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FLEXURAL BEHAVIOR OF FUNCTIONALLY GRADED SLENDER BEAMS
WITH COMPLEX CROSS-SECTION

GHOLAMALI SHARIFISHOURABI, AMRAN AYOB, SCOTT GOHERY,
MOHD YAZID BIN YAHYA, SHOKROLLAH SHARIFI AND ZORA VRCELJ

Deflection and stress analyses of functionally graded beams with complex cross-section and general
material variation, under transverse loading, were carried out. The elastic-fundamental solution is used
to derive equations satisfied by the normal stresses in arbitrary cross-sections of the beam, assuming that
the plane sections remain plane and normal to the beam axis. The technique was verified by existing
analytical and finite element models. Numerical experiments were then performed where the material
properties vary through thickness or width of the beams according to power-law and exponential gra-
dations. It was found that the quality of material gradation affects the deflection, stresses and neutral
axis position significantly. It is concluded that the technique is useful for the elastic behavior analysis of
FGBs with complex cross-sections and various material gradations.

1. Introduction

Over the past decades, composite materials with asymmetric material variation, such as asymmetric smart
composites [Sharifishourabi et al. 2014a] and functionally graded materials (FGMs) have received the
attention of both theoretical and experimental researchers. FGM is a class of material similar to an ad-
vanced composite that has a heterogeneous structure in which the constituent varies smoothly, gradually,
and continuously from one surface to another. This gradual variation results also in a gradual change in
the mechanical and thermal properties [Suresh and Mortensen 1998]. FGMs have the best properties of
both ceramics, such as low density, high strength, high stiffness, and temperature resistance, and of metals,
such as toughness, electrical conductivity, and machinability. Due to these outstanding properties, FGMs
have attracted much attention in industries in many engineering fields such as aerospace, automotive, and
the biomedical fields [Miyamoto et al. 1999]. Over the last decades, along with rapid growth in the use
of FGMs, different methods have also been developed for analyzing their mechanical behavior [Menaa
et al. 2012; Shahba et al. 2013; Ke et al. 2009].

Beams, as the most common engineering structures, are traditionally used as an example. The first ex-
act elasticity solution for a functionally graded beam (FGB) subjected to transverse loads was developed
by Sankar [2001]. He assumed that the Poisson’s ratio is constant and the elastic modulus of the FGB
varies exponentially across the thickness. He also developed the simple Euler–Bernoulli beam theory
for FGBs under transverse loads, which is only applicable for long and slender beams with depthwise
and exponential variation of materials. Then, Sankar and Tzeng [2002] obtained an exact elasticity
solution by solving the thermoelastic governing equations for FGBs subjected to thermal loads. They
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showed that when the variation of the material properties was opposite to the distribution of temperature,
the residual stresses due to the thermal loading were reduced. Chakraborty et al. [2003], based on the
theory of first-order shear deformation, developed a new beam finite element for analyzing the thermal
and mechanical behavior of FGBs. They solved static, wave propagation, and free vibration problems
considering both exponential and power-law variations of the mechanical and thermal properties. An
elastic solution for sandwich beams having an FGM core with exponential variation was obtained by
Venkataraman and Sankar [2003]. They employed the Euler–Bernoulli beam theory for modeling the
face sheets, and plane elasticity equations for analyzing the core. Numerical solutions based on the
meshless local Petrov–Galerkin method (MLPG) for two-dimensional FG elastic solids subjected to
thermal and mechanical loads were obtained by Ching and Yen [2005]. They also obtained transient
thermoelastic deformations for two-dimensional FGBs subjected to a nonuniform heat supply [Ching
and Yen 2006]. Effect of material gradation on thermomechanical stresses in functionally graded beams
was studied by Sharifishourabi et al. [2012]. They also developed a tensile testing machine for FG spec-
imens [Sharifishourabi et al. 2014b]. Lü et al. [2006], by employing the state space method, presented a
two-dimensional solution for the thermoelastic analysis of thick FGBs. Ding et al. [2007] presented an
elasticity solution for plane anisotropic FGBs. They assumed that the material variation was according
to an arbitrary function of the thickness direction. Kadoli et al. [2008] studied the static stresses and
deflection of FGBs under ambient temperature using higher-order shear deformation beam theory. Free
vibration analysis of FGBs was also studied in depth, and several solutions have been presented [Aydogdu
and Taskin 2007; Sina et al. 2009; Wattanasakulpong et al. 2012]. Ying et al. [2008] studied an FGB with
exponential material variation resting on an elastic foundation. They presented exact solutions based on
the two-dimensional theory of elasticity for the free vibration and bending of orthotropic FGBs. Zhong
and Yu [2007] developed a two-dimensional analytical solution by using the Airy stress function method
for a cantilever FGB with arbitrary variations of material under various loads. Li [2008] introduced a
new unified method for the static and dynamic analysis of Euler–Bernoulli and Timoshenko FGBs with
shear deformation and rotary inertia. An analytical approach for the free vibration response of FGBs
in the case of temperature dependence with arbitrary boundary conditions has been introduced by Mahi
et al. [2010]. They assumed that the material properties are temperature-dependent and vary according
to the exponential or power-law forms along the thickness of the beam. Hamed [2012] and Piovan et al.
[2012] studied the buckling response of FGBs. Numerical and analytical approaches were presented
for deflections of FGBs subjected to inclined and transverse loading [Rahimi and Davoudinik 2010;
Farhatnia et al. 2009].

A free vibration analysis of functionally graded spatial curved beams on the basis of first-order shear
deformation theory was carried out by Yousefi and Rastgoo [2011]. The nonlinear forced vibration
analysis of clamped FGBs was also studied by Shooshtari and Rafiee [2011]. Yaghoobi and Feridoon
[2010] investigated the effect of neutral surface location on the deflection of FGBs subjected to a uniform
distributed loading. Thai and Vo [2012] presented analytical solutions for the bending and free vibration
of FGBs using Hamilton’s principle and other higher-order shear deformation beam theories. An experi-
mental work to validate a model based on third-order zigzag theory for the bending and free vibration re-
sponse of layered FGBs was carried out by Kapuria et al. [2008]. They used the modified rule of mixtures
to obtain the effective Young’s modulus. Apetre et al. [2008] investigated several existing theories for
sandwich beams to determine their appropriateness for sandwich plates with a functionally graded core.
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Figure 1. Geometry and coordinates of an FGB.

They found good agreement between the results of the finite element method, the higher-order theory, and
the Fourier–Galerkin method. The bending of cantilever FGBs subjected to an end force using small and
large deformation theories was investigated by Kang and Li [2009]. They investigated the influence of a
nonlinearity parameter and Young’s modulus on the rotations and deflections. A free and forced vibration
analysis for FGBs under a concentrated moving harmonic loading by employing Lagrange’s equations
and the Euler–Bernoulli beam theory was carried out by Şimşek and Kocatürk [2009]. A free vibration
and stability analysis of tapered FGBs with axial gradation of material, based on the Euler–Bernoulli
beam theory, was studied by Shahba and Rajasekaran [2012]. A mechanical behavior analysis of FGBs
employing the theory of directed curves was carried out by Bîrsan et al. [2012]. They presented a general
analytical solution using the effective stiffness properties for beams with arbitrary cross-sectional shape.

Although several analytical solutions are available, the majority of these solutions involve cumbersome
calculations to apply them to complex geometries. On the other hand, previous studies only focused on
FGBs with material gradation along the thickness direction, while there are many applications of FGBs in
which the material properties vary through the width of the beam. This study attempts to use a technique
simpler than the currently available ones. For simplicity, the method is compared with applicable models
for static analysis of FGBs with complex cross-section and general material gradation along either the
thickness or width direction of the beam.

2. Problem formulation and solution

Figure 1 shows the geometry and coordinate system of a FGB. The length, width, and thickness of the
beam are L , b, and h, respectively. The coordinate system originates at the corner of the cross section
of the beam. The material properties vary continuously and gradually across the thickness or width
according to arbitrary functions. Two examples of possible material gradation for FGBs are shown in
Figure 2. Since the power-law and exponential law are the two most common models, here these material
variations will also be considered. The power-law modeling which is introduced by Wakashima et al.

z

Metal rich plane

Metal rich plane
Ceramic rich plane

Ceramic rich plane Ceramic rich plane

y

z

y

Figure 2. Two examples of possible material gradations for FGBs.
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[1990] is given by

p(z)= (pm − pc)
( z

h
+

1
2

)n
+ pc. (1)

The exponential law, which is more favorable, is given by

p(z)= pm exp(−δ(1− 2z/h)), δ = 1
2 log pm

pc
. (2)

Since this study attempts to use a simple and applied technique for FGBs with complicated geometry
and material variation, these basic assumptions were made:

(1) The classical Euler–Bernoulli beam theory was applied.

(2) The Poisson’s ratio was held constant.

(3) The normal stresses σzz were assumed to be negligible.

The classical strain-stress relations for a homogenous beam are given by

σx = Eεx , (3)

τxz = Gγxz. (4)

The normal strain εx , based on the assumptions, takes the form

εx = εx0 + zκ, (5)

where εx0 , κ , and z are the middle plane strain, the curvature, and the distance from the neutral axis of the
beam. The axial force (N ), bending moment (M), and shear force (V ) resultants, based on the classical
beam theory, are

N =
∫ h

0
σx dA, (6)

M =
∫ h

0
zσx dA, (7)

V =
∫ h

0
τxz dA. (8)

Since no assumption was made regarding the material of the beam in deriving equations (5)–(8), they are
still valid for FGBs. While (8) is typically neglected due to its insignificant value, (3) and (4) for FGBs
become the following equations, given by Sankar [2001]:

σx = E(z)εx , (9)

τxz = G(z)γxz. (10)

The axial force (N ) and bending moment (M) resultants for a discretized beam cross-section can be
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derived, based on the classical beam theory, as

N =
m∑

i=1

∫ h
m i

h
m (i−1)

σi dA, (11)

M =
m∑

i=1

∫ h
m i

h
m (i−1)

zσi dA. (12)

In these equations, m indicates the total numbers of sublayers (see Figure 3). By substituting (9) in (11)
and (12), the resultant force and moment expressions under bending are

N =
m∑

i=1

∫ h
m i

h
m (i−1)

Ei biεx dz = 0, (13)

M =
m∑

i=1

∫ h
m i

h
m (i−1)

zEi biεx dz, (14)

where Ei and bi denote the values of the Young’s modulus and the width in the i-th sublayer. By
substituting (5) in (13) and (14), we get the system of equations

m∑
i=1

∫ h
m i

h
m (i−1)

Ei bi (εx0 + zκ) dz = 0,

m∑
i=1

∫ h
m i

h
m (i−1)

zEi bi (εx0 + zκ) dz = M.

(15)

This system of equations can be written in the short form{
Ãεx0 + Q̃κ = 0,

Q̃εx0 + Ĩκ = M.
(16)

Using definitions (17)–(19), the values of εx0 and κ can be obtained as

Ĩ =
m∑

i=1

∫ h
m i

h
m (i−1)

z2 Ei bi dz, (17)

Ã =
m∑

i=1

∫ h
m i

h
m (i−1)

Ei bi dz, (18)

Q̃ =
m∑

i=1

∫ h
m i

h
m (i−1)

zEi bi dz, (19)

εx0 =
−Q̃M

(−Q̃2+ Ã Ĩ )
, (20)

κ =
ÃM

(−Q̃2+ Ã Ĩ )
. (21)



6 G. SHARIFISHOURABI, A. AYOB, S. GOHERY, M. Y. YAHYA, S. SHARIFI AND Z. VRCELJ

dAdA

b b

h h

b(z) b(z)

Widening Narrowing

h
m

Figure 3. Schematic of discretized graded beams.

Furthermore, one can see that the position of the neutral axis is located at

a =
Q̃

Ã
. (22)

Then, substituting (20), (21) and (5) into (9), the depthwise axial stresses in a discretized graded beam
subjected to pure bending can be obtained as

σx(x, z)= E(z)(εx0 + zκ)=
M(x)(z Ã− Q̃)

−Q̃2+ Ã Ĩ
E(z). (23)

Shear stress in the FGB can be easily obtained from the famous differential equation of equilibrium as

τxz(x, z)=
∫ z

0

∂σx(x, z)
∂x

dz. (24)

Substituting (3) and (5) into (7) leads to

κ =
M(x)

D
=

d2w

dx2 . (25)

The bending rigidity D can be obtained as

D = Eh( Ĩ − Ãz̃2), (26)

where Eh is the Young’s modulus of the surface with higher modulus. By integrating both sides of (25)
with respect to x and applying the loads and boundary conditions, the deflections along the length of the
FGB (w(x)) will be obtained. The boundary conditions for a simply supported beam are

w(0)= 0, w(L)= 0. (27)

The boundary conditions for a cantilever beam are

w(0)= 0, dw
dx
(0)= 0. (28)

3. Results and discussion

After validating the technique, numerical solutions are applied using the above equations for static anal-
ysis of FGBs with complex cross-section and material variation.
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Figure 4. Left: distribution of depthwise normalized axial stresses σxx for the simply
supported FGB under transverse distributed loads. Right: distribution of depthwise nor-
malized shear stresses τxz for the simply supported FGB under transverse distributed loads.

3.1. Validation. To evaluate the accuracy of this method, the same beam problem solved analytically
by Sankar [2001] was studied again using the presented technique (m = 100). Figure 4 shows the depth-
wise normalized axial and transverse shear stress distributions for a simply supported FGB subjected to
transverse distributed loads. The Young’s modulus of the beam was assumed to vary exponentially along
the thickness from E0 at the bottom to Eh at the topmost surface. The axial stresses were normalized
by dividing by the corresponding stress on the top surface and the shear stresses were normalized with
respect to the average shear stress at the same cross-section. Since the present solution and that of Sankar
[2001] were based on the same assumptions, the results were obviously the same.

Furthermore, to find out the accuracy range of this method, the same cantilever FGB studied by
Chakraborty et al. [2003] was solved again. An FGB with unit width and length of L = 0.5 m is subjected
to a unit transverse load at the tip. Steel and alumina are considered as the topmost and bottom material of
the FGB. Figure 5 shows the depthwise axial and shear stress distributions, using the presented technique,
for an FGB with exponential and power-law gradation through the thickness. By comparing the results to
the finite element solution based on first-order shear deformation theory developed by Chakraborty et al.
[2003], it is found that for long, slender FGBs, the axial stress distributions were in excellent agreement.
But since these two kinds of solutions were based on different theories, the shear stress distributions
were obviously different.

The deflection of a cantilever FGB under a unit concentrated force at the tip was also studied using the
present method. The results were compared with those available in the literature, as shown in Tables 1
and 2. Table 1 compares the maximum deflection obtained for various L/h to the finite element method
(FEM) based on higher-order shear deformation theory (HSDT) [Kadoli et al. 2008]. From Table 1 it
is found that the method for FGBs with bigger values of L/h is more valid, while for short beams it is
not applicable. Table 2 gives the one-dimensional maximum deflection for different material gradations
according to power-law modeling for n = 0.5, 1, and 2. Despite some differences between the present
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Figure 5. Left: depthwise axial stress distributions for the cantilever FGB subjected
to unit transverse load at the tip. Right: depthwise shear stress distributions for the
cantilever FGB subjected to unit transverse load at the tip.

method and the FEM [Kadoli et al. 2008], excellent agreement was found with the results from the
analytical solution based on the Euler–Bernoulli beam theory discussed in [Yaghoobi and Feridoon 2010].

3.2. Numerical experiments. Numerical solutions to determine the deflections of FGBs composed of
steel (E = 210 GPa) and alumina (E = 390 GPa) have been obtained. The distribution of the stresses

L h FEM-HSDT Present Method % Error

160 12 32.822 32.65 0.52
80 12 4.1567 4.081 1.82
12 12 0.239307 0.01377 94.24

Table 1. Comparison of maximum deflection obtained for various L/h. FEM-HSDT
results from [Kadoli et al. 2008].

n FEM-HSDT Beam theory Present method

Ceramic 2.436 2.576 2.576
0.5 2.785 2.960 2.962
1.0 2.942 3.176 3.179
2 3.067 3.323 3.326

Metal 3.605 4 4

Table 2. Nondimensional maximum deflections obtained for different material grada-
tions. FEM-HSDT results from [Kadoli et al. 2008]; beam theory results from [Yaghoobi
and Feridoon 2010].



FLEXURAL BEHAVIOR OF FUNCTIONALLY GRADED SLENDER BEAMS WITH COMPLEX CROSS-SECTION 9

y

z

0.05

0.3
Steel rich

Alumina rich

0.15

b

Figure 6. Cross-section of the FGB and quality of material gradation along the thickness.

when the Young’s modulus of the beam varies according to the power-law or exponential law through
the thickness or width has also been obtained.

3.2.1. Depthwise varying FGB under a unit transverse distributed load. Using the present technique, a
static analysis of an alumina-steel FGB with length of L = 5 m under a unit transverse distributed load
will now be carried out. Both exponential and power-law (n = 1, 2, 3) gradations of the material along
the thickness will be studied. The geometry of the cross-section and the quality of the material gradation
are shown in Figure 6.

The longitudinal deflection distributions for the cantilever and simply supported FGBs are shown in
Figure 7. As may be seen, an increasing value of n results in an increased value of the deflection. This
is due to the fact that a combination of a beam with a bigger value of n is closer to a combination of a
homogeneous steel beam.

Figure 8 shows the depthwise axial stress distributions for a cantilever FGB at the fixed end. As may
be seen, the variation of the material affects the neutral axis position, changing it from a centroid axis at
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Figure 7. Left: deflection distributions of the cantilever FGB along the length axis.
Right: deflection distributions of the simply supported FGB along the length axis.
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Figure 8. Depthwise axial stress distributions of the cantilever FG beam at the fixed end.

z = 0.0531 for the homogenous steel beam to z = 0.0464 and z = 0.0468 for exponential and power-law
(n = 3) variations.

3.2.2. Widthwise varying FGB under unit transverse distributed loads. The distributions of the axial
stresses and deflections are also obtained for an FGB with widthwise material variation, subjected to
a unit transverse distributed load. The beam has length of L = 5 m, width of b = 0.1 m, and height
of h = 0.05 m. Two kinds of variations of materials according to a power-law modeling for n = 2 are
considered. Schematic views of the widthwise material gradation are shown in Figure 9. The widthwise
distributions of Young’s modulus for ceramic-metal-ceramic (CMC) and metal-ceramic-metal (MCM)
gradations are also shown in Figures 10 and 11.

For the discretized FGBs with material gradation along the width, the axial force and bending moment
resultants can be written as

N =
m∑

i=1

∫ h
2

−h
2

σi dA, (29)

M =
m∑

i=1

∫ h
2

−h
2

zσi dA. (30)

zSteel rich Steel rich

Steel richAlumina rich

Alumina rich Alumina rich

y

z

y

Figure 9. Schematic views for two kind of widthwise gradation of material.
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Figure 10. Widthwise Young’s modulus distribution for ceramic-metal-ceramic gradation.

Therefore, the definitions (31)–(32) take the forms

Ĩ =
m∑

i=1

∫ h
2

−h
2

z2 Ei bi dz, (31)

Ã =
m∑

i=1

∫ h
2

−h
2

Ei bi dz, (32)

Q̃ =
m∑

i=1

∫ h
2

−h
2

zEi bi dz. (33)

Using definitions (31)–(33) and equations (20), (21) and (5) the distribution of axial stress at the cross-
section of the FGB can be obtained as

σx(x, y, z)= E(y)(εx0 + zκ)=
M(x)(z Ã− Q̃)

−Q̃2+ Ã Ĩ
E(y). (34)

Figure 11. Widthwise Young’s modulus distribution for metal-ceramic-metal gradation.



12 G. SHARIFISHOURABI, A. AYOB, S. GOHERY, M. Y. YAHYA, S. SHARIFI AND Z. VRCELJ

Figure 12. Depthwise axial stress distribution for the FGB with ceramic-metal-ceramic gradation.

The depthwise axial stress distribution at the fixed end of the cantilever FGB for the CMC and MCM
gradations are shown in Figures 12 and 13. The figures reveal that the maximum stress occurs at the
regions with the biggest values of Young’s modulus and the maximum distance from the neutral axis.

Figures 14 and 15 show the distributions of the longitudinal deflection for a cantilever and a simply
supported FGB with CMC and MCM gradations. From the figures it can be observed that the deflections
for the MCM are more than those for the CMC. This is due to the fact that Young’s modulus of alumina
is higher than that of steel. Consequently, the bending rigidity of the beam with the CMC gradation is
higher than that of MCM.

4. Conclusions

Stress and deflection analyses of functionally graded beams with complex cross-section and different
material variations, subjected to transverse loads, were carried out using a simplified technique. The
accuracy of the technique was evaluated. Numerical investigations were then performed. From the
results it can be concluded that:

Figure 13. Depthwise axial stress distribution for the FGB with metal-ceramic-metal gradation.
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Figure 14. Longitudinal deflection distributions for a cantilever FGB. Left: ceramic-
metal-ceramic gradation. Right: metal-ceramic-metal gradation.

(1) Quality of material gradation affects the deflection, stresses and neutral axis position significantly.

(2) The maximum axial stress occurs at the regions with the biggest values of Young’s modulus and the
maximum distance from the neutral axis (for ceramic-metal-ceramic gradation at vertices, and for
metal-ceramic-metal at midpoints of top and bottom edges).

(3) The bending rigidity of FGBs with the ceramic-metal-ceramic gradation is higher than metal-ceramic-
metal.

(4) The technique is useful for the static analysis of long, slender FGBs with complex cross-sections
and various material gradations.
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Figure 15. Longitudinal deflection distributions for a simply supported FGB. Left:
ceramic-metal-ceramic gradation. Right: metal-ceramic-metal gradation.
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RESPONSE OF SUBMERGED METALLIC SANDWICH STRUCTURES
TO UNDERWATER IMPULSIVE LOADS

SIDDHARTH AVACHAT AND MIN ZHOU

The response of planar sandwich structures with metallic square-honeycomb cores under high-intensity
water-based impulsive loading is analyzed through fully dynamic finite element simulations. The anal-
yses concern overall structural response, damage and energy dissipation. The steel sandwich plates
considered have different contact conditions with water — an air-backed configuration which simulates
contact with water on only the load side and a water-backed configuration which simulates submerged
conditions. The 3D finite element simulations account for the effects of fluid-structure interactions and
the ductile failure of the sandwich structure material. Results show that the primary deformation mode is
core-wall buckling in light-core structures and shear-rupture in face-sheets and core-webs in heavy-core
structures. On a unit weight basis, sandwich structures with heavy cores perform poorly while those with
light cores exhibit superior blast-resistance in terms of back-face deflection and total energy absorbed.
Significant differences between the responses of air-backed and water-backed structures are observed.
An analysis is carried out to develop structure-loading-performance relations to facilitate the design of
structures tailored for specific loading conditions.

1. Introduction

Marine structures are designed to operate in hostile environments consisting of corrosive seawater, hot
and cold temperature extremes, transient dynamic loads from hull-slamming and complex three-dimen-
sional hydrostatic loads. Additionally, naval structures are required to withstand impact and blast loads
resulting from surface and underwater explosions. The dynamic response of structures under such
conditions is complicated because of many factors, including rate effects, complex failure modes, the
superposition of dynamic and static pressures, load triaxiality and varying impulsive load intensities.

In recent years, sandwich structures have become a central structural component of many naval vessels
which require blast protection. This emerging trend necessitates research that accounts for constituent
material behavior, structural hierarchy, topological characteristics and complex loading involving fluid-
structure interactions (FSI). Experiments focusing on different core topologies and specimen sizes have
been carried out by Espinosa et al. [2006] and McShane et al. [2008] using gas gun-based impact loading
to generate underwater pressure impulses, and by Dharmasena et al. [2008] using explosive sheets to
generate planar pressure impulses. Constitutive relations have been developed for sandwich structures,
accounting for the crush behavior of cores and plasticity in constituents [Deshpande and Fleck 2005; Xue
and Hutchinson 2004b]. It has been demonstrated that finite element analyses are capable of accurately
quantifying the dynamic response of metallic sandwich structures and tracking deformation mechanisms

Keywords: steel sandwich structures, fluid-structure interactions, numerical simulation, energy dissipation, damage.
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such as face-stretching, core-buckling and rupture [Côté et al. 2009; Dharmasena et al. 2010; Hutchin-
son and Xue 2005; Liang et al. 2005; Radford et al. 2006; McShane et al. 2006; Rathbun et al. 2006;
Spuskanyuk and McMeeking 2007; Vaziri and Xue 2007; Vaziri et al. 2007; Wadley et al. 2013; Wei
et al. 2008; Xue and Hutchinson 2004a; Zok et al. 2005]. The major findings from these studies include:

(1) Metallic sandwich structures outperform monolithic plates when deformation is dominated by bend-
ing. In the stretching regime, monolithic plates show higher plastic dissipation than sandwich plates.

(2) The overall deflection experienced by sandwich plates is significantly less than that experienced by
monolithic plates of equivalent mass. The forces and impulses transmitted by sandwich structures
are also lower than those by monolithic structures.

(3) Core design greatly influences the dynamic response of sandwich structures. The dynamic strength
of the core is an important factor in overall structural response. Stiff cores perform poorly while
light cores lead to more efficient blast mitigation.

(4) Homogenized continuum core models cannot accurately capture the various damage modes asso-
ciated with prismatic sandwich structures. Rupture and core buckling can only be evaluated using
detailed finite element simulations with explicit account of structures.

