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ON CESARO MEANS OF ENERGY
IN MICROPOLAR THERMOELASTIC DIFFUSION THEORY

MARIN MARIN AND SAMY REFAHY MAHMOUD

This paper is dedicated to the theory of thermoelasticity of micropolar diffusion. For the mixed initial
boundary value problem defined in this context, we prove that the Cesaro means of the kinetic and strain
energies of a solution with finite energy become asymptotically equal as time tends to infinity.

1. Introduction

Eringen [2003] has developed a continuum theory for a mixture of a micropolar elastic solid and a
micropolar viscous fluid. All materials, whether natural or synthetic, possess microstructures.

In the micropolar continuum theory, the rotational degrees of freedom play a central role. The material
points of porous solids and dirty fluids undergo translation and rotations. Thus, we have six degrees of
freedom, instead of the three degrees of freedom considered in classical elasticity and fluid mechanics
(see [Eringen 1999; 2001]). A large class of engineering materials, as well as soils, rocks, granular
materials, sand and underground water mixtures may be modeled more realistically by means the the-
ory proposed in [Eringen 2003]. Consolidation problems in the building industry and oil exploration
problems fall into the domain of this theory.

In the last decade of time, the micropolar theory was extended to include thermal effects in many
studies. One can refer to [Ilesan 2004; Marin and Florea 2014; Marin et al. 2013a; 2013b; Sharma and
Marin 2014; Dhaliwal and Singh 1987] for a review on the micropolar thermoelasticity and a historical
survey of the subject, as well as to [Eringen 1999] in the Continuum Physics series, in which the general
theory of micromorphic media has been summed up.

Aouadi [2008] extended the micropolar theory to include thermal and diffusion effects. In fact, the de-
velopment of high technologies in the years before, during, and after the second world war pronouncedly
affected the investigations in which the fields of temperature and diffusion in solids cannot be neglected.
At elevated and low temperatures, the processes of heat and mass transfer play the decisive role in
many problems of satellites, returning space vehicles, and landing on water or land. These days, oil
companies are interested in the process of thermodiffusion for more efficient extraction of oil from oil
deposits. Diffusion can be defined as the random walk of an ensemble of particles from regions of high
concentration to regions of lower concentration. Thermodiffusion in an elastic solid is due to coupling
of the fields of temperature, mass diffusion and that of strain.

The earliest results concerning energy equipartition were dedicated to the abstract differential equa-
tions and to the abstract wave equation. The result established in [Levine 1977] using the Lagrange
identity, represents a simplified proof that asymptotic equipartition occurs between the Cesaro means of
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the kinetic and potential energies. The asymptotic equipartition between the mean kinetic and strain
energies in the context of linear elastodynamics was studied in [Day 1980]. Also, we can refer to
[Dassios and Galanis 1980; Goldstein and Sandefur 1976] and, in specific cases, [Marin and Stan 2013;
Teodorescu-Draghicescu and Vlase 2011; Vlase et al. 2012].

In the present paper we consider the linear theory of micropolar thermoelastic diffusion and we for-
mulate the basic initial-boundary value problem in the framework of the linearized theory developed in
[Aouadi 2008]. Then we study the asymptotic partition of the energy associated with the solution of
this problem. In this aim we introduce the Cesaro mean of various parts of the total energy and use the
methods deduced in [Levine 1977; Day 1980; Rionero and Chirita 1987; Marin 2009] to establish the
relations that describe the asymptotic behavior of the mean energies. Thus, we use some Lagrange—Brun
identities to prove that the mean thermal energy tends to zero as time goes to infinity and the asymptotic
equipartition occurs between the Cesaro means of the kinetic and internal energies.

The asymptotic equipartition property is a familiar notion in differential equations field. This means
that the kinetic and potential energy of a classical solution with finite energy become asymptotic equal
in means as time tends to infinite. Such a property is presented in various papers for physical systems
governed by nondissipative hyperbolic partial differential equations or systems of such equations.

But the system of equations governing our mixed initial boundary value problem consists of hyperbolic
equations with dissipation and, therefore, does not belong to one of the categories considered previously
in literature of subject. By using the dissipation mechanism of the system, we can prove that equipartition
occurs between the mean kinetic and strain energies. Instead of abstracted version of this question, we
prefer to emphasize the technique itself in the context of micropolar thermoelastic diffusion.

We want to outline that there are many papers which employ the various refinements of the Lagrange
identity. One can refer to [Levine 1977; Day 1980; Rionero and Chirita 1987; Gurtin 1993].

The plan of our study is the following one. We first write down the mixed initial boundary value
problem defined in the above context. Then we shall establish some Lagrange type identities and, also, we
introduce the Cesaro means of various parts of the total energy associated to the solutions. Based on these
estimations, at last, we establish the relations that describe the asymptotic behavior of the mean energies.

2. Basic equations and conditions

We assume that a bounded region B of three-dimensional Euclidean space R? is occupied by a mi-
crostretch thermoelastic body, referred to the reference configuration and a fixed system of rectangular
Cartesian axes. Let B denote the closure of B and call 3B the boundary of the domain B. We consider
dB be a piecewise smooth surface and designate by n; the components of the outward unit normal to the
surface 0B. Letters in boldface stand for vector fields. We use the notation v; to designate the components
of the vector v in the underlying rectangular Cartesian coordinates frame. Superposed dots stand for the
material time derivative. We shall employ the usual summation and differentiation conventions: the
subscripts are understood to range over integers (1, 2, 3). Summation over repeated subscripts is implied
and subscripts preceded by a comma denote partial differentiation with respect to the corresponding
Cartesian coordinate.

The spatial argument and time argument of a function will be omitted when there is no likelihood
of confusion. We refer the motion of the body to a fixed system of rectangular Cartesian axes Oux;,
i=1,2,3.
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Let us denote by u; the components of the displacement vector and by ¢; the components of the
microrotation vector. Also, we denote by C the concentration of the diffusive material in the micropolar
body and by T the temperature measured from the constant absolute temperature Ty of the body in its
reference state.

As usual, we denote by o;; the components of the stress tensor and by ;; the components of the
couple stress tensor over B.

In the absence of body force, body couple force and heat supply fields, the field of basic equations for
micropolar thermoelastic diffusion are the following (see [Aouadi 2008]):

« the equation of motion

pii; =0} j,
.. €))
€ijkOjk + Wji, j = pJijdj;
« the equation of energy .
gi,i = p10S; (2)
« the equation of conservation of mass
ni.i=C. 3)

In these equations we have used the following notation:
« p is the reference constant mass density;
o Jij = Jj; are the coefficients of microinertia;

* 0jj, mij are the components of the stress;

S is the entropy per unit mass;

gi are the components of heat flux vector;

n; are the components of the flow of diffusing mass vector.

