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THE RECIPROCITY LIKELIHOOD MAXIMIZATION:
A VARIATIONAL APPROACH OF THE RECIPROCITY GAP METHOD

STÉPHANE ANDRIEUX

We introduce a new concept allowing the recasting of the reciprocity gap method into a variational
method. The reciprocity likelihood functional maximization gives rise to nested approximation proper-
ties when performed on minimization spaces with increasing dimensions and leads to direct identification
methods grounded on the reciprocity property. Application to the identification of point sources is given
for illustration of the solution procedure of identification, and an analysis of the effect of noisy data
shows that the proposed methods exhibit very good robustness.

1. Identification problems and results with the reciprocity gap method

The kind of identification or inverse problems addressed here is the following:

given: a solid � and a physical phenomenon described by a linear “equilibrium” operator A acting
on vector fields u, defined in the solid, and provided a pair of data u = U m and Bu · n = Fm is
known on the whole external boundary of the solid ∂�, with external outside unit normal n, for a
field satisfying Au = 0,

determine: the eventual sources or objects buried inside the solids (cracks, flaws, holes, inclusions, etc.).

Examples of such equilibrium operators are the Laplace operator, describing isotropic conduction of
heat or electricity, the Lamé operator in the elastostatic framework, the Helmholtz operator in acoustics,
the Darcy operator for saturated porous media, etc. Although the reciprocity gap method can be applied
to nonsymmetric or non-self-adjoint operators, where the reciprocity property does not directly hold, the
reciprocity likelihood concept is developed for symmetric or self-adjoint ones.

B is the natural (or Neumann) boundary condition operator associated with A. The data usually comes
from an experiment performed on the solid, for example, by prescribing a flux or an external force on
the solid and measuring the response on the boundary. Unlike other kinds of inverse problems, the
whole Neumann-to-Dirichlet map or Poincaré–Steklov operator is not supposed to be known, even if
one can have access to more than one single experiment (or data pair). On the other hand, data on the
whole boundary is supposed to be available. These data form a redundant data pair with respect to the
operator A (namely Dirichlet and Neumann boundary data available simultaneously on the boundary).

Practical identification is achieved through identification procedures. Various propositions appeared in
the literature; they can be separated into two broad classes that we shall quickly review in the particular
case of crack-identification problems with the Laplace equation although similar methods and results
have been obtained for other operators, namely acting on vector fields, as in elasticity.
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First are direct iterative methods grounded on a variational property of the solution: after design-
ing a functional of the geometrical parameters describing the cracked domain, iterative resolutions of
Laplace problems are performed in order to minimize (or get a stationary point of) the functional. To
this class belong classical least-squares methods or more sophisticated functional-minimization methods
as adaptations of the functional of [Kohn and Vogelius 1984]. This class relies on a lot of resolutions of
elliptic problems, which are generally costly and always need the introduction of the point of departure
of the algorithm (the initial guess), the choice of which is difficult and can significantly alter the speed
of convergence or even the converged solution itself. Moreover, for the identification of geometries, a
remeshing of the solid is necessary for each iteration.

The second class of methods uses families of particular fields and avoids any resolution of the PDEs
underlying the physical phenomenon used in the identification or uses only a few: auxiliary field methods
[Bui 2011]. The reciprocity gap method belongs to this last class of methods sometimes called sampling
or probe methods in the inverse scattering community because no resolution of any PDE is needed.

To obtain or to approximate the solution of this kind of identification problem, the reciprocity gap con-
cept has been introduced first for the Laplace operator [Andrieux and Ben Abda 1992; 1993], the concept
being suited to symmetric operators as it relies on the reciprocity property. More precisely, the reciprocity
gap RG is a linear form acting on auxiliary fields defined on the safe domain (without flaws or source
distribution) and satisfying the operator equation. For each auxiliary field picked out of the auxiliary field
subspace, the computation of the action of the form RG supplies scalar information on the “difference”
between the actual solid and the safe one. The concept has been extended to general operators by using
auxiliary fields, which are solutions of the adjoint (or conjugate) operator equation [Andrieux 1995]. A
comprehensive introduction to the reciprocity gap concept can be found in [Andrieux and Bui 2011].

Numerous identification results, both theoretical and constructive (identification formulas), have been
obtained by using appropriate auxiliary field families. For planar crack identification, results were ob-
tained for the Laplace and Lamé operators [Andrieux and Ben Abda 1992; 1996; Andrieux et al. 1999],
for the heat equation [Ben Abda and Bui 2001], for viscoelastic media, in inverse scattering [Bui et al.
1999; Ben Abda et al. 2005; Colton and Haddar 2005], and in elastodynamics with the concept of the
instantaneous reciprocity gap [Bui et al. 2004; 2005]. Mention must be made of [Ikehata 1999] using
similar concepts but with a different use. For source distribution identification, [El Badia and Ha Duong
1998; El Badia et al. 2000] gave identification algorithms for point sources with the Laplace equation
and [Alves and Silvestre 2004] for the Stokes equation.

Recently, Shifrin and Shushpannikov [2010; 2011; 2013b; 2013a] derived results in elasticity for
the identification of inclusions in 3D for a single traction experiment, based on approximation of the
solution for an infinite medium. This use of the reciprocity gap with an approximate solution is close to
the assumption of infinite medium taking advantage of the Eshelby results [1957] proposed for inclusion
identification by [Andrieux et al. 2006].

2. Recollection of the reciprocity gap method

Let us recall briefly the reciprocity gap definition and the associated identification method for the simplest
case of a scalar isotropic conduction equation. A is the Laplace operator, u is a scalar field, and B is
the gradient operator so that on the boundary Bu · n = ∇u · n. The bilinear form a associated to the
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operator A is

a(u, v)=
∫
�

∇u · ∇v d�. (1)

A collection of cracks {0i : i = 1, N } can be buried inside the solid, and some source distribution s(x)
can also appear so that we have, inside the domain occupied by the solid, the equations{

−1u = s in � \0i , i = 1, . . . , n,
∇u · ni = 0 on 0i , i = 1, . . . , n.