(5) FSI effects need to be considered to accurately characterize impulsive loads and can be exploited
to improve blast mitigation in marine structures. Sandwich structures subjected to exponentially
decaying pressure pulses outperform those subjected to instantaneous loads.

While these findings provide significant insight, the relationship between performance in terms of
failure resistance and energy dissipation and design parameters of sandwich structures has not been
well quantified. Structural design of ships and submersibles is a complex undertaking, because the
deformations experienced by naval vessels are a result of the combined effects of multiple loads acting
simultaneously. Geometric and material nonlinearities create complicated loading conditions and often
cause unpredictable failure through buckling and shear cracking. The effective design of naval structures
requires an understanding of the failure characteristics of advanced materials and structures, and the
capability to predict and determine their performance characteristics.

The objective of this analysis is to identify deformation mechanisms leading to ultimate failure and
develop quantitative material-property-performance relations to aid the development of blast-resistant
metallic sandwich structures. Simulations are carried out for a range of impulsive load intensities and
two distinct loading configurations: (1) an air-backed configuration, with the structure in contact with
water on the impulse side, and (2) a water-backed configuration, with the structure in contact with water
on the impulse side as well as the backside. The structure-performance relations presented here focus on
optimal core, front-face and back-face masses as fractions of total structural mass. The analysis yields
the optimal values of these attributes, which in turn determine the core mass fraction MC, the front face
mass fraction MFF, and back face mass fraction MBF. The results are presented in normalized forms
to gain insight into underlying trends that can be used to design more blast-resistant structures. The
constitutive and damage behavior of steel is characterized by the Johnson–Cook model [1985], and the
dynamic response of water is characterized by the Mie–Grüneisen equation of state. The insight gained
here provides guidelines for the design of structures for which response to water-based impulsive loading
is an important consideration. In order to facilitate comparison of dynamic response, all structures are
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Figure 1. Schematic illustration of a sandwich beam with square honeycomb core.

designed to have the same total areal mass of ∼ 100 kg/m2. This necessitates a balance in core, front
face and back face masses to maintain a constant areal mass. The structures are subjected to five loading
intensities, each simulating different standoff distances of an underwater explosive source from the ship
hull. The design space consists of three major aspects: (1) performance parameters (deflection, energy
dissipation and impulse transmission), (2) structural attributes (core mass, front-face mass and back-face
mass), and (3) loading intensity. These parameters and their effects are intimately interrelated. The
structural composition of the sandwich structure is systematically varied over a wide range of structural
attributes with simultaneous variations in loading rates to delineate the effects of each parameter on
dynamic performance and blast resistance. This approach enables the contributions of different defor-
mation mechanisms (front-face stretching and rupture, core-wall buckling, core crushing and back-face
stretching) to be tracked and quantified. Additionally, this approach captures the interaction and coupling
of the different design parameters at the structural level. The analyses also focus on the correlation
between mass fractions of each structural component (front face, core and back face), deflection, energy
dissipation and impulse transmission. The results of parametric studies are presented in a format wherein
the response variables are functions of the loading (impulse magnitude) and structural attributes (mass
fractions of each structural component).

2. Framework of analysis

2.1. Structure specifications. The square honeycomb sandwich plates considered are made of AISI 304
steel. Figure 1 shows the sandwich structure consisting of a core with periodic square-honeycomb unit-
cells and face sheets. The core-height HC is 100 mm and the length L of the beam is 1000 mm. The core-
height to beam-length ratio HC/L is 0.1. For the sandwich structure, face A is fixed (zero displacement
and rotations in all directions), faces B and D have boundary conditions that forbid displacement in the
x-direction, and face C has symmetry boundary conditions with the plane of symmetry normal to the
z-direction. The boundary conditions and specified dimensions are sufficient to ensure beam bending
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Figure 2. Sandwich structures with edge-supported boundaries and air-backed and
water-backed loading configurations.

behavior [Wicks and Hutchinson 2001; Zok et al. 2003]. Figure 2 shows the air-backed and water-backed
loading configurations with the direction of impulsive loading. The width W of the sandwich beam is
100 mm. The areal mass of the sandwich structure is calculated as

MTotal = MFF+MBF+MC =
ρ

A
(TFF · A ·W + TBF · A ·W + NCW · TCW · HC · L), (1)

where MFF is the areal mass of the front face, MBF is the areal mass of the back face, MC is the areal
mass of the core, ρSteel is the density of steel, NCW is the number of unit cells in the square honeycomb,
HC is the height of the core, TCW is the core wall thickness, A is the area under loading, W is the width
of the structure, and L is the length of the structure. The total areal mass of the plate, MTotal, is kept
constant at 100 kg/m2. The normalized core mass is

MC =
MC

MTotal
, (2)

the normalized front face mass is

MFF =
MFF

MTotal
, (3)

and the normalized back face mass is

MBF =
MBF

MTotal
. (4)
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Specimen Front face Front face Core wall Core areal Back face Back face Areal
number thickness mass thickness mass thickness mass mass

TFF MFF TCW MC TBF MBF MTotal

(mm) (kg/m2) (mm) (kg/m2) (mm) (kg/m2) (kg/m2)

1 1.0 8 3.62 84 1.0 8 100
2 2.0 16 2.93 68 2.0 16 100
3 3.0 24 2.24 52 3.0 24 100
4 4.0 32 1.55 36 4.0 32 100
5 5.0 40 0.86 20 5.0 40 100
6 5.6 45 0.43 10 5.6 45 100

Table 1. Structural configurations analyzed for the optimization of core mass.

Specimen Front face Front face Core wall Core areal Back face Back face Areal
number thickness mass thickness mass thickness mass mass

TFF MFF TCW MC TBF MBF MTotal

(mm) (kg/m2) (mm) (kg/m2) (mm) (kg/m2) (kg/m2)

1 0.5 4 0.86 20 9.5 76 100
2 1.0 8 0.86 20 9.0 72 100
3 2.0 16 0.86 20 8.0 64 100
4 3.0 24 0.86 20 7.0 56 100
5 4.0 32 0.86 20 6.0 48 100
6 5.0 40 0.86 20 5.0 40 100

Table 2. Structural configurations analyzed for the optimization of face mass.

To evaluate the role of core strength in the deformation, MC is varied from 0.10 to 0.84 by changing
the core wall thicknesses. To keep the total mass constant, the changes in core mass are compensated
by variations in the masses of the face sheets. Table 1 shows the structural parameters used in the core
mass optimization. Structures with 0.10< MC < 0.5 are called light core structures, while those with
0.5< MC < 1 are called heavy core structures. For the optimized core mass fraction, the front and back
face thicknesses are varied to evaluate the role of face strength in dynamic deformation. For this, the
normalized front face mass MFF is varied from 0.04 to 0.4 and the corresponding normalized back face
mass MBF is varied from 0.86 to 0.50. Table 2 shows the structural parameters used for the optimization
of front and back face masses. These structures are subjected to a range of impulsive loads in both
air-backed and water-backed conditions.

2.2. Impulsive loading. A number of approaches have been used to simulate the interactions of blast
waves with structures, both in air and underwater. One approach is to simulate the fluid with Eulerian
meshes and the solid structure with Lagrangian meshes. The behavior of the fluid in the Eulerian domain
can be modeled using an equation of state. This technique is termed the “arbitrary Lagrangian–Eulerian”
method and is often used to simulate the fluid structure interactions when large mesh distortions in the
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fluid domain are a major concern [Battley and Allen 2012; Latourte et al. 2012]. The second approach
is to prescribe an exponentially decaying pressure on one face of the structure [Dharmasena et al. 2011;
Wadley et al. 2013] to account for the effect of the fluid. The incident impulse can be calculated using
[ConWep 2005], a blast simulation code developed by the U.S. Army Corps of Engineers, which allows
the impulse to be determined for given explosive charge and standoff distance between the charge and the
target. A third approach is to simulate both the fluid and the structure with Lagrangian elements [Mori
et al. 2007]. An appropriate equation of state is chosen to describe the response of the fluid. In this study,
the third approach with a Lagrangian formulation for both the fluid and the structure is employed.

According to Taylor’s analysis [1963] of one-dimensional blast waves for a plane wave impinging on
a free-standing plate, the pressure in the fluid at a fixed position follows the relation

p(t)= p0 exp(−t/t0), (5)

where p0 is the peak pressure, t is time and t0 is the reference decay time. The area under this curve is
the impulse I imparted by the wave:

I =
∫ t0

0
p(t) dt. (6)

A nondimensionalized impulse I can be expressed as

I =
I

ρwcw
√

A
, (7)

where ρw is the density of water, cw is the speed of sound in water and A is the area of loading. Impulsive
waves due to underwater blasts have a characteristic decay time on the order of ∼ 10−4 seconds [Cole
1947; Kambouchev et al. 2007; Taylor 1963]. The numerical modeling simulates the effects of different
standoff distances of an explosive source. For an underwater explosion, the peak pressure (in MPa)
scales as

p0 = 52.4
(M1/3

r

)1.13
, (8)

where M is the mass of trinitrotoluene (TNT) in kilograms and r is the standoff distance in meters [Cole
1947; Kambouchev et al. 2007; Taylor 1963].

Figure 3 shows the pressure histories of impulsive loads considered in the finite element simulations.
The reference decay time (t0) is ∼ 250µs. The rise time of the pressure pulses is on the order of 25µs
and the time for the pressure to decrease to negligible levels is on the order of 800µs. The impulsive
loads considered in this set of calculations have peak pressures of 450, 350, 250, 150 and 50 MPa, which
approximately correspond to 100 kg of TNT exploding at distances of 0.7, 0.9, 1.15, 1.8 and 4.8 meters,
respectively. The impulsive load is planar, the sandwich structure is in the form of a beam and a single
repeating unit cell along the x-direction (shown in Figure 2) is analyzed.

A number of load conditions and service environments exist for sandwich structures in large naval
structures, such as ships or submarines. For example, ship hulls and superstructures are in touch with
water on the outer side (impulse side) and air or machinery on the inner side. On the other hand, keels,
rudders, propeller blades and underwater pipelines consist of water on both the impulse side and the
protected side. For the purpose of the current study, the former is called the air-backed configuration
(Figure 2(a)) and the latter is called the water-backed configuration (Figure 2(b)). In both air-backed
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Figure 3. Pressure histories of incident impulsive waves incident on sandwich structures.

and water-backed configurations, the length of the impulse-side water column is 1000 mm. In the water-
backed configuration, the length of the back-side water column is also 1000 mm. The length is sufficient
to ensure that reflected waves do not interfere with deformations in the structure prior to 1000µs.

3. Numerical calculations

The faces and core webs are meshed with 4-noded shell elements for finite strains to capture buckling
and rupture. In the initial steps, nodes are adjusted with strain-free displacements to remove any surface
interpenetration. A penalty contact algorithm is used at all interfaces to strongly discourage interpene-
tration by applying penalty forces. Specifically, an interface “spring” is inserted between the slave and
master nodes and penalty forces at each instance of interpenetration are calculated by multiplying the
spring stiffness with the penetration distance. The penalty contact framework seeks to resolve contact
penetrations that exist at the beginning of each time increment. This ensures that surface interpenetrations
are negligible and do not affect the deformation mechanisms in the different components of the sandwich
structure. The response of the structures is partly quantified using the deflection at the center of the back
face and the energy dissipated through plastic deformation and damage due to crack initiation and growth.
These quantities depend on structural parameters, loading configuration and impulse magnitude. Damage
in the forms of core crushing, core-web cracking and face-sheet rupture is tracked. The calculations are
conducted using the ABAQUS/Explicit finite-element package [Hibbit et al. 2009].

3.1. Constitutive and damage models for steel. The sandwich plates studied here are made of AISI
304 steel, which has high yield strength, high strain hardening and high ductility. The Johnson–Cook
model [Johnson and Cook 1985], which accounts for strain-hardening, thermal softening, and strain rate
dependence is used to describe the material’s response. Specifically,

σ(εpl, ε̇pl, θ)= (A+ B(εpl)n)
(

1+C ln
ε̇pl

ε̇0

)
(1− (θ̂)m), (9)

where σ is the Mises equivalent stress, εpl is the equivalent plastic strain, ε̇pl is the equivalent plastic
strain rate, and A, B, C , m and n are material parameters measured at or below the transition temperature
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θtransition, ε̇0 is a reference strain rate, and θ̂ is the nondimensional temperature, defined as

θ̂ ≡


0 for θ < θtransition,

(θ − θtransition)/(θmelt− θtransition) for θtransition ≤ θ ≤ θmelt,

1 for θ > θmelt.

(10)

In these expressions, θ is the current temperature, θmelt is the melting temperature and θtransition is the
transition temperature below which the yield stress is independent of the temperature. When the tem-
perature exceeds the melting temperature, the material behaves like a fluid and has no shear resistance.
The use of the Johnson–Cook constitutive model partly reflects the nature of the deformations analyzed
and partly reflects the fact that extensive experimental data is available and has been used to calibrate
this model for the conditions analyzed. Indeed, there are more “sophisticated” models than the Johnson–
Cook model. These models use different parameters or internal state variables to deal with issues such
as complicated loading paths, varying stress triaxiality, and deformation mechanisms. However, the
key aspects of the loading conditions analyzed in this paper are dynamic, rate-dependent, monotonic (no
unloading considered), and approximately proportional. Under such conditions, the constitutive response
of the steels considered here can be well-characterized as dependent on strain, strain rate and temperature.
Models using relations between stress and these quantities are effectively similar or equivalent, as long as
enough parameters exist to allow a good fit to experimental data. For the conditions stated above, many
more sophisticated models using, say, certain internal state variables essentially simplify to relations
involving stress, strain, strain rate and temperature as independent variables.

The failure model is based on the value of equivalent plastic strain. The damage parameter ω is
defined as

ω =
∑(

1εpl

ε
pl
f

)
, (11)

where 1εpl is an increment of the equivalent plastic strain, εpl
f is the strain at failure, and the summation

is performed over all increments up to the current state in the analysis. The strain at failure is assumed
to be dependent on strain rate and temperature such that

3εpl
f =

(
D1+ D2 exp(−D3 p/σ)

)(
1+ D4 ln ε̇

pl

ε̇0

)
(1+ D5θ̂ ), (12)

where D1, D2, D3, D4, and D5 are experimentally determined damage parameters, p = −σi i/3 is the
hydrostatic pressure. The values for the parameters are obtained from [Johnson and Cook 1985] and
[Nahshon et al. 2007] and are shown in Table 3.

3.2. Mie–Grüneisen equation of state for water. The response of water is modeled with the Mie–
Grüneisen equation of state of the linear Hugoniot form:

p =
ρ0c2

0η

(1− sη)2

(
1−

00η

2

)
+00ρ0 Em, (13)

where p is pressure, c0 is the speed of sound in bulk, ρ0 is the initial density, η is the volumetric
compressive strain, Em is internal energy per unit mass, 00 is Grüneisen’s gamma at reference state,
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Density of steel (ρSteel) 7800 kg/m3

Young’s modulus (E) 193 GPa
Poisson’s ratio (ν) 0.3
Melting temperature (θmelt) 1800 ◦C
Reference temperature (θ) 25 ◦C
Density of water (ρWater) 1000 kg/m3

Speed of sound in water (c0) 1500 m/s
Grüneisen’s gamma for water (00) 0.1

A 310 MPa
B 1000 MPa
n 0.65
C 0.034
m 1.05
D1 0.25
D2 4.38
D3 2.68
D4 0.002
D5 0.61

Table 3. Parameters for constitutive and damage models.

s = dUs/dUp is the linear Hugoniot slope coefficient, Us is the shock wave velocity and Up is particle
velocity, which is related to Us through

Us = c0+ sUp. (14)

4. Results and discussion

4.1. Parametric analysis and comparison with experiments. A parametric study is carried out, focusing
on the effects of (i) loading intensity, (ii) changes in core and face properties, and (iii) air-backed and
water-backed configurations on dynamic response. The objective is to quantify the relationship between
the response of the structures, loading intensities, material properties and structural attributes. The load-
ing configuration is shown in Figure 2, and the sandwich plate studied is shown in Figure 1. Although
five different impulsive load levels are considered, for brevity we focus on the deformation histories for
the load intensity of I = 0.2 in the following section.

The results of the finite element simulations are compared with experimental results in the literature.
Figure 4 shows the deformed configurations of a light-core sandwich structure (MC = 0.197) with a
prismatic core subjected to impulsive loading with I = 0.2. Results are compared to simulations for the
sandwich structure with MC = 0.2. Comparing the simulations with experimental measurements shows
that the simulations capture a majority of the details of the deformation mechanisms quite realistically.
These include core wall buckling, core shearing and stress concentrations near the clamped edges. The
debonding due to core wall buckling is also represented in the simulations. In both the simulations and
experiments, the face sheets undergo yielding but do not experience fracture and separation from the
supports. The front face experiences tensile stretching while the back face is relatively undamaged. The
experimental results are obtained by Dharmasena et al. [2008]. In experiments, different masses of TNT
at a fixed standoff distance of 10 cm are used to create impulsive loads. In experiments, the core has
a wall thickness of 0.76 mm and the face sheet thickness is 5 mm, such that MC = 0.197, compared to
MC= 0.2 in simulations. The comparison between experiments and simulations shows good agreement in
terms of damage mechanisms and structural deformation. Overall, experimentally observed deformation
mechanisms are reasonably replicated in the simulations.
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Figure 4. Comparison of computational and experimental deformation modes in a sand-
wich panel subjected to an impulsive load. Experimental results are obtained from [Dhar-
masena et al. 2008]. The sandwich core consists of a square honeycomb topology with
MC = 0.197 for experiments and MC = 0.20 for the simulations.

εpl

Figure 5. Distributions of equivalent plastic strain for air-backed structures with dif-
ferent MC values and an impulse of I = 0.2. The overall deflection increases as MC

increases. The structure with MC = 0.10 exhibits the most deformation through core-
wall buckling. Structures with MC > 0.2 experience core-stretching and shear rupture.
The corresponding front- and back-face masses are given in Table 1.
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4.2. Deformation mechanisms in air-backed structures. Figure 5 shows the distributions of equivalent
plastic strain for structures with different values of MC for I = 0.2 at t = 1000µs. This figure reveals
the role of core stiffness. For MC = 0.10, the lightest core, the response is dominated by core wall
buckling and front face stretching, with no rupture. For MC = 0.20, core wall buckling and stretching
occur simultaneously, with the onset of rupture delayed due to higher core compliance. Structures with
MC = 0.10 and MC = 0.20 are the only cases showing no rupture up to t = 1000µs. As MC increases
beyond 0.20, the failure mode changes from tensile stretching and core wall buckling to shear-dominated
rupture. The configurations with MC = 0.36, 0.54 and 0.68 exhibit fracture and catastrophic failure due
to localized deformation. Clearly, equitable distribution of mass between the front face, core and back
face does not provide optimal blast mitigation. For MC = 0.84, the case with the heaviest core considered,
the core-face junctions are locations of severe stress concentration and failure.

For all cases considered, two competing deformation mechanisms — core compression and overall
beam bending — are observed. Light-core structures undergo severe core compression without significant
bending. Light cores allow the structure to attain a common velocity after ∼ 600µs for MC = 0.20 and
∼ 800µs for MC = 0.10; these times are five times longer than those for heavy core structures. Structures
with 0.04 < MC ≤ 0.20 do not undergo shear rupture. On the other hand, heavy cores minimize core
crushing and lead to significant bending deformation, ultimately causing rupture. The structure acquires
a common velocity after ∼ 250µs for MC = 0.84 and ∼ 350µs for MC = 0.52.

4.3. Deformation mechanisms in water-backed structures. A comparison of the results for air-backed
and water-backed structures reveals significant differences in deformation and failure mechanisms. The
presence of a dense medium (water) on both sides of the structure prevents large scale bending and
leads to higher internal energy dissipation. The absence of bending leads to greater front face-core
interactions and core compression but creates a cushioning effect for the back face. To quantify the
differences between these two configurations, a comparative study is carried out.

Figure 6 shows the distributions of equivalent plastic strain for water-backed structures with different
MC values and I = 0.2 at t = 1000µs. For MC = 0.10, the core has very low resistance to wall buckling
and, consequently, core-crushing initiates upon the onset of loading. When the core collapses, the front
face strikes the back face and the stress wave passes through the back face into the surrounding water.
For MC = 0.20, structural deflection as well as core wall buckling are observed. For MC = 0.34, core
crushing is negligible and core stretching is more intense than those for structures with MC = 0.20 and
MC = 0.10. Due to the presence of the back-side water, the back-face displacement is very small and
no rupture is observed near the support. However, for all structural configurations with MC > 0.36,
rupture initiates near the support in the front face, core and back face. As core mass increases, the stress
concentration near the support becomes more severe and causes fracture and separation. Clearly, heavy
cores are detrimental to blast resistance in both air-backed and water-backed structures.

Although heavy core designs are undesirable under both air-backed and water-backed conditions,
water-backed structures with heavy cores can sustain larger impulses because a large fraction of the
incident impulse is transmitted through the back face into the surrounding water and structural deflection
is constrained. A major distinction between air-backed and water-backed structures is that in air-backed
structures, the impulse is transmitted to the supports while in water-backed structures, the impulse is
transmitted to the surrounding water.
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εpl

Figure 6. Distributions of equivalent plastic strain for water-backed structures with dif-
ferent MC values and an impulse of I = 0.2. The overall deflection is essentially the
same for all values of MC. The structure with MC = 0.10 exhibits the most deforma-
tion through core-wall buckling. Structures with MC > 0.36 show shear rupture. The
corresponding front- and back-face masses are given in Table 1.

4.4. Deflection. To evaluate and compare the responses, the deflections at the midpoints of the back
faces at 600µs for six different sandwich structures and five different impulse magnitudes are measured
and compared. The deflections are normalized by the length of the structure span. Figure 7 shows the
normalized deflection 1/L in the front face and back face as a function of normalized core mass MC and
normalized impulse I for air-backed and water-backed structures. As discussed previously, structures
with low MC exhibit higher core compression and, as MC increases, core compression decreases. For
MC ≤ 0.20, the front face deflects much more than the back face due to high core compression. Con-
versely, for MC > 0.20, the front and back faces undergo essentially the same deflection due to negligible
core compression. For I > 0.2, the cases with MC > 0.20 undergo rupture near the support, leading to
higher overall deflections, while the cases with MC ≤ 0.20 experience core crushing but no rupture. This
is reflected in the large jump in the deflection between MC= 0.20 and MC= 0.36 for I = 0.3 and I = 0.4.
At high impulse magnitudes, MC ≤ 0.20 provides superior blast resistance. The structure-performance
relations useful for sandwich structure design have been presented using the form

z = A · xm
· yn, (15)

where z is a performance parameter (1/L , U or I T ), x is a structural attribute (MC, MFF or MBF), y is the
load intensity and A, m and n are constants specific to each load configuration (air-backed, water-backed).
More details about the structure-performance relations are provided in Section 4.9. The relationship
between deflection in air-backed structures (1/L)AB, and incident impulse (I ) and normalized core
mass (MC) can be quantified by

(1/L)AB = 1.58 · (MC)
0.24
· I 0.86. (16)



RESPONSE OF SUBMERGED METALLIC SANDWICH STRUCTURES TO UNDERWATER IMPULSIVE LOADS 29

 

'

           
C

M           I

L

'

L

'

           
C

M           I

(a) (b)

Figure 7. Normalized deflection 1/L as a function of normalized core-mass MC and
normalized impulse I for (a) air-backed and (b) water-backed structures. The corre-
sponding front- and back-face masses are given in Table 1.

Figure 7(b) shows the deflection for water-backed structures as a function of normalized core mass MC

and normalized impulse I . Due to the presence of water on both sides of the structure, deflection is
limited. As the load intensity increases from I = 0.05 to I = 0.4, the increase in the overall deflection is
relatively minor. Compared with the defection in air-backed structures, the deflection for water-backed
cases is ∼ 70% lower for MC ≤ 0.20 and ∼ 40% lower for MC > 0.20 at high load magnitudes. For both
air-backed and water-backed structures, the minimum value of 1/L is seen for MC ≤ 0.20. Cores with
wall buckling as the primary deformation mechanism show superior blast resistance than cores with core
stretching as the primary deformation mechanism. The lower deflection values in water-backed cases
have a significant influence on energy absorption. The relationship between deflection in water-backed
structures (1/L)WB, and incident impulse (I ) and normalized core mass (MC) can be quantified by

(1/L)WB = 0.43 · (MC)
0.22
· I 0.85. (17)

4.5. Energy absorption. When an impulsive wave interacts with a structure, a number of energy dissipa-
tion mechanisms are activated. A significant fraction of the incident energy is dissipated through plastic
deformation. The primary mechanisms of plastic dissipation include tensile stretching in the front face,
core walls and back face, and core-wall buckling. A nondimensionalized dissipation measure is

U =
U

L ·W · σy · (MTotal/ρSteel)
, (18)

where U is the total dissipation through plasticity; L , W and MTotal are the length, width and total areal
mass of the sandwich structure, respectively; and σy and ρSteel are the yield stress and density of steel,
respectively.