Let us denote by 6 the temperature, where 8§ = T — Ty. Here Tj is the temperature of the medium in its
natural state.

If we suppose that the micropolar body, in the reference state, has a center of symmetry at each point,
but is otherwise nonisotropic, we have the following constitutive equations:

Oij = Cijki€ki + Dijki®r + aij0 + b;; C,
Wij = Pijkiek + dijidr + pij0 +qi;C,
PCE
pS = —aijeij — pijpij + ——0 + @ C,
To 4)
P =bjjeij +qij¢ij — w0 +0C,

qi = Kijb, j

ni =d;;P ;
In the above relations P is the chemical potential per unit mass, cg is the specific heat at constant
strain, c¢;ji is the tensor of elastic constants. Also, the equations (4)s and (4)¢ are know as Fourier’s

law and Fick’s law, respectively. The constants r and o are measures of thermodiffusion effects and
diffusive effects, respectively. The rest of parameters are material constants.
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The characteristic quantities of the strain ¢;; and ¢;; used in the above equations, are defined by means
of the geometric equations

gji = Ui, j — €jiPr,  Pji =i, j» @)

where ¢, is the alternating tensor.

The functions c¢;jk/, pijki» dijmn» Gij> bij, Pij» qij» Kij, dij and @ are the characteristic constitutive
coefficients. Regarding these coefficients, the conductivity tensor «;; and the diffusion tensor d;; we
have the symmetry relations

Cijkl = Ckiijs  dijki =dxij,  Pijkl = Priij»  Kij =Kji, dij =dj;. (6)

The density p, the coefficients of inertia J;; and the temperature 6 are given constants which satisfy the
conditions

p>0, Ji;>0, 6 >0. @)

In accordance with entropy production inequality we must assume that ¢;jmn, Pijmns dijmn» @ij» bij
and «;; are positive definite tensors, i.e.,

Cijki§ij&mn = ko&ij&ij, ko >0, forall§;=§j;,

Dijki&ij&mn = k1§ij&ij, ki >0, forall §;,

dijri&ij&mn > k2ij&ij, ko >0, forall§; =§&;;,
a;j&&; > k3&&i, k3 >0, forall§;,
bij&i&; > ka&i&;, ks >0, forall§;,
kij&i&j > ks&&i, ks >0, forall§;.

(®)

The components of the surface traction ¢;, the surface couple m;, the heat flux ¢ and the diffusion
flux 7, at regular points of 0B, are given by

=ojn;, m;=[Wjnj, q=4qini, N=nNin;,

respectively. By n; we denoted the components of the outward unit normal of surface dB. Now, we
admit the following prescribed boundary conditions:

u; =0 on 9By x[0,00), £ =0 on 3B} x [0, 00),

¢i =0 on 3B, x[0,00), m; =0 on 0B; x [0, 00),

=0 on dB3x[0,00), ¢g=0 on 9B5 x [0, c0),

P=0 on 0B4x[0,00), n=0 on 9B x [0, 00).

®

Here 9By, dB>, dB3 and dB,4 with respective complements 9B, 0B5, dB5 and 0Bj are subsets of the
surface 0B such that

0B, ﬂan = aBzﬂaBg = 0B3 ﬂaBg =0BsN 832 =4,
0B U aBlc =0dB U 335 = 0B3 U 3B§ =0B4 U BBX = 0B.
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Introducing the constitutive equations (4) into equations (1)—(3) we obtain the system of equations
Pl = Cijki€ki, i + PijkiPul, j +aij0, j +b;;C j,
pJij; = pijuen, j +dijadu. j + pijb. j +4i;C.
+ €ijklCikmiEmi + P jkmi®m + ajx0 + BjxCl, (10)
kij0,i; = ocef — Toaijéij — Topijdij + Tow C
C =d;j(C + bijeij + qijdij — @6), i,
To this system of equations we adjoin the initial conditions

wi(x,0) =ud(x),  (x,0)=uj(x), ¢i(x,00=¢7(x),  ¢i(x,0)=¢ (x),

) (11)
9(x,0)=0%x), 0(x,0)=0"x), C(x,0)=C%®), x € B.

By a solution of the mixed initial boundary value problem of micropolar thermoelastic diffusion in
the cylinder Q¢ = B x [0, c0) we mean an ordered array (u;, ¢;, 6, C) which satisfies the system of
equations (10) for all (x, r) € ¢, the boundary conditions (9) and the initial conditions (11).

Let us observe that if meas(dB;) = 0 and meas(dB;) = 0 then there exists a family of rigid motions
and null temperature and null diffusion which satisfy the equations (10) and null boundary conditions.
In this way we can decompose the initial data (u?, u il) and (¢?, ¢i1) as

w=ui + U, uj =i +Ul ¢ =¢f + O], ¢/ =¢ +;, (12)

where (u, u}) are rigid displacements and (¢, ¢l* ) are rigid microrotations determined such that (U 1.0, U il)
and (@?, CDI.I) satisfy the restrictions

/ (pU + pJ;j @) dV =0, / péijix; (U + Ju @) dV=0,
B B

(13)
/(pU,-‘+le~J-<I>}>dv=0, /peijkx,-<U,3+Jlkd>,‘)dv=0,
B B

where €, is Ricci’s tensor.

