integrand on each of the four edges of ∂D multiplied
by the appropriate length. Thus [Silling 1988],

2Ai, j (σα,α)
i, j
= eαβ

[
σ i+1/2, j+1/2
α (ui, j+1

β − ui+1, j
β )+ σ i−1/2, j+1/2

α (ui−1, j
β − ui, j+1

β )

+ σ i−1/2, j−1/2
α (ui, j−1

β − ui−1, j
β )+ σ i+1/2, j−1/2

α (ui+1, j
β − ui, j−1

β )
]
, (67)

where
Ai, j
=

1
4

[
(ui−1, j

2 − ui+1, j
2 )(ui, j+1

1 − ui, j−1
1 )− (ui−1, j

1 − ui+1, j
1 )(ui, j+1

2 − ui, j−1
2 )

]
(68)

is one half the area of the quadrilateral.
We also require gradients of functions at zone-centered points. These are derived from the integral

formula ∫
D
σ,α da = eαβ

∫
∂D
σ duβ . (69)

We now identify D with the shaded region in the figure. The left-hand side is estimated as the product of
the shaded area with the integrand, evaluated at the zone-centered point, and the four edge contributions
to the right-hand side are approximated by replacing the integrand in each with the average of the nodal
values at the endpoints. This furnishes [Silling 1988]

2Ai+1/2, j+1/2(σ i+1/2, j+1/2
,α )

= eαβ
[
(σ i+1, j+1

− σ i, j )(ui, j+1
β − ui+1, j

β )− (σ i, j+1
− σ i+1, j )(ui+1, j+1

β − ui, j
β )
]
, (70)

where

Ai+1/2, j+1/2
=

1
2

[
(ui, j+1

2 − ui+1, j
2 )(ui+1, j+1

1 − ui, j
1 )− (u

i, j+1
1 − ui+1, j

1 )(ui+1, j+1
2 − ui, j

2 )
]
. (71)

The term αn in (55) associated with the applied pressure may be expressed as a divergence on �
[Taylor and Steigmann 2009]. Thus, n= nk ik , with i3 = k, where

αnk =
1
2 ei jkeαβri,αr j,β = Gkβ,β (72)

and
Gkβ =

1
2 ei jkeαβri,αr j , (73)

in which ei jk is the three-dimensional permutation symbol (e123 =+1). For uniformly distributed pres-
sures (55) is thus equivalent to the system

Tkα,α = ρr r̈k, where Tkα = Pkα + P(t)Gkα, (74)

where Pkα = P · ik ⊗ iα are the components of P1 and rk = ik · r are the Cartesian coordinates of a
material point after deformation.
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Each of the equations (74) is of the form

σα,α = ρr σ̈ , (75)

where σα = Tkα and σ = rk ; k = 1, 2, 3. This is integrated over the region containing the node, enclosed
by the quadrilateral of Figure 1, yielding

6i, j,n
= mi, j σ̈ i, j,n, (76)

where n is the time step,
6i, j,n

= 2Ai, j (σα,α)
i, j,n, (77)

and
mi, j
= 2Ai, jρr (78)

is the nodal mass.
The right-hand side of (76) is evaluated in terms of the zone-centered values of σα via (67). The

latter depend constitutively on corresponding zone-centered values of the gradients σ,α which, in turn,
are determined via (70) by the values of σ at the nodes located at the vertices of the shaded region of
Figure 1. The scheme requires one degree of differentiability less than that required by the local differ-
ential equations. Discussions of the associated truncation errors are given in [Silling 1988; Herrmann
and Bertholf 1983].

We observe that the matrix Gkβ associated with lateral pressure (not to be confused with the plastic
deformation) is evaluated at zone-centered points (cf. (72)). However, this involves the deformation rk

(cf. (73)), a nodal variable; in place of this we substitute the average of the deformations at the four
adjacent nodes.