It is important to understand how the dissipation is distributed in the structures. In particular, the rate of
dissipation as a function of time in different components of a structure can highlight regions that have the
most influence on the total energy dissipation. Figure 8 shows the time histories of dissipation in different
parts of a structure with MC = 0.10 under I = 0.2 for air-backed and water-backed conditions. In the
air-backed case, energy absorption in the core and front face occurs simultaneously and at approximately
the same rate. The motion of the front face causes core compression, plastic stretching in the front face



30 SIDDHARTH AVACHAT AND MIN ZHOU

 

 

 

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400 500 600

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400 500 600

Time (µs)Time (µs)

U U

Total

Frontface

Core

Backface

Total
Core

Frontface

Backface

Water-backedAir-backed a b

Figure 8. Plastic dissipation in (a) air-backed and (b) water-backed structures with
MC = 0.20 subjected to an impulse I = 0.2. The corresponding front- and back-face
masses are given in Table 1.

and core-wall buckling. At t = 200µs, dissipation in the core surpasses that in the front face. The
back face experiences negligible plastic deformation. In the water-backed structures, the low overall
deflection limits the stretching of the front face and back face. Since the compressive strain in the core
is much higher than that in the air-backed case, a much higher fraction of total energy absorption occurs
in the core. Specifically, the core dissipates ∼ 40% of the total energy in the air-backed case and ∼ 80%
of the total energy in the water-backed case. The time scales for the two cases are also different, with
the dissipation reaching a maximum value at ∼ 500µs in the air-backed case and at ∼ 300µs in the
water-backed case.

Figure 9 shows the normalized dissipation U in the entire structure as a function of core mass MC and
impulse I for air-backed and water-backed structures. Air-backed structures with MC = 0.10 experience
low deflection and low core compression and hence absorb ∼ 20% lesser energy than structures with
MC = 0.20, which experience high levels of dissipation because the core webs are sufficiently thin
to stretch under tensile loading induced by large deflections and sufficiently thick to prevent core-wall
buckling. Structures with MC > 0.20 absorb less energy because of rupture due to localized plastic
deformation and damage. Plastic dissipation ceases when the structures separate from the supports. The
relationship between plastic dissipation in air-backed structures (U AB), and incident impulse (I ) and
normalized core mass (MC) can be given by

U AB = 0.22 · (MC)
−0.20
· I 1.07. (19)

In Figure 10, the energy absorption in water-backed structures as a function of normalized core
mass MC and impulse I follows a trend similar to that for air-backed structures, with the dissipation
in the core accounting for the largest fraction of the total dissipation. The energy imparted to a sandwich
structure during an underwater blast is partly converted to kinetic energy when the structure acquires
velocity and deflects. In the air-backed cases, this kinetic energy is dissipated over a duration of ∼ 500µs
through face-sheet stretching, core deformation and rupture. Since water-backed structures experience
low deflections and attain lower velocities, the incident energy is partially dissipated in the structure
through plastic deformation and partially transmitted to the back-side water. Water-backed structures
absorb ∼ 20% more energy than air-backed structures under the same incident impulse, primarily due
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Figure 9. Normalized plastic dissipation U in air-backed structure as a function of nor-
malized core-mass MC and normalized impulse I for (a) entire structure, (b) core, (c)
front face and (d) back face. The corresponding core, front-face and back-face masses
are given in Table 1.

to more extensive core crushing. The differences in energy dissipation between air-backed and water-
backed structures are negligible for MC > 0.20 under the loading conditions analyzed for the lack of
plasticity. The relationship between plastic dissipation in air-backed structures (U WB), and incident
impulse (I ) and normalized core mass (MC) can be stated as

U WB = 0.20 · (MC)
−0.21
· I 0.69. (20)

4.6. Transmitted pressure in water-backed cases. The transmitted pressure in the back-side water is a
useful parameter for quantifying the effectiveness of sandwich structures under water-backed conditions.
It has significant implications for structures like cargo ships, oil tankers and pipelines. Figure 11(a)
shows the histories of the downstream pressure for structures with MC = 0.10 to 0.84 under an impulse
of I = 0.2 which has a peak pressure of 80 MPa. For MC = 0.52, 0.68 and 0.84, the time delay for
pressure transmission through the sandwich structure is ∼ 50µs. The transmitted pressure shows an
exponentially decaying profile with a peak value of 80 MPa and decay time of 600µs. For MC = 0.36,
the time delay for pressure transmission through the structure is ∼ 100µs and the peak value and decay
time of the transmitted pulse are 80 MPa and ∼ 600µs, respectively. For MC = 0.20, the transmitted
peak pressure is ∼ 30% lower or approximately 55 MPa and the decay time is ∼ 400µs. For structures
with 0.20 < MC < 0.84, cavitation occurs at the interface between the back face and water section.
Structures with MC = 0.10 show considerably different response. Initially, cell wall buckling occurs as
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Figure 10. Normalized plastic dissipation U in water-backed structure as a function of
normalized core-mass MC and normalized impulse I for (a) entire structure, (b) core, (c)
front face and (d) back face. The corresponding core, front-face and back-face masses
are given in Table 1.
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Figure 11. (a) Impulse transmission histories for I = 0.20, and (b) transmitted impulse
as a function of incident impulse I and normalized core mass MC, with MC = 0.10
to 0.84. For MC = 0.20, there is a reduction of ∼ 60% in transmitted pressure relative
to the incident pressure. The corresponding front- and back-face masses are given in
Table 1.



RESPONSE OF SUBMERGED METALLIC SANDWICH STRUCTURES TO UNDERWATER IMPULSIVE LOADS 33
 

 

 

 

           
C

M           
FF

M            
FF

M
           

C
M

U

U

L

'

L

'(a) (b)

Figure 12. Normalized deflection 1/L and plastic dissipation U in air-backed struc-
tures as functions of MC and MFF. Minimum deflection is observed for MC = 0.10. The
changes in MC have a greater effect on deflections than changes in MFF. There is only
a relatively minor variation of energy dissipation with MC and MFF.

the stress wave passes through the core. The pressure transmitted through the structure is much lower, at
only 10 MPa during core crushing and reaching 40 MPa upon the completion of core crush. This value
is 50% of what is seen for the structure with MC > 0.36 and 90% of that for MC = 0.20. On the other
hand, cavitation is negligible for MC = 0.10. Figure 11(b) shows the transmitted impulse as a function
of normalized core mass MC and incident impulse I . The relationship between transmitted impulse
(I T,WB), and incident impulse (I ) and normalized core mass (MC) can be quantified by

I T,WB/I = 1.36 · (MC)
0.33. (21)

4.7. Optimal core mass. The previous section dealt with the role of load intensity and core mass on the
dynamic response of the structures. The structure-property relations developed indicate that optimal core
mass lies between 4% and 20% of the total sandwich structure mass. To further refine the analysis, a set
of simulations is carried out by varying the core and front face masses while the total areal mass is held
constant. Specifically, the core mass is varied from 4% to 68% of the total mass, while the front face
mass is varied from 4% to 30% of the total mass. In each case, the back face mass is given by (1).

Figure 12(a) shows the normalized deflection as a function of MC and MFF for I = 0.5. The re-
sults indicate that MC has a higher influence on deflection than MFF and confirm that heavy cores are
detrimental to blast resistance. As the front face mass increases, the momentum transferred to the core
increases, causing higher core compression and overall deflection. The highest deflection is observed
for structures with maximum core and front face masses (MC = 0.68 and MFF = 0.3). Although core
wall buckling is an essential deformation mechanism for improved blast resistance, extremely thin core
walls (MC = 0.04) can be detrimental to blast resistance, indicating that there exists a lower limit for
core mass fraction. It can be concluded that the upper limit of core mass fraction is 20% while the lower
limit of core mass fraction is 4% of total structural mass. Results show that structures with MC = 0.20
undergo the least deflections due to the fact that the thickness of the core webs is sufficiently low to
enable buckling and load spreading and sufficiently high to prevent complete core collapse.
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εpl

Figure 13. Distributions of equivalent plastic strain for air-backed structures with vary-
ing MFF and MC = 0.20 subjected to an impulse of I = 0.2. As MFF increases, the
susceptibility to rupture decreases. However, heavy front faces allow lead to more severe
core compression and higher deflections.

Figure 12(b) shows plastic dissipation as a function of MC and MFF for the highest impulsive load
intensity (I = 0.5). There are relatively minor variations in energy dissipation over the entire tested range
of core and front face masses. The general trend observed in core optimization is also evident in this
analysis, i.e., structures with heavy cores experience large-scale rupture and bending and show lower
energy dissipation than light cores. The front face mass has a significant influence on both deflection
and energy dissipation.

4.8. Optimization of front-face mass. Evaluations of the response of sandwich structures with different
core strengths reveal that structures with MC ≤ 0.20 provide the best blast mitigation for the conditions
analyzed. Specifically, results show that MC = 0.20 provides high blast resistance. Furthermore, the
results indicate that the front and back faces influence the deflection and energy dissipation in the entire
structure. To quantify this influence, the front-face and back-face thicknesses are varied as shown in
Table 2 while the core mass is maintained at MC = 0.20. Thus, the core constitutes 20% of the total mass
and core-wall buckling is the preferred deformation mechanism. The front-face mass (MFF) is varied
from 0.04 to 0.40 and the back-face mass (MBF) is varied from 0.76 to 0.40, as shown in Table 2.

Figure 13 shows the contour plots of equivalent plastic strain at 1000µs in air-backed structures with
varying MFF subjected to I = 0.2. Since the core mass is only 10% of the total mass, the response of
the core is primarily in the form of core wall buckling. For structures with MFF = 0.04 and MFF = 0.08,
the front face is very light and ruptures due to shear stress concentrations near the supports, followed by
core-wall buckling and core compression. For structures with MFF = 0.16, the front face ruptures due to
tensile necking near the supports, followed by core wall buckling and core compression. For structures
with MFF = 0.24, the front face has sufficient strength to avoid shear or tensile failure. However, since
the front face is heavier, the overall deflection is higher than those for structures with MFF < 0.24.
As MFF increases from 0.24 to 0.40, the front face becomes less susceptible to tensile necking and
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εpl

Figure 14. Distributions of equivalent plastic strain for water-backed structures with
varying MFF and MC = 0.20 subjected to an impulse of I = 0.2. Heavy front faces
cause progressively higher core compression as the overall deflection remains constant
due to the downstream water.

rupture. However, as the front-face mass increases, more severe core compression and higher overall
deflection are observed. For impulses up to I = 0.3, air-backed structures with MFF ∼ 0.25, MC ∼ 0.20
and MBF ∼ 0.65 show superior blast mitigation capability. Although configurations with MFF < 0.24
experience front-face rupture, none experience complete failure. This reinforces the fact that dynamic
response is highly influenced by core mass and it is relatively less sensitive to front face mass.

Figure 14 shows the contour plots of equivalent plastic strain at 1000µs in water-backed sandwich
structures with varying MFF subjected to I = 0.2. The failure mode for structures with MFF = 0.04, 0.08
and 0.16 is front-face rupture near the supports followed by rapid core compression. Since the back face
is constrained by back-side water, core compressive strains are much higher than those in air-backed
structures. To prevent complete core collapse in the water-backed cases, it is necessary to keep MFF above
a minimum value (MFF = 0.24). For impulses up to I = 0.3, structures with MFF ∼ 0.25, MC ∼ 0.10
and MBF ∼ 0.65 perform the best.

Figure 15 shows the normalized deflection 1/L as a function of normalized front-face mass MFF

and normalized impulse magnitude I in air-backed and water-backed structures. As MFF increases from
0.04 to 0.40, the deflection in air-backed structures increases. Structures with MFF = 0.04 experience the
smallest deflection, while those with MFF= 0.24 and 0.40 experience deflections two and four times those
for structures with MFF = 0.04, respectively. For water-backed structures, as MFF increases, the overall
deflection remains essentially constant due to the presence of downstream water. However, contour
plots in Figures 15 and 16 show that structures with MFF < 0.24 are susceptible to front-face rupture.
Consequently, the lowest acceptable value of MFF is 0.24 for both air-backed and water-backed structures.
The relationship between deflection (1/L)WB, incident impulse I and normalized core mass MC in air-
backed structures can be stated as

(1/L)AB = 0.23 · (MFF)
0.27
· I 0.62, (22)
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Figure 15. Deflection in (a) air-backed and (b) water-backed structures as functions of
incident impulse I and normalized front-face mass MFF (MC = 0.20).

  

�

           
FF

M           I
           

FF
M           I

U

U

U

(a) (b)

Figure 16. Energy dissipated due to plastic deformation in (a) air-backed and (b) water-
backed structures as functions of incident impulse I and normalized front-face mass
MFF (MC = 0.20).

while that for water-backed structures can be stated as

(1/L)WB = 0.02 · (MFF)
0.03
· I . (23)

Figure 16 show normalized plastic dissipation U as a function of normalized front-face mass MFF and
impulse magnitude I in air-backed and water-backed sandwich structures. For thin front faces (MFF <

0.24), the stress wave is transmitted through the front face and into the core after the onset of loading.
Tensile necking near the supports leads to rupture in the front face. Consequently, for structures with
MFF < 0.24, plastic dissipation in the core exceeds that in the front face. As MFF increases and the front
face becomes thicker, the amount of plastic deformation in the front face increases and, as a result, the
front face becomes less susceptible to rupture. Hence, the contribution of the front face to total plastic
dissipation increases and that of the core decreases. For MFF = 0.4, plastic dissipation in the front face
is higher than that in the core. As discussed previously, for the same incident impulse, water-backed
structures (Figure 15(b)) absorb a larger fraction of incident energy than air-backed structures. This
occurs primarily through higher core-compressive strains and front-face shearing. However, the front-
face plastic dissipation surpasses plastic dissipation in the core only for thick front faces with MFF = 0.4.
The relationship between plastic dissipation U in both air-backed and water-backed structures, incident
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Figure 17. (a) Impulse transmission histories for I = 0.20, and (b) transmitted impulse
as a function of incident impulse I and normalized front-face mass MFF in water-backed
structures (MC = 0.20).

impulse I and normalized core mass MC for both air-backed and water-backed structures is

U = 0.67 · (MFF)
0.13
· I 1.14. (24)

Figure 17(a) shows the histories of transmitted pressure for water-backed structures with MC = 0.20
and varying MFF. The values are measured in the middle of the downstream water section. The transmit-
ted pressure remains constant during core compression. When the core fails completely and the front face
and the back face move together, a secondary pressure pulse is transmitted into the downstream water.
The secondary pressure pulses for structures with MFF = 0.24, 0.32 and 0.40 are higher in magnitude
than those for structures with MFF = 0.08, 0.16 and 0.24, due to the greater momentum acquired by the
heavier front faces. As demonstrated previously, structures with MFF ≤ 0.16 undergo front-face rupture
followed by core crushing and tearing near the supports. A combination of front-face mass of MFF ≤ 0.24,
core mass of MC = 0.10 and back-face mass MBF = 0.65 provides the highest blast mitigation for air-
backed as well as water-backed structures. The relationship between the transmitted impulse I T,WB, the
incident impulse I and normalized core mass MC (Figure 17(b)) can be given by

I T,WB/I = 2.82 · (MFF)
2.19. (25)

4.9. Structure-performance relationships. The preceding discussions have focused on the deformation,
deflection, energy dissipation and impulse transmission in metallic sandwich structures subjected to un-
derwater impulsive loads. In particular, the results of parametric studies have been presented in a format
wherein the response variables are functions of the loading I and structural attributes (MC, MFF or MBF).
Analyses show that such contact conditions play an important role in the response of sandwich structures
to underwater blasts. Structural design must satisfy prescribed performance objectives through identifi-
cation of proper structural attributes that fulfill the requirements. Here, deflection, impulse transmission,
and energy dissipation are taken as the performance metrics. These metrics may pose competing require-
ments on structure attributes. In both air-backed and water-backed structures, the energy dissipated in
the entire structure follows a similar trend. Deflection is a relatively less useful metric in water-backed
structures due to the fact that the presence of downstream water keeps deflection small. In such cases,
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Figure Contact condition Acceptance metric Structure-performance relations

Figure 7(a) Air-backed Deflection (1/L)AB = 1.58 (MC)
0.24 I 0.86

Figure 9(a) Energy dissipation U AB = 0.22 (MC)
−0.20 I 1.07

Figure 7(b) Water-backed Deflection (1/L)WB = 0.43 (MC)
0.22 I 0.85

Figure 9(b) Energy dissipation U WB = 0.20 (MC)
−0.21 I 0.69

Figure 11(b) Impulse transmission I T,WB/I = 1.36 (MC)
0.33

Table 4. Summary of material-structure-property relationships for core optimization.

Figure Contact condition Acceptance metric Structure-performance relations

Figure 15(a) Air-backed Deflection (1/L)AB = 0.23 (MFF)
0.27 I 0.62

Figure 15(b) Energy dissipation U AB = 0.67 (MFF)
0.13 I 1.14

Figure 15(c) Water-backed Deflection (1/L)WB = 0.02 (MFF)
0.03 I

Figure 15(d) Energy dissipation U WB = 0.67 (MFF)
0.13 I 1.14

Figure 17(b) Impulse transmission I T,WB/I = 2.82 (MFF)
2.19

Table 5. Summary of material-structure-property relationships for front-face optimization.

the transmitted impulse (measured in the back-side water section) may be a more relevant and useful
quantity. The structure-performance relations are summarized in Table 4 and Table 5.

An optimal sandwich structure design needs to balance low deflection and high energy dissipation.
This balance is application-specific and may not be universal. The relations developed in this study allow
the identification of optimal structural designs for given combination of deflection, energy dissipation and
impulse transmission requirements. For a given level of deflection or energy dissipation, the optimum
value of core or face masses for a specific impulsive load can be achieved by varying the component
thicknesses. The focus of this analysis is on the development of quantitative relations which can be used
by structural designers. As discussed previously, core mass is the most critical structural attribute of a
sandwich structure. Although (16) gives a simple relationship between core mass, impulse magnitude
and deflection, it must be noted that MC = 0.04 is the lower limit of core mass. The material-structure-
performance relations can be used to inform structural design with the precaution that they should only
be used for the material, structural parameter ranges and loading conditions considered.

5. Concluding remarks

To be resilient to impulsive loading, structures must balance rigidity, load-carrying capacity and an ability
to dissipate energy. Sandwich composites, with a combination of stiff face sheets and compliant cores,
can provide high shear and bending resistances, as well as an ability to absorb energy. In an effort
to provide quantitative relations for structural design, we have evaluated the performance in terms of
deflection and energy-dissipation of metal sandwich structures under high-intensity impulsive loading
over a range of structural attributes and loading. In particular, the conditions analyzed involve impulsive
loads with peak pressures up to 450 MPa and impulses up to 41 kPa·s. This range of load profiles is
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indicative of the effects at different standoff distances of 100 kg of TNT detonating underwater. The
present work has focused on the damage and deformation occurring in blast-loaded metallic sandwich
plates in the early stages of deformation and the role of loading intensity and structural attributes on
dynamic performance. The constitutive and damage models used in the analysis are capable of capturing
the effects of different inelastic deformation and failure mechanisms in the face sheets and sandwich
cores. The calculations have yielded the following findings.

There is a close relationship between structural parameters, loading rates and dynamic performance.
The performance of metallic sandwich structures is significantly influenced by core mass and core wall
thickness. For cores with MC > 0.20, deformation is dominated by bending and core-stretching. For cores
with MC ≤ 0.20, deformation is dominated by core-wall buckling and front-face stretching. Although
light core structures provide significantly higher blast mitigation compared to heavy core structures on
a per-unit weight basis, there exists a lower limit of core mass below which the structural benefits of
light cores are lost due to core collapse. This lower limit is approximately MC = 0.10. Below this limit,
deformation is dominated by core-wall buckling and crushing and the front face strikes the back face
due to core failure. A combination of core-wall buckling and load-spreading provides the highest blast
mitigation. This combination is achieved when the core mass is ∼ 20% of the total structural mass, as
measured by MC and MFF in the analysis.

Deformation and energy dissipation are relatively less sensitive to front-face mass, as compared to core
mass. However, an optimal design requires a balance between core and face sheet masses (MC = 0.20,
MFF > 0.20). The back-face mass has negligible effect on overall blast resistance in the initial stages of
deformation. However, thick back faces are significantly less susceptible to rupture and exhibit improved
blast resistance. For impulses up to I = 0.5, sandwich structures with MFF ∼ 0.25, MC ∼ 0.20 and
MBF∼ 0.55 provide the highest bending resistance. The results suggest that the role of support conditions
is very important in designing sandwich plates resistant to underwater blasts. In particular, for heavy core
structures, clamped boundary conditions lead to shear-dominated rupture which is highly dependent on
support conditions.

The responses of structures under air-backed and water-backed conditions are significantly different.
Deflections under water-backed conditions are ∼ 30% of the deflections under air-backed conditions
for MC < 0.20 and ∼ 60% for MC > 0.20 at high impulse magnitudes. However, for both air-backed
and water-backed conditions, structures with MC = 0.10 show the lowest deflection, and, therefore, the
highest bending resistance. Under the same loading conditions, the dissipation in water-backed structures
is ∼ 20% higher than the dissipation in air-backed structures.

The calculations have yielded quantitative structure-performance relations in terms of deflection, en-
ergy dissipation, and load transmission. These relations allow optimal or desirable structure attributes
to be identified for prescribed loading conditions or performance targets. These relations can provide
guidance for the design of blast-resistant metallic structures. Finally, it should be noted that the relations
described in this paper are applicable only for the structural attributes and loading conditions considered.
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THERMAL AND MAGNETIC EFFECTS ON THE VIBRATION
OF A CRACKED NANOBEAM EMBEDDED IN AN ELASTIC MEDIUM

DANILO KARLIČIĆ, DRAGAN JOVANOVIĆ, PREDRAG KOZIĆ AND MILAN CAJIĆ

In this study, we develop a model to describe the free vibration behavior of a cracked nanobeam em-
bedded in an elastic medium by considering the effects of longitudinal magnetic field and tempera-
ture change. In order to take into account the small-scale and thermal effects, the Euler–Bernoulli
beam theory based on the nonlocal elasticity constitutive relation is reformulated for one-dimensional
nanoscale systems. In addition, the effect of a longitudinal magnetic field is introduced by considering
the Lorenz magnetic force obtained from the classical Maxwell equation. To develop a model of a
cracked nanobeam, we suppose that a nanobeam consists of two segments connected by a rotational
spring that is located in the position of the cracked section. The surrounding elastic medium is repre-
sented by the Winkler-type elastic foundation. Influences of the nonlocal parameter, stiffness of rota-
tional spring, temperature change and magnetic field on the system frequencies are investigated for two
types of boundary conditions. Also, the first four mode shape functions for the considered boundary
conditions are shown for various values of the crack position.

1. Introduction

Recently, there has been a growing interest among scientists to study the influence of various multiphysics
phenomena on the vibration behavior of nanostructures such as nanorods [Murmu et al. 2014; Alper
and Hamad-Schifferli 2010; Martín et al. 2012], nanobeams [Kiani 2012; Youssef and Elsibai 2011;
Firouz-Abadi and Hosseinian 2012], nanoplates [Murmu et al. 2013; Arani et al. 2013; Kiani 2014a;
A. Haghshenas and Arani 2013], etc. Often, such studies are related to the application of nanostructures
in nanoelectromechanical systems (NEMS) [Batra et al. 2007; Popov et al. 2007]. Understanding the
dynamic behavior of such systems is of prime importance in design procedures and the practical appli-
cation of NEMS devices. Materials such as carbon, zinc-oxide, gold, silver and boron-nitride nanotubes
[Xie et al. 2000; 2004; Wu et al. 2005; Yum and Yu 2006] and also graphene sheets [Gómez-Navarro
et al. 2008; Schniepp et al. 2006; Niyogi et al. 2006] have superior mechanical, physical and thermal
properties, which have lately become very important in nanoengineering practice. For the analysis of
nanostructures, there are three basic approaches: experimental analysis [Meyer et al. 2007; Jensen 1999],
molecular dynamic simulation [Park et al. 2005; Bershtein et al. 2002] and the continuum mechanics
approach [Eringen 1972; 1983; Reddy and Pang 2008; Ansari et al. 2012; Jam et al. 2012]. Experimental
studies of nanostructures are very important for determining their physical properties. However, direct
measurement of properties is difficult due to very small dimensions of structures and weak control of

This research was supported by the grants of the Serbian Ministry of Education, Science and Technological Development under
the numbers OI 174001 and OI 174011.
Keywords: cracked nanobeam, longitudinal magnetic field, thermal effects, nonlocal effects.
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experimental parameters, which makes this approach very expensive. On the other hand, molecular
dynamics is a highly developed method to simulate the dynamic behavior of nanostructures. However,
this approach is applicable only to nanostructures with a small number of atoms and molecules whereas
for large-sized nanoscale systems, such as nanocomposites and multiple nanostructure systems, it is
time-consuming and computationally prohibitive. All this leads to the conclusion that continuum-based
theories need to be considered. Since the mechanical behavior of nanostructures strongly depends on
the size effects when the system is very small compared to the molecular distances, classical continuum
theories need to be modified in order to consider small-scale effects. In the nonlocal theory of Eringen,
small-scale effects are introduced into a constitutive equation via a single material parameter. The main
assumption of this theory is that the stress at a point is a function of strains at all other points in the
continuum body. According to Eringen [1972; 1983], the excellent approximation can be provided for
a large class of multiphysics phenomena with internal length scale ranging from the atomistic to the
macroscopic scale. Thus, using the classical continuum theory and ignoring the small-scale effects and
atomic forces when analyzing the nanostructures may lead to inaccurate results and hence erroneous
designs.