Similarly, if meas(dBs) = 0 then there exists a family of constant temperatures, null displacements,
null microrotations and null diffusion which satisfy the equations (10) and null boundary conditions.
Thus, we can decompose the initial data #° and 0! in the form

00 =0*+71° @0'=6*+T", (14)

where 6* and 6* are constants temperatures determined such that 70 and T'! satisfy the restrictions
/ TV =0, / T'dv =0. (15)
B B

3. Specific notations

We denote by C"(B) the class of scalar functions possessing derivatives up to the m-th order in the
domain B which are continuous on B.
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For f € C™(B) we define the norm

m
I fllcmpy = Z Z max | f ijiy..i |-

k=11iy,iz,...,ik

By C™(B) we denote the class of vector fields with six components C" (B).
For w € C™(B) we define the norm

6
lwlens) =Y llwillenes).-
i=1

By W,,(B) we denote the Hilbert space obtained as the completion of the space C" (B) by means of
the norm || - |lw,,(p) induced by the inner product

m
fOw,m=_ Y. /;9f,iliz...ikg,iliz...ikdv-

k=11iy,iz,....ik

Finally, we will denote by W,,(B) the space obtained as the completion of the space C"”(B) by means
of the norm || - ||w, (p) induced by the inner product

6

(u, V)w, B = Z(”ia Vi)W, (B)-

i=1

We will use as norm in Cartesian product of the normed spaces the sum of the norms of the factor
spaces. Let us introduce the notation

C'(By={xeC'(B): x=00ndB; or x =0 on dBu;
if meas(0B3) =0 or meas(dB4) =0 then [, x dV =0},
61(3) = {(vi, Yi) € Cl(B) :v; =0o0n 0By, ¥; =0 on dBy;
if meas(dB;) = meas(0B,) =0 then [ (pv;i +pJ;;¥;)dV =0},
Wl(B) = the completion of C! (B) by means of the norm || - ||w, ),
Wl (B) = the completion of 61(B) by means of the norm || - ||w, ().

In this notation W,,(B) represents the familiar Sobolev space (see [Adams 1975]) and W,,,(B) is the
Cartesian product W,,(B) = [W,,(B)]°.
The hypothesis (11) assures that the following (Korn’s inequality) holds (see [Hlavacek and Necas

1970a; 1970b]):
/B[Cijk18k1(u)8ij (@) + 2 puiijens (W) pij () + digijPr (W) i j (w)]

>m /B(uiui +uijuij+ i + @i i j)dV, (16)
for all u = (u;, ¢;) € Wi(B), where m is a constant, m| > 0, and

cji) =u; j —exjidr, ¢ji(w) =¢; ;.
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Also, using the hypothesis (8), the following (Poincaré’s inequality) holds for all (x, ) € Wl (B) x Wl (B):

/(xijx,ix,j Fdyr ) dV = m2/<x2+n2>dv, (17)
B B

where m, is a constant, m, > 0.
If meas(dB;) = meas(0B;) = 0 then we can decompose the solution ((u;, ¢;), 6, C) in the form

wi =uf +tif v, G=¢f+tdf+yi, 0=x, C=m, (18)

where ((v;, V), x,m) € Wl(B) X Wl(B) X Wl (B) represents the solution of the system of equations
(10) with the boundary conditions (9) and the initial conditions

vilx, 0) =U0(x), bi(x,00=Ul(), ¥ix,00=x), ilx,0) =D (x),
x(x,00=0x), x(x,0=0'(x), Px,0=2"), forallxeB.

Now, we consider that meas(dB4) = 0.
Then we can decompose the solution ((u;, ¢;), €, C) in the form

ui=vi,pi=v;,0=0"+x,C=nm (19)

where ((v;, ¥;), x, ™) € Wl (B) x Wl (B) x Wl (B) represents the solution of the system of equations (10)
with the boundary conditions initial conditions

vi(x,0) = ud(x), Ui(x,0)=u(x), Yi(x,0)=Px), Pi(x,0) =g ),

20
x(x,00=T°x), xx,0=T'(x), 7, 0=C%%), forallxeB. 20)

4. Preliminary results

In this section we shall establish some evolutionary integral identities which form the basis in proving the
relations that express the asymptotic partition of energy. In the first next theorem we prove a conservation
law of total energy.

Theorem 1. Let ((u;, ¢;), 0, C) be a solution of the mixed initial boundary value problem defined by the
equations (10), the boundary conditions (9) and the initial conditions (11). If we suppose that

(), ¢) € Wi(B), (uj,¢;) € Wo(B), (6°,C°) e Wi(B)x Wi(B), 6'eWy(B),
then the following energy conservation law holds:
1 t t .
E(t)+ — / / Kkij0 i (s)0, j(s)dV ds —1—/ / C()P(s)dV ds =%¢(0) 21
To Jo Js 0J/B
for any t € [0, 00), where

s =1 f Lpii ()i (1) + p Jijhi (1D (1) + %920) +2w C(10(1) —0C*(D]dV
B

43 [ s 8 + 2pigues 08u(©) + djud OouOI V.
B
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Proof. In view of equations of motion (10);, we get

; 5 [ou;(s)i; (s)] = put; (s)ii; (s) = u; (s)ojj, j(s)

=u; (s)[cijkiexi () + pijkiPri (s) +a;j0(s) +b;;C(s)], ;
= {u; ($)[cijrrert () + pijkidri(s) + a;ij0(s) + b;; C ()]},
—[cijrier(s) + pijr®ri(s) +a;j0(s) + b;; C(s)]u;, j(s).

Taking into account the equation (10)2, we obtain
%%[Pfij@ ()¢, ()]
= pJiji ()P (s) = @i (s)[ij, j(5) +€ijkoji (s)]
= i ([ Pijrreni (s) + dijradri (s) + pij0(s) +qi; C()], j + €ijxoju(s)}
= (i () pijreni (s) + dijradi () + pij0(s) +qi; C()H]1},
— [pijireni () + dijudri (s) + pij0(s) +qi;C ()1 (5)
+ €k [C jrmnEmn (8) + d jkmn®mn () + @ k0 (s) + b C (5)1g; (5).
Now we are adding equalities (22) and (23) member by member:
31t (5)iti 5) + Iy ()9 5)]
= {ui ($)[cijuen () + pijudu(s) +aij6(s) +bi;C()1},
+ (i ) pijureni(s) + dijudui (s) + pij0(s) + i C ()1},
— Cijueni (9)éij(5) = pijii (Prr ()€ (8) + Pra ()€ (8)) — dijrapra ()i (5)
= 0()aijéij(5) + pijij ()] = C(5)bijéij (s) +qijbij ()],
On the other hand, by using the equations (10)4 and (10)s, we get

0(s)[a;jé:(s) + pijdij ()1 + C(s)[bijéij(s) + qijhij (s)]

; j ["CE 0%(s) + 2 C(5)0(s) — 0C%(s)] + C(s) P(s) — IOKU 1 (9)0(s).
From (24) and (25) we deduce
1d

3 ds —piii (s)iti () + pJijdi () (s) + —92(S)+2wC(S)9(S) —0C*(s)]

= {u;(s)[cijrei(s) + pijridr (s) + alje(s) +b;;C(s)1},
+ {1 () pijrreri () + dijrrdni () + pij0(s) +qi; C()N},
— ciju1r (8)€ij (8) — pijii (drr (9)éj <s> + Gra ()i (5))