(2)

The problem of identification of the crack geometry and the source distribution is set provided a pair of
boundary data is available on the whole external boundary of the domain �:

∇u · n = Fm, u =U m on ∂�. (3)

Definition. For any field v belonging to the Sobolev space H 1(�), the reciprocity gap RG is the linear
form defined by

RG(v)=
∫
∂�

(Fmv−∇v · nU m) d S. (4)

The RG definition uses only the known quantities of the identification problem. The term “reciprocity
gap” has been coined after the Betti–Maxwell reciprocity property: for two harmonic fields u and v in
the domain �, one has ∫

∂�

(∇u · nv−∇v · nu) d S = 0. (5)

The idea here is that the form RG is vanishing on every harmonic field v in � if there are neither
cracks nor source distributions in the actual solid; it is on the contrary nonzero if some cracks or source
distributions exist, measuring then in some sense the “difference” between the safe and the actual solids.
More precisely, the following fundamental property of the reciprocity gap holds:

Fundamental property. For every harmonic field v in �, the reciprocity gap has the interpretation

RG(v)=
∫
�

sv d�+
N∑

i=1

∫
0i

∇v · ni [u] d0i . (6)

In (5), [u] stands for the jump of the field u across the cracks.
The reciprocity gap method consists of selecting appropriate auxiliary harmonic fields v, each of them

giving one piece of scalar information about the sources and the cracks or more precisely on the actual
field u on the support of the cracks or of the source distribution. For planar cracks lying in a single
plane 5 with normal N5, and with s = 0, it is easy to see that, using linear fields x i as auxiliary fields,
the normal N5 can be recovered with the explicit formula [Andrieux and Ben Abda 1992]

N5 =
RG(x i )ei√

RG(x1)+RG(x2)+RG(x3)
. (7)

The formula involves only a straightforward computation of the linear form RG on three fields and does
not require any resolution of a partial differential equation. The identification results mentioned in the
introduction have been obtained by such ad hoc choices for the auxiliary fields. For example, the complete
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identification results for infinite-parameter identification such as geometry of the cracks relies on the
choice of a Hilbertian basis of the space of the auxiliary fields fulfilling the operator equation defined by
A (here harmonic fields) in the sound domain. The reciprocity gap method is then a constructive method
of identification, but a general method for choosing the relevant auxiliary fields is still lacking. That is
why we turn to an alternative way of using the reciprocity gap linear form. Before that, a general abstract
setting is introduced in the next section.

3. Abstract general form of the reciprocity gap

The abstract form of the reciprocity gap is built from the weak formulation of the physical problem at
hand. We suppose thus that we have

• a symmetric bilinear form a(u, v), continuous on a functional (Hilbert) space W (� \0), where 0
is a collection of (unknown) cracks, and

• two linear and continuous forms, corresponding respectively to natural boundary conditions on the
external boundary of � and to the interior source distribution,

l f (v)=

∫
∂�

f v d S, ls(v)=

∫
�

sv d� (8)

so that the weak form of the operator equation is

u ∈W (� \0), a(u, v)= l f (v)+ ls(v) for all v ∈W (� \0). (9)

It is assumed here that external solicitation is exerted on neither the crack lips nor the special consti-
tutive equation linking the jumps of the field u to the dual quantity Bu · n so that Bu · n= 0 on the crack
lips. The bilinear form a can vanish on a finite-dimensional subspace R of W (rigid body motions in
mechanics, constant fields for stationary heat conduction, etc.):

r ∈ R =⇒ a(r, v)= 0 for all v ∈W (� \0). (10)

With the bilinear form a coercive on the quotient space of W by R and the operator B on the boundary
defined via a Green formula, the solution of (8) is determined up to a field belonging to R and uniqueness
is obtained by adding a finite set of linear conditions on the solution. Existence of solutions is ensured
provided a compatibility condition on the solicitations f and s is fulfilled:

l f (r)+ ls(r)= 0 for all r ∈ R. (11)

For the identification problem, let us assume that the domain � \0, the bilinear form a, and the source
distribution s are parametrized by a (possibly infinite) set of parameters p belonging to a parameter
space P (we have to assume that when the parameters p are in the space P the coerciveness of a is
preserved). The identification problem addressed here is then to determine a set (or several sets) of
parameters, provided the value of the field u and its dual counterpart Bu · n, (U m, Fm), are given on the
whole external boundary ∂� of the solid:

determine p ∈ P such that


a(u, v; p)= lFm (v)+ ls(p)(v) for all v ∈W (p),
lFm (r)+ ls(p)(r)= 0 for all r ∈ R,
u|∂� =U m .

(12)
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This formulation encompasses the cases of crack identification (the parameters p are describing the
geometry of the cracks), source distribution identification (parameters p describe both geometry of the
support and intensity), and inclusion identification (the parameters p describe the geometry of the support
and value of the contrast of material properties in the bilinear form a).

In this context, a enjoys a reciprocity property

a(u1, v)= l1(v) for all v,
a(u2, v)= l2(v) for all v

}
=⇒ l1(u2)= l2(u1)

and the reciprocity gap is defined by the residual of the reciprocity property:

RG(v)= lFm (v)−

∫
∂�

Bv · nU m d S. (13)

The RG form does not depend on the parameters p as it is assumed that all the heterogeneities or sources
buried inside the solid are strictly in the interior of the domain (the case of an emerging crack has been
addressed in [Andrieux et al. 1998]). The space of auxiliary fields to be used in the reciprocity gap
method is simply W (�), and the fundamental property reads:

Fundamental property. For every v in W (�) fulfilling the equation

a(v,w)= lBv·n(w) for all w ∈W (�), (14)

the reciprocity gap has the interpretation

RG(v)=
N∑

i=1

∫
0i

Bv · ni [u] d0i − ls(p)(v)−1a(u, v; p), (15)

where1a(u, v; p)= a(u, v; p)−a(u, v; 0) with the convention that p= 0 corresponds to the sound solid.

This property is grounded on the symmetry of the bilinear form a. The interpretation of the RG linear
form makes more precise the nature of the information brought by its calculation for every auxiliary
field. The identification procedure is the same as in the preceding section: select an appropriate family
of auxiliary fields and exploit the set of scalar equations obtained by computing the RG form for each
field of the family in order to gain information on the parameters p. As already said, there is not yet a
systematic way to choose the family and to exploit the information gained on p.

4. General definition and properties of the reciprocity likelihood

The general idea is to search for a variational usage of the reciprocity gap linear form in order to derive
the minimization process as the “systematic” way for the identification procedure. For that purpose, we
revisit the exploitation of the reciprocity property by using the reciprocity gap not between the actual and
the safe solids but between the actual solid and a solid where some flaws exist, corresponding here to a
given set of parameters p, say q. It is clear that, if the q parameters coincide with the “true” values p0,
then the reciprocity property is recovered between boundary data and the values on boundary of the
auxiliary fields because they are acting on the same solid. Then the reciprocity gap is the null linear
form on the subspace of auxiliary fields satisfying the operator equation in the solid � with parameters q .
Conversely, if the reciprocity gap is not the null form, then a parameter set leading to a lower value of



224 STÉPHANE ANDRIEUX

the norm of RG must be preferred to a parameter set leading to higher values of the norm. The opposite
of the square of the norm of RG will be called the reciprocity likelihood, and the proposed identification
procedure will consist of maximizing the reciprocity likelihood over the parameter space P (that is,
minimizing the norm of RG).