In recent years, a large number of researchers have investigated the influence of different physical
effects on the dynamic behavior of one-dimensional nanostructures. Murmu and Pradhan [2009] in-
vestigated the influence of thermal and nonlocal effects on the free vibration of a single-walled carbon
nanotube (CNT) embedded in an elastic medium. In [Murmu and Pradhan 2010], they also examined
the stability of CNT in an elastic medium under the influence of temperature change. In both cases, they
used nonlocal Euler–Bernoulli beam theory. Benzair et al. [2008] reformulated the classical Timoshenko
beam theory by using the nonlocal elasticity. In addition, they introduced thermal effects through the
constitutive relation for vibration analysis of CNT. In [Ke and Wang 2012], governing equations of mo-
tion were derived by using the Hamilton principle and nonlocal elasticity for thermoelectromechanical
vibration of the piezoelectric nanobeams with various boundary conditions. In addition, they inves-
tigated the influence of the nonlocal parameter, temperature change, external electric voltage and axial
force on the thermoelectromechanical vibration characteristics of the piezoelectric nanobeams. Hosseini-
Hashemi et al. [2014] considered surface effects on the free vibration of piezoelectric functionally graded
nanobeams by using the nonlocal elasticity theory. Further, they investigated the influences of the surface
and nonlocal effects on the piezoelectric field and the static and dynamic behavior of the nanobeam. Kiani
[2014b] investigated the influence of a three-dimensional magnetic field on the vibration and instability
of a single-walled CNT. The equations of motion were obtained from the nonlocal Rayleigh beam
theory and Maxwell equations. In addition, the author derived an expression for a critical transverse
magnetic field associated with the lateral buckling of the single-walled CNT. Li et al. [2011] obtained
coupled dynamic equations of multiwalled CNTs subjected to a transverse magnetic field by considering
the Lorentz magnetic forces. In addition, they showed the influence of van der Waals force on the
dynamic characteristics of multiwalled CNTs. Further, they examined the effects of the van der Waals
forces on vibration characteristics of a multiwalled CNT under a transverse magnetic field, where the
CNT was represented by a cylindrical shell. Wei and Wang [2004] investigated the wave propagation
in a single-wall carbon nanotube for two different propagating modes, i.e., the transverse electric and
transverse magnetic modes. Recently, Karličić et al. [2014] studied the influence of an axial magnetic
field on vibration of multiple coupled viscoelastic CNTs embedded in a viscoelastic medium. The authors
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determined complex and critical values of natural frequencies of the system and performed a detailed
parametric study.

The study of the vibration behavior of cracked CNTs is of great theoretical and practical interest
for better understanding of the mechanical response of nanostructures. Based on a growing number
of experimental studies, it was found that the CNT is not a perfect nanostructure as it seems at the
beginning of investigations. Different types of defects cause a local change in stiffness of CNTs that
may have significant influence on natural frequencies and mode shapes. Moreover, researchers have
considered two types of initial defects in carbon nanostructures. In the first group are topological defects
related to bonds between atoms in an atomic network. This includes Stone–Wales defects [Zhou and
Shi 2003; Charlier 2002] causing irregularities in the hexagonal network of carbon-carbon bonds in
CNTs, which leads to a disturbance in local stiffness. In the second group are point defects related
to creating single and multiple vacancies [Charlier 2002; Sammalkorpi et al. 2004; Belytschko et al.
2002] in the atomic network, which leads to degradation of mechanical characteristics of the crystal
lattice. In this case, local change in stiffness of CNTs also occurs. From the standpoint of continuum
mechanics, this change of local stiffness of CNT can be modeled as a change in the strain energy of
a nanobeam. The flexural vibration behavior of a cracked nanobeam based on the nonlocal elasticity
theory was investigated by Loya et al. [2009]. They proposed the model of a cracked nanobeam con-
sisting of two segments connected by a rotational spring located at the cracked section. In addition,
the authors showed the influence of crack severity, the nonlocal parameter and boundary conditions on
natural frequencies of the cracked nanobeam. Torabi and Dastgerdi [2012] investigated the free vibration
of a cracked nanobeam modeled via nonlocal elasticity and Timoshenko beam theory, where the cracked
nanobeam is represented by two segments connected by a rotational spring. They analyzed the effects
of crack position, ratio and the nonlocal parameter on the vibration mode and frequency parameter. The
bending vibrations of a cracked nanobeam with surface effects were studied in [Hasheminejad et al.
2011]. In [Yang and Chen 2008], the free vibration and stability of the beam made of functionally
graded materials containing an open crack were investigated by using Euler–Bernoulli beam theory
and the rotational spring model at the cracked section. Roostai and Haghpanahi [2014] discussed the
vibration behavior of a nanobeam with multiple cracks for various boundary conditions. They showed
the influence of changing the number of cracks on dimensionless frequencies for change in boundary
conditions.

As stated in [Yang and Chen 2008], models of cracked nanobeams can be divided into two groups:
“continuous” models and “lumped flexibility” models. In this paper, we use the technique that belongs
to the method of “lumped flexibility” models, whose main characteristic is that the presence of a crack
is modeled via change of the stiffness of beams at the position of the crack, which is equivalent to
the stiffness of an inserted spring. The main objective of this paper is to present an analytical model
and analyze the vibrational behavior of a cracked nanobeam embedded in an elastic medium by taking
into account the magnetic field and thermal effects. In addition, different boundary conditions of the
cracked nanobeam are also considered. The governing equation of motion is derived by using the Euler–
Bernoulli beam theory, nonlocal thermoelastic constitutive relation and Maxwell relation. The frequency
equation is derived and numerically solved for different boundary conditions, and the obtained results
are compared to the corresponding ones in the literature. In the parametric study, the effects of various
physical parameters on natural frequencies and mode shape functions are also investigated.
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2. Problem formulation

2.1. Nonlocal constitutive relation. In this subsection, we will provide the fundamental constitutive
relation of the nonlocal elasticity and thermoelasticity theory. The basic form of the nonlocal elastic
relation for a three-dimensional linear, homogeneous isotropic body is given as

σi j (x)=
∫
α(|x − x ′|, τ )Ci jklεkl(x ′) dV (x ′) for all x ∈ V , (1a)

σi j, j = 0, (1b)

εi j =
1
2(ui, j + u j,i ), (1c)

where Ci jkl is the elastic modulus tensor for classical isotropic elasticity; σi j and εi j are the stress and the
strain tensors, respectively, and ui is the displacement vector. With α(|x− x ′|, τ ), we denote the nonlocal
modulus or attenuation function, which incorporates nonlocal effects into the constitutive equation at a
reference point x produced by the local strain at a source x ′. The above absolute value of the difference
|x − x ′| denotes the Euclidean metric. The parameter τ = (e0a)/ l, where l is the external characteristic
length (crack length and wave length), a describes the internal characteristic length (lattice parameter,
granular size and distance between C-C bonds) and e0 is a constant appropriate to each material that can be
identified from atomistic simulations or by using the dispersive curve of the Born–von Kármán model of
lattice dynamics. Since it is difficult to use constitutive relations in the integral form for solving practical
problems, simplified constitutive relations in the differential form were developed. Based [Eringen 1972;
1983], constitutive relations in the differential form for the one-dimensional case are

σxx −µ
d2σxx

dx2 = Eεxx , (2a)

σxz −µ
d2σxz

dx2 = Gγxz, (2b)

where E and G are the elastic modulus and the shear modulus of the beam, respectively; µ = (e0a)2

is the nonlocal parameter (length scales); σxx and σxz are the normal and the shear nonlocal stresses,
respectively, and εxx = u− z ∂

2w
∂x2 is the axial deformation. Nanomaterials such as CNTs, ZnO nanotubes

and other one-dimensional structures are modeled as nanobeams and nanorods by using the nonlocal
theory, where internal characteristic lengths (e0a) are often assumed to be in the range 0–2 nm. When
e0a = 0, the nonlocal constitutive relation is reduced to the classical constitutive relation of the elastic
body. The nonlocal thermoelastic constitutive relation model proposed by Zhang et al. [2008] and Murmu
and Pradhan [2009; 2010] is a combination of nonlocal elasticity and classical thermoelasticity theory.
Therefore, for one-dimensional nonlocal viscoelastic solids, constitutive relations are given by

σxx −µ
d2σxx

dx2 = E
(
εxx −

αxθ

1− 2ν

)
, (3)

where αx is the coefficient of thermal expansion in the direction of the x axis, ν is the Poisson ratio and
θ denotes the change in temperature. If θ = 0, i.e., there is no influence of change in temperature, we
then return to the constitutive relation for nonlocal elasticity. It should be noted that Young’s modulus
of some types of nanomaterials, for example CNT, is insensitive to temperature changes in the tube at
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temperatures less than nearly 1100 K, but it decreases at higher temperatures [Hsieh et al. 2006]. In what
follows, we will use the constitutive relation for nonlocal thermoelasticity to derive governing equations
of motion.

2.2. Maxwell’s relation. According to the classical electromagnetic theory [Narendar et al. 2012], the
Maxwell equations in differential form are given as

J =∇ × h, ∇ × e =−η
∂h
∂t
, ∇ · h = 0, (4)

where J is the current density, h is the distributing vector of the magnetic field, e is the strength vector
of the electric fields and η is the magnetic field permeability. In addition, we define the vectors for
distributing magnetic field h and electric field e as

h =∇ × (U × H), e =−η
(
∂U
∂t
× H

)
, (5)

in which ∇ = ∂
∂x i + ∂

∂y j + ∂
∂z k is the Hamilton operator, U = (x, y, z) is the displacement vector and

H = (Hx , 0, 0) is the vector of the longitudinal magnetic field, and (i, j, k) are unit vectors. In the
present study, we assume that the longitudinal magnetic field acts on the cracked nanobeam in the axial
direction. Now, we can write the vector of the distributing magnetic field in the form

h =−Hx

(
∂v

∂y
+
∂w

∂z

)
i + Hx

∂v

∂x
j + Hx

∂w

∂x
k. (6)

Then, we introduce (6) into the first expressions of (4):

J =∇×h= Hx

(
−
∂2v

∂x ∂z
+
∂2w

∂x ∂y

)
i−Hx

(
∂2v

∂y ∂z
+
∂2w

∂x2 +
∂2w

∂z2

)
j+Hx

(
∂2v

∂x2 +
∂2v

∂y2 +
∂2w

∂z ∂y

)
k. (7)

Substituting (7) into the expressions for the Lorentz forces induced by the longitudinal magnetic field
yields

f ( fx , fy, fz)= η(J × H)= η
[

0i + H 2
x

(
∂2v

∂x2 +
∂2v

∂y2 +
∂2w

∂z ∂y

)
j + H 2

x

(
∂2w

∂x2 +
∂2w

∂y2 +
∂2v

∂z ∂y

)
k
]
, (8)

where fx , fy and fz express the Lorentz force along the x , y and z directions as

fx = 0, (9a)

fy = ηH 2
x

(
∂2v

∂x2 +
∂2v

∂y2 +
∂2w

∂z ∂y

)
, (9b)

fz = ηH 2
x

(
∂2w

∂x2 +
∂2w

∂y2 +
∂2v

∂z ∂y

)
. (9c)

In this study, we assume that the displacement of nanobeam w(x, t) and the Lorentz force act only in
the z direction, which can be written as

fz = ηH 2
x
∂2w

∂x2 . (10)
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Finally, it is possible to obtain force per unit length of the nanobeam in the form

q̃(x, t)=
∫

A
fz d A = ηAH 2

x
∂2w

∂x2 . (11)

2.3. Mathematical model of a cracked nanobeam. Zhang et al. [2005] have introduced one type of
vacancy defect in CNTs known as a slit defect. Under certain assumptions, the slit defect, resulting
from removing C-C atom pairs in the circumferential direction of the regular lattice of CNTs, can be
observed as cracks (Figure 1a). Thus, we consider SWCNT with a slit defect, which is embedded in
an elastic medium, as a cracked nanobeam by using the nonlocal continuum model with two types of
boundary conditions as shown in Figure 1b–d. The cracked nanobeam is represented by two beam
segments connected with a rotational spring of stiffness c, where the left segment is before the crack
section and the right segment is after the crack section. Both nanobeam segments have the same material
properties: Young’s modulus E , mass density ρ, cross-section area A, moment of inertia I and the
nonlocal parameter µ. Moreover, the nanobeam is under the influence of Lorentz magnetic force induced
by the longitudinal magnetic field. These parameters are assumed to be constant along the nanobeam.
The nanobeam is considered to be of length L with crack-position L∗. The transversal displacements over
the two defined segments of the nanobeam are denoted by w1(x, t) and w2(x, t), i.e., the left segment
and the right segment, respectively. The nanobeam model is described by using the nonlocal Euler–
Bernoulli beam theory, where the effect of the temperature change is introduced through the constitutive
relation. The elastic medium is modeled by a Winkler-type elastic foundation, which is represented by

Figure 1. (a) SWCNT with defects. (b) Axial magnetic field exerted on the cracked
SWCNT embedded in an elastic medium, physical model; equivalent nonlocal mechan-
ical model of the cracked nanobeam coupled with the Winkler elastic foundation in the
axial magnetic field for various boundary conditions. (c) Simply supported. (d) Clamped-
clamped.
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continuously distributed springs of stiffness k. In the present study, two types of boundary conditions
are considered: simply supported (Figure 1c) and clamped-clamped (Figure 1d).

According to Newton’s second law, the equilibrium equations for the differential element of the
nanobeam can be expressed in the similar manner as in [Kozić et al. 2014], which gives

∂FT

∂x
− kw+ q̃ + N

∂2w

∂x2 = ρA
∂2w

∂t2 , (12a)

∂N
∂x
= ρA

∂2u
∂t2 , (12b)

FT =
∂M f

∂x
, (12c)

where u is the axial displacement and M f and N are the moment and axial force stress resultants, re-
spectively, defined as

M f =

∫ A

0
zσxx d A, (13a)

N =
∫ A

0
σxx d A, (13b)

where q̃ is the magnetic force per unit length defined in (11).
By using the nonlocal constitutive relation from (3) with expressions (12) and (13) and assuming that

the axial displacement u is zero, we can get the equations

M f = µ

[
kw− q̃ − N

∂2w

∂x2 + ρA
∂2w

∂t2

]
− E I

∂2w

∂x2 , i = 1, 2, (14a)

N =−E A
αxθ

1− 2ν
. (14b)

The equation of motion of the nanobeam in terms of transversal displacements w(x, t) is obtained by
introducing (14a), (14b) and (12c) into (12a) in the form

ρA
∂2w

∂t2 + kw− ηAH 2
x
∂2w

∂x2 + E A
αxθ

1− 2ν
∂2w

∂x2 + E I
∂4w

∂x4

= µ
∂2

∂x2

[
ρA

∂2w

∂t2 + kw− ηAH 2
x
∂2w

∂x2 + E A
αxθ

1− 2ν
∂2w

∂x2

]
(15)

or in the dimensionless form

∂2w

∂τ 2 + Kw+ (N θ −MP)
∂2w

∂ξ 2 +
∂4w

∂ξ 4 = ν
2 ∂

2

∂ξ 2

[
∂2w

∂τ 2 + Kw+ (N θ −MP)
∂2w

∂ξ 2

]
, (16a)

where

w =
w

L
, ξ =

x
L
, K = k

L4

E I
, MP=

ηAH 2
x

E I
L2,

ν2
=
µ

L2 , τ =
t

L2

√
E I
ρA

, N θ = E A
αxθ

1− 2ν
L2

E I
.

(16b)
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K , MP, N θ and ν are the dimensionless spring coefficient, magnetic parameter, thermal axial force and
nonlocal parameter, respectively.

Now, we can solve the equation of motion (16a) by assuming the solution is in the form

w(ξ, τ )=

∞∑
n=1

Wn(ξ)ei�nτ , n = 1, 2, 3, . . . , (17)

where i =
√
−1, Wn are the mode functions and �n are the dimensionless natural frequencies for n

vibration modes. Introducing the assumed solutions (17) into (16a), we obtain the ordinary differential
equation

W IV
n (ξ)+ b̃W II

n (ξ)− c̃Wn(ξ)= 0, (18)

where ( · )I represents the derivative with respect to ξ and ã, b̃ and c̃ are constants defined by

ã = 1− ν2(N θ −MP), (19a)

b̃ =
N θ −MP

ã
+ ν2

(
λ4

n −
K
ã

)
, (19b)

c̃ =
(
λ4

n −
K
ã

)
, (19c)

λ4
n =

�2
n

ã
. (19d)

Introducing the assumed solutions Wn(ξ)= Desξ into (18), we obtain a characteristic equation

s4
+ b̃s2

− c̃ = 0, (20)

where the solutions are given as

sn1/2 =±

√
−b̃+

√
b̃2+ 4c̃

2
=±αn, (21a)

sn3/4 =±

√
−b̃−

√
b̃2+ 4c̃

2
=±iβn. (21b)

Finally, the general solution of spatial differential equation (18) is written as

Wn(ξ)= Dn1 sinh(αnξ)+ Dn2 cosh(αnξ)+ Dn3 sin(βnξ)+ Dn4 cos(βnξ), (22)

where Dni , i = 1, 2, 3, 4, are the unknown constants that are determined from the boundary conditions
of the nanobeam.

Now, we consider the case of the nanobeam with a crack, which is located at the distance L∗ from the
left support, where the term b = L∗/L denotes the dimensionless variable (Figure 1c–d). According to
the methodology developed in [Loya et al. 2009; 2006; Fernández-Sáez et al. 1999; Fernández-Sáez and
Navarro 2002; Torabi and Dastgerdi 2012], we modeled a cracked nanobeam with two beam segments
connected by one linear and one rotational spring positioned at the site of a crack. In this model, we
assume that both springs provide additional strain energy in the system caused by the presence of a crack.
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Therefore, we obtain total strain energy as the sum of deformation energy of the nanobeam and additional
strain energy from the springs in the form

U =
1
2

∫
V
(σxx · εxx) dV +1Uc|x=L∗, (23)

where σxx is the stress given by the expression (3), εxx is the axial deformation and 1Uc is the increment
of strain energy. The total strain energy (23) can be written in the expansion form by using (13) as

U =
1
2

∫
V

(
N
∂u
∂x
−M f

∂2w

∂x2

)
dV +

(1
2 N1u+ 1

2 M f1θ
)∣∣

x=L∗, (24)

in which the term (1
2 N1u)|x=L∗ represents the strain energy from a linear spring and (1

2 M f1θ)|x=L∗

represents the strain energy from a rotational spring. The relative axial displacement 1u of a linear
spring and rotation angle 1θ of the rotational spring, i.e., horizontal displacement and rotation of the
edge crack section, are defined as

1u = r
∂u
∂x
+ kN M

∂2w

∂x2 , (25a)

1θ = c
∂2w

∂x2 + kM N
∂u
∂x
, (25b)

where r , c, kN M and kM N are the flexibility constants. It should be noted that the constants kN M and kM N

represent coupling effects between the axial force and bending moment. In this paper, we analyzed only
the free transversal vibrations where the axial displacement is neglected (u(x, t)= 0). Because of that,
the flexibility constants kN M and kM N are assumed to be small compared to constants c and they are
neglected as well [Torabi and Dastgerdi 2012]. Introducing these assumptions into the expression (25),
we obtain the axial displacement 1u, angle of rotation 1θ (slope) and increment of the strain energy as

1u = 0, 1θ = c
∂2w

∂x2 = C
∂2w

∂ξ 2 , 1Uc|x=L∗ =
(1

2 M f1θ
)∣∣

x=L∗, (26)

where C = c/L is the crack severity or dimensionless flexibility constant [Loya et al. 2009; Torabi
and Dastgerdi 2012; Hasheminejad et al. 2011]. In general, flexibility constant C is the function of
crack depth and geometry of the cracked section and nanobeam. However, in this analysis, we consider
the flexibility constant C as a dimensionless parameter, but its value needs to be determined from the
molecular dynamics model [Torabi and Dastgerdi 2012; Kisa and Gurel 2006; Loya et al. 2014]. In
addition, it should be emphasized that increment of the strain energy 1Uc in a cracked nanobeam or
other nanostructure could be also determined by using the molecular dynamics model. In this study,
values of crack severity are adopted based on the works found in the literature and the main attention
is devoted to the investigation of their influence on dynamical behavior of a cracked nanobeam model
subjected to the longitudinal magnetic field and temperature change.
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Since the cracked nanobeam is modeled as a system of two nanobeams connected in series by a
rotational spring, from (16) and (18), we can write the equations for each part of the nanobeam as

W IV
n1 (ξ)+ b̃W II

n1(ξ)− c̃Wn1(ξ)= 0, 0≤ ξ ≤ b, (27a)

W IV
n2 (ξ)+ b̃W II

n2(ξ)− c̃Wn2(ξ)= 0, b ≤ ξ ≤ 1, (27b)

where the influence of the crack is given via internal boundary conditions of the system. For such a
system of equations, we can write the solution in the form

Wn1(ξ)= Dn1 sinh(αnξ)+ Dn2 cosh(αnξ)+ Dn3 sin(βnξ)+ Dn4 cos(βnξ), (28a)

Wn2(ξ)= Dn5 sinh(αnξ)+ Dn6 cosh(αnξ)+ Dn7 sin(βnξ)+ Dn8 cos(βnξ), (28b)

where unknown constants Dni , i = 1, 2, . . . , 8, are determined from boundary conditions of the system
of nanobeams. In this paper, we consider two types of boundary conditions as shown in Figure 1c–d.
They can be mathematically expressed as:

(a) for simply supported boundary conditions (Figure 1c), at ξ = 0,

w1(0, τ )= 0 =⇒ W1n(0)= 0, (29a)

M1 f |ξ=0 =

[
−ν2

(
λ4

n −
K
ã

)
ãW1n − ãW II

1n

]
ξ=0
= 0 (29b)

and, at ξ = 1,

w2(1, τ )= 0 =⇒ W2n(1)= 0, (30a)

M2 f |ξ=1 =

[
−ν2

(
λ4

n −
K
ã

)
ãW2n − ãW II

2n

]
ξ=1
= 0, (30b)

(b) for clamped-clamped boundary conditions (Figure 1d), at ξ = 0,

w1(0, τ )= 0 =⇒ W1n(0)= 0, (31a)

∂w1(0, τ )
∂ξ

= 0 =⇒ W I
1n(0)= 0 (31b)

and, at ξ = 1,

w2(1, τ )= 0 =⇒ W2n(1)= 0, (32a)

∂w2(1, τ )
∂ξ

= 0 =⇒ W I
2n(1)= 0. (32b)

For the crack section (ξ = b), we have compatibility conditions that are expressed as

• transversal displacement

w2(b, τ )= w1(b, τ ) =⇒ W2n(b)=W1n(b), (33a)

• bending slope

∂w2(b, τ )
∂ξ

−
∂w1(b, τ )

∂ξ
=1θ =⇒ W I

2n(b)−W I
1n(b)= CW II

1n(b), (33b)
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• bending moment

M1 f |ξ=b = M2 f |ξ=b

=⇒

[
−ν2

(
λ4

n −
K
ã

)
ãW2n − ãW II

2n

]
ξ=b
=

[
−ν2

(
λ4

n −
K
ã

)
ãW1n − ãW II

1n

]
ξ=b
, (34a)

• transversal force

F1T |ξ=b = F2T |ξ=b

=⇒

[
−ν2

(
λ4

n −
K
ã

)
ãW I

2n − ãW III
2n

]
ξ=b
=

[
−ν2

(
λ4

n −
K
ã

)
ãW I

1n − ãW III
1n

]
ξ=b
, (34b)

where C = c/L denotes the dimensionless stiffness parameter of rotational springs.

Introducing (28) into (29)–(30) and (33)–(34), we obtain a matrix equation consisting of eight homo-
geneous algebraic equations for simply supported boundary conditions in the form

[G(λn)]{ψ} = {0}, (35)

where [G(λn)] is the matrix of natural frequency parameters λn and the term {ψ} is the vector composed
of eight unknown constants Dni , i = 1, 2, . . . , 8. The nontrivial solution of the system (35) is obtained
when the determinant of the system is equal to zero:

det[G(λn)] = |G(λn)| = 0. (36)

Solving these transcendent equations, we get the value of natural frequency and mode shape functions of
the system for simply supported boundary conditions. Using the same methodology as in the previous
case, substituting (28) into (31)–(32) and (33)–(34), we can obtain the frequency determinate for clamped-
clamped boundary conditions in the form

|H(λn)| = 0. (37)

The frequency determinants of the embedded nanotube for simply supported |G(λn)| and clamped-
clamped |H(λn)| boundary conditions are given in the Appendix.

