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ANTIPLANE SHEAR FIELD
FOR A CLASS OF HYPERELASTIC INCOMPRESSIBLE BRITTLE MATERIAL:

ANALYTICAL AND NUMERICAL APPROACHES

CLAUDE STOLZ AND ANDRES PARRILLA GOMEZ

This paper reconsiders the problem of determining the elastostatics fields near the tip of a crack in a
body deformed by an antiplane shear for a class of incompressible, homogeneous, isotropic materials.
The study is generalized to the formation of a quasicrack under the same conditions of loading for brittle
material that cannot support any further loading when a critical strength is reached. The crack is then
replaced by a totally damaged zone where the stress is identically zero. The shape of the boundary
between the damaged and undamaged body is found analytically. A numerical approach is proposed to
address the problem for more general constitutive law. The analytical solution is recovered by a process
of shape optimization.

1. Introduction

In classical fracture mechanics, the solution of equilibrium for linearized elastostatics proposes an outer
expansion of the displacement with respect to the distance from the crack tip. Some studies have taken
into account the nonlinear effects on the inner expansion of the displacement in finite elastostatics or
in elastoplasticity. The finite antiplane shear near the tip of a crack in an incompressible nonlinear
elastic solid has been studied [Knowles and Sternberg 1980; 1981]. The displacement field possesses
singularities or discontinuities in its gradient depending on the shape of the stress-strain curve. For these
studies, the stress is defined for any amount of shear that is not bounded.

For hyperelastic material such as elastomers, rupture may occur when a maximal stretch is reached.
When this critical value is reached, the material is broken and cannot support further tension: then a
damaged zone develops inside the body. The purpose of this paper is to determine the shape of the
damaged zone under antiplane shear conditions.

Neuber [1968] investigated the mechanism of nonlinear stress-concentration near a notch and crack
propagation. The solution is obtained for any nonlinear stress-strain laws monotonically increasing and
all loading intensities. The boundary of the notch consists of two parallel straight lines and a cycloid along
which the amount of shear is uniform. Bui and Ehrlacher [1980] solved the same problem for a linear
elastic-brittle material; the thickness of the damaged zone is determined as a function of the stress inten-
sity factor of the equivalent crack. A similar solution has been obtained for elastoplasticity [Bui 1980].

More recently, brittle hyperelastic material solution for constitutive laws that permit loss of ellipticity
has been considered. Under antiplane shear, the boundary governed by the critical value of shear is a
cycloid [Stolz 2010] using the hodograph scheme as proposed in [Knowles and Sternberg 1980].

These studies are supported by the ERC program.
Keywords: antiplane shear, brittle material, crack-tip fields, hyperelasticity.
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Under the antiplane condition, during the propagation, the cracks tend to deviate from their plane.
The purpose of this paper is not to study the propagation of the crack in a three-dimensional space.
The antiplane problem is considered here to provide an analytical solution to evaluate the ability of the
proposed numerical scheme to determine a stress-free boundary independently of the mesh of a body.

2. Preliminaries and finite antiplane shear

Consider an isotropic homogeneous incompressible elastic body. Suppose that the body occupies an
open region � in a nondeformed configuration, and let us consider a deformation defined by the plane
displacement w(x),

y(x)= x+w(x1, x2)e3, (2-1)

that maps the domain � onto its deformation image ω. We assume that the mapping is regular and
invertible. Let

F = I +w,i e3⊗ ei , F−1
= I −w,i e3⊗ ei , (2-2)

the deformation gradient and its inverse. For an incompressible medium, the volume must be locally
preserved and thus

J = det F = 1. (2-3)

The left Cauchy–Green deformation tensor

B = I +w,i (e3⊗ ei + ei ⊗ e3)+ (w
2
,x1
+w2

,x2
)e3⊗ e3 (2-4)

has the fundamental scalar invariants

I1 = Tr B, I2 =
1
2(I

2
1 −Tr(B2)), I3 = J 2

= 1. (2-5)

The invariants I1 and I2 are equal:
I1 = I2 = 3+ R2, (2-6)

where R is the norm of ∇w.
For hyperelastic isotropic incompressible material, the free energy is a function E of these invariants;

in the case of antiplane shear, this energy is reduced to a function 9:

9(I1)= E(I1, I2). (2-7)

For the energy 9, the constitutive behavior is written as

2= 29 ′(I1)FT
+ ηF−1, σ = 29 ′(I1)B+ ηI, (2-8)

where 2 is the first Piola–Kirchhof stress tensor and σ the (actual) Cauchy stress tensor and where the
Lagrange multiplier η is associated with the constraint (2-3).