Let us define the vector space Vq of auxiliary fields fulfilling the equilibrium equation in the solid �(q)
parametrized by the set of parameters q and furthermore canceling the linear form related to the source
distribution s(q), W0, the space of fields with a null trace on the external boundary:

Vq = {v ∈W [�(q)] : a(v,w; q)= 0 for all w ∈W0[�(q)], ls(q)(v)= 0}, (16a)

W0(q)= {h ∈W [�(q)] : h|∂� = 0}. (16b)

It is now clear that, for any given parameters q, the reciprocity gap does not vanish on Vq , but the
following property establishes that the set of parameters q causing the RG form to vanish on the Vq

space is exactly the set of parameters that are likely with respect to the data or measurements at hand:

Optimality of the reciprocity gap. Let p0 be a set of parameters such that the reciprocity gap vanishes
on Vp0 .

If the source distribution is zero or if the source distribution is nonzero but there exists no field of R
except zero that vanishes on the external boundary ∂� of the solid,

(r ∈ R and r |∂� = 0) =⇒ r = 0, (17)

then there exists a field v0 in W (p0) satisfying{
a(v0, w; p0)= ls(p0)(w) for all w ∈W0(p),
v0|∂� =U m, Bv0 · n|∂� = Fm .

(18)

This property means that, as soon as the reciprocity gap vanishes on the space Vp0 , there exist a
collection of cracks, a source distribution, a set of inclusions (described by p0), and a field v0 that fulfills
the equilibrium equation and meets exactly the values of the given boundary condition pair (U m, Fm).
The proof of this property is given in Appendix A.

The optimality property of RG allows us to propose a new formulation for the identification problem
addressed here: search for the space Vp0 where the reciprocity gap linear form is zero. To obtain a
variational formulation of this problem, i.e., to define a functional or a function on the space P whose
minimization or maximization will furnish candidates for the identified parameters, a natural way is to
use the norm of the linear form RG on the linear space Vp. The lower the value of this norm, the greater
the likelihood of the parameters p with respect to the data at hand so that we shall define the opposite
of the square of the RG norm as the reciprocity likelihood functional (as a function of p). The solution
procedure will be to maximize it over P . In order to give meaning to the norm of RG on the space Vp,
it is necessary to establish the following topological properties:

Topological properties of RG and Vp. Assume the following for every p in P:

(i) W (p) is a Hilbert space with scalar product and norm denoted by

〈u, v〉W (p), ‖u‖W (p) =
√
〈u, u〉W (p).

(ii) The trace operator γ :W (p)→ TW (p) with v 7→ γ v = v|∂� is continuous: ‖γ v‖TW (p) ≤ c‖v‖W (p).
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(iii) The bilinear form a is coercive and continuous on Vp:

there exist α(p) and β(p), 0< α < β <+∞,
such that, for all (u, v) ∈ V 2

p ,

{
α‖v‖2W (p) ≤ a(v, v; p),
a(v, u; p)≤ β‖v‖W (p)‖u‖W (p).

(iv) The linear form ls(p) is continuous on Vp:

there exists η(p) > 0 such that, for all v ∈ Vp, |ls(p)(v)| ≤ η‖v‖W (p).

Then the linear subspace Vp of W (p) is closed, and the linear form RG is continuous on Vp.

The proof of this property is given in Appendix B. We can now define the reciprocity likelihood using
the classical definition of the norm of a linear form.

Definition. For p belonging to P , the reciprocity likelihood RL(p) is the opposite of the square of the
norm of the linear form RG on the space Vp:

RL(p)=−‖RG‖2Vp
(19)

with
Vp = {v ∈W (p) : a(v,w; p)= 0 for all w ∈W0(p), ls(p)(v)= 0},

W0(p)= {w ∈W (p) : γ (p)= 0},

RG(v)=
∫
∂�

(Fmv− Bv · nU m) d S,

‖RG‖Vp = sup
v∈Vp−{0}

RG(v)
‖v‖W (p)

.

Thanks to the optimality property of RG, the identification problem (12) is equivalent to the maxi-
mization of the reciprocity likelihood, and the optimal value of RL is zero:

p = ArgMax
q∈P

RL(q) ⇐⇒ p ∈ P,


a(u, v; p)= lFm (v)+ ls(p)(v) for all v ∈W (p),
lFm (r)+ ls(p)(r)= 0 for all r ∈ R,
u|∂� =U m .

(20)

As it can be seen, the variational formulation of the identification problem is quite general. Some illus-
trations on the specific identification problems for point source distributions will be given in the sequel.
Let us have two preliminary remarks.

Remark 1. The reciprocity likelihood maximization method enables one to determine a solution to the
identification problem even if the model used (bilinear form a and linear form ls(p)) or the parameter space
chosen (geometry of the cracks or inclusions, etc.) are only approximations that are not totally compatible
with the experimental data (U m, Fm). Indeed, the maximization will produce a set of parameters that are
the most likely in the actual context even if the maximum will not be zero. Moreover, one can determine
nested approximations for the parameters p (with growing reciprocity likelihood) by using nested subsets
of the global parameter space:

Ph
1 ⊂ Ph

2 ⊂ P,
ph

i = ArgMaxq∈Ph
i

RL(q)

}
=⇒ RL(ph

1 )≤ RL(ph
2 ) =⇒ ph

2 is a better identification than ph
1 .
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Remark 2. The practical calculation of the RL functional is generally not achievable because the space Vp

is generally non-finite-dimensional so that the norm of the reciprocity gap cannot be computed exactly in
most cases. Nevertheless, it is possible to compute an approximation of RL by using a finite-dimensional
space with dimension nd V nd

p approximating Vp:

RLnd (p)=−
[

sup
v∈V ndp −{0}

RG(v)
‖v‖W (p)

]2

. (21)

When the space Vp is approximated by the finite-dimensional space V nd
p , the reciprocity property will

not be fulfilled (for the optimal parameter set) for all the auxiliary fields but for only on a subspace of
the auxiliary fields space. But again the nested approximation spaces for Vp (with increasing dimension)
lead to increasing quality of the identification results.

In current applications, two approximations are then made: one on the parameters space and the other
on the linear space of the auxiliary fields, approximated by a finite-dimensional space, so that the RL
maximization would generally read

ph
nd
= ArgMax

q∈Ph
RLnd (q). (22)

The following result can prove useful in the applications when computing the norm of RLnd :

Norm of a linear form on a finite-dimensional vector space. Let V n be a vector space of dimension n
with scalar product 〈 · , · 〉, (φα)α=1,...,n a linearly independent family of vectors of V n , and l a linear
form on V n . The norm of l is given by

‖l‖V n =

√
t l M−1l, Mαβ

= 〈φα, φβ〉, lα = l(φα). (23)

The reciprocity likelihood maximization method can then be summarized by:

RLM method. (1) Choose a finite set of independent auxiliary fields (φα)α=1,...,nd satisfying

a(φα, w; p)= 0 for all w ∈W0(p), ls(p)(φ
α)= 0,

providing a vector basis for the approximated space of auxiliary fields V nd
p .