The time derivatives in (76) are approximated by the central differences

σ̇ n
=

1
2(σ̇

n+1/2
+ σ̇ n−1/2), σ̈ n

=
1
ε
(σ̇ n+1/2

− σ̇ n−1/2), σ̇ n−1/2
=

1
ε
(σ n
− σ n−1), (79)

where ε is the time increment and the node label (i, j) has been suppressed. Substitution into (76)
furnishes the explicit, decoupled system

mi, j σ̇ i, j,n+1/2
= mi, j σ̇ i, j,n−1/2

+ ε6i, j,n,

σ i, j,n+1
= σ i, j,n

+ εσ̇ i, j,n+1/2,
(80)

which is used to advance the solution in time node-by-node.
The starting procedure is derived from the quiescent initial conditions r = u and ṙ = 0 for t ≤ 0, and

the initial values of the director and plastic deformation fields are d = k and K = I , corresponding to
χ = x and H = F = I ; the constitutive equations then require that the initial value of the Biot stress
vanish. The boundary condition is r(u, t)= u on ∂�, for all t .

Stability of the scheme is ensured by using sufficiently small time steps selected on the basis of
successive trials based on a sequence of values of ε.

Our procedure presumes a degree of regularity for the solution that is not consistent with the existence
of shocks. Accordingly, we do not append associated discontinuity relations. The inclusion of such
conditions would be appropriate in a numerical scheme based on the method of characteristics, such as
described in [Cristescu 1967] in the setting of axisymmetry involving a single spatial dimension (the



TRANSIENT ELASTIC-VISCOPLASTIC DYNAMICS OF THIN SHEETS 569

radius). In contrast, the present procedure is a direct numerical simulation in the spirit of conventional
structural dynamics. A similar approach was used to describe the potentially nonhyperbolic dynamics
of elastic strings in [Yokota et al. 2001], where, with sufficient mesh refinement, it was shown to furnish
close approximations to solutions containing genuine shocks obtained by characteristic-based methods
[Beatty and Haddow 1985]. Nevertheless this issue furnishes a logical point of departure for further
study, and it is in this sense that our simulations may be regarded as preliminary numerical experiments.

4.2. Updating the director, the stress and the plastic deformation. Given the nodal deformation r(u, tn),
we use (70) to compute ∇r(u, tn) at zone-centered points. The zone-centered values of K (u, tn) are
combined with (1) to express the elastic deformation H(u, tn) in terms of d(u, tn), which remains to be
determined. To this end we form the elastic Cauchy–Green deformation CH and compute the associated
invariants H1 = tr CH , H2 =

1
2 [I

2
1 − tr(CH )

2
] and H3 = det CH ; these are used to obtain the elastic

principal stretches [Rivlin 2004]

λk =
1
√

3

{
H1+ 2A cos

[ 1
3(φ− 2πk)

]}1/2
; k = 1, 2, 3, (81)

where
A = (H 2

1 − 3H2)
1/2 and

φ = cos−1
[ 1

2A3 (2H 3
1 − 9H1 H2+ 27H3)

]
,

(82)

and then the invariants
h1 = λ1+ λ2+ λ3,

h2 = λ1λ2+ λ1λ3+ λ2λ3,

h3 = λ1λ2λ3

(83)

of the elastic right stretch tensor UH .

With these in hand we form the strain-energy function w(h1, h2, h3) from (36) and (37). The resulting
expression is identified with the function R(d) of Section 3. We have shown there that a solution to the
plane-stress condition (55)2 (or (64)) furnishes the unique minimizer of this function. Being strictly
convex, the latter meets the hypotheses of convergence theorems for iterative gradient minimization
algorithms such as the Cauchy–Goldstein method of steepest descents [Saaty and Bram 1964; Goldstein
1962].