The balance of linear momentum in the absence of body forces leads to the equilibrium equation

Div2T
= 2(9 ′(I1)w,β),β = 0, (2-9)

where β = 1, 2 and the summation is implied. This equation is that obtained in small perturbation for
nonlinear elastic material with modulus µ=9 ′(I1).
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As σ · e3 = 0, the associated Piola stress tensor 2 is then reduced to

2= 29 ′(FT
− F−1), (2-10)

and the balance of linear momentum leads to an elliptic differential equation under the condition

29 ′+ 4R29 ′′ ≥ 0, (2-11)

which corresponds to the fact that the local stress-strain curve τ(R)= 2R9 ′(R)= Rµ(R) is an increasing
function of R.

2A. Power law for α ≤ 1. Assume now that the local stress-strain relations are given by
R ≤ Ro, τ = µo R,

Ro ≤ R ≤ Rm, τ = µo Ro(R/Ro)
α
= µ̂Rα,

Rm ≤ R, τ = 0.

(2-12)

Then for R ≤ Ro, the differential equation is elliptic. For Rm ≥ R ≥ Ro, ellipticity is ensured if α ≥ 0;
otherwise, the differential equation becomes hyperbolic.

2B. Neo-Hookean material. For α = 1 and Rm =∞, the material is neo-Hookean. For this case, the
differential equation reduces to Laplace’s equation and for a straight crack (−∞≤ X1 ≤ 0 and X2 = 0)
the solution of equilibrium is identical to the solution of Irwin obtained for linearized elastostatic. In the
radial coordinates around the crack tip, the displacement is obtained as

w→
2K
µo

√
r

2π
sin

θ

2
, r→∞. (2-13)

3. The small-scale nonlinear quasicrack problem and hodograph transformation

To determine the mechanical fields over the domain �, the hodograph transformation is useful as pointed
out by [Knowles and Sternberg 1980; 1981]. Other techniques can be used [Neuber 1968]. In the
hodograph transformation, the components of the gradient ∇w become the new independent variables:

(x1, x2)→ (ξ1, ξ2), ξα = w,α(x1, x2). (3-1)

The displacement appears as a potential (dw = ξα dxα). The mapping is invertible provided the Jacobian
H =w,11w,22−(w,12)

2 does not vanish. Denote by U the Legendre transformation of w with respect to ξα:

U (ξ1, ξ2)= xαw,α(x1, x2)−w(x1, x2). (3-2)

By differentiating U with respect to ξ , the conjugate equations are obtained:

xα =
∂U
∂ξα

, w = ξ · ∇U −U. (3-3)

In the hodograph plane, the polar coordinates are used (ξ1 = R cos2 and ξ2 = R sin2); then this inverse
of the mapping is given by

x1 = cos2
∂U
∂R
−

sin2
R

∂U
∂2

, x2 = sin2
∂U
∂R
+

cos2
R

∂U
∂2

. (3-4)
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The stress field satisfies

τ1 = σ13 = µ(R)R cos2, τ2 = σ23 = µ(R)R sin2. (3-5)

The equation of motion (2-9) is rewritten in the hodograph plane (R,2) using the mapping (3-4). The
notation ( · )′ indicates a differentiation with respect to R. The differential equation obtained in statics
takes the expression

∂

∂R

(
µ(R)R

∂U
∂R

)
+
(µ(R)R)′

R
∂2U
∂22 = 0. (3-6)

This equation is homogeneous of degree 1 in U . Using (3-2), the displacement w is

w = R2 ∂

∂R
U
R
. (3-7)