(2) Maximize the approximated reciprocity likelihood function defined by

popt
= ArgMin

q∈P
M−1
αβ (q)RG(φα(q))RG(φβ(q)), Mαβ(q)= 〈φα(q), φβ(q)〉.

5. Application to the identification of point source distributions for a conduction equation

This 2D problem has been addressed by [El Badia and Ha Duong 1998; El Badia et al. 2000] with the
reciprocity gap functional, by a direct approach, similar to the one described in Section 2. Consider the
problem 

−1u = λ
∑i=S

i=1 δX i in �,
∇u · n= Fm on ∂�,
u =U m on ∂�.

(24)
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The inverse problem consists in determining the location X i of the sources whose intensity λ is known
from the redundant boundary data (U m, Fm). El Badia and Ha-Duong proved that, if an upper bound of
the number of sources S is known, then the redundant boundary data pair determines exactly the source
locations. They also give an identification algorithm. The reciprocity gap is given here by (4) as in
Section 2.

An alternative algorithm based on the reciprocity likelihood method is the following. First, the inten-
sity λ of the point sources being known, the number of sources is determined by computing the reciprocity
gap on the constant (harmonic) field v = 1:

S =−
1
λ

RG(1). (25)

From now on, λ is set at the value λ= 1. The space Vp is parametrized by the positions of the sources
p = (xi , yi )i=1,...,S

Vp = {v ∈W [�(p)] : a(v,w; p)= 0 for all w ∈W0[�(p)], ls(p)(v)= 0},

W0(p)= {h ∈W [�(p)] : h|∂� = 0},

namely here

Vq =

{
v ∈ H 1(�) :

∫
�

∇v∇w d�= 0 for all w ∈ H 1
0 (�),

S∑
i=1

v(xi , yi )= 0
}
. (26)

To build a finite-dimensional approximation V nd
p of this space, we have to choose a linearly independent

family of nd functions (φα)α=1,...,nd in Vp. For that, it suffices to select a family of nd independent
harmonic fields (ψα)α=1,...,nd and to take as the (φα)α=1,...,nd family

φα(x, y)= ψα(x, y)− σ α(q),

σ α(q)=
1
S

S∑
i=1

ψα(xi , yi ).
(27)

Remark that the family (ψα)α=1,...,n is independent of the parameters q . To derive the matrix M appearing
in the RLM for finite-dimensional Vq spaces (see the RLM method), we just calculate

Mαβ
= 〈φα, φβ〉

=

∫
�

∇φα ·1φβ +φαφβ

=

∫
�

ψαψβ +
1
2

∫
∂�

(∇ψα · nψβ +∇ψβ · nψα)+ σ ασ β −
∫
�

σ αψβ + σ βψα. (28)

Only the last two terms (involving the σ quantities) in the last expression are functions of the parameters p.
Once the matrix M is built, the RL function

RL(p)=−M−1
αβ (p)RG(φα(p))RG(φβ(p)) (29)
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θ

S1

S2

S3

Figure 1. Unit disc with three point sources.

is computed by the following scheme, which requires solving the same linear system (p-dependent) nd

times:
Xα(p)= RG(φα(p)), M(p)Y (p)= X (p), RL(p)=−X (p) · Y (p). (30)

The computation of the RL function is then very cost-effective because, as for the reciprocity gap methods,
no resolution of any PDE is needed.

As an example, consider the identification of a source distribution in the unit disc as depicted in
Figure 1.

Choose the (ψα)α=1,...,2nd family in the polar coordinate system centered at the disc center:

ψα(r, θ)=

√
2π(α+ 1)

1+ 2α(α+ 1)
rα cos(αθ), α = 1, . . . , nd ,

ψα(r, θ)=

√
2π(β + 1)

1+ 2β(β + 1)
rβ sin(βθ), α = nd + 1, . . . , 2nd with β = α− nd .

(31)

These functions are obviously harmonic, and because they form a orthonormal family for the H 1(�)

scalar product, the M matrix and its inverse turn out to have very simple expressions:

M = Ind + σ ⊗ σ, M−1
= Ind −

1
1+‖σ‖2

σ ⊗ σ. (32)

It is thus possible to have a closed-form expression for the RL functional

−RL(p)=
2n∑
α=1

(RG(ψα)+ Sσ α)2−
∑
α,β

σ ασ β

1+‖σ‖2
(RG(ψα)+ Sσ α)(ER(ψβ)+ Sσ β), (33)

where only the σ terms depend on the parameters p.
To study the overall performance of the reciprocity likelihood maximization method, three cases are

examined with one, two, and six sources. The data (U m, Fm) on the boundary of the unit disc are
provided by the closed-form solution to the Laplace equation with point source distribution

u(X)=
1

2π

S∑
i=1

log‖X − X i‖. (34)
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Figure 2. The function J (x)=−RL(x) for dimensions nd = 1, 2, 3, 6, respectively, of
the space V nd

p .

Identification of a single point source. The source is located on the Ox axis with x = 0.21. The
parameters p reduce to the abscissa x of the source. Figure 2 displays the function J (x) = −RL(x)
when the dimension 2nd of the approximation space of Vp is varied from 2 to 12, that is, when one to
six auxiliary functions are used or when the dimension of the matrix M follows the same way (2× 2
to 12× 12). The symmetry of the solution leads to a symmetry that can be observed on the data on the
boundary so that the reciprocity gap vanishes on the half-part of the function set. The effective dimension
used for the approximation space for Vp is only nd and can then take odd values.

The behavior of the J = −RL function is very good even for a single auxiliary function (nd = 1)
where the computation time is negligible, the matrix M being reduced to a single scalar. When the
number of functions increases, the computation of the RL function, which remains very quick, leads to
sharper minima and a stabilization of the local form of the function around its minimum (maximum of
the RL function).

Identification of two point sources. Let us now consider the case of two point sources in the unit disc:
S = 2, (x1, y1) = (0.21, 0.0), and (x2, y2) = (−0.70, 0.0), which corresponds to the temperature field
plotted in Figure 3. If the ordinates of the sources are known or more simply by exploiting the symmetry
of the measurements with respect to the Oy axis, the RL function becomes a function of the abscissae
of the sources RL = RL(x1, x2). Because the identification problems have families of solutions that

Figure 3. Level lines of the temperature within the unit disc with the two point sources
to be identified.
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n

Figure 4. Level lines of the reciprocity likelihood function on the square (x1, x2) =

[−0.8, 0.3] × [−0.8, 0.3] for dimensions n = 2, 4, 8, 12, respectively, of the space V n
p

(number of ψ functions). The dots correspond to the exact locations of the sources.

are symmetric with respect to the line x1 = x2 in the parameter space (x1, x2), the maximization of the
reciprocity likelihood function (or the minimization of its opposite J ) has to be conducted in only one
half of the square, say x1 < x2.

