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PERIDYNAMICS FOR ANTIPLANE SHEAR AND TORSIONAL DEFORMATIONS

SELDA OTERKUS AND ERDOGAN MADENCI

A rod or beam is one of the most widely used members in engineering construction. Such members must
be properly designed to resist the applied loads. When subjected to antiplane (longitudinal) shear and
torsional loading, homogeneous, isotropic, and elastic materials are governed by the Laplace equation in
two dimensions under the assumptions of classical continuum mechanics, and are considerably easier to
solve than their three-dimensional counterparts. However, when using the finite element method in con-
junction with linear elastic fracture mechanics, crack nucleation and its growth still pose computational
challenges, even under such simple loading conditions. This difficulty is mainly due to the mathematical
structure of its governing equations, which are based on the local classical continuum theory. However,
the nonlocal peridynamic theory is free of these challenges because its governing equations do not con-
tain any spatial derivatives of the displacement components, and thus are valid everywhere in the material.
This study presents the peridynamic equation of motion for antiplane shear and torsional deformations,
as well as the peridynamic material parameters. After establishing the validity of this equation, solutions
for specific components that are weakened by deep edge cracks and internal cracks are presented.

1. Introduction

Prediction of structural failure loads due to crack nucleation and propagation is still a challenging area of
solid mechanics. Many different techniques are proposed and widely used within the scope of classical
continuum mechanics. The traditional approaches to predict failure usually employ concepts from linear
elastic fracture mechanics (LEFM). The major drawback of LEFM is the requirement of a preexisting ini-
tial crack in the structure. Hence, it is not capable of predicting crack nucleation. Furthermore, the math-
ematical formulation results in unphysical (singular) stress values at the crack tips. To overcome these
problems, cohesive zone models (CZM) and extended finite element methods (XFEM) are widely ac-
cepted as an alternative and implemented in the commercially available finite element analysis programs.

Although relatively new, peridynamics (PD), introduced by Silling [2000] by reformulating the clas-
sical continuum mechanics equations, is very suitable for failure analysis of structures because it allows
cracks to grow naturally without resorting to external crack growth laws. PD is based on integrodiffer-
ential equations as opposed to the partial differential equations of classical continuum mechanics. An
extensive literature survey on peridynamics is given by Madenci and Oterkus [2014]. A comparison study
between peridynamics, CZM, and XFEM techniques by Agwai et al. [2011] highlights the capability of
the PD theory. They showed that the crack speeds obtained from all three approaches are of the same
order; however, the fracture paths obtained through the PD theory are much closer to the experimental
results than those of the other two techniques.
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Figure 1. A beam under (left) antiplane shear and (right) torsion.

The numerical simulation of three-dimensional structures can be computationally costly. Although all
structures are three-dimensional in nature, they can be idealized under certain assumptions. Under such
idealization, a rod or a beam subjected to antiplane (longitudinal) shear and torsional loading can be
analyzed in two dimensions. However, the PD equation of motion and the PD material parameter must
reflect these idealizations. In connection to Linear Elastic Fracture Mechanics (LEFM), Lipton [2014]
investigated Mode III fracture in the context of antiplane shear deformation.

As shown in Figure 1, this study presents the derivation of the PD equation of motion for antiplane
shear and torsional deformations of beams with arbitrary cross-sections along with the implementation
of boundary conditions. Also, it describes the determination of peridynamic material parameter in terms
of shear modulus, and critical stretch in terms of critical energy release rate for tearing mode. After estab-
lishing its validity by comparing against benchmark solutions, a study of components that are weakened
by deep edge cracks and internal cracks is presented.

In multiphysics analysis, many the field equations concern the solution of diffusion equation. This
study also provides the framework to consider such equations with defects and stationary or moving
dissimilar material interface. The partial differential equations of the classical theory cannot be applied
directly to defects. This incompatibility has led to a variety of patches in the finite element method. They
are entirely unnecessary with peridynamics.

2. Kinematics for antiplane shear and torsional deformation

Due to the nature of loading and the geometry of the components, the deformation of the cross-section
on the z-plane is dependent only on the x- and y-coordinates. Also, the cross-section of the component
remains uniform. At any instant of time, every point in the material denotes the location of a material
particle, and these infinitely many material points (particles) constitute the continuum. In the undeformed
state of the body, each material point is identified by its coordinates, x(k) with (k = 1, 2, . . . ,∞), and is
associated with an incremental volume, V(k), and a mass density of ρ(x(k)). Each material point can be
subjected to prescribed body loads, displacement, or velocity, resulting in motion and deformation.

According to the PD theory introduced by Silling [2000], the motion of a body is analyzed by consider-
ing the interaction of a material point, x(k), with the other, possibly infinitely many, material points, x( j),
with ( j = 1, 2, . . . ,∞), in the body. Therefore, an infinite number of interactions may exist between the
material point at location x(k) and other material points. However, the influence of the material points
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Figure 2. Peridynamic material points and their interaction with each other.

interacting with x(k) is assumed to vanish beyond a local region (horizon), denoted by Hx(k) , shown in
Figure 2. Similarly, the material point x( j) interacts with the other material points in its own family,
Hx( j) . The range of the material point x(k) is defined by δ, referred to as the “horizon.” Also, the material
points within a distance δ of x(k) are called the family of x(k), Hx(k) . The interaction of material points
is prescribed through the micropotentials that depend on the deformation and constitutive properties of
the material.

As shown in Figure 2, material point x(k) interacts with its family of material points, Hx(k) , and is
influenced by the collective deformation of all these material points. Similarly, the material point x( j)

is influenced by deformation of the material points, Hx( j) , in its own family. In Figure 2, the material
points, x(k) and x( j) associated with designated as N k and K j with N and K denoting the sequence of
material points in the domain.

With respect to a Cartesian coordinate system, the material point xT
(k) = {x(k), y(k), z(k)} experiences

displacement, uT
(k)={u(k), v(k), w(k)}, and its location is described by the position vector y(k)= x(k)+u(k)

in the deformed state, as shown in Figure 3. The body load vector at material point x(k) is represented by
bT
(k) = {0, 0, bz(k)}, respectively. The motion of a material point conforms to the Lagrangian description.

In the deformed configuration, the material points x(k) and x( j) experience displacements u(k) and u( j),
respectively. Their initial relative position vector (x( j)− x(k)) prior to deformation becomes ( y( j)− y(k))
after deformation.