3. Numerical results and discussion

In order to perform a parametric study, we consider the following ranges of the dimensionless parameters:
crack position b = 0.25–0.5, nonlocal parameter ν = 0–0.6, crack severity C = 0–2 and stiffness of
surrounding medium K = 0–1. These material and geometric parameters are adopted from [Loya et al.
2009]. In Tables 1 and 2, values of dimensionless natural frequencies of the cracked nanobeam are
given for changes of nonlocal parameter ν, crack severity C and stiffness of surrounding medium K
for various values of crack position b. Results for the simply supported boundary conditions are given
in Table 1 while those for the clamped-clamped boundary conditions are shown in Table 2. By comparing
the results obtained in this study with the results found in [Loya et al. 2009], it can be noticed that an
excellent agreement is achieved for both cases of boundary conditions. Further, the influence of crack
position on mode shape functions is presented in Figure 2. In addition, the effects of a longitudinal
magnetic field and change in temperature on natural frequencies are shown in Figures 3 and 4.
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b = 0.5 b = 0.25

K ν C = 0 C = 0.5 C = 1 C = 2 C = 0 C = 0.5 C = 1 C = 2

0 0 3.14159 2.63931 2.38319 2.09598 3.14159 2.82690 2.61743 2.34925
0.2 2.89083 2.41902 2.17779 1.90983 2.89083 2.58446 2.37535 2.11337
0.4 2.47903 2.06456 1.85242 1.61949 2.47903 2.19762 2.00246 1.76604
0.6 2.15067 1.78664 1.60037 1.39708 2.15067 1.89756 1.72163 1.51254

0.5 0 3.14562 2.64609 2.39237 2.10943 3.14562 2.83242 2.62438 2.35883
0.2 2.89599 2.42780 2.18979 1.92753 2.89599 2.59167 2.38463 2.12649
0.4 2.48719 2.07862 1.87178 1.64815 2.48719 2.20930 2.01785 1.78830
0.6 2.16313 1.80817 1.63003 1.44082 2.16313 1.91560 1.74562 1.54743

1 0 3.14962 2.65281 2.40145 2.12262 3.14962 2.83790 2.63127 2.36830
0.2 2.90113 2.43649 2.20160 1.94475 2.90113 2.59882 2.39379 2.13937
0.4 2.49528 2.09240 1.89055 1.67539 2.49528 2.22080 2.03289 1.80977
0.6 2.17537 1.82895 1.65816 1.48091 2.17537 1.93314 1.76866 1.58012

Table 1. Values of the dimensionless natural frequency λn for the simply supported
cracked nanobeam with different nonlocal parameter ν, crack severity C , stiffness of
surrounding medium K and crack position b. (Compare to [Loya et al. 2009] especially
for K = 0.)

From Table 1, it can be noticed that an increase in crack severity decreases the natural frequency
parameter of the cracked nanobeam. Moreover, it can be observed that an increase in the nonlocal
parameter causes a decrease in the natural frequency as expected. This implies that the small-scale effect
reduces the rigidity of the system so that the nanobeam becomes “softer”. An increase in the stiffness
coefficients has very weak influence on natural frequency of the system, and it causes a slight increase

b = 0.5 b = 0.25

K ν C = 0 C = 0.5 C = 1 C = 2 C = 0 C = 0.5 C = 1 C = 2

0 0 4.73004 4.27235 4.10790 3.97023 4.73004 4.71675 4.71144 4.70681
0.2 4.27661 3.79523 3.62032 3.47640 4.27661 4.26860 4.26418 4.25949
0.4 3.59232 3.12694 2.96127 2.82852 3.59232 3.58948 3.58662 3.58104
0.6 3.08370 2.66026 2.51211 2.39485 3.08370 3.08271 3.08094 3.06902

0.5 0 4.73122 4.27395 4.10970 3.97222 4.73122 4.71794 4.71263 4.70801
0.2 4.27821 3.79751 3.62295 3.47937 4.27821 4.27021 4.26580 4.26110
0.4 3.59501 3.13102 2.96607 2.83403 3.59501 3.59218 3.58932 3.58376
0.6 3.08795 2.66688 2.51995 2.40390 3.08795 3.08697 3.08521 3.07334

1 0 4.73240 4.27555 4.11150 3.97422 4.73240 4.71913 4.71383 4.70920
0.2 4.27981 3.79979 3.62558 3.48233 4.27981 4.27181 4.26740 4.26272
0.4 3.59770 3.13509 2.97085 2.83950 3.5977 3.59488 3.59202 3.58647
0.6 3.09219 2.67344 2.52773 2.41285 3.09219 3.09121 3.08946 3.07764

Table 2. Values of the dimensionless natural frequency λn for the clamped-clamped
cracked nanobeam with different nonlocal parameter ν, crack severity C , stiffness of
surrounding medium K and crack position b. (Compare to [Loya et al. 2009] especially
for K = 0.)
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Figure 2. First four mode shapes of the simply supported nanobeam with (a) b = 0.25
and (b) b= 0.5 and of the clamped-clamped nanobeam with (c) b= 0.25 and (d) b= 0.5.

in the frequency as shown in Table 1. Also, it should be noted that when the crack severity is equal to
zero we obtain natural frequencies of the embedded nanobeam without a crack. Comparing the natural
frequencies from Table 1 for different crack positions, we can observe that, for a movement of crack
position from the symmetric position at the middle of the nanobeam towards the boundaries, the natural
frequency of the system decreases. This implies that the crack position has small influence on natural
frequency when the crack is closer to the nanobeam boundaries.

In the case of clamped-clamped boundary conditions, we obtained higher values of natural frequencies
due to the “stronger” constraints as shown in Table 2. Here, effects similar to those for the previous
boundary conditions can be observed. An increase in crack severity as well as an increase in the nonlocal
parameter causes a decrease in natural frequency while an increase in the medium’s stiffness causes a
slight increase in natural frequency. The C = 0 columns in Table 2 show natural frequencies of the
clamped-clamped nanobeam without a crack. Considering the different crack positions in Table 2, we
find that the natural frequency is higher for the case when the crack is closer to the boundaries while it
decreases as the crack moves to the middle of the nanobeam.

It should be noted that the values of natural frequencies in this case reduce towards the values obtained
in [Loya et al. 2009] when the longitudinal magnetic field, temperature change and stiffness of the elastic
medium are equal to zero.

Mode shape functions of the cracked nanobeam for the first four vibration modes and two different
boundary conditions and crack positions b = 0.5 and b = 0.25 are shown in Figure 2. For a simply
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Figure 3. The first-mode natural frequency for a simply supported nanobeam with two
crack positions.

supported nanobeam, in Figure 2a–b, we can observe that the differences of mode shape curves are
localized near the crack position. When the crack is located at the middle of the nanobeam, we can notice
the difference between symmetric and antisymmetric modes; i.e., differences of mode shape curves are
visible only in the first and the third vibration mode and not for the second and the fourth mode. This is the
case because the crack is located at the vibrational node, which is dependent on the mode number. It can
be concluded that the crack does not affect the mode shape curve of the fourth vibration mode when the
crack is located at a quarter of the length of the nanobeam (Figure 2a) and the second and fourth vibration
modes when the crack is at the middle of the nanobeam (Figure 2b). In the next case, we analyze the
clamped-clamped nanobeam in which a crack is located at b = 0.25 as shown in Figure 2c and at b = 0.5
in Figure 2d. As in the previous case, the crack causes changes in the mode shape functions. Also, it
can be observed that deviations of mode shape curves allow us to detect surface defects in nanobeams
and their control in the propagation.

Further, we examine the influence of thermal and magnetic field effects on the dimensionless natural
frequency parameter of the cracked nanobeam embedded in an elastic medium. The following ranges
of the dimensionless material and geometrical parameters of the cracked nanobeam are adopted: crack
position b = 0.25–0.5, nonlocal parameter ν = 0.4, crack severity C = 0.5–2, stiffness of surrounding
medium K = 1, magnetic field parameter MP= 0–2 and thermal parameter N θ = 0–2. In Figure 3, we
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Figure 4. First natural frequency parameter for a clamped-clamped nanobeam with two
crack positions.

plot the changes in the natural frequency parameter for different crack positions and simply supported
boundary condition for two cases. In the first case, we consider the influence of thermal effect on the
natural frequency parameter for MP = 0 (Figure 3a–b). Here, we can observe that an increase in the
thermal coefficient causes a decrease in the natural frequency parameter for all values of crack severity
and positions. This implies that the influence of thermal effect reduces the stiffness of the embedded
nanobeam. From a physical point of view, the thermal parameter has damping effects on the vibration
behavior of the cracked nanobeam. In the second case, we consider only the effect of the longitudinal
magnetic field parameter on natural frequency as shown in Figure 3c–d. We can notice that an increase
in the magnetic field parameter causes an increase in natural frequency for both cases of crack position
in the nanobeam. Since an increase in the magnetic field parameter increases the rigidity of the system,
it consequently increases the natural frequency parameter as well.

For further analysis of nonlocal vibration behavior of the cracked nanobeam embedded in an elastic
medium, we will consider the systems with different crack positions and clamped-clamped boundary
conditions. In addition, we adopt the same geometric and material parameters for the cracked nanobeam
as in the previous case. Figure 4 shows changes in the natural frequency parameter for the clamped-
clamped boundary condition case. It can be observed that for the crack position b = 0.25 there is
no significant difference between natural frequencies with different crack severities. Further, it can be
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noticed that an increase in the thermal coefficient causes a decrease in natural frequency for all cases.
However, it can be noticed that the influence of crack stiffness is much smaller than in the case of the
simply supported nanobeam. In addition, Figure 4b shows that for b = 0.5 the natural frequency slightly
decreases for an increase in the thermal coefficient at the lowest value of crack severity but it slightly
increases for an increase in the thermal coefficient when crack severities are higher. Figure 4c shows that
for the crack position b = 0.25 natural frequencies are increasing for an increase in the magnetic field
parameter in all cases. However, this is not the case when b = 0.5 as shown in Figure 4d. Here, it can
be observed that the natural frequency slightly decreases for an increase of the magnetic field parameter
at the lowest value of crack severity. However, it does not change for C = 1, and it slightly decreases
for an increase in magnetic field parameter when C = 2. Finally, it should be noted that the system has
a behavior similar to that of the case of the simply supported nanobeam for increased crack severity.

Analyzing the influence of external field parameters on the dynamic behavior of the cracked nanobeam
structure, the following conclusion can be drawn. In the proposed model, the possibility of changing
the natural frequency by variation of only external field parameters such as thermal and longitudinal
magnetic field has a practical importance in design of NEMS devices. Choosing the proper magnitude
of the external magnetic field in a certain range, it is possible to avoid the resonance state and increase
the vibration amplitude at a given temperature. Moreover, this possibility allows us to control the crack
propagation in a dynamic state of a nanostructure by controlling the total stiffness of a system. This study
can be used as a starting point for the future investigation of vibration behavior of coupled nanobeams
with cracks or in design procedures of nanodevices under the influence of various physical effects.

Conclusion

The main objective of this paper was to examine the influences of a magnetic field and thermal effects on
the free vibration behavior of a cracked nanobeam. It can be concluded that natural frequency parameters
of nanobeams are strongly influenced by the crack existence in the nanostructure. Various positions of
the crack, different crack severities and different boundary conditions can change the values of natu-
ral frequencies or mode shape curves significantly. The influences of the two most commonly used
boundary conditions in nanoengineering practice on the dynamic behavior of the embedded nanobeam
were considered. It was found that the nanobeam with clamped-clamped boundary conditions has larger
natural frequencies, and it is less sensitive to a change of parameters of the external magnetic field and
temperature change. Thermal and longitudinal magnetic field effects on natural frequencies of cracked
nanobeams were also investigated. Their influences are not negligible and can essentially change the
vibration properties of nanobeams. This implies that the natural frequencies can be varied by a change
in longitudinal magnetic field or temperature parameters without the necessity of changing the material
and geometrical parameters of the nanosystem. These possibilities have great practical importance in the
design of NEMS devices. A numerical parametric study was performed, and influences of various system
parameters, such as the crack severities and position, nonlocality, longitudinal magnetic field, change in
temperatures and stiffness of the elastic medium, on the natural frequency were investigated. It was
found that the nonlocal parameter and crack severities have dampening effects on the natural frequency
for both boundary conditions. Moreover, it can be seen that an increase in stiffness of the elastic medium
leads to an increase in natural frequency, which implies an increase in the total stiffness of the system. In
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addition, it is indicated that the influence of the crack position on the vibration mode is very important
and significant for studying. The presented theoretical study can be very useful as a starting point in
future analysis of dynamic and stability behaviors of more complex nanostructure systems with defects.

Appendix A

Let

X = ν2
(
λ4

n −
K
ã

)
.

The frequency determinant in vibration analysis of the cracked nanobeam embedded in an elastic medium
with simply supported boundary conditions is

|G(λn)| =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1
0 X+α2

n 0 X−β2
n
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The frequency determinant in vibration analysis of the cracked nanobeam embedded in an elastic medium
with clamped-clamped boundary conditions is

|H(λn)| =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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The vector {ψ} is composed of eight unknown constants Dni , i = 1, 2, . . . , 8, defined as

{ψ}T = {Dn1, Dn2, Dn3, Dn4, Dn5, Dn6, Dn7, Dn8}
T .
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CONTOURS FOR PLANAR CRACKS GROWING IN THREE DIMENSIONS

LOUIS MILTON BROCK

A three-dimensional dynamic steady state analysis for extension of a semi-infinite plane crack is con-
sidered. Fracture is brittle and driven by loads applied to the crack surfaces. An analytical solution is
obtained, and examined in light of two criteria: energy release (rate) and strain energy density. Intro-
duction of a quasipolar coordinate system allows, for each criterion, generation of a nonlinear first-order
differential equation for the distance from the origin to any point on the crack edge. These in turn give
insight into the crack contour generated by the crack edge. In particular, for loading by compressive point
forces, the equation generated by the energy release (rate) criterion is solved exactly. Calculations depict
a crack edge contour that tends to the rectilinear, but deviates markedly from that near the point forces.

Introduction

The author considers sliding contact in the 3D dynamic steady state by rigid dies in [Brock 2012; 2014a;
2014b; 2015]. Basic die shapes — sphere, ellipsoid, cone — are treated [Brock 2012; 2014a], but also
more complicated shapes [Brock 2014a; 2014b; 2015] that preclude simple connectivity of the contact
zone [Brock 2014b] or a single contact zone [Brock 2015]. These 3D studies demonstrate the sensitivity
of contact zone contour to sliding speed, and show that contact zone shape does not necessarily replicate
the projection of the die profile onto the half-space.

An analogous goal in fracture mechanics is to determine crack edge location. In 2D dynamic fracture,
this requires an equation of motion for the crack tip [Freund 1990]. In a 3D study, such an equation must
describe the crack contour defined by crack edge location. The paper, therefore, considers semi-infinite
crack growth in an unbounded solid. For simplicity, the crack is assumed to (a) remain in its original
plane, (b) be driven by crack surface loads that translate at constant subcritical speed in a fixed direction
and (c) achieve a dynamic steady state.

While analogous, the study does not enjoy some features of [Brock 2012; 2014a; 2014b; 2015]: (a)
die/half-space conformation is paramount in defining the solution, (b) the (valid) assumption of a “small”
contact zone often allows conformation to be expressed in terms of polynomials and (c) solution of the
conformation equation itself can be simplified under the same assumption, e.g. [Brock 2014a]. Prescribed
geometrical properties do not in general define fracture criteria. Indeed, geometrical features (crack edge
location, crack contour) are outputs. Therefore, approximations for the equation of crack edge location
may be unrealistic.

The 3D analysis begins by considering the unmixed boundary value problem for a displacement dis-
continuity imposed over a semi-infinite plane area AC contained in an unbounded solid. The discontinuity
vanishes along area boundary C , vanishes at infinite distances from it, and translates with AC at constant
subcritical speed V in a fixed direction. A dynamic steady state ensues and allows use of a translating

Keywords: 3D, dynamic, criteria, analytic solution, crack edge contour, crack edge location.
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Cartesian basis. The transform solution is generated, but a quasipolar coordinate system is introduced
in the inversion process. Expressions for traction on the plane of AC lead to classical singular integral
equations for the displacement discontinuity produced were AC a crack subject to prescribed surface
loads. Two fracture criteria are considered, and each leads to a nonlinear first-order differential equation
for the distance from a fixed point in AC to any point on (now) crack edge C .

Displacement discontinuity growth — governing equations

Consider an unbounded, isotropic and linearly elastic solid. In terms of Cartesian basis x = x(xk),
semi-infinite planar region (x3 = 0, x1 < 0) AC is subject to discontinuity

[u(uk)] = U(Uk). (1)

Here k = (1, 2, 3), [ ] signifies a jump as travel from x3 = 0− to x3 = 0+ occurs, u is the displacement
field and Uk = Uk(x1, x2) discontinuity components. Region extension then occurs in the positive x1-
direction with constant subcritical speed V . A dynamic steady state is achieved such that U does not
change, and region boundary C assumes a fixed, albeit no longer rectilinear, profile. Displacement u(uk)

and traction T (σik) are invariant in the moving frame of AC . Basis x is therefore translated with AC so
that uk = uk(x), Uk =Uk(x1, x2), σik = σik(x) and the time derivative can be written as −V ∂1. Here ∂k

signifies xk-differentiation. For convenience x = 0 is located in the dislocation region, so that function
=(x1, x2)= 0,

√

x2
1 + x2

2 6= 0 defines contour C and the region can be defined as (x1, x2) ∈ AC . Both =
and its gradient ∇= are continuous, and any line passing through x = 0 in the x1x2-plane can cross C
only once. For x3 6= 0, governing equations for u(xk) can be written as [Brock 2012]

u = uD + uS, (2a)

(∇2
− c2∂2

1 )uS = 0, ∇ · uS = 0, (2b)

(c2
D∇

2
− c2∂2

1 )uD = 0, ∇ × uD = 0. (2c)

In (2) ∇2 is the Laplacian, and traction T is defined by

1
µ

T = [(c2
D − 2)∇ · uD]1+ 2(∇u+ u∇). (3)

Term 1 is the identity tensor, and (c, cD) are dimensionless ratios

c =
V
VS
, cD =

VD

VS
. (4)

Here (V, VS, VD) are, respectively, translation speed, shear wave speed, and dilatational wave speed, where

cD =

√
2

1− v
1− 2ν

, VS =

√
µ

ρ
. (5)

In (2)–(5), (ν, µ, ρ) are Poisson’s ratio, shear modulus and mass density, and 1 < cD. In light of (1),
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conditions for x3 = 0 are

[uk] =Uk (x1, x2) ∈ AC , [uk] = 0 (x1, x2) /∈ AC , (6a)

[σ3k] = 0. (6b)

Components Uk are not specified, but must be finite and continuous for (x1, x2) ∈ AC . Therefore Uk = 0
for =(x1, x2)= 0, and (u, T ) should remain finite for |x| →∞, x3 6= 0.

General transform solution

A double bilateral transform [Sneddon 1972] can be defined as

F̂ =
∫∫

F(x1, x2) exp(−p1x1− p2x2) dx1 dx2. (7)

Integration is along the entire Re(x1) and Re(x2)-axes. Application of (7) to (2) gives

ûS = V exp(−B|x3|), ûD = U exp(−A|x3|), (8a)

p1V1+ p2V2− BV3 = 0, U = (p1, p2,−A)U. (8b)

Terms (B, A) are roots of the transforms of, respectively, (2b) and (2c), given by

B =
√
−D+ c2 p2

1, A =
√
−D+ (c2/c2

D)p
2
1, D = p2

1 + p2
2. (9)

Equation (8) is bounded for x3 6= 0 if branch cuts are introduced so that Re(B, A)≥ 0 in the cut complex
(p1, p2)-planes. Application of (7) to (6) and substitution of (8) and (9) gives equations for (U, V1, V2)

in terms of transforms Ûk . The solutions for x3 ≥ 0(+) and x3 ≤ 0(−) are given by (A.1). Expressions
for traction (σ33, σ31, σ32) in plane x3 = 0 are also required and, in light of (3), (7) and (A.1), their
transforms are given by (A.3).

Transform inversion — general formulas

In (6), inhomogeneous terms (U1,U2,U3) arise only for (x1, x2) ∈ AC . In light of (A.3), therefore,
the inversion operation corresponding to (7) gives (σ33, σ31, σ32) for x3 = 0 as linear combinations of
expressions ∫∫

Uk dξ1 dξ2
1

2π i

∫
dp1

1
2π i

∫
Pk dp2 exp[p1(x1− ξ1)+ p2(x2− ξ2)]. (10)

Here Uk =Uk(ξ1, ξ2) and Pk = Pk(p1, p2) is the corresponding coefficient. Double integration is over
region AC , and single integration is over the entire Im(p1) and Im(p2)-axes. The form of (10) suggests
definitions and transformations [Brock 2012]:

p1 = p cosψ, p2 = p sinψ, (11a)[
x
y

]
=

[
cosψ sinψ
−sinψ cosψ

] [
x1

x2

]
,

[
ξ

η

]
=

[
cosψ sinψ
−sinψ cosψ

] [
ξ1

ξ2

]
. (11b)
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In (11), Re(p) = 0+, | Im(p), x, y, ξ, η| <∞ and |ψ | < π/2. Parameters (p, ψ), (x, ψ; y = 0) and
(ξ, ψ; η = 0) resemble quasipolar coordinate systems, i.e.,

dξ1 dξ2 = |ξ | dξ dψ, dp1 dp2 = |p| dp dψ. (12)

Use of (11) and (12) in (9) and (A.3) give

D = p2, B = B
√
−p2, A = A

√
−p2, K = K p2, (13a)

B =
√

1− c2 cos2 ψ, A =
√

1− (c2/c2
D) cos2 ψ, K = c2 cos2 ψ − 2. (13b)

In light of (7) and conditions for contour function =, (10) assumes the form

1
iπ

∫
9

Pk dψ
∫

N
dη

∂

∂x

∫
X

dξ
∂Uk

∂ξ
(ξ, η)

1
2π i

∫
|p|
p

√
−p
√

p
dp exp(p(x − ξ)). (14)

Symbols (N , X, 9) signify integration over ranges |ψ | < π/2, N− < η < N+ and X− < ψ < X+,
respectively. Here Pk = Pk(ψ), and p-integration is along the positive side of the entire imaginary axis.
Terms in (8) are bounded for positive and real (B, A) if branches Im(p)= 0, Re(p) < 0 and Im(p)= 0,
Re(p) > 0 are introduced for

√
±p, respectively, such that Re(

√
±p) > 0 in the cut p-plane. The p-

integration is given in Appendix B so that, in view of the condition that Uk vanish continuously on C
[Brock 2012],

1
π

∫
9

Pk dψ
∂

∂x

∫
N

dη
1
π

∫
X

∂Uk

∂ξ
(ξ, η)

dξ
ξ − x

. (15)

Limits N±(ψ) in (15) are defined by

=(ξ1(ξ, N±), ξ2(ξ, N±))= 0,
d N±

dξ
= 0. (16)

That is, for given ψ , limits N± are the maximum and minimum values of η on C , and for given η, limits
X±(ψ, η) locate the ends of lines that run parallel to the ξ -axis and that span C . Conditions on C imply
that these limits exist, are single-valued, and vary continuously in ψ . In particular, the semi-infinite
nature of AC guarantees that X−→−∞ for portions of 9. Figure 1 gives a generic sketch of AC for
the case that N+(ψ)→∞ and |X−(ψ, η)| is finite but too large to appear.

In light of (7)–(13), traction in AC itself, i.e., x3 = 0, (x1, x2) ∈ AC , can be written as

σ3k =−
1
π

∫
9

dψ
∫

N
dη

∂

∂x

∫
X

dξ δ(ξ, η)σ3k(x1(ξ, η), x2(ξ, η)). (17)

In (17), δ is the Dirac function. Therefore, expressions for traction in AC can be obtained by matching
the integrands of (ψ, η)-integration in (17) with combinations of those in (15). Moreover, ξ in (15)
and (17) is an integration variable representing parameter x that itself depends on (x1, x2) and ψ . As
noted in connection with (11), coordinates (x1, x2) can be replaced by (x, ψ) for y = 0. Thus every point
(x1, x2) ∈ AC lies on an integration path η = 0 that passes through both limit points of the ξ -integral.
The resulting expressions for traction in AC are given in Appendix C. Equation (13b) shows that (B, A)
are positive and real so long as c < 1. Term R in (C.3) is the Rayleigh function [Achenbach 1975] of
argument c cosψ and vanishes at value c cosψ = cR (0< cR < 1) where VR = cR VS is the Rayleigh wave
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ℑ(ξ  (ξ,η),ξ  (ξ,η)) = 01 2

ξ

ξ

1

ξ2

η = Ν  (ψ)

ψ

η

−

ξ = X  (ψ,η)+

C

AC

Figure 1. Schematic of semi-infinite area AC and contour C .

speed. To avoid critical behavior, therefore, the translation speed of C is subject to restriction 0< c < cR .
Crack extension in the dynamic steady state can now be treated. The treatment begins with some basic
results for extension caused by crack surface traction.

Related crack extension problem: basic results

Region AC in the dynamic steady state is now a crack whose two surfaces are subjected to traction
(−σC

33,−σ
C
31,−σ

C
32), with σC

3k > 0. Crack geometry, i.e., C , =(x1, x2)= 0 and V , is the same as before.
The conditions placed on Uk above are relevant for fracture. In light of 2D dynamic steady state analyses
of semi-infinite cracks [Brock 1999] therefore, (σC

33, σ
C
31, σ

C
32) must be finite and piecewise continuous.