One can notice here again an almost convex behavior of the RL function on each triangle except for
the first case (n = 1), where the use of only one auxiliary field (dim V n

p = 1) is obviously insufficient to
capture the details of the temperature field. Here the information given by the boundary data is evidently
underexploited.

In the other cases, the identification via an optimization procedure is quite easy and the addition of
new auxiliary fields seems to have no significant effect for n > 4, showing then the sharpness of the
reciprocity likelihood concept.

Identification of point sources by direct maximization of RL. The general problem of identification of
S sources by direct maximization of the reciprocity likelihood is now addressed, that is, the determination
of the locations of the sources q = [Xk]k=1,...,S = [(xk, yk)]k=1,...,S . As seen in the preceding case, the
order of the sources is irrelevant so that there exist several maxima in [−1, 1]2S corresponding to the
same family of sources with the same value of the maximum RL(pmax). The selected (converged) family
depends on the starting point of the descent algorithm (initial guess). Here the departure locations of the
six sources are disposed on a spiral curve in order to have a good initial distribution (Figure 5).

Figure 5. Initial distribution of the six sources to be identified by the RLM.
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Figure 6. Identified (circles) and real (squares) locations of six sources with 2nd = 12, 8
auxiliary functions, respectively.

The gradient of the RL functional with respect to the source locations is straightforward to calculate
and is given by

∇ RL(q)=−2
n∑
α=1

(RL(ψα)+ Sσ α)∇σ α

− 2
∑
α,β

σ α

1+‖σ‖2
[
(RL(ψα)+ Sσ α)(RL(ψβ)+ Sσ β)+ Sσ β(RL(ψα)+ Sσ α)

]
∇σ β

+ 2
[∑
α,β

σ ασ β(RL(ψα)+ Sσ α)(RL(ψβ)+ Sσ β)
]∑n

α=1 σ
α
∇σ α

[1+‖σ‖2]2
(35)

with ∇σ β =
∑m

i=1 ∇ψ
β(Si ).

The computation of the function RL and its gradients is very cost-effective as it requires only integrals
over the boundary of the unit disc of products of the data and the trace of the auxiliary fields. For six
sources, the number of parameters to be identified is twelve. Figure 6 (left) displays the converged
locations of the sources in the unit disc when the initial guess is the spiral distribution of Figure 5. The
dimension of the space V nd

p is also 12, that is, nd = 6 (results are identical with nd = 7). The locations
are perfectly recovered with only one data pair (U m, Fm). The number of iterations with the line search
option of MATLAB [2000] is 123 (194 for n = 7) with a tolerance on the gradient of 10−6.

We shall note in particular that the two very close sources situated on the horizontal axis are very well
separated. On the other hand, with a lower number of auxiliary functions, eight for example (nd = 4),
the maximization stops after 36 iterations because of a too low value of the gradient: the source locations
are very badly estimated as seen in Figure 6 (right).

In this case, the RL functional does not contain enough information (or enough probing of the reci-
procity property) so that it is too “flat” in a large vicinity of the eventual maxima.

6. Analysis of the effect of noisy data

In this part, the effect of noise on the Cauchy data (u and ∂r u) on the boundary is analyzed for the last
example (identification of a six-source distribution). The noise is added to the data with the form

f noisy(θ)= f (θ)(1+ εnoise rand θ), (36)
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Figure 7. Identified (circles) and real (squares) location of six sources with noisy data
(1%, 10%, and 25% noise, respectively).

where rand is the uniform distribution on the segment [−0.5, 0.5] and εnoise is the noise level.
One can observe that up to 25% noise the sources are very well recovered except for the two close

sources situated on the Ox axis, where the estimation of the location of these sources degrades with the
increase of the noise in a symmetric way with regard to the axis Ox . This robustness can be explained by
Figure 8. Indeed, the method uses computations of the RG form on auxiliary fields that are very regular
and with increasing “space frequency” (with α). It is then clear that the product of the noisy data fields
(u and ∂r u) with these auxiliary fields is insensitive to the high-frequency noise for the lowest value of α
in (30) and more and more sensitive with growing values of α.

Then the low value of the number of auxiliary fields needed for the identification (as mentioned in
Section 5) ensure the good robustness of the identification procedure. For this reason, significantly better

Figure 8. Plot of the noisy data (15% noise) and of two auxiliary fields (α = 1 and
α = 5) on the external boundary.
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Figure 9. Plots of the noisy data (25% noise) and the regularized data obtained by a
Tikhonov regularization. Left: U m . Right: Fm .

results cannot be expected when using a smoothing of the noisy data with a regularization before pro-
cessing it with the reciprocity likelihood method. This regularization enables one to compute a smoothed
version f r of a function f over an interval I via the regularized projection

f r
= ArgMin

g

∫
I
[ f (x)− g(x)]2 dx + ηS(g), (37)

where S(g) is a stabilizing functional (Tikhonov [Tikhonov and Arsenin 1977] or total variation [Rudin
et al. 1992]) and η the regularization parameter. Here a Tikhonov regularization must be preferred to the
total variation regularization because the real data exhibits no discontinuities or strong gradient zones,
and only oscillations due to the noise on each measurement points have to be damped out. An example
of Tikhonov regularization is displayed in Figure 9 for a noise level of 25%.

The comparison of the results with and without prior regularization shows that they are indeed quite
similar.

Figure 10. Identified (circles) and real (squares) location of six sources with noisy data.
Left: 25% noise with prior Tikhonov regularization. Right: 25% noise without prior
regularization.
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Nevertheless, the prior regularization would prove useful for the case of more numerous sources
because the identification procedure would have to involve more auxiliary fields and then more compu-
tations of the RG linear form on fields with higher spatial wave number.

7. Conclusion

We derived a new identification method with the reciprocity gap that produces a systematic way for
addressing the identification problem of sources and cracks of inclusion in a solid provided redundant data
are available on the whole external boundary. The concept of reciprocity likelihood has been designed and
is applicable to any symmetric elliptic operator. The minimization of the reciprocity likelihood function
provides a systematic way for using the reciprocity gap concept by avoiding the choice of auxiliary
fields and the design of a method for exploiting the information given by the value of the reciprocity gap
on it. On the other hand, it is necessary to carefully define the parametrization of objects to be identified.
Very good performance and robustness with respect to the noise in the data have been observed for the
identification of point source distributions. Applications to crack detection and inclusion identification
are in progress.

