
Journal of

Mechanics of
Materials and Structures

A DYNAMIC ELECTRO-THERMO-MECHANICAL MODEL
OF DIELECTRIC BREAKDOWN IN SOLIDS USING PERIDYNAMICS

Raymond A. Wildman and George A. Gazonas

Volume 10, No. 5 December 2015

msp





JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 10, No. 5, 2015

dx.doi.org/10.2140/jomms.2015.10.613 msp

A DYNAMIC ELECTRO-THERMO-MECHANICAL MODEL
OF DIELECTRIC BREAKDOWN IN SOLIDS USING PERIDYNAMICS

RAYMOND A. WILDMAN AND GEORGE A. GAZONAS

The electro-thermo-mechanical breakdown of dielectric solids is modeled using peridynamics to de-
scribe the brittle fracture of a material under high electric fields. A coupled electrostatic, elastodynamic,
thermodynamic model is used wherein electrostatic forces are computed and applied to the mechanical
model and temperature effects are included. Fracture is simulated using peridynamics, a reformulation
of elasticity that incorporates material failure. Coupling occurs between the electrostatic and mechanical
forces and also the electrical material properties: specifically, the Lorentz and Kelvin forces are used to
couple the electrostatic fields to the stress fields, conductivity is treated as nonlinear and a function of tem-
perature, and mechanical damage is used to alter the permittivity. Results demonstrate that the method is
capable of reproducing branching breakdown patterns seen in experiments using a deterministic method.

1. Introduction

Dielectric breakdown in a solid is a process involving the application of high voltage to a material,
which leads to a rapid increase in the conductivity and temperature of that material, ultimately resulting in
permanent material damage. In a solid material, an electromechanical breakdown process is accompanied
by high temperatures, melting, vaporization, and ionization of the material, as well as physical fractures
not necessarily associated with the rise in conductivity. Overall, dielectric breakdown represents a highly
coupled multiphysics problem that can be challenging for numerical methods to capture.

The simulation of dielectric breakdown was first addressed with the dielectric breakdown model
(DBM) or diffusion limited aggregation model [Niemeyer et al. 1984; Irurzun et al. 2002; Arshak
et al. 2008]. The DBM is a stochastic method capable of reproducing the fractal patterns seen in the
breakdown of various materials. Unfortunately, DBM is static and cannot reproduce breakdown velocity.
Several other models are similar in nature in that they use networks of circuit components to model
breakdown. These network models use fuse-like components that are destroyed when subjected to high
fields [Joshi et al. 2002; Boksiner and Leath 2003; Quiña et al. 2008]. In addition to simulation methods,
a simple relation between breakdown strength and a material’s elastic properties can be derived, giving
a rough estimate of electromechanical breakdown strength [Zebouchi and Malec 1998]. A coupled
thermal/electrostatic model is given by [Noskov et al. 2001], which couples conductivity to temperature
in a multiphysics model. A large field of study is focused on breakdown in thin films, in which a
percolation model can be used to develop statistical characteristics [Lloyd et al. 2005; Nigam et al.
2009]. Parallels have been made between dielectric breakdown and the brittle fracture of materials under
mechanical loading, leading to J-integral approaches [Beom and Kim 2008; Fan et al. 2009], a fracture
energy-based approach [Schneider 2013], and a charge-free zone model [Zhang and Xie 2013]. Most
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recently, sophisticated, coupled methods have been proposed, which model the evolution of charge in
gases [Chaudhury and Boeuf 2010] and liquids [Jadidian et al. 2013]. Finally, phase field modeling has
been used to model the dynamic character of breakdown in a solid [Pitike and Hong 2014].

Many of the early methods discussed above are quasistatic in that they strictly dictate the breakdown
velocity, though not the breakdown path. Most dynamic models are for thin films, which give accurate
breakdown statistics for those geometries. The method presented here most closely resembles the coupled
thermal/electrostatic model [Noskov et al. 2001], though here we extend that model through the addition
of mechanical fracture. Similarly to that approach, breakdown is simulated as a change in conductivity
and not using a specific breakdown field strength, such as that used in the phase field model [Pitike and
Hong 2014]. The phase field approach assumes a breakdown field strength as a material property, and
not as a measured quantity.

On the experimental side, dielectric breakdown can be difficult to study due to its short time scales and
high energies. Despite this, several studies illustrate breakdown with high-speed photography [Yamada
et al. 1990; Auckland et al. 1975; Budenstein 1980; Auckland et al. 1981]. Breakdown in solids has
been studied in detail in single crystals in [Neusel et al. 2012]. In addition, the combined mechanical
and electrical loading of glasses has been compared using fracture toughness, providing useful data for
validating numerical schemes [Yan et al. 2010].