3A. Crack in a neo-Hookean material. A solution of (3-6) for a given modulus µ(R) is

U (R,2)= Ao RIo(R) cos2, R ≥ 0, 0≤2≤ π, (3-8)

where the function Io(R) is

Io(R)=
∫
∞

R

dt
µ(t)t3 . (3-9)

For neo-Hookean materials, the modulus µ(t) is a constant µo and the solution is then

U (R,2)=
Ao

2µo R
cos2, w =−

Ao

µo R
cos2. (3-10)

The images of the crack lips (θ =±π) are the two ξ1 axes 2= 0 and 2= π . The boundary conditions
on the crack lips are

∂U
∂2
= 0 for all R, 2= 0, and 2= π. (3-11)

Taking into account the hodograph transformation (3-4) and Irwin’s solution (2-13), we obtain the iden-
tification

2= 1
2(π + θ), Ao =

K 2

πµo
. (3-12)

3B. On the solution for power law for Rm→∞. It is easy to verify that the potential Uα given by

Uα(R,2)= AαR cos2
∫ Ro

R

dt
µ̂otα+2 = AαRIα(R) cos2 (3-13)

satisfies the conservation (2-9) of linear momentum for α 6= −1.
For the proposed strain-stress law with Rm→∞, the solution U is obtained:

• on domain R ≤ Ro, α = 1 and U = A1 RI1(R) cos2 and

• on domain R ≥ Ro, U = AαRIα(R) cos2.



ANTIPLANE SHEAR FIELD 399

The constant A1 is determined by the condition of the loading at infinity (4-5). The potential at shear
amount R = Ro is continuous.

For α ≥ 0, the differential equation is elliptic for all amounts of shear, and the continuity of the
displacement for R = Ro for all 2 gives the constant Aα. On this curve, the stress is also continuous.

For α < 0 and R ≥ Ro, the differential equation is hyperbolic. In this case, the elliptic and hyperbolic
domains are not disjoint. The potential is continuous for R = Ro but not the displacement. The solution
in the elliptic domain must be equal to the solution in the hyperbolic domain: we(Re,2e)= wh(Rh,2h)

at the common point (xe
1(Re,2e)= xh

1 (Rh,2h), xe
2(Re,2e)= xh

2 (Rh,2h)). These equations determine
a curve where the gradient of the displacement is discontinuous [Knowles and Sternberg 1981] and the
stress vector is continuous. The continuity of the stress vector implies that Aα = Ao. The resulting
potential is that of Knowles and Sternberg [1981].

3C. On the quasicrack geometry. To obtain the geometry of the quasicrack, other solutions of (2-9)
must be added. Peculiar functions of the differential equation are

R
(

2α
α+ 1

log R cos2−2 sin2
)
, R cos2, R sin2. (3-14)

The first one corresponds to a shift along x2 when 2 goes from 0 to π , the second permits an x1 shift of
a unit value, and the last one corresponds to a shift along e2 of a unit value.

4. The quasicrack solution

For the considered example, the geometry of the crack is the straight line −∞≤ x1 ≤ 0. The direction
of the line is e1. The applied loading is that of a crack obtained in classical linearized elasticity or
embedded in neo-Hookean material as presented in Section 1. For an inner point of view, the local
behavior is nonlinear and the amount of shear is limited by a critical value Rm as described by the
proposed constitutive law.

For the considered constitutive law, the solution in the hodograph plane is built by the combination
of the solution for the linear part of the constitutive law and the solution for the nonlinear part with the
help of peculiar solutions.

Using the above results, the potential U is searched by

0≤ R ≤ Ro, U =Uo(R,2),

Uo = Ao R cos2
∫ Ro

R

dt
µot3 − Bo R(log R cos2−2 sin2)+Co R cos2,

Ro ≤ R ≤ Rm, U1 = Û (R,2),

U1 = A1 R cos2
∫ Ro

R

dt
µ̂otα+2 − B1 R

(
2α
α+ 1

log R cos2−2 sin2
)
+C1 R cos2.