Under antiplane and torsional loadings, the initial position of material points x( j) and x(k) for z =
z( j) = z(k) can be defined as xT

( j) = {x( j), y( j), z} and xT
(k) = {x(k), y(k), z}. Their initial relative position

can then be expressed as

(xT
( j)− xT

(k))= {(x( j)− x(k)), (y( j)− y(k)), 0}. (1)

For antiplane shear deformation, these material points experience the displacements uT
( j) = {0, 0, uz( j)}

and uT
(k) = {0, 0, uz(k)}. Their relative position in the deformed state becomes

y( j)− y(k) = x( j)− x(k)+ (uz( j)− uz(k))ez. (2)
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Figure 3. Kinematics of peridynamic material points on the cross-section: (left) anti-
plane shear deformation, and (right) torsional deformation.

For torsional deformation, these material points experience the displacements uT
( j) = {−ψzy( j), ψzx( j),

uz( j)} and uT
(k)={−ψzy(k), ψzx(k), uz(k)}, in which ψ represents the angle of twist. Their relative position

can be expressed as

y( j)− y(k) = x( j)− x(k)+�× (x( j)− x(k))+ (uz( j)− uz(k))ez, (3)

in which �T
= {0, 0, ψz}, and the product term �× (x( j)− x(k)) represents the rotation of (x( j)− x(k))

around the z-axis, resulting in no deformation.
As shown in Figure 3, the relative out-of-plane displacement (elevation) of material points x( j) and x(k)

is defined as

e(k)( j) = uz( j)− uz(k). (4)

Also, under small deformations, the slope of this elevation (change in angle) between material points
x(k) and x( j) is defined as

r(k)( j) =
e(k)( j)

ξ(k)( j)
=

uz( j)− uz(k)

ξ(k)( j)
(5)

where ξ(k)( j) = |x( j)− x(k)| represents the distance between these material points.



PERIDYNAMICS FOR ANTIPLANE SHEAR AND TORSIONAL DEFORMATIONS 171

3. Ordinary state-based peridynamics

Due to the interaction between material points x(k) and x( j), a scalar-valued micropotential, w(k)( j),
develops; it depends on the material properties, as well as the elevation, e(k)( j), between point x(k) and
all other material points in its family. Note that w( j)(k) 6= w(k)( j) because w( j)(k) depends on the state of
material points within the family of material point x( j). These micropotentials can be expressed as

w(k)( j) = w(k)( j)(e(1k)(k), e(2k)(k), . . . ) and w( j)(k) = w( j)(k)(e(1 j )( j), e(2 j )( j), . . . ), (6)

in which e( j)(k) = uz( j)− uz(k) represents elevation between material points x(k) and x( j). The change
in elevation, e(mk)(k), is measured between point x(k) and the m-th material point that interacts with
point x(k). Similarly, e(m j )( j) is measured between point x( j) and the m-th material point that interacts
with point x( j), as shown in Figure 2. The strain energy density, W(k), of material point x(k) can be
expressed as a summation of all the micropotentials, w(k)( j), arising from the interaction of material
point x(k) and the other material points, x( j), within its horizon in the form

W(k) =
1
2

∞∑
j=1

1
2
[
w(k)( j)(e(1k)(k), e(2k)(k), . . . )+w( j)(k)(e(1 j )( j), e(2 j )( j), . . . )

]
V( j), (7)

in which w(k)( j) = 0 for k = j .
The PD equation of motion at material point x(k) can be derived by applying the principle of virtual

work, i.e.,

δ

∫ t1

t0
(T −U ) dt = 0, (8)

where T and U represent the total kinetic and potential energies in the body. This principle is satisfied
by solving for the Euler–Lagrange equation

d
dt

(
∂L
∂ u̇z(k)

)
−

∂L
∂uz(k)

= 0 (9)

where the Lagrangian L is defined as L = T −U .
The total kinetic and potential energies in the body can be obtained by summation of kinetic and

potential energies of all material points, respectively,

T =
∞∑

i=1

1
2
ρ(i)u̇z(i)u̇z(i)V(i) and U =

∞∑
i=1

W(i)V(i)−
∞∑

i=1

(bz(i)uz(i))V(i). (10a)

Substituting for the strain energy density, W(i), of material point x(i) from (7), the potential energy can
be rewritten as

U=
∞∑

i=1

{
1
2

∞∑
j=1

1
2
[
w(i)( j)(e(1i )(i), e(2i )(i), . . . )+w( j)(i)(e(1 j )( j), e(2 j )( j), . . . )

]
V( j)−(bz(i)uz(i))

}
V(i). (11)

The Lagrangian can be written in an expanded form by showing only the terms associated with the
material point x(k) as
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L = · · ·+ 1
2ρ(k)u̇z(k)u̇z(k)V(k)+ · · ·

· · · −
1
2

∞∑
j=1

{1
2
[
w(k)( j)(e(1k)(k), e(2k)(k), . . . )+w( j)(k)(e(1 j )( j), e(2 j )( j), . . . )

]
V( j)

}
V(k) · · ·

· · · −
1
2

∞∑
i=1

{1
2
[
w(i)(k)(e(1i )(i), e(2i )(i), . . . )+w(k)(i)(e(1k)(k), e(2k)(k), . . . )

]
V(i)

}
V(k) · · ·

· · · + (bz(k)uz(k))V(k) · · ·

(12a)

or
L = · · ·+ 1

2ρ(k)u̇z(k)u̇z(k)V(k)+ · · ·

· · · −
1
2

∞∑
j=1

{w(k)( j)(e(1k)(k), e(2k)(k), . . . )V( j)V(k)} · · ·

· · · −
1
2

∞∑
j=1

{w( j)(k)(e(1 j )( j), e(2 j )( j), . . . )V( j)V(k)} · · ·

· · · + (bz(k)uz(k))V(k) · · · .