Appendix A: Proof of the optimality property of the reciprocity gap

Let v0 be the field in W (p0) meeting the Dirichlet boundary condition on ∂� and satisfying the equilib-
rium condition with the source distribution s(p0). The existence of v0 is ensured by the Lax–Milgram
theorem [Brezis 2011] applied to the linear problem{

a(v0, w; p0)= ls(p0)(w) for all w ∈W0(p0),

v0|∂� =U m .
(A-1)

To prove the optimality property of RG, it remains to show that v0 also meets the Neumann boundary
condition: Bv0 · n= Fm on ∂�. For that purpose, let us remark that the following reciprocity property
holds, thanks to the symmetry of the bilinear form a( · , · ; p0) and to the fact that the fields in the
space Vp0 are canceling the linear form ls(p0):∫

∂�

Bv0 · nv d S =
∫
∂�

Bv · nv0 d S for all v ∈ Vp0 . (A-2)

Indeed,

a(v0, w; p)= ls(p0)(w)+ lBv0·n(w) for all w ∈W (p0),

a(v,w; p)= lBv0·n(w) for all w ∈W (p0) and v ∈ Vp0,

ls(p0)(v)= 0 for all v ∈ Vp0


=⇒ lBv0·n(v)= lBv·n(v0) for all v ∈ Vp0 . (A-3)

Because of the condition (A-1), the reciprocity property involves the data U m :∫
∂�

Bv0 · nv d S =
∫
∂�

Bv · nU m d S for all v ∈ Vp0 . (A-4)
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Using now the assumption that the reciprocity gap vanishes on the space Vp0 ,∫
∂�

Fmv d S =
∫
∂�

Bv · nU m d S for all v ∈ Vp0, (A-5)

one obtains by subtracting the two last equalities∫
∂�

(Fm
− Bv0 · n)v d S = 0 for all v ∈ Vp0 . (A-6)

The result Bv0 · n= Fm would follow, by duality arguments, if equality (A-6) can be extended to all the
external traces g of fields in W (p0), namely if

for all g ∈ TW (p0) there exists vg ∈W (p0) such that


a(vg, w; p)= 0 for all w ∈W0(p0),

ls(p0)(vg)= 0,
vg|∂�ext = g.

(A-7)

To prove this last property, and for a given g in TW (p0), let us define the unique field vg in W (p0) to be
the solution of the problem{

a(vg, w; p0)= ls(p0)(w) for all w ∈W0(p0),

vg
|∂� = g.

(A-8)

Existence and uniqueness of vg follow again by the Lax–Milgram theorem. Two cases are now possible:

(i) ls(p0)(v
g)= 0; then vg is in Vp0 and we can take vg = v

g.

(ii) ls(p0)(v
g) 6= 0; then define vg by vg = v

g
− (ls(p0)(v

g)/ ls(p0)(v
0))v0.

For this last case, it is straightforward to verify that vg belongs to in Vp0 and that its trace is g:

ls(p0)(vg)= ls(p0)(v
g)−ls(p0)(v

g)
ls(p0)(v

0)

ls(p0)(v
0)
=0, vg|∂�=v

g
|∂�−

ls(p0)(v
g)

ls(p0)(v
0)
v0
|∂�= g−0= g. (A-9)

Furthermore, ls(p0)(v
0) cannot vanish because ls(p0)(v

0)= a(v0, v0
; p0) so that the only possibility would

be that v0 belongs to R. With the assumption that only the null field in R can vanish on the boundary,
this leads to a contradiction because the source distribution is not zero.

If there is no source, only case one is relevant.

Appendix B: Proof of the topological properties of Vp and RG

The proof of the closure of Vp contains two steps. First, we build a characterization of this space. Let
T ∗e(p)W (p) be the closed subspace of the dual of TW (p), where the compatibility conditions (10) for the
equilibrium are met:

T ∗e(p)W (p) = {g ∈ T ∗W (p) : lg(r)+ ls(p)(r)= 0 for all r ∈ R}. (B-1)

Define the function L as

L : T ∗e(p)W (p) → Vp with g 7→ v(g) such that a(v,w; p)= lg(w)+ls(p)(w) for all w ∈W (p). (B-2)
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This function associates with any loading g on ∂� the equilibrium solution in the solid �(p) submitted
to the source s(p). L is surjective (just take g = Bv · n for v in Vp; g fulfills the compatibility condition
because R ⊂W ) and injective by the Lax–Milgram theorem.

The second step is to show that L is continuous, leading then to the conclusion. Indeed, for every
convergent sequence vn in W (p) of vectors of Vp, one can associate to L a convergent sequence gn in
T ∗e(p)W (p) because strong convergence in W (p) implies the weak convergence and then the convergence
of a(vn, w) for every w. The limit of gn is necessarily in T ∗e(p)W (p) as it is a closed space. Finally, the image
of this limit of L is in Vp and corresponds to the limit of vn . So the limits of convergent sequences of Vp

are in Vp, which shows that it is closed.
Let us now show that L is continuous. For any g1 and g2 in T ∗e(p)W (p) , we have with vi = L(gi )

a(v1− v2, w; p)= lg1−g2(w) for all w ∈W (p). (B-3)

Thanks to the coerciveness of a and the continuity of the trace operator γ , one can obtain the inequality

α‖v1− v2‖
2
W (p) ≤ a(v1− v2, v1− v2; p)≤ β‖g1− g2‖T∗W (p)‖γ v1− γ v2‖TW (p)

≤ βc‖g1− g2‖W (p)‖v1− v2‖TW (p),
(B-4)

showing that L is continuous. The continuity of RG results from the Schwartz inequality

|RG(v)| ≤ ‖Fm
‖T∗W (p)‖v‖TW (p) +‖Bv · n‖T∗W (p)‖U

m
‖TW (p) (B-5)

as well as the continuity of g, a and ls(p) because we have

lBv·n(w)= a(v,w; p)− ls(p)(w) for all w ∈W (p). (B-6)

Acknowledgment

The author is grateful to Thouraya Nouri Baranger from the Université de Lyon 1, LaMCOS, for the
realization of the optimization with MATLAB of the function RL in the cases of multiple sources.

References

[Alves and Silvestre 2004] C. J. S. Alves and A. L. Silvestre, “On the determination of point-forces on a Stokes system”, Math.
Comput. Simulat. 66:4–5 (2004), 385–397.

[Andrieux 1995] S. Andrieux, “Fonctionnelles d’écart à la réciprocité généralisé et identification de fissures par des mesures
surabondantes de surface”, C. R. Acad. Sci. I Math. 320:12 (1995), 1553–1559.

[Andrieux and Ben Abda 1992] S. Andrieux and A. Ben Abda, “Identification de fissures planes par une donnée de bord unique:
un procédé direct de localisation et d’identification”, C. R. Acad. Sci. I Math. 315:12 (1992), 1323–1328.