(4-1)

The constants (Ao, A1, Bo, B1,Co,C1) are determined by

(a) continuity conditions of the potential in R = Ro,

(b) continuity of the displacement w everywhere,

(c) asymptotic behavior when R→ 0, and

(d) traction-free boundary conditions along the boundary of the damaged zone.
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4A. Determination of the constants.

(a) The continuity of the potential implies that Bo = B1 = B and the relation

B
2α
α+ 1

Ro log Ro+C1 Ro = B Ro log Ro+Co Ro. (4-2)

Then the displacement is given by
0≤ R ≤ Ro, w = wo(R,2)=−

(
Ao

µo R
+ B R

)
cos2,

Ro ≤ R ≤ Rm, w = ŵ(R,2)=−
(

A1

µ̂o Rα
+

2Bα
α+ 1

R
)

cos2.
(4-3)

(b) The displacement is continuous on R = Ro:

A1+µo R2
o B
α− 1
α+ 1

= Ao. (4-4)

(c) The displacement satisfies the matching condition at∞, so we obtain

Ao =
K 2

πµo
. (4-5)

(d) The boundary along the damaged zone is traction-free.

To simplify the expression, we adopt an dimensionless formulation. Let us define new parameters (a, a1, b)

Ao

µo R2
o
=

K 2

πτ 2
o
= a,

A1

µo R2
o
= aa1, B = ba. (4-6)

We adopt Co = 2− B+ B log Ro in order to determine the position of the quasicrack along x2 = 0, and
we consider the notation X i = xi/a and ρ = R/Ro. Then ρo = 1 and ρm = Rm/Ro.

The condition (4-5) is then rewritten as

a1+ b
α− 1
α+ 1

= 1. (4-7)

With this notation, the traction-free boundary condition (d) is now explained.
For that, the image of the hodograph plane is determined:

• 0≤ ρ ≤ 1,

X1 =−
1
2
−

1
2ρ2 cos 22− b log ρ,

X2 =−
1

2ρ2 sin 22+ b
(
2−

π

2

)
,

W =−
(

1
ρ
+ bρ

)
cos2,
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• 1≤ ρ ≤ ρm ,

X1 =−

(
a1

ρα+1 + b
α− 1
α+ 1

)
cos 22

2
−

(
a1

ρα+1 + b
)
α− 1

2(α+ 1)
−

2bα
α+ 1

log ρ−
a1

α+ 1
,

X2 =−

(
a1

ρα+1 + b
α− 1
α+ 1

)
sin 22

2
+ b

(
2−

π

2

)
,

W =−
(

a1

ρα
+

2α
α+ 1

bρ
)

cos2.

We have moved the frame along e2 with a shift of −bπ/2 to emphasize the symmetry of the geometry
with respect to e1. For ρ = ρa , the curve (X1(ρa,2), X2(ρa,2)) is a cycloid. With this geometry, the
traction-free boundary condition is given by

τ1 dX2− τ2 dX1 = 0. (4-8)

The boundary is decomposed into three parts: the two horizontal lines 2= π/2±π/2 and the cycloid
where ρ = ρm . The traction-free boundary condition is satisfied for 2= π/2±π/2 for all ρ and implies
along the cycloid where ρ = ρm (

2b
α+ 1

−
a1

ρα+1
m

)
cos2= 0. (4-9)

This relation can be combined with (4-5); then

1=
2b
α+ 1

(
ρα+1

m +
α− 1

2

)
. (4-10)

It can be noticed that the thickness H of the damaged zone is H = baπ .
For ρm→∞, the quantity b vanishes, the quasicrack tends to the classical crack, and the thickness H

vanishes.