(12b)

Substituting from (12b) into (9) results in the Euler–Lagrange equation of the material point x(k) as

ρ(k)üz(k)V(k)+
( ∞∑

j=1

1
2

( ∞∑
i=1

∂w(k)( j)

∂(uz( j)− uz(k))
V(i)

)
∂(uz( j)− uz(k))

∂uz(k)

+

∞∑
j=1

1
2

( ∞∑
i=1

∂w( j)(k)

∂(uz(k)− uz( j))
V(i)

)
∂(uz(k)− uz( j))

∂uz(k)
− bz(k)

)
V(k) = 0 (13a)

or

ρ(k)üz(k) =

∞∑
j=1

1
2

( ∞∑
i=1

∂w(k)( j)

∂(uz( j)− uz(k))
V(i)

)
−

∞∑
j=1

1
2

( ∞∑
i=1

∂w( j)(k)

∂(uz(k)− uz( j))
V(i)

)
+ bz(k) = 0, (13b)

in which it is assumed that the interactions not involving material point x(k) do not have any effect on
material point x(k). Based on the dimensional analysis of this equation, it is apparent that the quantity∑
∞

i=1 V(i)∂w(k)(i)/∂(uz( j)− uz(k)) represents the force density in the z-direction that material point x( j)

exerts on material point x(k) and the quantity
∑
∞

i=1 V(i)∂w(i)(k)/∂(uz(k) − uz( j)) represents the force
density in the z-direction that material point x(k) exerts on material point x( j). With this interpretation,
(13b) can be rewritten as

tz(k)( j)(e( j)(k), x( j)− x(k), t)= 1
2

1
V( j)

∞∑
i=1

∂w(k)(i)

∂(uz( j)− uz(k))
V(i), (14a)

and

tz( j)(k)(e(k)( j), x(k)− x( j), t)= 1
2

1
V( j)

∞∑
i=1

∂w(i)(k)

∂(uz(k)− uz( j))
V(i), (14b)
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in which V( j) represents the volume of material point x( j). The material point x( j) exerts the force
density tz(k)( j) on material point x(k).

By utilizing the state concept described by Silling et al. [2007] and Silling and Lehoucq [2010], the
force densities tz(k)( j) and tz( j)(k) can be stored in force scalar states that belong to material points x(k)
and x( j), respectively, as

t z(x(k), t)=


...

tz(k)( j)
...

 and t z(x( j), t)=


...

tz( j)(k)
...

. (15)

The force densities tz(k)( j) and tz( j)(k) stored in scalar states t z(x(k), t) and t z(x( j), t) can be extracted
again by operating the force states on the corresponding initial relative position vectors, (x( j)− x(k)) and
(x(k)− x( j)), as

tz(k)( j) = t z(x(k), t)〈x( j)− x(k)〉 and tz( j)(k) = t z(x( j), t)〈x(k)− x( j)〉. (16)

By using (14a)–(14b), the Euler–Lagrange equation of the material point x(k) can be recast as

ρ(k)üz(k) =

∞∑
j=1

[
tz(k)( j)(e( j)(k), x( j)− x(k), t)− tz( j)(k)(e(k)( j), x(k)− x( j), t)

]
V( j)+ bz(k). (17)

Because the area of each material point V( j) is infinitesimally small, for the limiting case of V( j)→ 0, the
infinite summation can be expressed as a Riemann integral while considering only the material points
within the horizon. Therefore, (17) can be rewritten in integral equation form as

ρüz =

∫
H

[
tz(u′(z)− u(z), x′− x, t)− t ′z(u(z)− u′(z), x− x′, t)

]
dVx ′ + bz (18)

in which u(z) and u′(z) represent the transverse displacement at material points x and x′, respectively.
Depending on the boundary conditions, the solution to this equation provides either the antiplane or
torsional deformation.

3.1. Peridynamic force density. The force densities at material points x(k) and x( j) can be defined in
the form

tz(k)( j)(e( j)(k), x( j)− x(k), t)= 1
2 A(k)( j) and tz( j)(k)(e(k)( j), x(k)− x( j), t)=− 1

2 B(k)( j), (19)

where A(k)( j) and B(k)( j) are auxiliary parameters that are dependent on engineering material constants,
the deformation field, and the horizon.

In light of the definition (14) of the expressions for force density in terms of micropotentials, the force
density vectors can be related to the strain energy density function, W(k), at material point x(k) as

tz(k)( j)(uz( j)− uz(k), x( j)− x(k), t)=
1

V( j)

∂W(k)

∂(uz( j)− uz(k))
, (20a)

tz( j)(k)(uz(k)− uz( j), x(k)− x( j), t)=
1

V(k)

∂W( j)

∂(uz(k)− uz( j))
. (20b)
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However, the determination of the auxiliary parameters, A(k)( j) and B(k)( j), requires an explicit form of
the strain energy density function.

3.2. Peridynamic material parameters. For an isotropic and elastic material experiencing antiplane and
torsional deformation, the classical expression for the strain energy density, W(k), at material point x(k)
can be written as

W(k) =
1
2µ[γ

2
(k)xz + γ

2
(k)yz] (21)

in which µ is the shear modulus of the material, and γ(k)xz and γ(k)yz are the transverse shear strain
components at material point x(k).

Analogous to (21), the PD representation of the strain energy density, W(k), at material point x(k) can
be expressed as

W(k) = a[r2
(k)xz + r2

(k)yz], (22)

in which a is the ordinary state-based PD material parameter for strain energy and r(k)xz and r(k)yz are
defined in the form

r(k)xz = b
N∑

j=1

w(k)( j)e( j)(k) cos θ(k)( j)V( j) and r(k)yz = b
N∑

j=1

w(k)( j)e( j)(k) sin θ(k)( j)V( j), (23)

in which cos θ(k)( j)= (x( j)− x(k))/ξ(k)( j) and sin θ(k)( j)= (y( j)− y(k))/ξ(k)( j), N represents the number of
material points within the family of x(k), and b is a PD parameter. The nondimensional influence function,
which can be taken in the form of w(k)( j) = δ/ξ(k)( j), provides a means to control the influence of material
points away from the current material point at x(k). The infinitesimal volume of the material point x( j) is
denoted by V( j) = `ξ(k)( j)1ξ(k)( j)1θ(k)( j), where 1ξ(k)( j) and 1θ(k)( j) represent the incremental distance
and angle between material points x(k) and x( j) and ` is the length of the component.