— dija i ()i (s) — C(s)P<s>+ x,, 1 (9)0(s),

(22)

(23)

(24)

(25)
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and this equality can be restated in the form

1d

3 25| P Vi) + Py ()6 (5) + ZLEO* () £ 207 C(3)6(s) — 0C ()]

+ %m[-ci,‘kwki(s)&j (8) +2pijri&ij($)Pri(s) + dijr1dri (s)ij (s)]
+ 500,160, 5(5) = C5) P(s)
= {it; (8)[cijreri (s) + pijridri (s) +a;j0(s) +bi; C(s)]},

+ (i ([ pijraeri () + dijrrdna () + pii0(s) + qi; C ()1}, +< ! Kij0, i (S)9(5)> . (26)

Now, we integrate the relation (26) over B x (0, t) and use the divergence theorem, the symmetry re-
lations (6), the boundary conditions (9) and the initial conditions (11) so that we arrive at the desired
result (21) and Theorem 1 is concluded. [l

Theorem 2. Consider ((u;, ¢;), 0, C) a solution of the mixed initial boundary value problem defined by
the equations (10), the boundary conditions (9) and the initial conditions (11). If we suppose that

Wy, @) € Wi(B), (u}, $}) € Wo(B), (8°, C*) € W\ (B) x W (B),0' € Wy(B),

then the following identity holds:

2 fB Lous (1)iis (1) + p iy 5 (1) (D)1 dV

+/lkij(f Q’i(s)ds)(/ Qj(s)ds)dV-i-/‘dij(‘/‘ P’i(s)ds)(‘/‘ P i(s)ds)dV
B To 0 0 B 0 0

=2 /O l fB [pii (5)iti (5) + pJijdi () ()1 V ds
—/t/[Cijklskl(s)gij(s)+2pijkl¢kl(5)8ij(s)+dijkl¢kl(s)¢ij(s)]dv ds
/ f[ 6°(s) + 2w C(s)0(s) — 0C*(s)]dV ds+2/ /[pSOG(s)—P C(s)1dV ds
—I-Z/B[,ouib'ti + ol di1dV, (27)

where

pes
To

bug,j —H]z](f’,J w_90+QC0

0 _ 0 )
e =uj ; —exjidys

0 0
Pji =i, j-

,OSO = 6% — a,-.,-sloj - pij¢?j + wCO,

(28)
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Proof. In view of equations of motion (10);, we get

%[P“i(s)ﬂi(s)] = pui()u;(s) + pui(s)ii; (s) = pui(s)u;(s) +u;i(s)oij, j(s)
= pu;($)u;(s) +u; ($)[cijrieri(s) + pijiPri (s) + a;ij0(s) + bi; C(s)], ;
= put; ()it; () +{u; () [cijrreri (s) + pijridri(s) +a;j0(s) +bi; C(s)1},
—u;, j(S)[cijrieki(s) + pijiPri(s) + aij0(s) + b;; C(s)]
= pu;($)u;(s) — [cijkieri (s) + pijrPri(s) +a;j0(s) +b;; C(s)]u;, j(s)
+{u;i ($)[cijrieni(s) + pijriPri(s) +a;ij0(s) +b;;C(s)1}, ;. (29)

Taking into account the equations of motion (10),, we obtain

%[pfijdn () ()] = pJijdi () (5) + pJi i ()b ()
= 0Jij$i () () + i () Pijrien () + dijraua () + pij0(5) +qi;C )],
+ €ijk[C jkmn€mn (8) + djkmnPmn (8) +a;i0(s) + b C(s)]g;
= pJiji ()9 (5) + {0 () pijrreni(s) + dijradur (s) + aij0(s) + bi; C()1},
— [pijkieki(s) + dijkipri (s) + pij0(s) +qij C(s)]1ei, j(s)
+ €ijk[CjkmnEmn () + P jkmn®mn (s) +ajx0(s) + b jx C(s)]e;. (30)

Now we are adding equalities (29) and (30) member by member:

%[pu,-(smi(s) +pJij i ()9 ()] = piti (s)iti (5) + pJij hi () (5)
+{ui(s)[cijkier () + pijrdri(s) +a;ij0(s) +bi;C(s)]},
+{pi () pijkieni(s) + dijripri (s) + pijO(s) +qi; C(s)1},
— Cijki €k (8)€ij () — 2pijki€ij ($)Pri () — dijkiPri (s)Pij (s)
— laijeij(s) + pijdij(s)10(s) — [bijeij (s) + qijhij (s)IC(s). (31)

By an integration with respect to time variable in the equation (10)3 and then by using the initial condi-
tions (11) we deduce

—laijeij(s) + pijdij(s)]
! ’ PCE PCE 50 0 0 0
= — ii0.i(2)d ——0@6)—oC —0 C" —ajje;; — pij®;;.
To(/o k0 i(2) Z)’j T () —awC(s)+ T + o aijé;; p](;ﬁlj
Here we multiply by 8(s) and obtain

l S
—laijeij(s) + pijpij(s)10(s) = Fo(./o kij0, i(2) dz) 0(s)

s J

P25y — w C()0(s) + [ 2L60 — el — pisdl +wC0)O(s). (32)
TO TO J J
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Also, by integrating with respect to the time variable, from Fick’s law and the initial conditions (11) we
deduce

s
bijeij(s) +qij¢ij(s) = (/ dij P i(2) dZ) +@6(s) —0C(s) +bijer; +qijd); — @6° +0C°.
0 L
Here we multiply by C(s) so that we are led to

—[bijeij (s) + qij$ij ()IC (s) = —(/O dij P.i(2) dz)’ jC<s>
—w0(s)C(s) +0C>(s) — (bije); +qijd)y —@0° +0C°)C(s).  (33)
By adding relations (32) and (33) member by member one obtains
— laijeij(s) + pijij ()10 (s) — [b,-jsms) +qijij (5)1C(s)

L Y _PCEg )
—To</0 Klﬂ,l(z)dz)’ 0(s) T “E62(s) — aw C(5)0(s)

+ (";Eeo aijejy — pijbyy + wc°>9<s>
_ (/ dij P ,-(z)dz) C(s) —wb(s)C(s) +0C?(s)
2 J
— (bije); +qij), — @0 +0C)C(s). (34)

We introduce in (34) into (31) so that we get the equality

d . .