Behavior should also be such that, for (x1, x2) ∈ AC ,

σC
3k ≈ O((x2

1 + x2
2)
−χ ),

√
x2

1 + x2
2 →∞ (χ > 1). (18)

Coupled singular integral equations for x-derivatives of (now-unknown) components (U1,U2,U3) are
provided by (C.3), with σ3k replaced by −σC

3k . Solution gives the derivatives and the functions themselves.
To emphasize aspects of 3D behavior, σC

3k-values are maximum near (x1, x2)= 0. It is then reasonable
to assume that any curvature of crack edge C will produce an essentially concave profile with respect
to (x1, x2) = 0. In view of the original restrictions on C , then, two cases arise. For X+ = x+(ψ) > 0,
X− =−x−(ψ),

∂Uk

∂x
=

1
√

x+− x
√

x + x−

(vp)
π

∫
X

gk(ξ, ψ)

ξ − x

√
x+− ξ

√
ξ + x− dξ, (19a)

Uk =
1
π

∫
X

gk(ξ, ψ) ln
∣∣∣∣√x+− x

√
ξ + x−−

√
x + x−

√
x+− ξ

√
x+− x

√
ξ + x−+

√
x + x−

√
x+− ξ

∣∣∣∣ dξ. (19b)
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Continuity of C requires that x±(π/2)= x∓(−π/2). For X+ = x+(ψ), X−→−∞,

∂Uk

∂x
=

1
√

x+− x
(vp)
π

∫
X

gk(ξ, ψ)

ξ − x

√
x+− ξ dξ, (20a)

Uk =
1
π

∫
X

gk(ξ, ψ) ln
∣∣∣∣√x+− ξ −

√
x+− x

√
x+− ξ +

√
x+− x

∣∣∣∣ dξ. (20b)

Continuity of C now requires that x+(±π/2)→∞. Equations (19b) and (20b) vanish continuously
on C , as required. In (19) and (20),

g1 =
1
N

[
M
B

(
σC

32

µ
cosψ −

σC
31

µ
sinψ

)
sinψ −

σC
31

µ
Bc2 cos2 ψ

]
, (21a)

g2 =
1
N

[
M
B

(
σC

32

µ
sinψ −

σC
12

µ
cosψ

)
cosψ −

σC
32

µ
Bc2 cos2 ψ

]
, (21b)

g3 =−
2A
R
σC

33

µ
c2 cos2 ψ. (21c)

Substitution of (19a) and (20a) into (15), but then performing the ξ -integration for x /∈ X leads to,
respectively, expressions for traction on plane x3 = 0, (x, ψ) /∈ AC ,

σ3k =
1

π
√

x+− x
√

x−+ x

∫
X

σC
3k(ξ, ψ)

ξ − x

√
x+− ξ

√
ξ + x− dξ, (22a)

σ3k =
1

π
√

x+− x

∫
X

σC
3k(ξ, ψ)

ξ − x

√
x+− ξ dξ. (22b)

Brittle fracture parameter: energy release (rate)

After [Griffith 1921], crack growth occurs when the rate of surface energy release balances that of po-
tential energy decrease. For the 2D brittle crack, this criterion equates the rate per unit length (of crack
edge) of energy release and negative of power per unit length generated in the crack plane [Achenbach
1975; Freund 1990]. Here, total release rate < and total power are considered. Use of (8) for the dynamic
steady state gives

<=−V
∫
9

dψ
[ ∫

∞

−∞

|x | dx σ3k∂1Uk +

∫
X
|x | dx σC

3k∂1Uk

]
, (23a)

∂1 = cosψ ∂

∂x
−

sinψ
|x |

∂

∂ψ
, ∂2 = sinψ ∂

∂x
+

cosψ
|x |

∂

∂ψ
. (23b)

The summation convention is understood in (23a). To illustrate the form of <, the ∂1-operator is applied
to case (20b) as

∂1Uk =−
(vp)

π
√

x+− x

∫
X

gk dξ
[√

x+− ξ
ξ − x

cosψ −
sinψ

|x |
√

x+−ψ
dx+
dψ

]
+

sinψ
π |x |

∫
X

dξ ln
∣∣∣∣√x+− ξ +

√
x+− x

√
x+− ξ −

√
x+− x

∣∣∣∣∂gk

∂ψ
.

(24)
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The x-integration sum, (17), (19b), (22b) and (24) imply that < = 0 in (23a). But in the sense of a
distribution each term in the sum gives [Achenbach and Brock 1973]

H(x+− x)
√

x+− x
H(x − x+)
√

x − x+
=
π

2
δ(x − x+). (25)

Here H is the step function. Also, < is assumed invariant with respect to its integrand in (23a). Singular
behavior guarantees invariance in terms of x , so that the integrand need only be constant in terms of ψ .
Therefore, for |ψ |< π/2,

<
√
µρ
=
−c
π

d
x+ dψ

(x+ sinψ)
∫

X

σC
3k dξ

µ
√

x+− ξ

∫
X

gk dξ
√

x+− ξ
. (26)

Equation (26) is, in effect, a nonlinear differential equation for x+(ψ). Equation (26) is based on (20).
Thus for |ψ | = π/2, x+→∞ yet < is invariant and finite. For |ψ | ≈ π/2, Equations (13b), (18), (21),
(C.3) and (26) lead to asymptotic forms∫

X

σC
3k(t, ψ)
√

x+− t
dt ≈−

63k

xχ−1/2
+

Gχ , Gχ =

∫
∞

−1

du

uχ
√

1+ u
, (27a)

<
√
µρ
≈

c
8π2

G2
χ

x2χ
+

dx+
dψ

(
c2

D

c2
D − 1

62
33+6

2
31−6

2
32

)
. (27b)

It is noted that the right-hand side of (27b) is finite when x+ ≈ O(1/
√

cosψ) for |ψ | ≈ π/2 and χ = 3
2 .

It is also to be noted that for ψ = 0, (26) in fact involves only x+(0) itself.

Brittle fracture parameter: strain energy density

Another brittle fracture model [Sih 1973] posits that an edge segment of a stationary crack will extend
in a given direction if the strain energy density E achieves a maximum in that direction, where

E
µ
=

c2
D

2
ϕ1− 2ϕ2, (28a)

ϕ1 = e11+ e22+ e33, ϕ2 = e11e22+ e22e33+ e33e11− e2
12− e2

23− e2
31. (28b)

Equation (28b) gives the first and second invariant of strain, where 2eik = ∂i uk + ∂kui . Behavior near the
crack edge, i.e., distance r→ 0, for brittle fracture, is

E ≈ S
r
. (29)

Therefore S is the key parameter. In keeping with the study of energy release rate, we examine the strain
energy W itself in a thin “tube” that encases crack edge C . This value is infinite, but the result obtained
below will correspond to (28). Results for x3 6= 0 are now required. In view of (7)–(14) and (A.1),
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components of ∂uk/∂x can be written as real or imaginary parts of a complex form as

1
iπ

∫
9

dψ
∫

N
dη

∂

∂x

∫
X

dξ
∂Uk

∂ξ
(ξ, η)

1
2π i

∫
|p|
p

[
Pk

√
−p
√

p
+ i Qk

]
dp

× exp(p(x − ξ)−
√
−p
√

p�|x3|). (30)

Symbol � represents (A, B) defined by (13b). The p-integration is obtained from Appendix B. Use of
(20a) and a result corresponding to (17) gives generic form

1
π2

∫
X

gk dt
√

x+− t
1
π

∫
X

dξ
(t − ξ)

√
ξ − x+

Pk + i Qk

x − ξ − i�|x3|
. (31)

The ξ -integration is performed by residue theory. Integration of (31) with respect to x , in view of the
condition that uk vanish on C , gives a generic form for uk-components

−
1
π2 (Pk + i Qk)

∫
X

gk ln

√
P −
√

x+− t
√

P +
√

x+− t
dt, P = x − x+− i�|x3|. (32)

Equation (28b) requires ∇uk , and (11) shows that xk-dependence in (32) is bound up in P which, for
case �= A, is

P = rA exp(iφA), (33a)

rA =
√
(x − x+)2+ A2x2

3 , φA = tan−1 Ax3

x − x+
(|φA|< π). (33b)

Knowledge of ∇uk near C suffices for (29), so, for �= A, (32) can be replaced with the asymptotic result

1
π2 (Pk + i Qk)

∫
X

gk dt
√

x+− t
√

rA exp
(

i
φA

2

)
+ O(rA). (34)

This form suggests that for given ψ a standard polar coordinate system (r, φ), centered on C , be defined
in the x − x3 plane with

r =
√
(x − x+)2+ x2

3 (r ≈ 0), φ = tan−1 x3

x − x+
(|φ|< π). (35)

Operations (∂1, ∂2, ∂3) on (34) required for∇uk follow, respectively, in view of (11), (23b), (33) and (35), as

−1

π2 A8
√

2r
(Pk + i Qk)

∫
X

gk dt
√

x+− t
[A++ i A− sgn(φ)]

d
x+ dψ

(x+ sinψ), (36a)

1

π2 A8
√

2r
(Pk + i Qk)

∫
X

gk dt
√

x+− t
[A++ i A− sgn(φ)]

d
x+ dψ

(x+ cosψ), (36b)

i A

π2 A8
√

2r
(Pk + i Qk)

∫
X

gk dt
√

x+− t
[A++ i A− sgn(φ)] sgn(φ). (36c)
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The result for �= B follows by replacing (A±, A8) with (B±, B8), where

A8 =
√

1− (c2/c2
D) cos2 ψ sin2 φ, A± =

√
A8± cosφ, (37a)

B8 =
√

1− c2 cos2 ψ sin2 φ, B± =
√

B8± cosφ. (37b)

Derivatives with respect to ψ , it is noted, for (Pk, Qk, gk), (A±, A8, A) and (B±, B8, B) in (34) are
associated with terms that vanish as r→ 0; see (24). To illustrate the results of (36), strain components
for the case of pure crack surface compression (σC

31 = σ
C
32 = 0) are given in Appendix D. Equations (28),

(29), (36) and (D.1) show that

E ≈ 1
r
6(ψ, φ). (38)

In view of (21), therefore, 6(ψ, φ) is quadratic in∫
X

σC
3k dt
√

x+− t
,

d
x+ dψ

(x+ sinψ),
d

x+ dψ
(x+ cosψ). (39)

Strain energy W in a thin tube (r ≈ 0) that encases crack edge C can be written as

W = r
∫
8

dφ
∫
9

6(ψ, φ) dC(ψ), dC(ψ)=
√

x2
+
+ (dx+/dψ)2 dψ. (40)

Symbol 8 signifies integration over range |φ|< π and dC(ψ) is the increment of length along the crack
edge. If W is assumed to be invariant, a critical strain energy density parameter for |ψ |< π/2 is

∂2W
∂r∂ψ

= SC =

∫
8

6(ψ, φ) dφ
√

x2
+
+ (dx+/dψ)2. (41)

While more complicated than energy release rate < given by (26), (41) is in effect also a nonlinear
differential equation for crack edge geometry parameter x+(ψ). Equation (40) is also based on (20), and
for |ψ | ≈ π/2, (37) gives( A+

A8
,

B+
B8

)
=
√

2 cos
φ

2
,

( A−
A8
,

B−
B8

)
=
√

2
∣∣∣sin

φ

2

∣∣∣. (42)

A standard table is used to carry out integration in (41). Use of (27a), (28), (D.1) and (D.2) lead to the
asymptotic formula

SC ≈
1

2µ

[
Gχ633

π2(c2
D − 1)

]2 dx+
dψ

[
c2

D(2−πc2
D)+

π

2

(
dx+

x+ dψ

)2]
. (43)

If asymptotic traction behavior (χ = 3
2) featured with (27b) is imposed, (43) gives finite SC for |ψ | = π/2

when x+ ≈ O(1/ cos2 ψ) as |ψ | → π/2. In addition, (D.1) shows that SC does not give an algebraic
equation for x+(0); see (26).

Illustration: application of energy release (rate) criterion

The strain energy density criterion is generally applied to static situations to ascertain the (possibly) out-
of-plane direction that a crack edge segment may move [Sih 1973]. Therefore, planar crack edge behavior
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ψ 0◦ 5◦ 15◦ 30◦ 45◦ 60◦ 75◦ 85◦ 90◦

c = 0.1 1.0 0.989 0.95 0.912 0.932 1.051 1.406 2.187 ∞

c = 0.4 1.0 0.987 0.936 0.881 0.887 0.987 1.319 2.238 ∞

Table 1. Ratio
x+(ψ)
x+(0)

for various (c, ψ).

in the dynamic steady state is illustrated here in terms of the energy release (rate) criterion. For simplicity,

σC
31 = σ

C
32 = 0, σC

33 =
Pδ(r0)

2πr0
, r0 =

√
x2

1 + x2
2 . (44)

Here P is a force, so that traction σC
33 is the axially symmetric Dirac function in standard polar coordinates.

In view of (21) and (42), criterion (26) reduces to (see (D.2))

<
√
µρ
=

2A
πR

(G
u

)2
c3 cos2 ψ

d
x+ dψ

(x+ sinψ), G =
∫

X

σC
33 dt
√

x+− t
. (45)

The expression for G is found in Appendix E, and so (45) gives differential equation

<
√
µρ
=

( P
2πµ

)2 A
R

c3 cos2 ψ
d

x3
+ dψ

(x+ sinψ). (46)

Here < is indeed finite at |ψ | = π/2 if x+ ≈ O(1/
√

cosψ), and, for ψ = 0,

<
√
µρ
=

(
P

2πµ

)2 A1c3

R1x2
+(0)

, R1 = 4A1 B1− K 2
1 , (47a)

A1 =
√

1− c2/c2
D, B1 =

√
1− c2, K1 = c2

− 2. (47b)

Thus, (44) gives the same asymptotic behavior for < as that caused by a distributed traction governed
by (18) with χ = 3

2 . Equation (47a) is algebraic, and readily solved. Invariance of < leads to the
differential equation, for ψ 6= 0,

1
x3
+

dx+
dψ
=

A1 R
AR1 cos2 ψ

1
x2
+(0)

. (48)

Separation of variables (x+, ψ) is possible in (48), and for 0<ψ < π/2 leads to

x2
+
(0)

x2
+(ψ)

=
2A1

R1
sin2 ψ

∫ π/2

ψ

dϕ

sin3 ϕ

R
A cos2 ϕ

. (49)

The integration in (49) produces (E.5) in Appendix E. That formula gives the appropriate result that the
right-hand side of (49) is unity for ψ = 0, and behaves as cosψ for ψ→ π/2. Case −π/2<ψ < 0 also
gives the right-hand side of (E.5), a result that in light of symmetry is also appropriate.

Sample calculation: energy release (rate) criterion

For a solid characterized by cD = 2 and cR = 0.932, (49) and (E.5) are used to calculate dimensionless
ratio x+(ψ)/x+(0) for c = 0.1 and c = 0.4 for values 0≤ ψ ≤ 90◦. The results appear in Table 1. Use
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c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
β1(c) 0.259 0.3706 0.4631 0.5512 0.6442 0.7534 0.901 1.1579

Table 2. Dimensionless parameter β1(c), cR = 0.932. Note: β1(0)= β1(cR)= 0.

of (4) in (47a) gives a relation in terms of three dimensionless quantities as√
</PVS

[√
µ/P x+(0)

]
=
β1(c)
2π

, β1(c)= c
√

cA1/R1. (50)

Parameter β1(c) defines, therefore, variation in x+(0) with respect to (dimensionless) crack translation
speed c, and calculations are given in Table 2. Combining the entries for c= 0.1 and c= 0.4 with Table 1
entries leads to schematics of crack edge contour C for (x1, x2) > 0 (x > 0, 0< ψ < 90◦) in Figure 2.
Both contours tend to the rectilinear, but are perturbed by a smooth indentation near the point force
location (denoted by ×). It was noted in light of (43) that the strain energy density criterion [Sih 1973]
predicts larger values of contour parameter x+ for |ψ | ≈ π/2 than those predicted by energy release (rate)
[Freund 1990]. In view of Figure 2 this implies that the crack edge contour may deviate even more from
lines that tend to the rectilinear.

Some comments

This study has produced equations for the radial measure x+(ψ) from a point on the crack surface to
points on the crack edge. Solutions, therefore, define the crack contour. Such equations follow from
the criterion for brittle crack growth imposed, and here energy release (rate) and strain energy density
are illustrated. Nonlinear first-order differential equations arise in both cases. The strain energy density
result is more complicated, because of nonlinearity in both the radial measure and its first derivative.

The case of compressive forces applied to corresponding points on the two crack surfaces is illustrated
on the basis of energy release (rate). An analytic solution of the equation, and related calculations, show

C (c = 0.1)

C (c = 0.4)

85� 75�
60�

45�

30�

15�

ψ = 5�

x

V

2

x1

Figure 2. Schematic of crack edge contour, C (drawn to scale).
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that the crack contour consists of lines that tend to the rectilinear at great distances from the point forces,
but exhibit a pronounced indentation near them. The contours are sensitive to crack growth rate.

The 3D results of this paper are obtained on the assumption that crack growth achieves a dynamic
steady state. Nevertheless, they may allow insight into aspects of brittle fracture response that do not arise
in a 2D study. On a related note, the analytic results in this paper make use of a “hybrid” form: Cartesian
fields are expressed in terms of quasipolar coordinates in the crack plane. The advantages of this are: (a)
the solution can be obtained from classical singular integral equations, and (b) some factorization of x+
and its derivative dx+/dψ in the nonlinear equation is possible.

One difficulty, however, with the “hybrid” form is that description of solution behavior in terms of
the three fracture modes must be extracted. When crack contour is known or a 2D study is involved,
imposition of local Cartesian coordinates that are, respectively, normal to the crack plane, and normal
and tangential to the crack edge, is feasible; see, e.g., [Freund 1990]. Based on experience [Brock 2012]
with undefined area contours, the author decided that such a coordinate choice could prove to be an
analytical stumbling block.

Appendix A

For x3 ≥ 0(+) and x3 ≤ 0(−), respectively,

c2 p2
1U± =−

KÛ3

2A
± (p1Û1+ p2Û2), (A.1a)

c2 p2
1V±1 = p1 BÛ3±

[
c2 p2

1
Û1

2
− p1(p1Û1+ p2Û2)

]
, (A.1b)

c2 p2
1V±2 = p2 BÛ3±

[
c2 p2

1
Û2

2
− p2(p1Û1+ p2Û2)

]
. (A.1c)

In (A.1), (B, A) are defined by (9), and

K = c2 p2
1 − 2D. (A.2)

Transforms of traction for x3 = 0 are given by

σ̂33

µ
=−

Û3

2Ac2 p2
1
(4D AB+ K 2), (A.3a)

σ̂31

µ
=

p1

Bc2 p2
1
(K − 2AB)(p1Û1+ p2Û2)+

1
2B
[(p2

2 − c2 p2
1)Û1+ p1 p2Û2], (A.3b)

σ̂32

µ
=

p2

Bc2 p2
1
(K − 2AB)(p1Û1+ p2Û2)+

1
2B
[(p2

1 − c2 p2
1)Û2+ p1 p2Û1]. (A.3c)

Appendix B

Consider integrals involving real constants (X, Y ) over the entire Im(p)-axis

1
2π i

∫
|p|
(√
−p
√

p
, 1
)

exp(pX − Y
√
−p
√

p)
dp
p

(Y ≥ 0). (B.1)
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As noted in connection with (11) and (12), Re(
√
±p) ≥ 0 in the p-plane with branch cuts Im(p) = 0,

Re(p) < 0 and Im(p) = 0, Re(p) > 0 respectively. In particular, for Re(p) = 0+ and, respectively,
Im(p)= q > 0 and Im(p)= q < 0,

√
−p =

∣∣∣q
2

∣∣∣1/2(1∓ i),
√

p =
∣∣∣q
2

∣∣∣1/2(1± i). (B.2)

Use of (B.2) reduces (B.1) to

1
iπ

∫
∞

0
(sin q X, cos q X) exp(−Y q) dq. (B.3)

Integration of (B.3) gives

1
iπ

[
X

X2+ Y 2 ,
Y

X2+ Y 2

]
=

1
iπ
[Re, Im]

1
X − iY

. (B.4)

It is noted that
1
π

Y
X2+ Y 2 → δ(X) (Y → 0+). (B.5)

Here δ is the Dirac function.

Appendix C

For x3 = 0, X− < x < X+, ψ ∈9, i.e., x3 = 0, (x1, x2) ∈ C ,

σ33

2µ
=−

G3

π
(vp)

∫
X

∂U3

∂x
dξ
ξ − x

, (C.1a)

σ31

2µ
=−

G1

π
(vp)

∫
X

∂U1

∂x
dξ
ξ − x

−
G12

π
(vp)

∫
X

∂U2

∂x
dξ
ξ − x

, (C.1b)

σ32

2µ
=−

G21

π
(vp)

∫
X

∂U1

∂x
dξ
ξ − x

−
G2

π
(vp)

∫
X

∂U2

∂x
dξ
ξ − x

. (C.1c)

In (C.1), Uk =Uk(ξ, ψ), (vp) signifies principal value integration, and

G1 = B+
M

Bc2 , G2 = B+
M

Bc2 tan2 ψ, G12 = G21 =
M

Bc2 tanψ, (C.2a)

G3 =
R

Ac2 cos2 ψ
. (C.2b)

Terms in (C.2) are defined by (13b) and

M = 2N + c2 cos2 ψ, N = 2AB+ K , R = 4AB− K 2. (C.3)
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Appendix D

If (σC
31, σ

C
32)= 0 and (X−→−∞, |ψ |< π/2), strain for r ≈ 0 is obtained from (44) as

e11 ≈−
cosψ

π2
√

2r

G
R

(
K

A+
A8
+ 2AB

B+
B8

)
d

x+ dψ
(x+ sinψ), (D.1a)

e22 ≈
sinψ

π2
√

2r

G
R

(
K

A+
A8
+ 2AB

B+
B8

)
d

x+ dψ
(x+ cosψ), (D.1b)

e33 ≈−
A

π2
√

2r

G
R

(
K A

A+
A8
+ 2B

B+
B8

)
, (D.1c)

e23 ≈
1

2π2
√

2r

G
R

(
K

A−
A8
+ 2B2 B−

B+

)
sinψ + sgn(φ)

(
K

A−
A8
+ 2AB

B−
B8

)
d

x+ dψ
(x+ cosψ), (D.1d)

e31 ≈
1

2π2
√

2r

G
R

(
K

A−
A8
+ 2B2 B−

B8

)
cosψ − sgn(φ)

(
K

A−
A8
+ 2AB

B−
B8

)
d

x+ dψ
(x+ sinψ), (D.1e)

e12 ≈
1

2π2
√

2r

G
R

(
K

A+
A8
+ 2AB

B+
B8

)
cosψ

d
x+ dψ

(x+ cosψ)− sinψ
d

x+ dψ
(x+ sinψ). (D.1f)

The factor G is given by

G =
∫

X

σC
33 dt
√

x+− t
. (D.2)

Appendix E

In terms of quasipolar coordinates (x, ψ), (41) gives

σC
33 = P

δ(x)
π |x |

, |ψ |< π/2. (E.1)

Function G in (42) is obtained in terms of representation

σC
33 = P

ε

π2|x |(x2+ ε2)
(ε→ 0). (E.2)

Function FG(z) in the complex z-plane, where x = Re(z), is defined as

FG(z)=
1√

z2− ε2
0(z

2+ ε2)
√

z− x+
(ε0 ≈ 0). (E.3)

Here FG ≈ O(z−3), |z|→∞ and exhibits branch cuts on the Re(z)-axis with branch points z= (±ε0, x+),
and poles z =±iε. Thus integration over a closed contour that includes a portion |z| →∞, but excludes
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the poles and branch cuts, can be performed by residue theory. Setting ε0 = 0 then leads to

G =
P

πα
√

2(1+α)

1

x3/2
+

, α =
√

1+ ε2/x2
+
, (E.4a)

G =
P

2πx3/2
+

(ε→ 0). (E.4b)

Use of (E.4) leads to the integral in (49). Introduction of integration variable u = c cosϕ gives a form
that is readily carried out as∫ π/2

ψ

R sin2 ψ

A cos2 ϕ

dϕ

sin3 ϕ
=

(
2B−

K 2
1 A

2A2
1

)
cosψ + 4(A− B)

sin2 ψ

cosψ

+
2K1

A1

(
1+

K1

A2
1

)
ln
∣∣∣∣ A+ A1 cosψ

A− A1 cosψ

∣∣∣∣ sin2 ψ + 2
(

B1+
1

2B1

)
ln
∣∣∣∣ B+ B1 cosψ

B− B1 cosψ

∣∣∣∣ sin2 ψ. (E.5)

The right-hand side behaves as cosψ for ψ = π/2, and for ψ = 0 gives R1/2A1.
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MECHANICAL DEGRADATION OF
NATURAL FIBER REINFORCED COMPOSITE MATERIALS

UNDER CONSTRAINED SWELLING

YIHUI PAN AND ZHENG ZHONG

Natural fiber reinforced composite materials (NFRCMs) have found more and more applications be-
cause of their excellent performances over traditional fiber reinforced composites. However, mechanical
properties of these materials may be dramatically degraded in a humid environment, whether subject to
mechanical loading or not. A nonlinear constitutive model is established for unidirectional natural fiber
reinforced composites under large swelling deformation based on nonequilibrium thermodynamics, in
which an internal variable is incorporated in the Helmholtz free energy to consider the irreversible energy
dissipation induced by moisture absorption. The Helmholtz free energy is further decomposed into the
base free energy of the isotropic matrix, the reinforcing energy of fiber stretching and the free energy
of volume expansion. Two kinds of reinforcing energy (the I4-dependent model and the I5-dependent
model) are employed to predict the degradation of the elastic modulus for the cases of free swelling and
constrained swelling. It is found that the predictions from these two models are identical for the case of
free swelling and agree well with available experimental data. As for the case of constrained swelling,
these two models yield obviously different results.

1. Introduction

Natural fiber reinforced composite materials (NFRCMs) have been drawing great attention due to their
excellent advantages over glass or other traditional fiber reinforced composites. For example, natural
fibers possess high specific strength and modulus because of their light weight [Athijayamani et al. 2009;
Medina et al. 2009]. Moreover, they are environmentally friendly with biodegradable properties. Hence,
NFRCMs have found more and more applications in the aerospace and automobile industries. In spite
of so many advantages, there are still some disadvantages to these new composite materials, such as
moisture absorption and weak adhesion to hydrophobic matrices [Sgriccia et al. 2008]. The worst is the
mechanical degradation of NFRCMs induced by moisture absorption in a humid environment, especially
losses of tensile and shear moduli.