As the horizon approaches zero, the out-of-plane displacement at material point x( j) can be expressed
by using a Taylor series expansion as

uz( j)− uz(k) = uz(k),xξ(k)( j) cos θ(k)( j)+ uz(k),yξ(k)( j) sin θ(k)( j)+
1
2 uz(k),xxξ

2
(k)( j) cos2 θ(k)( j)

+ uz(k),xyξ
2
(k)( j) cos θ(k)( j) sin θ(k)( j)+

1
2 uz(k),yyξ

2
(k)( j) sin2 θ(k)( j). (24)

Substituting from (24) into (23) along with the infinitesimal volume and influence function, performing
algebraic manipulations, and converting the summations to integrations lead to

r(k)xz = b
`πδ3

2
uz(k),x and r(k)yz = b

`πδ3

2
uz(k),y . (25)

Defining b = 2/(`πδ3) reduces r(k)xz and r(k)yz to the classical transverse shear strains γ(k)xz and γ(k)yz;
thus, equating the peridynamic and classical strain energy density, W(k), at material point x(k) results in

W(k) = a[r2
(k)xz + r2

(k)yz] =
1
2µ[γ

2
(k)xz + γ

2
(k)yz]. (26)

It yields the ordinary state-based peridynamic material parameter for strain energy as

a = 1
2µ, (27)
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which is not dependent on the horizon, unlike the parameter b. The parameters, r(k)xz and r(k)yz , can be
viewed as the peridynamic transverse shear angles.

3.3. Force density-displacement relation. Substituting for W(k) in (20) and differentiating, the force
density, tz(k)( j), can be obtained as

tz(k)( j)(uz( j)− uz(k), x( j)− x(k), t)= µ
[
w(k)( j)

x( j)− x(k)
ξ(k)( j)

r(k)xz +w(k)( j)
y( j)− y(k)
ξ(k)( j)

r(k)yz

]
, (28a)

tz( j)(k)(uz(k)− uz( j), x(k)− x( j), t)= µ
[
w( j)(k)

x(k)− x( j)

ξ(k)( j)
r( j)xz +w( j)(k)

y(k)− y( j)

ξ(k)( j)
r( j)yz

]
. (28b)

Comparison of (28) and (19) leads to the determination of A(k)( j) and B(k)( j) as

A(k)( j) = 2µ
[
w(k)( j)

x( j)− x(k)
ξ(k)( j)

r(k)xz +w(k)( j)
y( j)− y(k)
ξ(k)( j)

r(k)yz

]
, (29a)

B( j)(k) = 2µ
[
w( j)(k)

x( j)− x(k)
ξ 2
(k)( j)

r( j)xz +w( j)(k)
y( j)− y(k)
ξ 2
(k)( j)

r( j)yz

]
. (29b)

After substituting for the force densities, the final form of the equation of motion becomes

ρ(k)üz(k) = µ

∞∑
j=1

w(k)( j)

[
(r(k)xz + r( j)xz)

x( j)− x(k)
ξ(k)( j)

+ (r(k)yz + r( j)yz)
y( j)− y(k)
ξ(k)( j)

]
V( j)+ bz(k), (30a)

with

r(k)xz =
2

`πδ3

N∑
j=1

w(k)( j)e( j)(k) cos θ(k)( j)V( j), (30b)

r(k)yz =
2

`πδ3

N∑
j=1

w(k)( j)e( j)(k) sin θ(k)( j)V( j). (30c)

4. Bond-based peridynamics

In the case of pairwise interaction only between material points x(i) and x( j), the micropotential, w(i)( j),
is a function of e(i)( j). Thus, the total potential energy can be obtained by the summation of the micropo-
tentials w(i)( j)(e(i)( j)) arising from deformation only between two material points within the same family

U =
∞∑

i=1

{
1
2

∞∑
j=1

1
2
[
w(i)( j)(e(i)( j))+w( j)(i)(e( j)(i))

]
V( j)− (bz(i)uz(i))

}
V(i). (31)

For a pairwise interaction, the Euler–Lagrange equation results in

ρ(k)üz(k)V(k)+
( ∞∑

j=1

1
2

(
∂w(k)( j)

∂(uz( j)− uz(k))

)
∂(uz( j)− uz(k))

∂uz(k)

+

∞∑
j=1

1
2

(
∂w( j)(k)

∂(uz(k)− uz( j))

)
∂(uz(k)−w( j))

∂uz(k)
− bz(k)

)
V(k) = 0. (32)
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This equation can be rewritten as

ρ(k)üz(k)+

∞∑
j=1

1
2 [− fz(k)( j)+ fz( j)(k)]V( j)− bz(k) = 0, (33)

in which fz(k)( j) and fz( j)(k) are defined as

fz(k)( j) =
∂w(k)( j)

∂(uz( j)− uz(k))
and fz( j)(k) =

∂w( j)(k)

∂(uz(k)− uz( j))
. (34)

They represent the PD interaction forces between the material points x(k) and x( j) arising from the
deformation (elevation). For a linear material behavior, they can be defined in the form

fz(k)( j) = cr(k)( j) and fz( j)(k) = cr( j)(k) (35)

or
fz(k)( j) = cr(k)( j) and fz( j)(k) =−cr(k)( j). (36)

With these definitions, the equation of motion, Equation (33), becomes

ρüz(k) = c
∞∑
j=1

r(k)( j)V( j)+ bz(k) (37a)

or

ρüz(k) = c
∞∑
j=1

uz( j)− uz(k)

ξ(k)( j)
V( j)+ bz(k), (37b)

in which c is the PD material parameter (bond constant) associated with the antiplane and torsional
deformations.

As the horizon approaches zero, (37) must recover its classical counterpart, given as

ρüz = µ(uz,xx + uz,yy). (38)

Representing the out-of-plane displacement at material point x( j) by using a Taylor series expansion as in
(24), substituting it into (37) along with the infinitesimal volume, and performing algebraic manipulations
after converting the summations to integrations lead to

ρüz(k) = c
π`δ3

6
(uz(k),xx + uz(k),yy). (39)

Comparison of the bond-based PD equation of motion with its classical counterpart leads to the determi-
nation of the PD bond constant, c, as

c =
6µ
π`δ3 , (40)

which is dependent on the horizon. The final form of the bond-based PD equation of motion becomes

ρüz(k) =
6µ
π`δ3

∞∑
j=1

uz( j)− uz(k)

ξ(k)( j)
V( j). (41)
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Alternatively, in light of (34) and (35), the bond constant can also be determined by considering the
explicit expression for the micropotentials in the form

w(k)( j) =
1
2 cξ(k)( j)r2

(k)( j) and w( j)(k) =
1
2 cξ(k)( j)r2

( j)(k). (42)