E[pui(s)ui(s) +0Jijdi(s)p;(s)]

= piti ()it () + pJiji ()9 (s)
+{u;i ()[cijrieni(s) + pijridr (s) +a;ij0(s) +b;;C(s)]},

+{@i () pijrieni (s) + dijripr(s) + pij0(s) +qi;C(s)]},
— Cijki €k (8)€ij(8) — 2PijkiPri (5)€ij () — dijkiPri (8)Pij (5)

+i(/ Kl-,-e,mz)dz) 9<s)——92<s>—w6<s>9(s>
To \Jo L
pc
+( TOE 0° —a;jel; — pij o) +wC°)e(s>
_ (/ di; P i(2) dz> C(s) —wO(s)C(s) +0C>(s)
o J

(bll l]+qlf¢lj w@o-i-QCO)C(s),
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This relation can be restated in the form

%[pm(s)a,- () +pJiji ()6 (5)]
= pit; (5)it; (s) + pJi i () (5)
+{ui(S)cijkieri(s) + pijriPr(s) +aij0(s) + b;;C(s)1}, ;
+{di () Ppijkieri(s) + dijridri (s) + pij0(s) + qi; C(s)1}, ;
— Cijki€x1(8)€ij () = 2PijkiPri (5)€;j () — dijkiPri (5) i j (5)
+ 8% (s) — P°C(s) — %Qz(s) 2w C(s)0(s) + 0C>

+ i(Kije(s)‘/ 9,,'(2) dZ),j — iKije’j(S)f 9,,'(2) dz
To 0 Ty 0
—(dijP(S)/ P,i(Z)dZ),j_dijP,j(s)/ P i(z)dz, (35)
0 0

where pS” and P° are given in (28).
Integrating by parts, it is easy to obtain

t N N N s=t t s
kij | 6:(s) 0 j(x)dz|ds=kij | 0 j(x)dz | 6 () dz‘ —kij | 6, ;(s) 0.i(z)dz | ds.
0 0 0 0 s=0 0 0

On the basis of symmetry of tensor «;;, from the above equality we deduce that

2/{,-J-/Q,-(s)(/se,j(z)dz)ds=Kij(f Q,-(s)ds)(/ G’J-(s)ds). (36)
0 0 0 0

Analogous, on the basis of symmetry of tensor d;;, we obtain the equality

t N t t
Zdij/ P,i(s)(/ P,j(Z)dZ)dS=dij(/ P’i(S)dS)(‘/ Pyj(S)dS). (37)
0 0 0 0

Now we integrate the identity (35) over B x (0, ¢), then we employ the divergence theorem, the boundary
conditions (9), the initial conditions (11), the symmetry relations (6) and relations (36)—(37) so that we
are led to the desired identity (27).

This concludes Theorem 2. [l

Theorem 3. Consider ((u;, ¢;), 0, C) a solution of the mixed initial boundary value problem defined by
the equations (10), the boundary conditions (9) and the initial conditions (11). If we suppose that

W), )y e Wi(B), (u},¢})eWyB), ©° C°%eWi(B)xWi(B), 6'eWyB),

then we have the identity
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2/[pui(t)a,-(z)+pJ,-j¢,~(r)qS,(t)]dv+f Kij[</ e,i(z)dz) (f g’j(z)dz>:|dv
B B 0 0
t t
+/ dij[(f P,i(Z)dZ)(/ P,j(z)dz)i|dv
B 0 0

- / (O[ui: (20) + u s 20 + p I [0, (20) + 616, 20T} AV
B

t
+/ /{pSO[G(t+s) —0(t—$)]+ P[C(t+5)—C(t —s)]}dV ds, (38)
0o JB
where 0S° and PP are defined by relations (28).
Proof. 1t is not difficult to prove the identity
d . .
a{p[ﬁ ()8 (s) — fi()gi ()1} = plfi(s)&i(s) — fi(s)&i(s)],

where f;(x,s) and g;(x, s) are twice continuously differentiable functions with respect to time variable s.
By integrating the above identity over B x (0, ) one obtains

/B ol fi()gi(s) — ﬁ(szgl- ()]dV
= fo /B ol fi()§i(s) — fi()gi(s)]1dV ds + /B ol £i(0)£i(0) — £;(0)g; (0)1dV. (39)
Now, we set in (46) the functions f; and g; as follows:
filx,s)=u;j(x,t—s), gix,s)=u;(x,t+s) forsel0,tz], t € (0,00),
so that one obtains the identity
2/ pu,-(t)it,-(t)dV:/ oludi; (2t) +ulu;21)1dV
' B+ /Ot /B plu;(t+8)i;(t —s) —u;(t —8)ii;(t +5)]dV ds, te[0,00). (40)
Similarly, if we substitute in (46) the functions f; and g; defined by
filx,s)=¢i(x,t—5), gix,s)=¢i(x,t+s) forsel0,¢], te(0,0o0),
then we are led to the identity
2 [ pasaird0av = [ pss1afd; 0+ ola; v

—I—/f,0J,~j[¢,-(t+s)<}5j(t—s)—¢i(t—s)<}5j(t+s)]dVds, te[0,00). (41)
0 JB
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We add the equalities (40) and (41) member by member and obtain
2 [ Lous@yin0) + 9361008, 01 0V
= /B oluli; 2t) 4+ ulu; 26)1dV + /B oJii[d;(2) + ¢l 2)1dV
- /Ot /B plui (t +)ii; (t —s) — u;(t — $)ii; (t +5)1dV ds

+f0 /BpJ,-,-[cz),-(r+s><b'j<z—s>—¢i(z—s><}>‘,<r+s>]dws 42)

for any ¢ € [0, 00).
The last two integrals in (42) contain some inertial terms which will be eliminated in the following.
First, taking into account the equations (10); one obtains
plui(t + 5)ii;(t — ) —ui(t — )i (t +5)]
=u;(t +s5)pii;(t —s) —u;(t —s)pii;(t +5)
=ui(t +s)[cijuen(t — )+ pijudu(t —s) +a;;0( —s) +bij C(t —s)]
—u;(t —s)cijrien(t +5) + pijuidut +5) +a;j0(t +s) +bij C(t +5)] ;
={u;(t +5)[cijrier(t — ) + pijrb(t —s) +a;j0(t —s)+bj; Ct —s)]},
—u;, j(t +s)cijren(t =) + pijridut —s) +a;j0(& —s) +b;ij C(t —5)]
—{u; (¢ = s)[cijuen(t +5) + pijidut +5) +a;;0( +s)+bi; Ct+5)]},
+u;, j(t = $)[Cijrier(t +5) + pijrudrt +s) +a;j0( +5)+b;j C(t +5)]. (43)