[Andrieux and Ben Abda 1993] S. Andrieux and A. Ben Abda, “The reciprocity gap: a general concept for flaws identification
problems”, Mech. Res. Commun. 20:5 (1993), 415–420.

[Andrieux and Ben Abda 1996] S. Andrieux and A. Ben Abda, “Identification of planar cracks by complete overdetermined
data: inversion formulae”, Inverse Probl. 12:5 (1996), 553–563.

[Andrieux and Bui 2011] S. Andrieux and H. D. Bui, “On some nonlinear inverse problems in elasticity”, Theor. Appl. Mech.
38:2 (2011), 125–154.

[Andrieux et al. 1998] S. Andrieux, A. Ben Abda, and M. Jaoua, “On the inverse emergent plane crack problem”, Math.
Methods Appl. Sci. 21:10 (1998), 895–906.

http://dx.doi.org/10.1016/j.matcom.2004.02.007
http://dx.doi.org/10.1016/0093-6413(93)90032-J
http://dx.doi.org/10.1016/0093-6413(93)90032-J
http://dx.doi.org/10.1088/0266-5611/12/5/002
http://dx.doi.org/10.1088/0266-5611/12/5/002
http://dx.doi.org/10.2298/TAM1102125A
http://dx.doi.org/10.1002/(SICI)1099-1476(19980710)21:10<895::AID-MMA975>3.3.CO;2-T


THE RECIPROCITY LIKELIHOOD MAXIMIZATION 237

[Andrieux et al. 1999] S. Andrieux, A. Ben Abda, and H. D. Bui, “Reciprocity principle and crack identification”, Inverse
Probl. 15:1 (1999), 59–65.

[Andrieux et al. 2006] S. Andrieux, H. D. Bui, and K. Hadj-Sassi, “New results with the reciprocity gap functional for the
identification of cracks and small inclusions”, in 7th World Congress on Computational Mechanics (Los Angeles, 2006),
2006.

[Ben Abda and Bui 2001] A. Ben Abda and H. D. Bui, “Reciprocity principle and crack identification in transient thermal
problems”, J. Inverse Ill-Posed Probl. 9:1 (2001), 1–6.

[Ben Abda et al. 2005] A. Ben Abda, F. Delbary, and H. Haddar, “On the use of the reciprocity-gap functional in inverse
scattering from planar cracks”, Math. Models Methods Appl. Sci. 15:10 (2005), 1553–1574.

[Brezis 2011] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer, New York, 2011.
[Bui 2011] H. D. Bui, Duality, symmetry and symmetry lost in solid mechanics: selected works of H. D. Bui, edited by A.
Ehrlacher and X. Markenscoff, Presse des Ponts, Paris, 2011.

[Bui et al. 1999] H. D. Bui, A. Constantinescu, and H. Maigre, “Diffraction acoustique inverse de fissure plane: solution
explicite pour un solide borné”, C. R. Acad. Sci. II B 327:10 (1999), 971–976.

[Bui et al. 2004] H. D. Bui, A. Constantinescu, and H. Maigre, “Numerical identification of linear cracks in 2D elastodynamics
using the instantaneous reciprocity gap”, Inverse Probl. 20:4 (2004), 993–1001.

[Bui et al. 2005] H. D. Bui, A. Constantinescu, and H. Maigre, “An exact inversion formula from determining a planar fault
from boundary measurements”, J. Inverse Ill-Posed Probl. 13:6 (2005), 553–565.

[Colton and Haddar 2005] D. Colton and H. Haddar, “An application of the reciprocity gap functional to inverse scattering
theory”, Inverse Probl. 21:1 (2005), 383–398.

[El Badia and Ha Duong 1998] A. El Badia and T. Ha Duong, “Some remarks on the problem of source identification from
boundary measurements”, Inverse Probl. 14:4 (1998), 883–891.

[El Badia et al. 2000] A. El Badia, T. Ha Duong, and F. Moutazaim, “Numerical solution for the identification of source terms
from boundary measurements”, Inverse Probl. Eng. 8:4 (2000), 345–364.

[Eshelby 1957] J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems”, Proc.
Roy. Soc. London A 241 (1957), 376–396.

[Ikehata 1999] M. Ikehata, “Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data”, Inverse
Probl. 15:5 (1999), 1231–1241.

[Kohn and Vogelius 1984] R. Kohn and M. Vogelius, “Determining conductivity by boundary measurements”, Comm. Pure
Appl. Math. 37:3 (1984), 289–298.

[MATLAB 2000] MATLAB R12, The MathWorks, Inc., Natick, MA, 2000.
[Rudin et al. 1992] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physica D
60:1–4 (1992), 259–268.

[Shifrin and Shushpannikov 2010] E. I. Shifrin and P. S. Shushpannikov, “Identification of a spheroidal defect in an elastic
solid using a reciprocity gap functional”, Inverse Probl. 26:5 (2010), 055001.

[Shifrin and Shushpannikov 2011] E. I. Shifrin and P. S. Shushpannikov, “Identification of an ellipsoidal defect in an elastic
solid using boundary measurements”, Int. J. Solids Struct. 48:7–8 (2011), 1154–1163.

[Shifrin and Shushpannikov 2013a] E. I. Shifrin and P. S. Shushpannikov, “Identification of small well-separated defects in an
isotropic elastic body using boundary measurements”, Int. J. Solids Struct. 50:22–23 (2013), 3707–3716.

[Shifrin and Shushpannikov 2013b] E. I. Shifrin and P. S. Shushpannikov, “Reconstruction of an ellipsoidal defect in anisotropic
elastic solid, using results of one static test”, Inverse Probl. Sci. Eng. 21:5 (2013), 781–800.

[Tikhonov and Arsenin 1977] A. N. Tikhonov and V. A. Arsenin, Solutions of ill-posed problems, Winston & Sons, Washington,
1977.

Received 12 Feb 2014. Revised 6 Nov 2014. Accepted 25 Dec 2014.