Therefore, the strain energy density at material point x(k) can be obtained from (7) as

W(k) = c 1
2

∞∑
j=1

1
2
ξ(k)( j)r2

(k)( j)V( j). (43)

Substituting for the slope and infinitesimal volume and converting the summation to integration lead to

W(k) = `c
1
2

∫ δ

0

∫ 2π

0

1
2
(uz( j)− uz(k))

2 dξ dθ. (44)

The peridynamic bond constant, c, can be determined by equating the strain energies from classical
continuum mechanics and peridynamics for a specified simple deformation such as w(x, y)= (x + y).
For the material point of interest located at (x(k) = 0, y(k) = 0), the elevation is e(k)( j) = (x ′+ y′) and
ξ = ξ(k)( j) =

√
x ′2+ y′2. Thus, the peridynamic strain energy density can be obtained as

W(k) = `c
1
2

∫ δ

0

∫ 2π

0

1
2
(uz( j)− uz(k))

2 dξ dθ = `c 1
2

∫ δ

0

∫ 2π

0

1
2
ξ 2 dξ dθ =

`cπδ3

6
. (45)

The corresponding strain energy density based on classical continuum mechanics can be written as

W = 1
2(σxzγxz + σyzγyz)=

1
2µ(u

2
z,x + u2

z,y)= µ. (46)

Equating the strain energies from peridynamics and the classical continuum mechanics leads to the
determination of the PD material parameter, c = 6µ/π`δ3, which is the same as in (40).

5. Correction of PD material parameters

The PD material parameters b and c are determined for material points with a horizon completely em-
bedded in the material. The values of these parameters depend on the domain of integration defined by
the horizon. Therefore, their values require correction if the material point is close to free surfaces or
material interfaces (Figure 4). Since the presence of free surfaces is problem-dependent, it is impractical
to resolve this issue analytically.

5.1. Surface correction. The bond-based and ordinary state-based PD parameters are corrected by com-
paring the PD and classical expressions for the strain energy density and shear strain components for
two different simple loading conditions. The correction for the parameter c is achieved by comparing
the strain energy densities, and for the parameter b by comparing the shear strain components.

The first loading case is a simple linear displacement distribution in the x-direction given by

uz = ζ x . (47)

The second loading case is a simple linear displacement distribution in the y-direction given by

uz = ζ y. (48)
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Figure 4. Surface effects in the domain of interest.

Due to these loading conditions, the corresponding PD strain energy density and shear strain can be
obtained from (43) and (23) as

W PD
(k)x = ζ

2c 1
2

N∑
j=1

1
2

1
ξ(k)( j)

(x( j)− x(k))2V( j), W PD
(k)y = ζ

2c 1
2

N∑
j=1

1
2

1
ξ(k)( j)

(y( j)− y(k))2V( j) (49)

and

r(k)xz=ζb
N∑

j=1

w(k)( j)(x( j)−x(k)) cos θ(k)( j)V( j), r(k)yz=bζ
N∑

j=1

w(k)( j)(y( j)−y(k)) sin θ(k)( j)V( j), (50)

with N representing the number of material points inside the horizon of x(k). For these loading conditions,
the classical strain energy of a material point W CCM

(k) and shear strain components are

W CCM
(k)x =

1
2µζ

2 and W CCM
(k)y =

1
2µζ

2 (51)

and
γ(k)xz = ζ and γ(k)yz = ζ. (52)

The correction factors for these loading conditions at material point x(k) can be determined as

gx(k) =
W CCM
(k)x

W PD
(k)x

and g(k)xz =
γ(k)xz

r(k)xz
(53)

and

gy(k) =
W CCM
(k)y

W PD
(k)y

and g(k)yz =
γ(k)yz

r(k)yz
. (54)

With these correction factors, the final form of the ordinary state-based PD equation become

ρ(k)üz(k) = µ

∞∑
j=1

w(k)( j)

[
(r(k)xzg(k)xz + r( j)xzg( j)xz)

x( j)− x(k)
ξ(k)( j)

+ (r(k)yzg(k)yz + r( j)yzg( j)yz)
y( j)− y(k)
ξ(k)( j)

]
V( j)+ bz(k), (55)
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in which

r(k)xz = b
N∑

j=1

w(k)( j)e( j)(k)g(k)xz cos θ(k)( j)V( j), r(k)yz = b
N∑

j=1

w(k)( j)e( j)(k)g(k)yz sin θ(k)( j)V( j). (56)

For the bond-based parameter, the correction factors can be obtained by taking their mean value as

ḡ(k)( j)x =
gx(k)+ gx( j)

2
and ḡ(k)( j)y =

gy(k)+ gy( j)

2
, (57)

which may represent the principal axis of an ellipsoid. As introduced by Kilic [2008], the correction
factor between arbitrary material points x(k) and x( j) can be calculated by

G(k)( j) =
[
(nx/ḡ(k)( j)x)

2
+ (ny/ḡ(k)( j)y)

2]−1/2
, (58)

where nx and ny are direction cosines of n= (x( j)− x(k))/|x( j)− x(k)|. The final form of the bond-based
PD equation including the correction factor for material point x(k) becomes

ρüz(k) =
6µ
π`δ3

∞∑
j=1

G(k)( j)
uz( j)− uz(k)

ξ(k)( j)
V( j). (59)

5.2. Dissimilar material interface. The correction at the interface is achieved by using equivalent PD
material parameters [Oterkus et al. 2014]. As shown in Figure 5, the material point x(i) may interact
with material points x( j) and x(m). Material points x(i) and x( j) are embedded in material 1, and x(m)
is embedded in material 2. The PD material parameter between points x(i) and x( j) is a(i)( j), and it
differs from a(i)(m) between material points x(i) and x(m). Because the material points x(i) and x(m) are
embedded in two different materials, their material parameter, a(i)(m), can be expressed in terms of an
equivalent material constant as

a(i)(m) =
`1+ `2

`1/a1+ `2/a2
, (60)

in which `1 represents the segment of the distance between material points x(i) and x(m) in material 1,
whose material parameter is a1, and `2 represents the segment in material 2, whose material parameter
is a2.