In view of equations (10), we get

pJijldit +9)9;(t —5) = $i(t =) (1 + )]
=it +5)pJijp;(t —5) — ¢i(t —5)pJi;di(t +5)
= Qi (t + ) [pijrieri(t — ) + dijripri(t —s) + pij0(t —s)+qij C(t —5)]
+ €k i (t + ) jkmnEmn(t —5) + P jkmnPmn(t —5) + a0t —5) + b C(t —5)]
— @i (t =) pijrien(t +5) +dijuprut +s) + pij0(t +5) +qij Ct +5)] ;
— €ijkPi(t — ) jrmnmn +5) + PjkmnPra(t +5) +ajd( +5) +bjC(t +5)]
={¢i(t +5)[pijxier(t — ) +dijrpri(t —s) + pij0(t —s) +qi; C(t —9)]},
=i, j (¢ + ) pijkieki(t — ) +dijrudrt —s) + pij0(t —s) +qij C(t —s)]
+ €ijk @i (t + ) ajkmnemn(t — ) + P jkmnPmn (& — ) + a0t —s) + b C(t — 5)]
— @i (t =) pijrex(t +5) +dijrudr @ +s)+ pij0 +5)+q;; Ct+5)1},;
+ @i, j(t =) pijrien(t +5) +dijrudnu +s)+ pij0(t+s)+qij C(t+s)]
— €k Pi (t — )@ jxmnemnt +5) + PjkmnPri(t +5) +aj 0t +s)+bjr Ct+s)].  (44)



ON CESARO MEANS OF ENERGY IN MICROPOLAR THERMOELASTIC DIFFUSION THEORY 511

If we add the equalities (43) and (44) together, then we are led to
plui (¢ +8)iii (t = 5) = ui (1 = 9)iii (¢ + )]+ pJij [ (0 + )bt = 5) = it = )b (1 +5)]
={u; (¢ +s)[cijxieri(t — ) + pijuiPr(t —s) +a;j0 —s)+b;;C(t —s)1}, ;
—{ui(t = s)[cijrier(t +5) + pijrdrt +s) +a;;0(t +5) +bi; C(t +5)]},
+{di(t +5)[pijkieri(t — ) + dijripr(t —s) + pij0(t —s5) +qi; C(& —$)]}, ;
—@i(t — ) pijrieni(t +5) +dijrudr @t +s) + pij0(t +s)+q;;C(t +5)1},
—laijeij(t +5) + pijdij(t +5)10( — ) + [a;j€;j(t — ) + pijdij (t — )]0 +5)
—[bijeij(t +5) +qijdij (¢ +)IC({ — )+ [bijeij(t —s) +qijdij(t —s)]C(t +5). (45)

For the last two rows of right-hand side of equality (45) we get the equivalent expressions using the
energy equation and the equation of mass diffusion, respectively.

So, by an integration with respect to time variable, from the energy equation (10)3 and the initial
conditions (11) we deduce

1 t+s
_[a,'jsij(t+S)+pij¢ij(l‘+s)]9(l—s):Fo(f KijG,i(z)dz) o(t—s)
0 .

s J
= L0 =)0t +5) = w0 —$)C(t —5) + pS0(t =), (46)
0

where pS° is defined in (28).
Similarly, we have

[aijgij(t_s)‘i‘pij(pij(t_s)]e(t+s)=—Ti0(f0 ) /c,-je,,-(z)dz> 0t +5)

»J
+ EE0+5)0(t =)+ w0t —5)C(1+5) = pS0(t +5). (4T)
0

From (46) and (47) we deduce

—laijeij(t +5) + pijdij(t + )10 —5) + [a;jeij(t —5) + pijdij(t — )]0t +5)
=w[0(t+s)C({t—s5)—0(t—5)C(t+s)] -|-,OSO[(9(I +5)—0(t—s)]

I+s t—s
+ixi‘,[9(;—s)</ Q,-(z)dz) —9(z+s)</ Q,-(z)dz) } (48)
Ty 0 L 0 L J

The equality (48) can be restated in the form

—laijeij(t +5) + pijdij(t +5)]10( —5) + [a;jeij(t —s) + pijdij(t —5)]0( +5)
=w[0(t+s5s)C({t—s5)—0(t—s5)C(t+s)] +,OSO[9(I+S) —0(t—s)]

1 t+s 1 t—s
+ |:—K,','9(l‘—s)/ Q,i(Z)dZ——K,','Q(l-I-S)/ Q,i(Z)dZ]
Ty - 0 Ty - 0 i

t—s t+s
+iKij|:9,j(t+s)/ G,i(z)dz—G,i(t—S)f 9,f(z)dz] (49)
Ty 0 0
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It is easy to deduce that the last row in (49) can be written in the form

1 t—s t+s
—Kij Gﬁj(H-s)/ Q,-(z)dz—&,(t—s)f 0.i(2)dz
To 0 0

_1 .,d I+S9< d tis9~ d
L[ o) ([ o))

—laijeij(t +5) + pijdij(t +5)10(t — ) + [a;j&ij(t —5) + pijpij(t — )]0 +5)
=w[0(+s)C(t—5)—0(t—s5)C(t+5)] +,OSO[9(Z‘+S) —0(t—ys)]

1 t+s 1 t—s
+ [—Kije(t—s)/ 0 i(z) dz——KijO(t+s)/ 0 i(z) dzi|
Ty 0 To 0 ,J

L t+59~ d tis@- d 50
o () wos)(] o) Y

Now, by an integration with respect to time variable, from the equation (3), Fick’s law and the initial
conditions (11) we deduce