STÉPHANE ANDRIEUX: stephane.andrieux@edf.fr
Laboratoire de Mécanique des Structures Industrielles Durables, UMR EDF-CNRS-CEA 8193, 1 Avenue du Général de Gaulle,
92141 Clamart, France

mathematical sciences publishers msp

http://dx.doi.org/10.1088/0266-5611/15/1/010
http://dx.doi.org/10.1515/jiip.2001.9.1.1
http://dx.doi.org/10.1515/jiip.2001.9.1.1
http://dx.doi.org/10.1142/S0218202505000819
http://dx.doi.org/10.1142/S0218202505000819
http://dx.doi.org/10.1007/978-0-387-70914-7
http://dx.doi.org/10.1016/S1287-4620(00)87006-4
http://dx.doi.org/10.1016/S1287-4620(00)87006-4
http://dx.doi.org/10.1088/0266-5611/20/4/001
http://dx.doi.org/10.1088/0266-5611/20/4/001
http://dx.doi.org/10.1515/156939405775199514
http://dx.doi.org/10.1515/156939405775199514
http://dx.doi.org/10.1088/0266-5611/21/1/023
http://dx.doi.org/10.1088/0266-5611/21/1/023
http://dx.doi.org/10.1088/0266-5611/14/4/008
http://dx.doi.org/10.1088/0266-5611/14/4/008
http://dx.doi.org/10.1080/174159700088027735
http://dx.doi.org/10.1080/174159700088027735
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1088/0266-5611/15/5/308
http://dx.doi.org/10.1002/cpa.3160370302
http://dx.doi.org/10.1016/0167-2789(92)90242-F
http://dx.doi.org/10.1088/0266-5611/26/5/055001
http://dx.doi.org/10.1088/0266-5611/26/5/055001
http://dx.doi.org/10.1016/j.ijsolstr.2010.12.016
http://dx.doi.org/10.1016/j.ijsolstr.2010.12.016
http://dx.doi.org/10.1016/j.ijsolstr.2013.07.009
http://dx.doi.org/10.1016/j.ijsolstr.2013.07.009
http://dx.doi.org/10.1080/17415977.2012.738677
http://dx.doi.org/10.1080/17415977.2012.738677
mailto:stephane.andrieux@edf.fr
http://msp.org


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
msp.org/jomms

Founded by Charles R. Steele and Marie-Louise Steele

EDITORIAL BOARD

ADAIR R. AGUIAR University of São Paulo at São Carlos, Brazil
KATIA BERTOLDI Harvard University, USA

DAVIDE BIGONI University of Trento, Italy
YIBIN FU Keele University, UK

IWONA JASIUK University of Illinois at Urbana-Champaign, USA
C. W. LIM City University of Hong Kong

THOMAS J. PENCE Michigan State University, USA
DAVID STEIGMANN University of California at Berkeley, USA

ADVISORY BOARD

J. P. CARTER University of Sydney, Australia
D. H. HODGES Georgia Institute of Technology, USA

J. HUTCHINSON Harvard University, USA
D. PAMPLONA Universidade Católica do Rio de Janeiro, Brazil

M. B. RUBIN Technion, Haifa, Israel

PRODUCTION production@msp.org

SILVIO LEVY Scientific Editor

See msp.org/jomms for submission guidelines.

JoMMS (ISSN 1559-3959) at Mathematical Sciences Publishers, 798 Evans Hall #6840, c/o University of California, Berkeley,
CA 94720-3840, is published in 10 issues a year. The subscription price for 2015 is US $565/year for the electronic version, and
$725/year (+$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes of address
should be sent to MSP.

JoMMS peer-review and production is managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/jomms/
mailto:production@msp.org
http://msp.org/jomms/
http://msp.org/
http://msp.org/


Journal of Mechanics of Materials and Structures
Volume 10, No. 3 May 2015

Special issue
In Memoriam: Huy Duong Bui

Huy Duong Bui JEAN SALENÇON and ANDRÉ ZAOUI 207

The reciprocity likelihood maximization: a variational approach of the reciprocity gap
method STÉPHANE ANDRIEUX 219

Stability of discrete topological defects in graphene
MARIA PILAR ARIZA and JUAN PEDRO MENDEZ 239

A note on wear of elastic sliding parts with varying contact area
MICHELE CIAVARELLA and NICOLA MENGA 255

Fracture development on a weak interface near a wedge ALEXANDER N. GALYBIN,
ROBERT V. GOLDSTEIN and KONSTANTIN B. USTINOV 265

Edge flutter of long beams under follower loads
EMMANUEL DE LANGRE and OLIVIER DOARÉ 283

On the strong influence of imperfections upon the quick deviation of a mode I+III
crack from coplanarity

JEAN-BAPTISTE LEBLOND and VÉRONIQUE LAZARUS 299

Interaction between a circular inclusion and a circular void under plane strain
conditions VLADO A. LUBARDA 317

Dynamic conservation integrals as dissipative mechanisms in the evolution of
inhomogeneities

XANTHIPPI MARKENSCOFF and SHAILENDRA PAL VEER SINGH 331

Integral equations for 2D and 3D problems of the sliding interface crack between
elastic and rigid bodies ABDELBACET OUESLATI 355

Asymptotic stress field in the vicinity of a mixed-mode crack under plane stress
conditions for a power-law hardening material

LARISA V. STEPANOVA and EKATERINA M. YAKOVLEVA 367

Antiplane shear field for a class of hyperelastic incompressible brittle material:
Analytical and numerical approaches

CLAUDE STOLZ and ANDRES PARRILLA GOMEZ 395

Some applications of optimal control to inverse problems in elastoplasticity
CLAUDE STOLZ 411

Harmonic shapes in isotropic laminated plates XU WANG and PETER SCHIAVONE 433

JournalofM
echanics

ofM
aterials

and
Structures

2015
V

ol.10,N
o.3

http://dx.doi.org/10.2140/jomms.2015.10.207
http://dx.doi.org/10.2140/jomms.2015.10.239
http://dx.doi.org/10.2140/jomms.2015.10.255
http://dx.doi.org/10.2140/jomms.2015.10.265
http://dx.doi.org/10.2140/jomms.2015.10.283
http://dx.doi.org/10.2140/jomms.2015.10.299
http://dx.doi.org/10.2140/jomms.2015.10.299
http://dx.doi.org/10.2140/jomms.2015.10.317
http://dx.doi.org/10.2140/jomms.2015.10.317
http://dx.doi.org/10.2140/jomms.2015.10.331
http://dx.doi.org/10.2140/jomms.2015.10.331
http://dx.doi.org/10.2140/jomms.2015.10.355
http://dx.doi.org/10.2140/jomms.2015.10.355
http://dx.doi.org/10.2140/jomms.2015.10.367
http://dx.doi.org/10.2140/jomms.2015.10.367
http://dx.doi.org/10.2140/jomms.2015.10.395
http://dx.doi.org/10.2140/jomms.2015.10.395
http://dx.doi.org/10.2140/jomms.2015.10.411
http://dx.doi.org/10.2140/jomms.2015.10.433

	1. Identification problems and results with the reciprocity gap method
	2. Recollection of the reciprocity gap method
	3. Abstract general form of the reciprocity gap
	4. General definition and properties of the reciprocity likelihood
	5. Application to the identification of point source distributions for a conduction equation
	6. Analysis of the effect of noisy data
	7. Conclusion
	Appendix A. Proof of the optimality property of the reciprocity gap
	Appendix B. Proof of the topological properties of Vp and RG
	Acknowledgment
	References
	
	