6. Boundary conditions

Unlike the local theory, the PD boundary conditions are imposed through a nonzero volume of ficti-
tious boundary layers. This necessity arises because the PD field equations do not contain any spatial
derivatives; therefore, constraint conditions are, in general, not necessary for the solution of an integro-
differential equation of motion. However, such conditions can be imposed by prescribing constraints on
the displacement or transverse shear stress components in a fictitious boundary layer.

6.1. Displacement constraints. This type of boundary condition can be achieved through a fictitious
region, R f . Therefore, a fictitious boundary layer with depth δ is introduced along the boundary of the
actual material region, R, as shown in Figure 6. Based on numerical experiments, Macek and Silling
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Figure 5. Interaction of material points across the interface.

Figure 6. Imposing displacement constraints on the boundary: (left) nonzero constraint
uz(x∗, y∗, t)= u∗z , and (right) zero constraint uz(x∗, y∗, t)= u∗z = 0.

[2007] suggest that the extent of the fictitious boundary layer be equal to the horizon, δ, in order to ensure
that the imposed prescribed constraints are accurately reflected in the real domain.

The prescribed boundary value, u∗z (x
∗, y∗, t), is imposed through a layer of the fictitious region, R f ,

along the boundary of the material surface, S, as

uz(x f , y f , t +1t)= 2u∗z (x
∗, y∗, t +1t)− uz(x, y, t) (61a)

with
(x∗, y∗) ∈ S, (x f , y f ) ∈R f , (x, y) ∈R, (61b)
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in which (x, y) represents the position of a material point in R, and (x∗, y∗) represents the location of a
point on the boundary surface, S. The location of the image material point in R f is denoted by (x f , y f ).
The implementation of the prescribed boundary value of the displacement is depicted in Figure 6. In the
case of u∗z (x

∗, y∗, t)= 0, this condition becomes

uz(x f , y f , t +1t)=−uz(x, y, t). (62)

6.2. Conditions on transverse shear stress components. Similar to the displacement boundary condi-
tions, the transverse shear stress conditions are imposed through a fictitious region, R f . In the case of
antiplane shear deformation, applied transverse shear stress on the boundary, σαz(x∗, y∗, t) = τα with
α = x, y, is imposed as (Figure 7, left)

σαz(x∗, y∗, t)= µ
[
∂uz

∂α
(x∗, y∗)

]
= τα (63a)

or
∂uz

∂α
(x∗, y∗)=

τα

µ
, (63b)

which can be enforced as

uz(x f , y f )=
1
µ
τα(α f −α)+ uz(x, y). (63c)

For a zero transverse shear stress condition, i.e., σαz(x∗, y∗, t)= 0, this expression reduces to

uz(x∗, y∗)= uz(x, y). (64)

In the case of torsional deformation, zero shear stress boundary conditions are imposed as

σxz(x∗, y∗, t)= µ
[
∂uz

∂x
(x∗, y∗)−ψ(y− y0)

]
= 0, (65a)

σyz(x∗, y∗, t)= µ
[
∂uz

∂y
(x∗, y∗)−ψ(x − x0)

]
= 0 (65b)

or

∂uz

∂x
(x∗, y∗)= 1

µ
ψ(y− y0), (66a)

∂uz

∂y
(x∗, y∗)= 1

µ
ψ(x − x0), (66b)

which can be imposed as

uz(x f , y f )=
1
µ
ψ(y− y0)(x f − x)+ uz(x, y), (67a)

uz(x f , y f )=
1
µ
ψ(x − x0)(y f − y)+ uz(x, y), (67b)

in which ψ represents the applied angle of twist and (x0, y0) denote the coordinates of the reference point.
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Figure 7. Material points and their image in the fictitious region for imposing (left)
nonzero flux, and (right) zero flux.

7. Failure prediction

Damage is introduced through elimination of interactions (micropotentials) among the material points.
It is assumed that when the change in angle (transverse shear strain), r(k)( j), between two material points,
k and j , exceeds its critical value, rc, the onset of damage occurs. Damage is reflected in the equations
of motion by removing the force density vectors between the material points in an irreversible manner.
Therefore, the force density vectors tz(k)( j) and tz( j)(k) in the case of the ordinary state-based form of the
equations of motion and fz(k)( j) and fz( j)(k) in the case of the bond-based form can be modified through
a history-dependent scalar-valued function H(t, x( j)− x(k)) [Silling and Askari 2005] as

tz(k)( j) = H(t, x( j)− x(k))tz(k)( j) and tz( j)(k) = H(t, x(k)− x( j))tz( j)(k) (68)

and

fz(k)( j) = H(t, x( j)− x(k)) fz(k)( j) and fz( j)(k) = H(t, x(k)− x( j)) fz( j)(k) (69)

in which a history-dependent scalar-valued function H is defined as

H(t, x( j)− x(k))=
{

1 if r(k)( j)(t ′, x( j)− x(k)) < rc for all 0≤ t ′ ≤ t,
0 otherwise.

(70)

The critical value, rc, can be determined by equating the amount of energy required to remove all of
the micropotentials across a unit crack surface to the critical energy release rate, GIIIC, for the mode III
type of loading of linear elastic fracture mechanics (LEFM). In order to create a new crack surface, A,
all of the micropotentials (interactions) between the material points x(k+) and x( j−) whose line of action
crosses this new surface must be terminated, as sketched in Figure 8. The material points x(k+) and x( j−)

are located above and below the new crack surface, respectively.
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Figure 8. Interaction of the material points x(k+) and x( j−) above and below the crack surface.

Hence, the strain energy required to remove the interaction between two material points x(k+) and x( j−)

can be expressed as

W c
(k+)( j−) =

1
2

wc
(k+)( j−)+w

c
( j−)(k+)

2
V(k+)V( j−). (71)

Furthermore, the total strain energy required to remove all of the interactions across the newly created
crack surface A can be obtained as

W c
=

1
2

K+∑
k=1

1
2

J−∑
j=1

wc
(k+)( j−)V(k+)V( j−)+

1
2

K+∑
k=1

1
2

J−∑
j=1

wc
( j−)(k+)V( j−)V(k+), (72)

for which the line of interaction defined by ξ(k+)( j−) = |x(k+)− x( j−)| and the crack surface intersect, and
K+ and J− indicate the number of material points above and below the crack surface within the families
of x(k+) and x( j−), respectively. If this line of interaction and crack surface intersect at the crack tip, only
half of the critical micropotential is considered in the summation.