4B. Connection with release rate of energy. The strain energy for the critical shear Rm is given by

E(Rm)=

∫ Rm

o
τ(t) dt =

1
µo

τ 2
o

α+ 1

(
ρα+1

m +
α− 1

2

)
. (4-11)

As a is a function of the equivalent loading K , the relation (4-10) determines the thickness of the damaged
zone

1
2aπ =

H
α+ 1

(
ρα+1

m +
α− 1

2

)
=

1
2

K 2

τ 2
o
. (4-12)

The flux of the energy along the cycloid is given by

Dd = H E(Rm)= πa
τ 2

o

2µo
=

K 2

2µo
. (4-13)

This flux is exactly the energy release rate for the equivalent crack given by the condition of loading at
infinity

G= J = H E . (4-14)
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This emphasizes the fact that, in the presence of discontinuities of the displacement gradient along a
curve 6, the equivalent J -integral is obtained by the limit

G= lim
0→6

∫
(En1− N2 · F · e1) ds =

∫
C
(En1− N2 · F · e1) ds (4-15)

for all curve C containing the cycloid. The invariance of the integral can be proved as proposed in
[Knowles and Sternberg 1972].

4C. Property of the solution for α ≥ 0. The balance equations for linear momentum are elliptic. If
ρo ≥ ρ1, the volume bounded by the cycloid (X (ρo,2), Y (ρo,2)) contains the volume bounded by the
cycloid (X (ρ1,2), Y (ρ1,2)). This is the case described by Neuber [1968].

In our approach, we have an additional equation that determines the thickness of the damaged zone
with respect to the external loading. The equations of equilibrium are elliptic, and there are no disconti-
nuities of the displacement gradient.

It can be noticed that we can use Rice’s J -integral to evaluate the stress intensity factor K , taking into
account the invariance of the J -type integral in hyperelasticity [Knowles and Sternberg 1972].

For ρm = 1, the results obtained by Bui and Ehrlacher are recovered, b = 1, and the solution is

X1 =−
1
2
−

1
2ρ2 cos 22− log ρ,

X2 =−
1

2ρ2 sin 22+
(
2−

π

2

)
,

W =−
(

1
ρ
+ ρ

)
cos2,

and the thickness of the damaged zone satisfies the relation

H = πa =
K 2

τ 2
o
. (4-16)

An estimation of the thickness for steel gives H of the order of 100µm.
For α = 0 and ρm > 1, the solution obtained by Bui [1980] is recovered.
It can be noticed that here the solution is obtained for nonlinear elastic behavior. This shows that Bui’s

solution is only a static solution. If we consider a propagation with constant velocity, the equation must
be completely reformulated because in this case the inertia terms are not negligible with respect to the
tangent modulus of the behavior.

Then the given relations are generalizations of these previous results to the case of hyperelastic brittle
material.

4D. Property of the solution for α < 0. In this case, the differential equation becomes hyperbolic for
ρ ≥ 1. The proposed potential U is the sum of two contributions: one independent of b and another one
depending linearly on b. The first one corresponds exactly to the solution of Knowles and Sternberg for
a classical crack in nonlinear elasticity.

But when ρm is finite, the main difficulty is to ensure the continuity of the displacement along the
common boundary between the domains of ellipticity and hyperbolicity. It can be noticed that the limit
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∂�ext

∂�tipA

B

�∪�∂�//

H

Figure 1. Meshed domain and boundary notations.

of the given potential when ρm tends to infinity is exactly the potential of Knowles and Sternberg because
at the limit b = 0.

Another interesting limit is obtained for fixed value ρm and α→−∞: the potential U tends toward
the potential of the elastic brittle material, and the solution is the solution of Bui and Ehrlacher.

The general case will be discussed in a further paper; some new requirements about regularity are
necessary to obtain a valuable solution.

5. Numerical approach

The problem of a quasicrack is now considered from a numerical point of view. The main difficulty is to
determine the shape of the quasicrack with an optimization algorithm using a nonlinear solver. The goal
of the numerical analysis is to determine numerically the traction-free boundary shape of the quasicrack
and to exhibit the relationship between the thickness H , the material properties, and the stress intensity
factor K of the equivalent crack.

To evaluate the ability of the proposed algorithm, we consider the constitutive law (2-12) with no loss
of local ellipticity (0≤ α ≤ 1).

Two main issues in the calculation have to be investigated: how to allow the free boundary to move
and then how to adapt the stress intensity factor K during the calculation.