—[bijeij(t +5) +qijpij(t +5)]C(t —5)

so that (49) receives the form

t+s
:—(f dijPﬁi(z)dz> C(t—s)—w@(t—l—s)C(t—s)—I—QC(t—i—s)C(t—s)—POC(t—s), (51)
0 o J

where P is defined in (28).
Similarly, we have

[bijeij(t — ) +qijij(t —5)]C(t +5)
= </‘Ot_s dl-jP,i(z)dz> C(t+5)+wh(t—s)C(t+5)—0C({t—s5)C(t+5)+ P°C(t+5), (52)
o J
so that from (51) and (52) we are led to
—[bijeij(t +5)+qijpij(t +5)|C(t — )+ [bijeij(t —5)+qijpij (t —s)|C(t +5)
=@ [0t —5)C(t+5)—0(t+5)C(t —5)]+ P[C(t +5) — C(t —5)]
- (/0 d,-,-P,,-<z>dz> Cl+9)+ (/0+ d,-,-P,,-(z>dz) Ct-5). (53)

s J > J

The equality (53) can be restated in the form

—[bijeij(t +5) +qij@ij (& +5)C (& —5) + [bijeij(t — ) +qijpij(t —5)]C(t +5)
=w[0(t—s5)C({t+s)—0(t+s5)C(t—s5)] +PO[C(I+S) —C(t—y9)]

t—s t+s
+ |:d[‘,~(P(t +5) / P i(z)dz— P(t —s) / P i(2) dz)]
0 0

s J

t—s t+s
_d,‘j|:P,j(l‘+S)/ P’i(Z)dZ—P’j(I—S)/‘ P’i(z)dz]. (54)
0 0
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It is easy to deduce that the last row in (54) can be written in the form

t—s t+s t+s t—s
d;j |:P,j(t+5)/ P i(2) dz—P,j(t—s)/ P,i(z)dz] :diji|:</ P i(2) dz) (/ P j(2) dz>i|,
0 0 ds | \Jo 0

so that (54) receives the form
—[bijeij(t +5) +qij@ij(t +5)C (& —5)+ [bijeij(t — ) +qijpij(t —5)]C(t +5)
=w[0(t—s5)C(t+s)—0(+s)Ct—s)]+ P[C(t+s)— P(t —5)]

I=s t+s
+|:dij(P(l‘+S)/ Pyi(Z)dZ—P(l—S)\/ P,,'(Z)dZ)]
0 0

s J

d t+s t—s
+dij$|:(/0 P,i(z)dz)(/o P,j(z)dz>i|. (55)

We now introduce the expressions (50) and (55) into equality (45) and we are led to
plui (¢ 4 5)ii; (1 = 5) — ui (t = $)iii (¢ +5)1+ pJi[6i (1 + )b (1 = 5) = pi (1 =) (t +5)]
= {u; (t +9)[cijrren(t — ) + pijudu (t — ) +aij (Ot —s) +ab(t —s)) +b;j P(t—s)]}
—{ui (t = )[cijuen(t +5) + pijdu(t + ) +ai; O +5) +ab(t +5) +bij P(t+s)1}, ;
+{i (¢ + ) [pijrrer(t — s) + dijradur (t —5) + ki (Ot —5) +ab(t —5)) +qi; P(t — )]}
—{i(t — )[Pijireni(t +5) +dijradri (t +5) +kij (O +5) +ab(t +5)) +qi; P(t + )]},
+ pS°[0(t +5) —6(t — )]+ P°[C(t +5) — C(t — 5)]

1 t+s 1 t—s
+ —K,-j9(t—s)/ Q,i(Z)dZ——K,'jQ(l-i-S)/ Q,i(Z)dZ
Ty 0 Ty 0 ,

t—s t+s
+[dij<P(t+S)/ P,i(z)dz—P(r—s)/ P,i(z)dz)]
0 0 JJ
1 ”d t+59- 4 t7s0' p
([ o) [ e s0n)
d t+s t—s
+dij—[</ Pﬁi(Z)dZ) ([ P,j(z)dz>:|. (56)
dS 0 0

We now substitute the relation (56) into (42) and we use the divergence theorem and the boundary
conditions (9) in order to obtain

J

2 /B Lou; (1)it; (t) + pJijdi ()d; ()1 dV
= f oludit; (2t) +u}u; (26)1dV + f pJij[90p;(2) + ¢! d;(20)]1dV
B B

+f /{,OSO[Q(H—S)—0(t—s)]+P0[C(t+s)—C(t—s)]}dVds
0 JB

[ Ll ([ eoa) ([ osos)]ava
o o as\Jy TTIE)INy HIEE ’
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t t+s t—s
+/ / diji[(/ P,,-(z)dz) (/ P,j(z)dz):|dVds. (57)
o Jp “ds|\Jo 0

It is not difficult to observe that
7 t t
ds = —(/ Q,i(z)dz) (/ 9,j(z)dz>,
0 0

t d t+s t—s
/og[</0 Q,(z)dz)(/o G,j(z)dz)_
ds=—</ P,,-(z)dz)(/ P,j(z)dz).
0 0

and, analogously,
Finally, by using the last two relations in (57), one obtains the desired equality (38) so that Theorem 3

t d t+s t—s
A ([
is proved. O

5. Equipartition of energy

In this section we shall use the identities (21), (27) and (38) such that by using the hypotheses made in
Section 2 we establish the asymptotic partition of total energy.

Let us introduce the Cesaro means of all energies contained in the identity (21). So, we have Cesaro
means of kinetic energy, strain energy, thermal energy and energy of dissipation, respectively:

e (1) = / / it ()it (5) + p iy () ()1 dV d.
Fc(t) = / /[Cz]kIEU(t)Skl(l)+2puk1(f)8z](l)¢k1+duk1¢u(t)¢k1]dVdS

c<)——/ / TEp2(s5)dV ds,

Fc(l)E—///[—Kij9,i(§)9,j(§)+C(§)P(§)]dVd§dS-
tJo Jo Jp To

(58)

In the following theorem we state and prove the main result of our study.

Theorem 4. Consider ((u;, ¢;), 0, C) a solution of the mixed initial boundary value problem defined
by equations (10), the boundary conditions (9) and the initial conditions (11). We assume that the
hypotheses from Section 2 are satisfied. Then, for all initial data

i, ¢7) € Wi(B),  (uj, ¢)) € Wo(B), (6°,C) e Wi(B) x Wi(B), 6' € Wo(B),
we have the following relations:

(i) If meas(dB3) # 0, then
tlim Te)=0. (59)
(i1) If meas(0B1) # 0, meas(0B;) # 0 and meas(0By4) # 0, then
lim Hc () = lim $e(1), (60)
—>00 [—00

lim I'c(r) =%(0) —2 lim Hc(t) =€(0) —2 lim Fc(2). (61)
t—00 t—00 [—>0o0
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>iii) If meas(dB1) = 0 or meas(0B;) = 0 or meas(dB3) = 0 or meas(dB4) = 0, then
hm He@t) = hm Fe)+ = / [pu}u] + ,oJ,Jqﬁ ¢> 1d (62)
lim Ce(f) =€0) —2 lim K () + = / [pufu] + injq'S,-*q'b*f] dv
t—00 t—00 2 B J

=%(0) —2 lim $c(t) — 1/[pu;*u;’<+pfij<z};*¢'sj]dv. (63)
—00 2 B

Proof. (1) Suppose that meas(dB3) # 0. It is easy to prove that 6 € W, (B). Therefore, we can apply the
Poincaré inequality (17) so that from the identity (21) one obtains

//p Ee()dVds<—/ /K,Je ()6, (s)dVds<—%(0) (64)

From relation (64), taking into account (58), we obtain the conclusion (59).