Considering only the pairwise interactions between x(k+) and x( j−) crossing the crack surface, the
micropotentials for linear elastic deformation are given by (42) as

w(k+)( j−) =
1
2 cξ(k+)( j−)r2

(k+)( j−) and w( j−)(k+) =
1
2 cξ( j−)(k+)r2

( j−)(k+). (73)

Their critical values can be expressed as

wcr
(k+)( j−) =

1
2 cξ(k+)( j−)r2

c and wcr
( j−)(k+) =

1
2 cξ( j−)(k+)r2

c . (74)

Thus, the total strain energy required to remove all of the interactions across the newly created crack
surface A becomes

W c
=

1
2 cr2

c

K+∑
k=1

J−∑
j=1

ξ( j−)(k+)V(k+)V( j−). (75)



184 SELDA OTERKUS AND ERDOGAN MADENCI

The amount of energy required to remove all of the interactions (micropotentials) across the unit crack
surface equals the critical strain energy release rate, thus leading to

GIIIc =
W c

A
=

1
2 cr2

c
∑K+

k=1
∑J−

j=1 ξ( j−)(k+)V(k+)V( j−)

A
. (76)

As given by Madenci and Oterkus [2014], the summation in (76) can be evaluated as∑K+
k=1

∑J−
j=1 ξ( j−)(k+)V(k+)V( j−)

A
=

hδ4

2
. (77)

Thus, the critical shear angle can be obtained as

rc =

√
2πGIIIc

3µδ
. (78)

The local damage at a point is defined as the weighted ratio of the number of eliminated interactions
to the total number of initial interactions of a material point with its family members [Silling and Askari
2005]:

φ(x(k), t)= 1−

∑N
j=1 H(t, x( j)− x(k))V( j)∑N

j=1 V( j)
. (79)

If the local damage value has a value equal to or larger than 0.5, it can be interpreted as the creation of
new crack surfaces.

8. Numerical results

The solution to the PD field equations requires time and spatial integrations while considering constraints
and/or loading conditions, as well as initial conditions. The spatial integration is performed by using a
Gaussian integration (meshless) scheme because of its simplicity, and time integration by using backward
and forward difference explicit integration schemes. The horizon size is commonly defined as three times
the spacing between the material points. This ratio is established based on numerical experimentation
and the spacing between the material points is based on a convergence study. The domain is divided
into a uniform grid, with integration or collocation (material) points associated with specific volumes.
Associated with a particular material point, the numerical implementation of spatial integration involves
the summation of the volumes of material points within its horizon. However, the volume of each material
point may not be embedded in the horizon in its entirety, i.e., the material points located near the surface
of the horizon may have truncated volumes. As a result, the volume integration over the horizon may
be incorrect if the entire volume of each material point is included in the numerical implementation.
Therefore, a volume correction factor is necessary to correct for the extra volume, as explained by
Madenci and Oterkus [2014]. The steady-state solution to the PD field equation can be achieved by
different techniques; however, in this study, an adaptive dynamic relaxation method (ADR) is employed
(described in detail by Madenci and Oterkus [2014]).

The capability of the PD theory is demonstrated by considering (1) a square bar under antiplane shear
loading, (2) a bimaterial rectangular bar under antiplane shear loading, (3) a square bar with a crack under
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Figure 9. Square bar under antiplane shear loading.

antiplane shear loading, (4) a rectangular bar under torsion, and (5) a rectangular bar with a preexisting
crack under torsion. If an analytical solution is not available, a comparison is performed against finite
element analysis (FEA) by using ANSYS, a commercially available program, in order to establish the
validity of the predictions. During the construction of the solutions to all these problems, uniform spacing,
1x =1y, between the material points is employed, and the horizon is specified as δ = 3.0151x . Also,
the steady-state solutions are achieved by using ADR with a time integration interval of 1t = 1 s.

8.1. Square bar under antiplane shear loading. As illustrated in Figure 9, a square bar with L =W =
1 in is clamped along its left and right surfaces while subjected to a uniform transverse shear stress of
S = 12000 psi on its top surface. The bottom surface is free of loading. These boundary conditions are
imposed as

uz
(
x =± 1

2 L , y
)
= 0, µ

∂uz

∂y

(
x, y =− 1

2 W
)
= 0, µ

∂uz

∂y

(
x, y = 1

2 W
)
= S. (80)

The shear modulus is specified as µ= 12× 106 psi. The cross-section is discretized with a uniform grid
spacing of 1x =1y = 0.01 in, resulting in 100 material points in each of the x- and the y-directions. The
bond-based and ordinary state-based PD displacement predictions and their comparison with the FEA
results are shown in Figure 10. The PD theory successfully captures the antiplane shear deformation, and
this comparison confirms the validity of the implementation for displacement- and stress-type boundary
conditions.

8.2. Bimaterial rectangular bar under antiplane shear loading. As shown in Figure 11, a bimaterial
rectangular bar with L = 0.2 in and W = 1 in is clamped along its bottom surface and subjected to a
uniform transverse shear stress of S = 12000 psi on its top surface. The bottom surface is free of any
loading. These boundary conditions are imposed as

uz
(
x, y =− 1

2 W
)
= 0, µ

∂uz

∂x

(
x =± 1

2 L , y
)
= 0, µ

∂uz

∂y

(
x, y = 1

2 W
)
= S. (81)

The shear moduli of the materials are specified as µ1 = 12× 106 psi and µ2 = 6× 106 psi. The cross-
section is discretized with a uniform grid spacing of 1x =1y = 0.01 in, resulting in 20 and 100 material
points in the x- and in the y-directions, respectively.
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Figure 10. Displacement variation across the bar: (top left) ordinary state-based PD
solution, (top right) bond-based PD solution, and (bottom) FEA solution.

Figure 11. Square bar under antiplane shear loading.

Along the vertical axis, the bond-based and ordinary state-based PD displacement variations and their
comparison with the FEA results are shown in Figure 12. The results demonstrate the validity of the PD
modeling of interface conditions. The predictions are in excellent agreement and capture the effect of
dissimilar materials.
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Figure 12. Displacement variation along the vertical axis.