The meshed domain is a square with a quasicrack of a given thickness H as shown in Figure 1. The
side of the square is ten times bigger than the quasicrack thickness. The boundary of the domain is
decomposed into four parts: the outer boundary ∂�ext, the two crack lips ∂�//, and the nonmaterial
boundary ∂�tip.

• The boundary ∂�ext is supposed to be far enough from the equivalent crack tip to legitimately
impose the loading determined in (4-5) and (2-13). At this stage, the stress intensity factor remains
unknown.

• The boundary ∂�// is a stress-free boundary; then σ · n = 0, where n is a normal vector to the
material domain.

• The boundary ∂�tip is used to close the meshed domain but has no physical meaning. The meshed
domain is quite different than the material domain. The material boundary is represented by a
curve 0. In order to determine its position, a level set is used.
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Figure 2. Material domain (gray) and damaged zone (white) are separated by the iso-
zero of a level set 0 that is discretized as 0t . A coarse mesh is used here for a better
understanding.

The level set 8 is chosen as the signed distance to 0: 8 is positive in the material domain and negative
outside. The level-set iso-zero (8(x, t) = 0) is the equation of 0. Numerically, the level-set iso-zero
matches 0 on the edges of the elements and approximates 0 inside the elements (see Figure 2) by 0t .
Some elements are then cut by the material boundary, and the method “XFEM” is used to integrate only
on the material domain [Moës et al. 1999; Daux et al. 2000].

It is important to note that the material domain will never contain ∂�tip. The level-set iso-zero is
forced to contain the points A and B, so the material boundary 0 is the continuation of ∂�// even if the
curves are not forced to be tangent to A or B.

Global rigid solid motion is avoided by fixing a Dirichlet null condition on an arbitrary point of the
material domain. The numerical solution is obtained by two complementary iterative processes: one to
determine the equilibrium and another one to optimize the position of 0.

During the computation of the equilibrium with a given position 0t , the amount of shear can exceed
the critical value R > Rm . In that case, the same power law (2-12) is used for R > Rm . Knowing this
state, an optimization process is then proposed to update the position of 0t with respect to the critical
value Rm .

The shape optimization algorithm works as presented in Algorithm 1. To solve the mechanical non-
linear problem, for a given 0t , an iterative algorithm is used (see Algorithm 2).

Shape optimization, convergence criterion, geometry evolution, and stress intensity factor updates are
described in next subsections.

Initial shape 0o, solve
while traction-free boundary is not admissible with Rm do

Compute hyperelasticity problem
Update the level set
Update the material domain and 0t

end while

Algorithm 1. Coarse description of shape optimization algorithm.
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Resolution of a nonlinear elasticity problem
Determination of initial loading K and initial displacement wo

while criterion(1K ,1w) > TOL do
Compute wn , Iter= Iter+ 1,

if Iter> ITERMAX then
Update K
Compute a new correction wn+1, Iter= 0

end if
end while

Algorithm 2. Stress intensity factor update.

5A. Resolution of the hyperelastic boundary value problem. Applying a classical Newton–Raphson
method to the hyperelasticity problem leads to instabilities for some values of α. The tangent operator
associated with the constitutive law has the form{

τ ′(R)= µ0 for R < Ro,

τ ′(R)= µ0α(R/Ro)
α−1 for R > Ro.

(5-1)

This operator is discontinuous at R = Ro. For R ≥ Ro, the value of the tangent operator can be so small
that the stability of the algorithm is not ensured; the method is then relaxed by uk+1 = uk + λδuk with
λ ∈ [0, 1], and the tangent operator is replaced by a proportional value of it. So a line search method is
used and defined as {

τ̃ ′(R)= µ0 for R < Ro,

τ̃ ′(R)= µ0(R/Ro)
α−1 for R > Ro.

(5-2)

5B. Shape optimization. Once the hyperelasticity problem has been solved, the boundary 0t must be
updated according to the condition R = Rm .