With d(u, tn) thus determined, we use the Cayley–Hamilton formula [Steigmann 2002]

hUH = h1h3 I + (h2
1− h2)CH −C2

H (84)

to compute the elastic stretch directly, where

h = h1h2− h3 = (λ1+ λ2)(λ1+ λ3)(λ2+ λ3), (85)

which is strictly positive. This is used to compute the zone-centered value of σ nUn
H via (38) and (41).

We then check the sign of the function Fn
= F(tn) in (42) and decide accordingly whether or not to

update the plastic deformation. If Fn
≤ 0 we set K n+1

= K n at zone-centered points; otherwise we
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evaluate K n+1
= K n

+ ε K̇ n , where (cf. (42) with G K = I)

K̇ n
=−(Fn/ν)K n Dev(σ nUn

H ). (86)

4.3. Examples. We conclude by presenting the results of some simulations. Our purpose is to demon-
strate that the present model is amenable to computation, and that it furnishes realistic predictions. We
make no effort to simulate actual experimental data or to benchmark our predictions against alternative
simulations. Indeed, we have not found any alternative simulations in the literature.

In the examples considered the membrane is subjected to a suddenly applied spatially uniform pres-
sure that decays exponentially in time. A spanwise dimension, L , of the reference plane � is used
to define dimensionless initial and final position vectors u and r . Nondimensional time is defined by
t̄ =
√
λ/ρr (t/L), where t is physical time, λ is a Lamé modulus (cf. (41)) and ρr is the referential

mass density occurring in (55)1. All stress measures are nondimensionalized by λ, and the dimension-
less shear modulus is µ̄ = µ/λ. We also use the dimensionless yield stress K = K/λ and viscosity
ν̄ =
√
ρr/λ(νL/λ) in the flow rule. The term P in (55)1, representing the actual pressure divided by

initial membrane thickness h, is given by P(t)= (λ/L)P(t̄), where P is a dimensionless function; the
actual pressure is p(t)= λ(h/L)P(t̄), to leading order in h/L . Here, for illustrative purposes, we impose
P(t̄)= P0 exp(−t̄), where P0 is a constant.

Figures 2 and 3 depict the response of an initially square membrane. Here L is taken to be the length of
a side, and L/h= 100. The selected parameter values are K = 4.93×10−4, µ̄= 0.470 and ν̄= 5.00×105,
and the pressure intensity is P0 = 7.04. This is sufficient to induce substantial deformation, shown in
Figure 2 for an interval spanning peak positive and negative vertical displacements, corresponding to
roughly one half of the initial period of oscillation. The pressure induces a wave emanating from the
boundaries of the domain and converging toward the center, followed by an interaction phase and a
subsequent reversal of the direction of motion over most of the domain. The transient elastic strain is
seen to be quite substantial (left image in Figure 3) and well beyond the range of validity of the classical
linear relations typically assumed between stress and elastic strain. Also shown (right image in Figure 3)
is the history of the norm of the cross product d × n; this is nonzero whenever the Kirchhoff–Love
hypothesis fails. The substantial plastic distortion generated in this example is such as to lead to a slight
deviation from Kirchhoff–Love kinematics.

We emphasize the fact that the parameters of the model may require adjustment to enhance the simula-
tions from the quantitative standpoint. Here we have simply chosen the parameter values for the purpose
of illustrating the general nature of the transient response predicted by the model.

In the second example a circular disc of radius L is subjected to the same pressure distribution, but
of a smaller intensity P0 = 2.82. All other parameters are as in the first example, and again L/h = 100.
Snapshots of the motion and the histories of the norms of the elastic strain and d× n are displayed in
Figures 4 and 5. The elastic strain is again seen to be substantial, but the deviation from Kirchhoff–Love
kinematics is reduced, due to the diminished plastic distortion attending the smaller pressure pulse.
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Figure 2. Configurations of a square membrane subjected to blast pressure at a sequence
of times.
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Figure 4. Configurations of a circular membrane subjected to blast pressure at a sequence
of times.
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