8.3. Square bar with a crack under antiplane shear loading. As illustrated in Figure 13, a square bar
with L =W = 1 in with a preexisting central crack of length a= 0.2 in is subjected to a uniform transverse
shear stress of S = 12000 psi on its top and bottom surfaces. It is free of any loading and constraints on
its other surfaces. These boundary conditions are imposed as

µ
∂uz

∂x

(
x =± 1

2 L , y
)
= 0, µ

∂uz

∂y

(
x, y = 1

2 W
)
= S, µ

∂uz

∂y

(
x, y =− 1

2 W
)
=−S. (82)

The shear modulus is specified as µ= 12× 106 psi. The critical angle value is specified as rcr = 0.0035.
The cross-section is discretized with a uniform grid spacing of 1x = 1y = 0.01 in, resulting in 100
material points in both the x- and in the y-directions. As expected, a self-similar crack growth, shown
in Figure 14 (left), is observed. Also, the crack surfaces exhibit a tearing type of deformation, as shown
in Figure 14 (right).

8.4. Rectangular bar under torsion. As illustrated in Figure 15, a rectangular bar with L = 1 in and
W = 2 in is subjected to a unit angle of twist, θ = 1 in/in. All surfaces of the bar are free of loading.
These boundary conditions are

τxz
(
x =± 1

2 L , y
)
= µ

[
∂uz

∂x

(
x =± 1

2 L , y
)
− θ(y− y0)

]
= 0 (83)

and

τyz
(
x, y =± 1

2 W
)
= µ

[
∂uz

∂y

(
x, y =± 1

2 W
)
+ θ(x − x0)

]
= 0. (84)

They can be rewritten as
∂uz

∂x

(
x =± 1

2 L , y
)
=
θ(y− y0)

µ
(85)

and
∂uz

∂y

(
x, y =± 1

2 W
)
=−

θ(x − x0)

µ
, (86)
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Figure 13. Square bar with a crack under antiplane shear loading.

Figure 14. Square bar with a crack under antiplane shear loading: (left) crack growth
path (damage distribution), and (right) crack opening mode.

in which x0 and y0 represent the coordinates of the reference point on the boundary and are specified as
(0, 0). The cross-section is discretized with a uniform grid spacing of 1x =1y = 0.02 in, resulting in
50 and 100 material points in the x- and in the y-directions, respectively.

The bond-based and ordinary state-based PD warpage predictions and their comparison with the FEA
results are shown in Figure 16. Comparisons of the stress predictions are shown in Figures 17 and 18.
As shown in these figures, the agreement is remarkable, and the traction-free boundary conditions are
enforced through fictitious regions. The PD results capture the expected warping behavior.

8.5. Rectangular bar with a preexisting crack under torsion. The rectangular bar has a preexisting
edge crack length of a, as shown in Figure 19. The crack length is varied from 0 to b, as investigated
by Armero [2012]. The external boundary conditions and loading are the same as those of the previous
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Figure 15. Rectangular bar under torsion.

Figure 16. Displacement variation: (left) bond-based solution, (middle) ordinary state-
based solution, and (right) exact solution.

problem. The traction-free conditions on the crack surfaces are also imposed explicitly as

τyz(x, y =±0)= µ
[
∂uz

∂y
(x, y =±0)+ θ(x − x0)

]
= 0 (87)

or
∂uz

∂y
(x, y =±0)=−

θ(x − x0)

µ
. (88)

The cross-section is discretized with a uniform grid spacing of 1x =1y = 0.005 in, resulting in 200 and
400 material points in the x- and in the y-directions, respectively.

The bond-based and ordinary state-based PD predictions for the shear stress norm for varying crack
lengths are shown in Figures 20 and 21, respectively. These predictions are in remarkable agreement with
the results of Armero [2012], who employs finite elements with embedded discontinuities. Figure 22
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(a)  (b) (c) 

a

b

Figure 17. Shear stress, τxz , variation: (left) bond-based solution, (middle) ordinary
state-based solution, and (right) exact solution.

 

(a)  (b) (c) 

a

b

Figure 18. Shear stress, τyz , variation: (left) bond-based solution, (middle) ordinary
state-based solution, and (right) exact solution.

Figure 19. Rectangular bar with a preexisting crack under torsion.
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/ 0a b / 0.125a b / 0.25a b / 0.375a b

/ 0.5a b / 0.625a b / 0.75a b / 1.0a b

Figure 20. Bond-based PD predictions for stress norm τ =
√
τ 2

xz + τ
2
yz .

/ 0a b / 0.125a b / 0.25a b / 0.375a b

/ 0.5a b / 0.625a b / 0.75a b / 1.0a b

Figure 21. Ordinary state-based PD predictions for stress norm τ =
√
τ 2

xz + τ
2
yz .
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5

Figure 22. Ordinary state-based PD predictions for stress vector τ = {τxz, τyz} close to
the crack surface for a/b = 0.75.

Figure 23. Crack tip opening profile at the crack surface for a/b = 0.5.

presents the variation of stress vectors near the crack. As expected, the results show that the stress vectors
are aligned with the crack (τyz = 0). Also, the crack opening displacement is shown in Figure 23. The PD
analysis predicts a cusp-like crack opening displacement near the crack tip. It is similar to that obtained
by Silling [2000].

9. Final remarks

The classical equilibrium equations for antiplane shear and torsional deformations present only one en-
gineering constant; i.e., shear modulus. Therefore, bond-based peridynamics does not suffer from the
loss of an independent engineering constant as in the case of in-plane deformation with a constraint on
the Poisson’s ratio being 1

3 . If the degree of nonlocality is insignificant, then both the ordinary state-
based and bond-based peridynamics lead to the same predictions. However, if the degree of interaction
among the material points needs to be specified, then the ordinary state-based peridynamics may be better
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suited, such as in the case of a porous medium with fluid pressure. This study describes the determination
of the PD material parameters for both formulations, as well as their correction near the free surfaces
and interface of dissimilar materials. Inherent with the nonlocal formulations, the imposition of the
boundary conditions requires volume constraints. This study also describes the implementation of the
essential and natural boundary conditions. The validity of the equations of motion for both ordinary
state-based and bond-based peridynamics, the surface correction procedure, and implementation of the
boundary conditions are established by considering benchmark problems with complex geometry and
boundary conditions. Comparison of the PD predictions with the FEA results proves the fidelity of the
peridynamics, which offers its distinct advantage for predicting damage paths.
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