The evolution of 0t corresponds to updating the level-set iso-zero. The equation 8(x, t)= 0 is the
equation of a moving surface whose evolution is governed by its normal velocity a. The normal vector
to 0t is given by ∇8/‖∇8‖.

The velocity a is determined with respect to the condition R = Rm .
Firstly, strain field R is smoothed by solving a minimization problem whose variational formulation is,

for all R̃∗,
∫
�

R̃ R̃∗ d�=
∫
�

R(w)R̃∗ d�, (5-3)

where R̃ and R̃∗ are continuous and w is the displacement field solution of the hyperelasticity problem.
Then the normal velocity a =−k(R̃− Rref)/Rm is computed, k > 0. This velocity is smoothed over 0t

by solving a diffusion problem in order to avoid instabilities in its evolution:

for all a∗,
∫
0t

ãa∗ d0+ ν
∫
0t

∇ã∇a∗ d0 =
∫
0t

aa∗ d0, (5-4)

where ã is the smoothed velocity field.
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Shape optimization will be stopped when ‖a‖∞ < atol, where atol is about 1
1000 of the geometry

characteristic length.

5C. Geometry evolution and the updating of the level set. As 0t is updated by the normal velocity a
determined previously, the level set has to be updated over the whole meshed domain. Two conditions
must be satisfied. The updated level set must still be a signed distance function, and its iso-zero has to
be located at a distance ã(s) of 0t , where s is a curvilinear abscissa of 0t . According to the definition of
the normal velocity, the new position of 0 is then 0t+dt = 0t + ã(s)n dt with n the normal vector to 0t .

Let 8 be the level set and ϕ the shift for which we are looking. The solution must satisfy{
‖∇8+∇ϕ‖ = 1 in �,
ϕ = ã on 0.

(5-5)

Moreover, 8 verifies ‖∇8‖ = 1 and the system is equivalent to{
8 ·ϕ = 0 in �,
ϕ = ã on 0t .

(5-6)

This problem can be solved as an anisotropic diffusion problem:

for all ϕ∗,
∫
0t

ϕ̃ϕ∗ d0+µ
∫
�∪�

(∇ϕ∇8)(∇ϕ∗∇8) d�=
∫
0t

ãϕ∗ d0, (5-7)

where � is the whole domain that contains the nonmaterial domain.
When ϕ is known, the level set 8 can be updated.

5D. The stress intensity factor update. The thickness H is fixed; to satisfy the condition R = Rm

over 0t , the stress intensity factor K must be updated during the iterative process of the hyperelastic
problem resolution.

To have a good approximation of the stress intensity factor, three methods have been considered here.
The most expensive one is to smooth the strain field over the whole material domain � as in (5-3) and
to take its value at the points 0t ∪ ∂�//. It is assumed that, at these points, R must be equal to Rm . The
other methods consist of smoothing the strain field only over the free boundary 0 by solving a diffusion
equation,

for all R̃∗,
∫
0

(R̃ R̃∗+ L2
∇ R̃∇ R̃∗) d0 =

∫
0

R(w)R̃∗ d0, (5-8)

where L2 is the virtual diffusion coefficient. Then the mean value or the maximum one of the smoothed
field is taken as a reference. The last option has been used to obtain the results presented here.

Stress intensity factor updates are expensive. They are not performed at each iteration of the nonlinear
solver. However, a double convergence criterion is used: both displacement field and stress intensity
factor tolerances have to be respected.

6. Some numerical results

Some tests are presented in order to estimate the performance of the method. The analytical solution of
Section 4 is used to estimate the numerical accuracy of the algorithm.
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Figure 3. Smoothed strain R̃ (see (5-3)) at convergence: whole domain and detail over
the quasicrack tip.

The algorithm has been applied to study the iso-R shapes and stress intensity factor values K for
different values of ρm and α in the case of the power law (2-12). Finally, a bilinear brittle material is
also studied.

6A. Power law behavior with α > 0.

The shape of the traction-free boundary 0t . The criterion used to characterize the solution quality is the
root mean square of the distance of each node of the boundary mesh to the analytical solution. This
quantity is a length and represents the gap between the approximated and the analytical solutions. This
value is compared to a characteristic length of the problem: the quasicrack thickness H .