(i) We first use the energy conservation law (21) and the hypotheses of Section 2 in order to obtain the
following estimates:

/ﬂez(t)dVS%(O), 1 € [0, 00), (65)

g To

/B[pb'ti(l)b'ti(l) +inj¢5i(t)¢5j(l)]dV <2¢(0), t €0, c0), (66)
t

//|:'0T£Kl~j0y,-(s)0yj(s)+C(s)}"(s)i|dVds5%(0), t €0, 00). (67)
0 B 0

On the basis of identities (27) and (38) we will find some relationships between the types of energy. So,
from (27) we find

1 ! . .
> / / [pis (5)iti (5) + p Iy () ()1 dV dis
tJo JB
1 t
——/ /[CijkISij(S)Skl(S)+2Pijk1¢ij(s)8k1(s)+dijk1¢ij(s)¢k1(s)]dVdS
/ /[ 0 (s)+2wC(s)9(s)—QC2(s)]dVds——/[pu L+ pdijplel1dV

—— / / [pS°0(s) — P°C(5)]1dV ds + — / Louw; ()it (¢) + pJiji () ()]1dV
4t Jo JB 2t Jp

1 1 t t

to Kl,( / e,i@)ds)( / 0 ,~<s)ds>dv
t 0 0

Yo / dij( f P,,-(s>ds>< f P j@)ds)dv. 68)
tJB 0 0
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By using (38), from (68) one obtains
1 [! .
2—/ /[piti(S)iti(S)+inj¢i(S)¢j(S)]dVds
rJo JB
1 t
——/ /[Cijkleij(S)Ekz(S)+2Pijk1¢ij(s)8kl(s)+dijk1¢ij(5)¢kl(s)]dVdS
/ f["%z( )+2wC(s)9(S)—QC2(s)]dVds
——f[pu,.u}+p1ij¢?¢}]dV—l/ /[psoe(s)—POC(s)]dVds
2t B 4¢ o JB
1 .
4o [ tedin 20+ ulus @01+ 051608, 21) + 010y 20N aV
B

+ % / / (pS 161 +5) — 0(t — )]+ PU[C (1 +5) — C(t — )]} dV ds. ©9)
0 JB

Taking into account the notations (58) and using the initial conditions (11), from the identity (69) we
deduce

He(t) — Sfc(t)
T x / Louiui + pJij¢)¢i1dV

. 1
+ = / [ouii; (2) + pJ;j¢h; 201 dV + — f Louju;2t) + pJiji ¢;(20)1dV
2t B 2t B
t t
+if f[zwc(s)e(s)—QC(s)]dVds—i/ /[pSOG(s)—POC(s)]dVds
4t Jo JB ar Jo Js

1 t
+5f /{,OSO[Q(I—FS)—9(t—s)]+P0[C(t+s)—C(t—s)]}dVdS_FgC(t). (70)
0 JB

Now we will use the Schwarz and Cauchy inequalities on the right-hand side of (70). Then, by using the
relations (64)—(67) we get

1 1
‘—ng[pu?u} +sz~j¢?¢}]dv‘ < 5/B[p<u?u?+u}u3>+pJ,-,-<¢?¢§-’+¢}¢}>]dv;
(71)
1 .
‘Z/[pu?di(Zt)+PJij¢zQ¢j(2t)]dV
B

< if[pu‘?u(?+pJ,--<;>Q¢‘?]dV+i%(0).
8t )yt JTEY 4¢

Since (u;, ¢;) € Wl(B), and P € Wl(B) by using the conditions (7), the Korn’s inequality (16), the
identity (21) and the inequalities (8) one obtains

/[,OM ($)u; (S)+,0Jz]¢z(s)¢](s) ]av
2p
= _f Czjklgzj(s)skl(s) +2Pukl¢z/ (s)exi(s) +dljkl¢lj ($)pri(s)]dV < < — %(0) s €[0,00). (72)

Thus, by using (72) we are led to

'i f [ou;u; (2t) + pJi;d! ¢, (20)1dV
4¢ Jp

1 11 1,1 p
< ng[,Oui u; +pJijo; %]dV—I—M%(O)- (73)
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Taking into account the estimates (71) and (73) and the relation (59), we pass to the limit in (70) as
t — oo and conclude that the relation (60) holds.

Also, it is not difficult to observe that the relation (61) is obtained from (21) by taking the Cesaro
mean and by using the relations (59) and (60).

(iii)) We use the decomposition (18) from Section 3, the relation (12), (13) and the fact that (u;, ¢;) €
Wi(B) and P € W{(B) in order to obtain the identity

—f[pu?ui(zt)+le~j¢?¢,-<2r>]dv=—/[pu,-u,- +pJijbidi1dV
4t Jp 4t Jp J

1 . .. 1
+5 / Loitl i + p Iy $ 714V + - / [pULv; 21) + pJi; @0y 201 d V. (74)
B B

Also, since (v;, ¥;) € Wl (B), Korn’s inequality (16) leads to the relation
1
- fB ovi(5)ui(5) + iy (5 ()] dV
< mﬁl / [cijriEij ()Eki ($) + 2Pijir®ij ()Eki (8) + dijradij (5)Pmn (s)1dV
B
=L / [eijuaeis () () + 2pijuahiy (5)en (s)
mi Jp
2
+ dijta$i) ()b ()] dV < m—pl%m), s € [0, 00), (75)

where &;; = v; j — €jiVi, dij = V.

Passing to the limit in (70) as ¢ — oo and taking into account the relations (71), (74) and (75) one
obtains the conclusion (63). Finally, the relation (63) is obtained on the basis of (21) by taking the Cesaro
mean and by using the relations (59), (62) and (71). Thus, the proof of Theorem 4 is complete. O

6. Conclusion

As a concluding remark, we must outline that the relations (60) and (62), restricted to the class of initial
data for which i} = ¢ = 0, prove the asymptotic equipartition in mean of the kinetic and strain energies.
The presence of other components of total energy does not influence this behavior.
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