Natural fibers are usually hydrophilic and have a porous structure [Lu et al. 2003] which can transport
large amounts of water from an external humid environment [Espert et al. 2004]. There are two main
causes for the mechanical degradation of NFRCMs induced by moisture absorption. First, water uptake
will cause natural fibers to swell and induce fiber aging, during which natural fibers gradually soften due
to a loss of elastic moduli [Song et al. 2011]. Second, interfaces between the matrix and the fibers of

Zheng Zhong is the corresponding author.
Work based on a presentation at the International Workshop on Material Modeling, March 30 – April 04, 2014, São Carlos, SP,
Brazil.
Keywords: natural fiber, moisture absorption, mechanical degradation, swelling, energy dissipation.
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NFRCMs will be continuously damaged by moisture absorption [Dhakal et al. 2007], so that in the worst
case, the interfaces would be totally damaged and the fibers completely pulled out [Sydenstricker et al.
2003], losing their reinforcing effects on the matrix.

Since moisture absorption in a humid environment is inevitable, it is significant to study moisture
absorption and its effects on the mechanical properties of NFRCMs. However, Fick’s diffusion law fails
to describe the process of moisture absorption because the permeability of water diffusion is no longer
a constant, which changes with interfacial damage and fiber aging during moisture absorption [Hu et al.
2010].

The moisture-induced swelling deformation of NFRCMs was originally studied by Tsai et al. [2004]
based on a finite elasticity description, considering a finite strain flexure in an isotropic rectangular block.
Then the theoretical framework was applied to fiber reinforced composite materials with absorbent matrix
and hydrophobic fibers [Demirkoparan and Pence 2007a; 2007b; 2008; Fang et al. 2011].

The swelling-induced mechanical degradation of polymeric materials is another research topic of
common interest. Baek and Pence [2009] developed a constitutive model considering the swelling and
mechanical degradation of fiber reinforced composites based on the energy dissipation framework [Ra-
jagopal and Srinivasa 2004; Rajagopal et al. 2007; Karra and Rajagopal 2012]. The purely mechanical
induced degradation of fiber reinforced composites was also studied [Baek and Pence 2011].

In [Pan and Zhong 2014b], large swelling deformation and nonlinear mechanical responses of natural
fiber reinforced composites are taken into account by adopting a special form of the Helmholtz free energy
which depends on four scalar strain invariants reflecting the deformation characteristics of transverse
isotropy of unidirectional fiber reinforced composites [Qiu and Pence 1997] and an internal variable
describing the moisture absorption process. This model is referred to as the I4-dependent model in the
present paper.

In the present paper, instead of using the I4-dependent model, another model for reinforcing energy
which was studied in detail by Merodio and Ogden [2005] is employed to consider the unidirectional
reinforcement of natural fibers in a neo-Hookean matrix, which is called the I5-dependent model. The
degradation of elastic modulus is predicted for the cases of free swelling and constrained swelling based
on the newly developed model and compared with those obtained from the I4-dependent model. It is
found that the predictions from these two models are identical for the case of free swelling and deviate
obviously from each other for the case of constrained swelling.

This paper is organized as follows. In Section 2, a general constitutive model is described based on
nonequilibrium thermodynamics. Then in Section 3 we specialize the I5-dependent model to study the
mechanical degradation of NFRCMs under free swelling and constrained swelling. In Section 4, results
are obtained for a unidirectional sisal fiber reinforced benzylated wood based on the I5-dependent model
and compared with those from the I4-dependent model. Finally, in Section 5, we draw the conclusions.

2. Theoretical formulation

2.1. Deformation decomposition. Consider a natural fiber reinforced composite in a humid environment.
The deformation gradient is defined by F = ∂x/∂X , where X represents the position vector of a material
particle in the initial dry and undeformed configuration, and x is the corresponding position vector of this
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particle in the current swollen and deformed configuration, from which the right and the left Cauchy–
Green strain tensors are given as C = FT

· F and b = F · FT . Here the dot product “·” denotes a
contraction (inner product) over one index between two tensors (or vectors), and the superscript “T ”
denotes the transpose of a tensor.

If we adopt a multiplicative decomposition of the deformation gradient into volume-changing (dila-
tional) and volume-preserving (distortional) parts [Holzapfel 2000], then we have

F = J 1/3 F̄, (1)

where J = det F is the volume ratio and F̄ is called the modified deformation gradient tensor. Ac-
cordingly, the modified right and left Cauchy–Green strain tensors can be defined as C̄ = F̄T

· F̄ and
b̄= F̄ · F̄T . Here we refer to a case as free swelling when C̄ = I (or equivalently b̄= I) and otherwise
as constrained swelling if C̄ 6= I (or equivalently b̄ 6= I), with I being the second-order identity tensor.

Furthermore, three principal invariants of C (also b) are given as

I1 = trC = J 2/3trC̄ = J 2/3 Ī1, (2a)

I2 =
1
2 [(trC)

2
− tr(C2)] = 1

2 J 4/3
[(trC̄)2− tr(C̄2)] = J 4/3 Ī2, (2b)

I3 = det C = J 2, (2c)

where the notations “tr” and “det” denote, respectively, the trace and the determinant of a tensor, and Ī1

and Ī2 are the first and the second principal invariants of C̄ , with the third principal invariant Ī3 = 1.

2.2. Material model. For a transversely isotropic material, with the axis of transverse isotropy defined by
a unit vector a0 in the initial configuration, the Helmholtz free energy depends not only on the deformation
tensor C, but also the second-order tensor a0⊗ a0, which can be written as [Moon and Spencer 1988;
Spencer 1984]

W =W (C, a0⊗ a0)=W ( Ī1, Ī2, J, Ī4, Ī5), (3)

where
Ī4 = a0 · C̄ · a0 = λ

2
f , Ī5 = a0 · (C̄)2 · a0, (4)

and λ f =
√

Ī4 is the fiber stretch.
As special cases, (3) reduces to the I4-dependent model [Qiu and Pence 1997]

W =W ( Ī1, Ī2, J, Ī4) (5)

when the Helmholtz free energy is independent of Ī5, or the I5-dependent model [Merodio and Ogden
2005]

W =W ( Ī1, Ī2, J, Ī5) (6)

when the Helmholtz free energy is independent of Ī4.
Furthermore, the free energy W is assumed to be decomposed into three parts:

W =Wm( Ī1, Ī2)+Wf ( Ī4, Ī5)+Wv(J ). (7)

The first term in the right-hand side of (7) represents the base Helmholtz free energy of the isotropic
matrix induced by mechanical loading, while the second term is the reinforcing energy associated with
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the stretching of the embedded fibers under the mechanical loading and the last term stands for the free
energy of volume expansion induced by fiber swelling.

2.3. Internal variable. Upon moisture absorption, the interface between the matrix and the fiber of
NFRCMs may be damaged [Dhakal et al. 2007; Sgriccia et al. 2008]. At the same time, the fiber also
undergoes aging due to large amounts of water absorbed by natural fibers [Espert et al. 2004; Gao
et al. 2011; Song et al. 2011]. Since all these processes are thermodynamically irreversible with energy
dissipation, an internal variable is tentatively introduced to account for the effect of the composite mi-
crostructure change induced by moisture absorption. The internal variable α varies from 0 to 1 such
that α = 0 corresponds to the initial dry state and α = 1 represents the fully saturated state. It is known
that in the dry state, the composite maintains its initial mechanical properties. As α evolves from 0
to 1, the mechanical properties, such as Young’s modulus, gradually degrade due to moisture absorption.
Such degradation effects are reflected by the softening of the matrix and the reinforcement. Hence,
the Helmholtz free energy for this transversely isotropic composite should also depend on the internal
variable α, so that (7) is further modified to give

W =Wm(α, Ī1, Ī2)+Wf (α, Ī4, Ī5)+Wv(J ). (8)

Here the internal variable α acts as an additional independent variable in (8).
Note that Baek and Pence [2009; 2011] used two internal variables to describe the mechanical degra-

dation of matrix and the fiber, respectively. In this paper, only one internal variable is employed for
natural fiber composites, since both the interface damage and the fiber degradation are treated as a
unified thermodynamic process induced by moisture absorption. This treatment simplifies the solution
of the evolution of the internal variable and also gives a sufficient accuracy in describing the mechanical
degradation of natural fiber composites as illustrated in Section 4.

Since the internal variable α is related to the absorption process of the natural fiber, the volume ratio J
of the composite is assumed to be a function of α, i.e.,

J = J (α). (9)

For an incompressible composite without moisture absorption, we have J = 1. Furthermore, a linear
relation between J and α can be derived based on the assumption of molecular incompressibility [Hong
et al. 2008] as

J = 1+ θα, (10)

where θ is the equilibrium volume fraction of water in the composites defined with respect to the initial
dry configuration, and can be derived from experiments. Equation (10) is an ideal mixing approximation
of the moisture absorption process that the swelling volume is the volume sum of the dry composite and
the water uptake.

The constraint J = J (α) can be accounted for by introducing a Lagrange multiplier term into the
Helmholtz free energy, so that

W =Wm(α, Ī1, Ī2)+Wf (α, Ī4, Ī5)+Wv(J )+Π [J − J (α)], (11)

where the Lagrange multiplier term Π is interpreted as an osmotic pressure and could be determined
from boundary conditions.
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2.4. Thermodynamics. When the composite is subject to mechanical loading and a humid environment,
there are two mechanisms doing work on the composite: mechanical loading and chemical potential of
the external environment. During this process, the Clausius–Duhem inequality

Jσ : d+µr +µα̇− q · ∇µ≥ Ẇ (12)

holds, where σ is the Cauchy stress, µ is the chemical potential, r stands for the internal source of water
(however, in most cases there is no internal source and r = 0), q represents the water flowing out through
the element area, and the rate of deformation tensor is defined as

d = 1
2(Ḟ · F

−1
+ F−T

· ḞT ). (13)

From (11), the rate of the Helmholtz free energy Ẇ is calculated as

Ẇ = 2P : [ω1 b̄+ω2 b̄2
+ω4 ā⊗ ā+ω5(ā⊗ b̄ · ā+ b̄ · ā⊗ ā)] : d+ Jω3 I : d+ Y αα̇, (14)

with

ω1 =
∂Wm

∂ Ī1
+ Ī1

∂Wm

∂ Ī2
, ω2 =−

∂Wm

∂ Ī2
, ω3 =

∂Wv

∂J
+Π,

ω4 =
∂Wf

∂ Ī4
, ω5 =

∂Wf

∂ Ī5
, Y α =

∂(Wm +Wf )

∂α
,

(15)

where b and b̄ are the left Cauchy–Green strain tensors corresponding to F and F̄, respectively, I is
the second-order identity tensor, the projection tensor P= I− (I ⊗ I)/3 is defined with respect to the
current configuration, I is the fourth-order identity tensor, ā = F̄ · a0 stands for the fiber direction after
mechanical loading, and Y α is the thermodynamic force conjugate to the thermodynamic flow α̇.

Substituting (14) into (12) when r = 0, we have

(Jσ −P : σ̄ − Jσ S) : d+ (µ− Y α)α̇− q · ∇µ≥ 0, (16)

where
σ̄ = 2[ω1 b̄+ω2 b̄2

+ω4 ā⊗ ā+ω5(ā⊗ b̄ · ā+ b̄ · ā⊗ ā)],

σ S
= ω3 I .

(17)

In the thermodynamic inequality (16), the first and the second terms represent, respectively, the energy
dissipation caused by external forces and chemical potential. If we assume that the equilibriums of
mechanical loading and chemical potential are achieved instantaneously, then

σ = J−1P : σ̄ + σ S, (18)

where J−1P : σ̄ and σ S are the Cauchy stresses due to isochoric elastic deformation and volumetric
swelling deformation, respectively, and

µ= Y α, (19)

which relates the chemical potential to the variation of the Helmholtz free energy with the internal vari-
able.
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The third term stands for the energy dissipation induced by water transport, which requires that the
following inequality should hold:

q · ∇µ≤ 0. (20)

Hence, the energy dissipation caused by the thermodynamic flow α̇ with its conjugate force Y α is
given as

4=−Y αα̇. (21)

3. Mechanical degradation due to moisture absorption

In this section, the theoretical formulations developed above are specialized with the I5-dependent model
to study the mechanical degradation of NFRCMs under constrained swelling and free swelling.

3.1. Moisture absorption. To study the influence of moisture absorption on the mechanical properties
of NFRCMs, for simplicity and without loss of generality we study a cubic NFRCM sample exposed to a
humid environment and simultaneously subjected to (possible) mechanical loading, corresponding to the
case of constrained swelling. The isochoric elastic deformation is described by three principal stretches
λ̄1, λ̄2, λ̄3 of the deformation gradient F̄, with

Ī1 = λ̄
2
1+ λ̄

2
2+ λ̄

2
3, Ī2 = λ̄

2
1λ̄

2
2+ λ̄

2
2λ̄

2
3+ λ̄

2
3λ̄

2
1 and Ī3 = (λ̄1λ̄2λ̄3)

2
= 1.

Considering that the interfaces between the matrix and the fibers are deteriorated gradually due to
moisture absorption [Sgriccia et al. 2008], we modify the neo-Hookean model for the isotropic polymer
matrix to obtain [Baek and Pence 2009; Karra and Rajagopal 2012]

Wm =
1
2 G[1−β1(c)α]( Ī1− 3)= 1

2 G[1−β1(c)α]
[∑

i

(λ̄i )
2
− 3

]
, (22)

where G is the initial shear modulus of the matrix, β1(c) is a dimensionless parameter reflecting the
influence of the degradation on the matrix, which depends on the fiber content c. Note that the interface
damage increases with the fiber content, so that β1 should be a monotonically increasing function of c.
Equation (22) is called the modified neo-Hookean model, which reduces to the original neo-Hookean
model if α = 0.

If we assume the initial fiber direction is taken along the X1-axis in the initial configuration, then
Ī5 = λ̄

4
1, with λ̄1 being the fiber stretch induced by mechanical loading. Accordingly, the reinforcing

energy based on the I5-dependent model is given by [Merodio and Ogden 2005]

Wf =
1
2 Gγ̄ ( Ī5− 1)2 = 1

2 Gγ̄ [(λ̄1)
4
− 1]2, (23)

where γ̄ is the relative stiffness of the fiber with respect to the matrix, which can be taken as γ̄ = cγ for
the first approximation, with γ being a coefficient of proportionality. Further considering the interface
damage and the fiber degradation, (23) is modified to the form [Baek and Pence 2009]

Wf =
1
2 Gγ̄ (1−β2α)[(λ̄1)

4
− 1]2, (24)

where β2 is a dimensionless constant referred to as the maximum degradation parameter of the fiber. In
the case of α = 0, the modified reinforcing energy reduces to the original one given by Merodio and
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Ogden [2005]. The volume expansion energy Wv induced by the fiber swelling is specified as [Hong
et al. 2008]

Wv =−Gγ̄ ln J. (25)

With the above specified Helmholtz free energies for the matrix Wm , the reinforcing energy Wf and
the volume expansion energy Wv, the constitutive relation of the composite is derived by substituting
(10), (22), (24) and (25) into (18), as

σ11 =
1
3 Gd1(α)[2(λ̄1)

2
− (λ̄2)

2
− (λ̄3)

2
] + (Π − cγG J−1)+ 8

3 cγGd2(α)[(λ̄1)
8
− (λ̄1)

4
], (26a)

σ22 =
1
3 Gd1(α)[2(λ̄2)

2
− (λ̄1)

2
− (λ̄3)

2
] + (Π − cγG J−1)+ 4

3 cγGd2(α)[−(λ̄1)
8
+ (λ̄1)

4
], (26b)

σ33 =
1
3 Gd1(α)[2(λ̄3)

2
− (λ̄1)

2
− (λ̄2)

2
] + (Π − cγG J−1)+ 4

3 cγGd2(α)[−(λ̄1)
8
+ (λ̄1)

4
], (26c)

with
d1(α)= (1+ θα)−1(1−β1α) and d2(α)= (1+ θα)−1(1−β2α). (27)

Here d1(α) and d2(α) are regarded as degradation functions describing, respectively, the degradation
of the shear modulus G and the relative stiffness γ̄ .

To derive the evolution equation of α, the dissipation function 4 in (21) should be specified. Here we
take the form that has been successfully used to describe material degradations from different dissipation
mechanisms, e.g., thermo-oxidization, hydrolysis and swelling [Rajagopal and Srinivasa 2004; Rajagopal
et al. 2007; Baek and Pence 2009; Soares et al. 2009; Karra and Rajagopal 2012]:

4(α, α̇)=
D̄α̇(n+1)/n

(1−α)1/n , (28)

where n is a rate-sensitive index and D̄ is a parameter governing the speed of energy dissipation. To
further reflect the effect of fiber volume fraction on the swelling speed, D̄ is assumed to be proportional
to the fiber content, so that D̄ = cD with D being a coefficient of proportionality [Pan and Zhong 2014a;
2014b]. Then a combination of (21) with (28) yields( α̇

1−α

)1/n
=

Gβ1

2cD

[∑
i

(λ̄i )
2
− 3

]
+
γGβ2

2D
[(λ̄1)

4
− 1]2+

Πθ

cD
. (29)

Equation (29) is an evolution equation of the internal variable α depending on the elastic stretches λ̄i ,
which provides a supplement of the constitutive relations given by (26).

In particular, if the cubic composite sample is immersed in water and swells freely without any me-
chanical loading, then we have λ̄1 = λ̄2 = λ̄3 = 1 and σ11 = σ22 = σ33 = 0. From (26a), the osmotic
pressure is derived as

Π = cγG J−1. (30)

We further substitute (30) into (29) and set λ̄i = 1, and then derive the evolution equation of α for the
case of free swelling as ( α̇

1−α

)1/n
=
γ θG
J D

, (31)
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i1 i2

i1

Figure 1. Three loading cases for deriving five elastic coefficients: (left) tensile along
the fiber direction, (center) tensile transverse to the fiber direction, and (right) simple
shear along the fiber direction.

which takes the same form as that in [Pan and Zhong 2014b] using the I4-dependent model. But the
evolution equations based on these two models are different in the case of constrained swelling.

3.2. The evolutions of five elastic coefficients. Based on the constitutive relation (26), the five elastic
coefficients of a transversely isotropic composite material are derived for three loading cases (elastic
deformation), as illustrated in Figure 1.

In the first case, a uniaxial tensile test along the reinforcing direction (X1-axis) is studied, as shown
in Figure 1(left). According to the incompressibility condition, the stretches should satisfy the relation

λ̄2 = λ̄3 = (λ̄1)
−1/2, (32)

from which two Poisson’s ratios are derived as

υ12 = υ13 =−
dλ̄2

dλ̄1

∣∣∣
λ̄1=1
=

1
2
. (33)

According to the boundary condition σ22 = σ33 = 0, the Lagrange multiplier Π is obtained as

Π = 1
3 Gd1(α)[(λ̄1)

2
− (λ̄1)

−1
] +

4
3 cγGd2(α)[(λ̄1)

8
− (λ̄1)

4
] + cγG J−1. (34)

Substituting (34) into (26a), the tensile stress σ11 along the fiber direction is obtained as

σ11 = Gd1(α)[(λ̄1)
2
− (λ̄2)

−1
] + 4cγGd2(α)[(λ̄1)

8
− (λ̄1)

4
]. (35)

The tensile modulus E1 along the fiber direction can be determined by the tangential modulus at λ̄1 = 1
from (35), and is calculated as

E1 =
dσ11

dλ̄1

∣∣∣
λ̄1=1
= 3Gd1(α)+ 16cγGd2(α). (36)

The second case concerns a tensile loading transverse to the fiber direction, as illustrated in Figure 1(cen-
ter), from which the Poisson’s ratios υ21 and υ23 can be determined. In this case, the relation between
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the three principal stretches is given as

λ̄3 = (λ̄1λ̄2)
−1. (37)

From the given boundary conditions σ11 = σ33 = 0, it is established that

G(1−β1α)[(λ̄1)
2
− (λ̄3)

2
] + 4cγG(1−β2α)[(λ̄1)

8
− (λ̄1)

4
] = 0. (38)

Substituting (37) into (38), we then obtain the Poisson’s ratio υ21 as

υ21 =−
dλ̄1

dλ̄2

∣∣∣
λ̄2=1
=

1−β1α

2[(1−β1α)+ 4cγ (1−β2α)]
. (39)

Similarly, the Poisson’s ratio υ23 is derived as

υ23 =−
dλ̄3

dλ̄2

∣∣∣
λ̄2=1
=

(1−β1α)+ 8cγ (1−β2α)

2[(1−β1α)+ 4cγ (1−β2α)]
. (40)

The third loading case is a simple shear along the fiber direction, as shown in Figure 1(right), in which
the deformation gradient is given as F̄ = I + ke1⊗ e2. Then, from (17), the shear stress σ12 is given by

σ12 = Gd1(α)k+ 2Gγ d2(α)k3. (41)

Hence the shear modulus is derived as

G12 = G21 =
∂σ12

∂k

∣∣∣
k=0
= Gd1(α). (42)

We have now obtained all five of the independent elastic coefficients. Other elastic coefficients can be
derived based on some elastic relationships of transverse isotropy. For example, the tensile modulus E2

is calculated as E2 = E1υ21/υ12.

4. Results and discussion

In this section, we will use the theory established above on the I5-dependent model to predict the evolution
of the moisture absorption and the mechanical degradation for a unidirectional sisal fiber reinforced
benzylated wood in the cases of constrained swelling and free swelling, and compare the results to those
derived based on the I4-dependent model.

At first, some necessary material parameters are fitted based on the experimental results of Lu et al.
[2003], in which three samples with different fiber contents were prepared: Sample 1 (fiber content
c1 = 0.102, equilibrium volume fraction of water θ1 = 0.085), Sample 2 (c2 = 0.196, θ2 = 0.114) and
Sample 3 (c3 = 0.304, θ3 = 0.148). In their experiment, each sample was immersed in water to simulate
the moisture absorption process in a humid environment. At several time intervals, they were taken out
of the water to measure the loss of tensile modulus. By means of similar procedures [Pan and Zhong
2014b], the shear modulus (G), the relative stiffness (γ ), and the maximum degradation parameters of
the matrix and fiber (β̄1 and β2) can be obtained by fitting the experimental data of the tensile modulus
of the dry samples (α = 0) and the fully saturated samples (α = 1) based on (36), while the evolution
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Figure 2. The predicted evolution of the volume ratio J for three samples under free swelling.

speed parameter (D) can be derived by fitting the evolution data of α(t) for Sample 1 based on (31).
These parameters necessary for the I5-dependent model are given as

G = 0.13 GPa, γ = 17.5, β̄1 = 70.11, β2 = 0.56, D = 3.22× 104 Nsm−2. (43)

Employing the molecular incompressibility condition J = 1+ θα, we can further obtain theoretically
the evolution of the volume ratio of each sample from (26) and (31), which is illustrated in Figure 2. For
these samples with three different fiber contents, the variation trends are identical, where the swelling
speed is much faster at the initial stage, then tends to slow down, and finally terminates at the equilib-
rium state. This phenomenon is interpreted as the gradual increase of the chemical potential inside the
composite. Moreover, a comparison between these samples shows that the kinetic swelling process is
sensitive to the fiber content such that the swelling speed of a composite with higher fiber content is
bigger than that with lower fiber content.

Next, the theoretical framework established in Sections 2 and 3 is used to predict the mechanical degra-
dation of a sisal fiber reinforced benzylated wood (Sample 2) subject to constrained swelling. By means
of those five material parameters for the I5-dependent model, given in (43), we study the modulus loss
for free swelling (C̄ = I) and constrained swelling (C̄ 6= I). Here we consider two cases of constrained
swelling: (1) λ̄1 = 1/(0.95)2, λ̄2 = λ̄3 = 0.95, and (2) λ̄1 = 1/(1.05)2, λ̄2 = λ̄3 = 1.05, compared with
the case of free swelling (λ̄1 = λ̄2 = λ̄3 = 1).

In terms of (29), (31) and (36), the evolutions of the modulus E1 under the case of free swelling and
two cases of constrained swelling are calculated based, respectively, on the I5-dependent model and the
I4-dependent model, as shown in Figure 3. The material parameters used for the I4-dependent model are
taken directly from [Pan and Zhong 2014b]: the shear modulus G = 0.13 GPa, the relative stiffness γ =
70.13, the maximum degradation parameters of matrix β̄1 = 70.11 and fiber β2 = 0.56, and the evolution
speed parameter D = 1.28× 105 Nsm−2. It can be seen from Figure 3 that the modulus E1 degrades with
time due to the moisture absorption, for both free and constrained swelling. At the beginning the modulus
degrades rapidly and gradually slows down. For free swelling, the predictions from the I5-dependent
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Figure 3. The evolution of the tensile modulus E1 predicted from the I5-dependent
model and the I4-dependent model in the cases of free swelling and constrained swelling.

model and the I4-dependent model give identical results and match well with experimental data obtained
by Lu et al. [2003]. However, in the case of constrained swelling, a remarkable difference can be found
between the curves obtained from these two models. Compared to free swelling (λ̄1 = λ̄2 = λ̄3 = 1), the
modulus E1 degrades more slowly for a tensile compressive elastic deformation along the fiber direction
(Case 1 with λ̄1 = λ̄

−2
2 = λ̄

−2
3 > 1) and more quickly for a compressive elastic deformation along the fiber

direction (Case 2 with λ̄1 = λ̄
−2
2 = λ̄

−2
3 < 1). This prediction reveals that the mechanical degradation of

NFRCMs can be largely influenced by different constraints during swelling. It is interesting to see that
the I5-dependent model predicts a smaller modulus loss for Case 1 and a bigger modulus loss for Case 2,
compared to the I4-dependent model.