Assume that the initial chosen shape is a semicircle. The initial gap is then 25% of characteristic
length. At convergence, obtained after 88 iterations, the gap is reduced to 0.098%.

It is important to note that a precision of 0.002% is obtained at the first iteration when the computation
is initialized with the analytical geometry.

Stress intensity factor. Analytical and numerical stress intensity factors K/Ro have been compared for
different (Rm, α); the discrepancy is less than 1.2%. This shows that the thickness is very well evaluated.

The iso-R shape. The iso-Ro and iso-Rm are plotted at convergence in Figure 6. The relative gap is
0.005% for the curve Rm and 0.27% for the curve Ro.

The shape of the cycloids is well recovered.

Figure 4. Elastic domain (gray) and hyperelastic one (black).
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Figure 5. K/R0 results for analytical and numerical calculations (×) for the power law.

6B. The bilinear constitutive law. We consider now a bilinear constitutive law:
R ≤ Ro, τ = µo R,

Ro ≤ R ≤ Rm, τ = τo+ ((τm − τo)/(Rm − Ro))(R− Ro),

Rm ≤ R, τ = 0.

(6-1)

We note α = τm/τo.
In Figure 7, the stress intensity factor K/Ro is plotted analytically using the equation connecting the

J -integral and the thickness of the damaged zone:

J =
K 2

2µo
= H E(Rm),

E(Rm)=
1
2τo Ro+ τo(Rm − Ro)+

1
2(τm − τo)(Rm − Ro).

The numerical results are close to the analytical ones.

7. Conclusion

We have determined the shape of the damaged zone under antiplane shear conditions for hyperelastic
brittle material. The analytical results are a generalization of preceding results obtained by Bui for brittle
material. The thickness of the damaged zone is determined by the critical strain energy at rupture and
the loading.

ρm = 2 ρm = 4 ρm = 8
α analytical numerical analytical numerical analytical numerical

0.25 0.8007 0.7931 1.3001 1.2825 2.0458 1.9964
0.50 0.8292 0.8216 1.4376 1.4199 2.4428 2.3896
0.75 0.8604 0.8528 1.5992 1.5821 2.9444 2.8941
1.00 0.8944 0.8878 1.7889 1.7756 3.5777 3.5513

Table 1. Analytical and numerical results, power law behavior.
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Figure 6. Comparison of the analytical (dashed line for Ro and solid for Rm) and nu-
merical shapes (×).

The case of power law stress-strain curve is discussed; it is used to evaluate the ability of a numerical
optimization process applied to determine the damaged zone. An iterative scheme is proposed first to
determine an equilibrium state and secondly to optimize the position of the boundary of the damage zone.
The numerical results are close to the analytical results. The same algorithm is used for other constitutive
laws.

The approach must be extended to other cases of loading especially mode I and more general local
behavior.
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Figure 7. K/R0 results for analytical and numerical calculations for bilinear behavior.
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ρm = 2 ρm = 4 ρm = 8
α analytical numerical analytical numerical analytical numerical

0.25 0.8462 0.7986 1.2692 1.3420 2.0556 2.2759
0.50 0.8585 0.8291 1.4454 1.4986 2.6398 2.7504
0.75 0.8747 0.8584 1.6202 1.6413 3.1381 3.1667
1.00 0.8944 0.8878 1.7889 1.7756 3.5777 3.5513

Table 2. Analytical and numerical comparison, bilinear material.

The proposed method based on level-set and XFEM modelization should be extended also to the
damage transition to rupture modeled by thick level set [Moës et al. 2011], where the damage d evolves
from 0 to 1 in a layer of finite thickness lc. Two particular level-set values must be introduced: one
8(x, t) = 0 to described the boundary where d = 0+, the other 8(x, t) = lc where d = 1. The case
presented here is lc = 0. For lc 6= 0, this type of approach addresses the existence or not of a quasicrack
for constitutive behavior with smooth transition between damage to rupture.
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