5. Conclusions

This paper establishes a constitutive model of unidirectional natural fiber reinforced composites subjected
to mechanical loading and moisture absorption. An internal variable is introduced to consider irreversible
energy dissipation by moisture absorption, and is incorporated in the Helmholtz free energy, which can
be decomposed into the isotropic matrix part, the reinforcing part and the volume expansion part. With
specialized free energies, the degradations of elastic modulus are predicted for unidirectional natural fiber
reinforced composites in the cases of free swelling and constrained swelling based on the I4-dependent
model and the I5-dependent model for reinforcing energy. It is found that these two models give results
that are identical in the case of free swelling and different in the case of constrained swelling. However,
the predictions from these two models reveal a consistent conclusion that the mechanical degradation of
NFRCMs largely depends on the external constraints during the swelling process. This may provide an
effective approach to reduce the mechanical degradation induced by moisture absorption.
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ON THE OCCURRENCE OF LUMPED FORCES AT CORNERS
IN CLASSICAL PLATE THEORIES:

A PHYSICALLY BASED INTERPRETATION

LAURA GALUPPI AND GIANNI ROYER-CARFAGNI

The paradigmatic example of a twisted square plate is here considered. An equivalent partition of the
plate in a grid of beams à la Grashof is found such that, as the number of beams tends to infinity, the grid
exhibits the same deflection of the plate. This scheme is used to interpret, through the distinction between
Euler–Bernoulli and Timoshenko beam theories, the different types of natural boundary conditions that
can arise in the Kirchhoff–Love and Mindlin–Reissner theories of plates. A physically based interpreta-
tion for the occurrence of lumped forces at the plate corners through the formation of a boundary layer
is provided.

1. Introduction

It is well known that the solution of the biharmonic equation governing the bending of plates in Kirchhoff–
Love theory is compatible with only two distinct conditions at each boundary point, whereas in general
three boundary data can be independently assigned on an unconstrained border. This contradiction for the
order of the equation is a two-hundred-year-old problem. The paradox arose when the three-boundary-
data statement by Poisson [1829] was criticized by Kirchhoff [1850], who obtained only two natural
conditions at the border within a variational framework, using a static equivalence sometimes referred
to as the “Kirchhoff transformation” [Vasil’ev 2012]. This result arose from the first variation of the
energy functional, but it was not corroborated by any physically based interpretation. A long discussion
ensued among the most eminent scientists of the period with the purpose of reconciling the Poisson
and Kirchhoff theories. The dispute culminated with the elementary interpretation by Thomson and
Tait [1883], who showed how to reduce the torque per unit length on the contour to a shear transverse
force. Friedrichs and Dressler [1961] and Gol’Denveiser and Kolos [1965] have independently shown
that the plate theory is the leading term of the expansion solution (in a small thickness parameter) for the
linear elastostatics of thin, flat, isotropic bodies. As expected, this leading term alone is unable to satisfy
arbitrarily prescribed edge conditions.

There has been a renewed interest during the last years in the fundamental problem of understanding
the relationship between the three-dimensional elasticity theory and theories for lower-dimensional ob-
jects (plates, shells, rods). Due to the availability of sophisticated methods of variational convergence
[Ciarlet 1997], important achievements have been obtained by showing that various theories of plates
arise as a rigorous variational limit (or 0-limit) of the equations of three-dimensional elasticity as the

Royer-Carfagni is the corresponding author.
Keywords: Kirchhoff–Love plates, Mindlin–Reissner plates, Grashof partition, boundary conditions, boundary layer, singular

shear forces.
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thickness tends to zero, both in the linear and in the nonlinear case [Friesecke et al. 2006]. An approach
of this kind allows one to rigorously recover the Kirchhoff–Thomson–Tait boundary conditions.

In particular, the Kirchhoff transformation results in the appearance of lumped forces at corners of
rectangular plates, which are sometimes suspiciously treated as a drawback of the theory [Alfutov 1992].
Mutually exclusive interpretations either admit the existence of actual supporting reactions associated
with the Kirchhoff transformation, possibly due to internal constraints [Podio-Guidugli 1989], or com-
pletely deny the physical meaning of this approach [Zhilin 1995]. Vasil’ev [2012] has discussed the
applicability of the Kirchhoff transformation, concluding that, for plates with fixed contour, the reduc-
tion of twisting moments to shear forces can be performed only approximately: in general, it is not
applicable for static boundary conditions where the torque is prescribed on the plate contour. In such
cases, one has to consider higher-order theories like Mindlin–Reissner theory [Mindlin 1951; Reissner
1945], accounting for the boundary effect due to shear strains.

The aim of this note is to give an elementary, physically based, interpretation for the occurrence of
lumped forces at plate corners, predicted by the Kirchhoff transformation, through the paradigmatic
example of a twisted square plate. The approach is somehow dual to the customary derivation of plate
theory as a downgrade limit of the equations of three-dimensional elasticity: here, plate theory is con-
sidered as a proper upgrade of lower-order beam theory. A partition à la Grashof [1878] of the plate
as a grid of beams will provide an immediate interpretation of the diffusion of stress from the corners,
where the forces are applied, to the interior of the body. Such diffusion strongly depends upon the shear
stiffness of the constituting beams. Different types of responses can be obtained if one assumes for the
beams either the Euler–Bernoulli or the Timoshenko [1940] models. This distinction is at the base of
the different types of boundary conditions arising in the Kirchhoff–Love or Mindlin–Reissner theories,
which somehow represent the counterparts, for plates, of the Euler–Bernoulli and the Timoshenko one-
dimensional approaches, respectively.

2. Practice

Let B ≡ � × [−h, h] ⊂ R3, � ⊂ R2, denote the undistorted reference configuration of a flat plate,
with boundary ∂�× [−h, h] supposed piecewise regular. Introduce a right-handed orthogonal reference
system x = (x1, x2, x3), with x1, x2 ∈ � and x3 at a right angle to them, and let (e1, e2, e3) denote
the associated unit vectors. It is customary [Timoshenko and Woinowsky-Krieger 1959] to define the
stress state inside the plate through thickness-averaged descriptors of the Cauchy stress field τi j ei ⊗ e j ,
i, j = 1, 2, 3. In particular, the shear forces per unit length Qα and the moments per unit length Mαβ ,
α, β = 1, 2, are defined as

Qα =

∫ h

−h
τα3 dx3, Mαβ =

∫ h

−h
x3ταβ dx3, α, β = 1, 2. (2-1)

In this way the problem becomes two-dimensional, and definable in the domain � and its boundary ∂�.
Let pe3, with p = p̂(x1, x2), represent the force per unit area acting orthogonally to �. With a little

abuse of notation, define

Q =
2∑
α=1

Qαeα, M =
2∑

α,β=1

Mαβeα ⊗ eβ, α, β = 1, 2, (2-2)
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where clearly M = MT . The equilibrium in the x3 direction and the equilibrium of moments around any
axis parallel to � read, respectively,

div Q =−p, div M = Q, (2-3)

where “div” denotes the divergence operator in R2. By combining the aforementioned relationships one
readily obtains the equilibrium equation div(div M)=−p.

Denoting with a comma partial differentiation with respect to the indicated variable, the Kirchhoff–
Love kinematical hypothesis [Timoshenko and Woinowsky-Krieger 1959] consists in assuming that the
displacement field u = u1e1+ u2e2+ u3e3 has the form

u3(x)= w(x1, x2), uα(x)=−x3w,α(x1, x2), α = 1, 2, (2-4)

where we have not considered (for simplicity, and because it is here irrelevant) the membrane strain due
to forces in the plate middle-plane. Consequently, the strain components εi j , i, j = 1, 2, 3, read

εαβ =−x3w,αβ(x1, x2), εα3 = 0, ε33 = 0, α, β = 1, 2. (2-5)

If the material is homogeneous and isotropic, denoting by E the Young’s modulus and by ν the Poisson’s
ratio, one finds 

M11 =−
2h3 E

3(1− ν2)
[w,11+ νw,22],

M22 =−
2h3 E

3(1− ν2)
[w,22+ νw,11],

M12 =−
2h3 E

3(1+ ν)
w,12.

(2-6)

This theory, as is clear from (2-5), neglects shear deformations, but the shear strains Qα of (2-2) can be
recovered from just the equilibrium considerations from (2-3).

The strains due to shear are accounted for in the Mindlin–Reissner theory of moderately thick plates
[Reissner 1945; Mindlin 1951], where the displacement field is assumed of the form

u3(x)= w(x1, x2), uα(x)=−x3ϕα(x1, x2), α = 1, 2, (2-7)

where ϕα is the rotation of fibers parallel to eα with, in general, ϕα 6= w,α. The strain components thus
become

εαβ =−
1
2 x3(ϕα,β +ϕβ,α), εα3 =

1
2(w,α −ϕα), ε33 = 0; α, β = 1, 2. (2-8)

From these, the constitutive equations read

M11 =−
2h3 E

3(1− ν2)
[ϕ1,1+ νϕ2,2],

M22 =−
2h3 E

3(1− ν2)
[ϕ2,2+ νϕ1,1],

M12 =−
h3 E

3(1+ ν)
[ϕ1,2+ϕ2,1],

(2-9)
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Q1 =−κGh [w,1−ϕ1],

Q2 =−κGh [w,2−ϕ2],
(2-10)

where κ is the shear correction factor, usually assumed equal to 5
6 .

Both in the Kirchhoff–Love and the Mindlin–Reissner theories, the governing field equations in terms
of displacements are obtained by inserting the constitutive equations (2-6), or (2-9)–(2-10), into the
equilibrium equations (2-3). The first theory gives rise to the well-known biharmonic equation in w,
whereas the second theory produces two differential equations in w and ϕα.

At the boundary ∂� define the orthogonal right-handed triad of unit vectors (m, t, n), with n parallel
and in the same direction as e3, while m = m1e1 +m2e2 is the outward unit normal to ∂� and, con-
sequently, t = t1e1 + t2e2 = −m2e1 +m1e2 is tangent to ∂�. Introduce then a curvilinear abscissa s,
parametrized by arc length and oriented as t . The static state at ∂� is defined by the bending moment
Mm t , by the torque −Mmt m and by the shear force Qmn = Qm e3, all of them per unit length of the
border. One has

Mm = Mm ·m, Mmt = Mm · t, Qm = Q ·m. (2-11)

The boundary conditions are substantially different in the two aforementioned theories of plates, in
agreement with the order of the governing differential equations.

In Mindlin–Reissner theory, the geometric boundary conditions may involve three quantities: the
displacement u3 and the two rotation components in both the normal direction m (i.e., ϕm = ϕ1m1+ϕ2m2)
and in the tangential direction t (i.e., ϕt = ϕ1t1+ϕ2t2). The corresponding natural boundary conditions
involve, respectively, Qm , Mm and Mmt , that is, the shear force, the bending moment and the torque (per
unit length), defined in (2-11).

On the other hand, it is well-known that in Kirchhoff–Love theory the three quantities Qm , Mm

and Mmt cannot be prescribed independently. In fact, the Kirchhoff transformation defines the effective
shear force per unit length

Vmn= Vm e3 = [Qm + (Mmt),s]n, (2-12)

which is dual in energy with the vertical displacement at the boundary. Therefore, on ∂� the geometric
boundary conditions prescribe either the displacement w in the direction e3 or its derivative w,m with re-
spect to the outward unit normal m, to which correspond the natural boundary conditions on the effective
shear force Vm , defined as per (2-12), and on the bending moment Mm , given by (2-11)1.

If the boundary presents a corner at s = s0, denote by m(s+0 ), t(s+0 ) and m(s−0 ), t(s−0 ) the normal and
tangential unit vectors at s = s+0 and s = s−0 , respectively. Then, the Kirchhoff transformation implies
the occurrence of lumped forces F(s0)e3 at the corner given by

F(s0)= M(s0)m(s+0 ) · t(s
+

0 )−M(s0)m(s−0 ) · t(s
−

0 )= Mmt(s+0 )−Mmt(s−0 ), (2-13)

which are usually considered to be physically justified by the presence of unbalanced torques.

3. A paradigmatic example

The following example can be found in most textbooks (see, e.g., [Timoshenko and Woinowsky-Krieger
1959, Section 11] or [Belluzzi 1986, exercise 1187]). With reference to Figure 1, let � be the square
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x1

x2

x3

x ′1

x ′2

w0

w0

w0

w0

Figure 1. Reference and deformed configurations of the square plate.

defined by the vertices (x1, x2)= (d/2, 0), (0, d/2), (−d/2, 0), (0,−d/2), where d is the length of the
diagonal. Our aim here is to determine states of stress that are compatible with a vertical displacement
of the type

w(x1, x2)= 4w0
x2

1 − x2
2

d2 , (3-1)

which represents a hyperbolic paraboloid.

3.1. State of stress and boundary conditions. It is easy to verify that in a Kirhhoff–Love plate one has
from (2-6), (2-3)2 and (2-11)2 that

M11 =−M22 =−
16h3 E

3(1+ ν)d2 w0, M12 = 0, Q1 = Q2 = 0. (3-2)

Then, clearly, from (2-12), Vm = 0. But, from (2-13), four concentrated forces are acting at the four
corners of the plate and, more precisely,

F0e3 at (d/2, 0), (−d/2, 0); −F0e3 at (0, d/2), (0,−d/2); F0 =
32h3 E

3(1+ ν)d2 w0. (3-3)

Denoting by (x ′1, x ′2) an auxiliary reference system rotated by π/4 with respect to (x1, x2), as represented
in Figure 1, it is possible to verify that

M1′1′ = M2′2′ = 0, M1′2′ =
M
2
(e1+ e2) · (−e1+ e2)=−

16h3 E
3(1+ ν)d2 w0. (3-4)

Therefore, whereas the four borders of the plate are stress free, in the immediate neighborhood, on lines
parallel to each border, the torque per unit length is not zero. This turns out to be an apparent contradiction
of the theory [Alfutov 1992].

Consider, on the other hand, a Mindlin–Reissner plate. We look for a solution which is associated with
a null shear deformation: the purpose of this choice is to find, within the framework of this higher-order
theory, the same state of stress predicted by Kirchhoff–Love theory. In fact, if in (2-8) εα3 = 0, α = 1, 2,
then ϕα = w,α and, consequently, one finds from (2-9) the field (3-2). At the boundary the only nonzero
component of stress is the torque per unit length, which is equal to M1′2′ of (3-4).

In conclusion, in a twisted plate deformed according to (3-1) with no shear, both Kirchhoff–Love and
Mindlin–Reissner theories prescribe the same state of stress inside the plate, but the associated boundary
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Figure 2. Partition à la Grashof of the square plate. (a) Ideal division into beams;
(b) decomposition of the torque at the border into two bending moments for the beams.

conditions are completely different since they predict lumped forces at the corners in the first case and
uniformly distributed torque per unit length in the second case. The aim of the next section is to give an
elementary physically based explanation of this finding.

3.2. Partition à la Grashof. The Grashof approximation [1878], according to which plates are consid-
ered as grids of beams, is commonly used in practical applications. Here, we will discuss a partition
which is exact, in the sense that, when the number of beams tends to infinity, one recovers the same
deflection of the plate. To do so, the body of Figure 1 is ideally divided by imaginary cuts into (2n+ 1)
beams of the same width in the x1 direction, and by an equal partition in the x2 direction. Consequently,
as represented in Figure 2(a), the width bn of each beam and the corresponding cross-sectional moment
of inertia In read, respectively,

bn =
d

2n+ 1
, In =

2bnh3

3
=

2d h3

3(2n+ 1)
. (3-5)

Consider first the Mindlin–Reissner solution described in the previous section. The border of the
plate is loaded by a uniformly distributed torque per unit length, which can be distributed to each beam
according to the corresponding partition of influence, of length bn

√
2 as represented in Figure 2(b).

Clearly, x1 and x2 are axes of geometric and loading symmetry for the structure. The moment resultant
can then be decomposed in the two components in the e1 and e2 directions, which represent two bending
moments for the beams.
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Observe that the partition of the twisting moment into two bending moments only, with no torsion mo-
ments for the beams, is not arbitrary. In fact, each beam should carry torsion moments of opposite signs
at the ends in order to satisfy equilibrium, but such a distribution violates the symmetry of the problem.1

In conclusion, each beam in the x1 (resp. x2) direction is uniformly bent by the moment M (n)
1 (resp. M (n)

2 )
given by

M (n)
1 =−M (n)

2 =−
d

2n+ 1
16h3 E

3(1+ ν)d2 w0. (3-6)

The corresponding curvatures χ1 and χ2, taking into account that the transversal strain of each composing
beam is restrained by the flexure of the orthogonal sets of beams, read

χ1 ' w,11 =−
M (n)

1

E In/(1+ ν)
= 8

w0

d2 , χ2 =−
M (n)

2

E In/(1+ ν)
=−χ1 ' w,22, (3-7)

which clearly coincides with the expectation from the assumed deformation (3-1).
It should be noticed that in this case each beam is subject to pure bending. Therefore, the flexure of

(3-7) remains the same whether one assumes the Euler–Bernoulli model or the Timoshenko model for
the beam, i.e., whether one does or does not neglect shear deformations.

Consider now the case in which the boundary is stress-free apart from the four lumped forces F0 of
(3-3), acting at the points marked with stars in Figure 2(a). Let us suppose that the beams are connected
by spherical hinges only at those points marked with dots in Figure 2(a), i.e., at those points which are
closer to the border of the reference domain �. It will be verified, a posteriori, that in the limit n→∞
the deformation of the beam lattice associated with the aforementioned static state is compatible, in the
sense that the deflection of each nodal point is the same if it belongs to either one of the two orthogonal
beams passing through it.

Then, with symmetry considerations, the grid is statically determined and the forces acting in each
beam can be directly calculated. Three possible conditions, as represented in Figure 3, need to be
distinguished:
• Each one of the two longest beams of length (2n+ 1)bn = d in Figure 3, whose axes coincide with

one of the diagonals, is bent by the applied loads F0 (at the plate corners), and by the reaction forces
of the two orthogonal short beams hinged to them, which by statics are also equal to F0. Such forces
form pairs with lever arm bn/2.

• Consequently, each one of the four shortest beams in proximity to the corners, denoted by i = 1
in Figure 3, of length 2bn , is loaded by a concentrated force F0 in the middle and transfers two
concentrated forces F0/2 to the orthogonal beams of length 2nbn .

• One can repeat the same construction and derive that the other beams, of length 4bn ≤ l ≤ 2nbn , are
bent by pairs of forces at the extremities, each one formed by two forces F0/2 with arm bn .

The maximal bending moment acting in each beam is, in absolute value, equal to

MF =
1
2 bn F0 =

16h3 E
3(2n+ 1)(1+ ν)d

w0, (3-8)

1If the plate deformation was represented by a beam lattice with the beams parallel to the edges, the only distribution of
loads that could respect the symmetry of this new partition would be a state of zero bending (all beams remain straight) and
pure torsion.
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Figure 3. Bending of beams in the Grashof partition: shortest beams of length 2bn ,
intermediate beams, beams along the diagonals.

which coincides with the value prescribed by (3-6). It is then clear that in the limit of an infinite partition
(n→∞), one recovers the same curvature as in (3-7). In fact, since bn → 0, the arm of the pair of
forces tends to zero, but the reduction of the corresponding bending moment is exactly compensated by
the reduction of the cross-sectional inertia, according to (3-5)2.

It is then a simple exercise to show that if the curvature of each beam is of the form (3-7) then the
deflections of the nodal points of the beam lattice accommodate one another and the resulting deformed
shape is given by (3-1). Therefore, the static state that has been derived from the assumed distribution
of internal constraints for the constituting elementary beams of Figure 2 is balanced and compatible.

However, one should notice that the two longest diagonal beams present a shear equal to F0 in portions
in proximity to each end of length bn/2, whereas all the other beams undergo a shear equal to F0/2 at the
extremal portions of length bn . As bn→ 0, the corresponding shear stress tends to infinity because the
width of each beam tends to zero. Denoting by γF and γF/2 the shear strain in the diagonal beams and
in the other beams, respectively, one finds that there are relative displacements δF and δF/2 associated
with such a shear strain. These read

δF = γF ·
1
2 bn = κ

F0

G 2hbn
·

1
2 bn = κ

F0

G 4h
, δF/2 = γF/2bn = κ

F0/2
G 2hbn

bn = κ
F0

G 4h
, (3-9)

and are independent of n. Thus, as n→∞, a shear dislocation remains at the beam extremities.
Consequently, if the constituting elements are beams à la Timoshenko, one can no longer recover,

with the aforementioned partition à la Grashof, the deformation of the plate prescribed by (3-1). The
counterpart of Timoshenko beam theory for plates is Mindlin–Reissner theory. The proposed elementary
example thus illustrates why Mindlin–Reissner theory cannot account for the possibility of concentrated
forces at the plate corners compatibly with the assumed displacement (3-1).

On the other hand, Euler–Bernoulli beam theory cannot account for shear strain. Consequently, if one
assumes this model for the Grashof partition, the concentrated displacement due to slip is null and one
recovers the same curvature prescribed by (3-7). The resulting deformation is again compatible with an
expression of the form (3-1). Remarkably, there is a “transformation” of the bending with shear produced
by the lumped forces into pure bending. Such a transformation, made possible by the shear-insensitivity
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of the constituting beams, occurs in a boundary layer whose thickness is of the order of bn , which tends
to zero as n→∞.

From this example it is clear what role is played by the Kirchhoff transformation, which regulates the
substitution of the torque per unit length with lumped forces at the corners due to the assumed shear-
stiffness of the constitutive model. Such a substitution takes place in a boundary layer of evanescent
thickness. On the other hand, in Mindlin–Reissner theory this transformation is not allowed because of
the different types of deformation that are associated with the two systems of forces due to the shear
deformability of the plate.

It should also be remarked that the Kirchhoff transformation is not required, but it simply states the
static and kinematic equivalence of diverse equipollent system of actions as boundary conditions. In
fact, the deformation indicated by (3-1) is perfectly compatible with a Kirchhoff–Love plate twisted by
lumped forces, but it is also compatible with other boundary data, e.g., uniformly distributed torque
per unit length applied at the border. This model cannot distinguish between the two static distributions
because their difference produces shear stress only, which are associated with a null deformation. Indeed,
infinite boundary data that are statically and kinematically equivalent can be found. For example, as
shown in [Fosdick and Royer-Carfagni 2015], it is sufficient to take just a part of the applied forces and,
for that, use the Kirchhoff transformation, while maintaining the remaining part unaltered.

4. Discussion and conclusions

Despite its simplicity, the elementary example just discussed gives an immediate, physically based, in-
terpretation of the Kirchhoff transformation. The static and kinematic equivalence of various systems
of forces and torques at the border, obtained through the notion of effective shear, is a straightforward
consequence of the basic assumptions that shear deformations in Kirchhoff–Love plates are null. Such
an equivalence cannot be established in Mindlin–Reissner plates, because although the aforementioned
equivalent systems have the same resultant and the same moment-resultant, they are associated with
different types of shear deformations that this model can detect.

Indeed, there are infinite boundary data that are compatible with the same deformation of Kirchhoff–
Love plates, i.e., those which give the same result when the Kirchhoff transformation is applied. This
is somehow a limit of the theory, but it would be erroneous to conclude, as is sometimes done in the
technical literature [Vasil’ev 2012], that this theory is compatible with the only boundary datum that
results from Kirchhoff transformation. The elementary example just illustrated shows that Kirchhoff
transformation simply establishes an equivalence of various systems of forces, but does not select among
these a privileged one.

In particular, the shear-stiffness assumption of Kirchhoff–Love plates allows for the possibility of
lumped forces at the corners, but this is not a paradox of the theory [Alfutov 1992]. The partition à
la Grashof allows one to recognize that there is a thin layer in proximity to the boundary where, due
to the aforementioned shear stiffness, there is a transformation of the bending with shear (produced by
the concentrated forces) into pure bending in the neighboring internal portions. Therefore, there is no
paradox in the classical solution of a Kirchhoff–Love plate twisted by concentrated forces at the corners,
where the borders are stress-free, but the torque per unit length is nonzero on fibers parallel to the borders,
at an arbitrarily small distance.
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However, the example has shown that this transformation is possible only at the price of infinite shear
stresses occurring in a boundary layer of evanescent thickness in proximity to the borders. Indeed, the
assumption of Kirchhoff–Love theory is that (transverse) shear deformations are negligibly small and,
accordingly, they are assumed to be null: this implies the plate to be shear-rigid. The latter hypothesis
is certainly correct in most cases of the practice, where shear stresses remain finite, but in the case of
concentrated forces the shear stress becomes infinite.

Therefore, Kirchhoff–Love theory cannot consistently be applied when the border presents sharp
corners with concentrated forces, because these would generate infinite shear stress, regardless of the
thickness of the plate. In fact, the formation of a boundary layer [Lobkovsky 1996] cannot be neglected.
For such cases a more refined theory, possibly accounting for shear deformations like Mindlin and Reiss-
ner’s, appears to be necessary to reproduce the actual “diffusion” of such forces inside the body.
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