In the proposed approach, peridynamics will be used to simulate mechanical failure of a solid material.
Peridynamics is a formulation of continuum mechanics that replaces the local divergence operators with
nonlocal integral operators to facilitate fracture modeling [Silling 2000]. It has been shown to capture
complex branching fracture patterns in brittle solids subjected to high mechanical loads [Ha and Bobaru
2010].

A method is proposed that uses a coupled peridynamic/finite difference method to model electrome-
chanical breakdown in solids. The method will couple electrostatic potential, elastodynamic fields, tem-
perature, and their constitutive models. Peridynamics is most readily discretized using a point-based
scheme, compatible with finite difference methods [Wildman and Gazonas 2014], which will be used
in the electrostatic simulation. In this model, thermal diffusion is ignored due to the short time scales
and low thermal conductivities of the dielectrics considered, though temperature increase due to Joule
heating is considered. Coupling occurs between the electrostatic forces and the elastic wave equation,
the mechanical damage and the permittivity, the temperature and the conductivity, and the electric field
and the conductivity [Flynn 1955; von Olshausen and Sachs 1981].

The remainder of the paper proceeds as follows: Section 2 discusses the coupled formulation including
the relevant physics and discretization. Section 3 presents numerical results including homogeneous mate-
rials and materials with randomized conductivity of varying levels. Finally, Section 4 concludes the paper.

2. Formulation

The formulation of the coupled model is presented in this section. First, peridynamics is discussed in
more detail, including its discretization and damage model. Next, the electrostatic solver is discussed,
which uses a staggered grid to compute the electrostatic potential. The thermal model is then described,
which only includes temperature increase due to Joule heating. Finally, the coupling of the various field
equations and constitutive models is summarized.
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2.1. Peridynamics. Peridynamics is a continuum model for brittle-elastic fracture [Silling 2000; Silling
et al. 2007; Emmrich and Weckner 2006], which (in its original, bond-based form) replaces the divergence
of the elastic stress tensor with an integral of a microforce function. It is characterized by a nonlocal
interaction region, in that the force at a given point in space is influenced by the action at surrounding
points at nonvanishing distances. The nonlocal region is governed by a specific size, or horizon, and it
can be shown that for certain formulations, in the limit as this horizon approaches zero, elastodynamics is
recovered [Silling and Lehoucq 2008; Lehoucq and Silling 2008]. For simplicity, a standard, bond-based
peridynamics approach is used here, and summarized below.

A standard, body-force-free formulation of continuum elastodynamics (incorporating thermal expan-
sion) can be stated as the partial differential equation

ρ
∂2

∂t2 u =∇ · τ , (1)

where bold type with an overbar represents a second-rank tensor, the stress τ is given by

τ = C : ε = C :
[ 1

2(∇u+ u∇)−α1T
]
, (2)

two overbars represent a fourth-rank tensor, 1T is the temperature difference relative to ambient, α is
the thermal expansion tensor, and C is a fourth-rank constitutive tensor. In 2D plane strain, the isotropic,
linear elastic constitutive tensor is given in Voigt notation by

C =

2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ

 , (3)

where Lamé’s parameters λ and µ are

λ=
Eν

(1+ ν)(1− 2ν)
(4)

and

µ=
E

2(1+ ν)
, (5)

and E is Young’s modulus and ν is Poisson’s ratio.
Peridynamics proposes to replace the divergence of the stress on the right-hand side of (1) with the

integral-based internal force formulation

ρ
∂2

∂t2 u =
∫

Hr

f (u′− u, r ′− r, T ) dV ′, (6)

where Hr is the horizon at point r and is typically spherical with radius δ and the microforce function
can be defined as

f (η, ξ , T )= c[s(η, ξ)−α1T ]
η+ ξ

‖η+ ξ‖
, (7)

with bond stretch s(η, ξ) given as

s(η, ξ)=
‖η+ ξ‖−‖ξ‖

‖ξ‖
, (8)
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c being a constitutive parameter, relatable to the elastic parameters as

c =
6E

πδ3(1− ν)
. (9)

Poisson’s ratio is restricted to ν = 1
3 for plane stress and ν = 1

4 for plane strain [Ha and Bobaru 2010], and
isotropic thermal expansion is modeled using the scalar thermal expansion coefficient α and temperature
(relative to ambient) 1T [Kilic and Madenci 2010; Oterkus and Madenci 2012; Oterkus et al. 2014].

Most importantly, peridynamics incorporates damage into its formulation by allowing for “bond-
breaking” or the removal of points from horizons under high strain. The typical damage criterion is
defined using the bond stretch s as

s−α1T > s0, (10)

where s0 can be related to the fracture energy G0 as [Ha and Bobaru 2010]

s0 =

√
4πG0

9Eδ
. (11)

If two bonds have a stretch that satisfies the inequality of (10), then those bonds are removed from each
other’s horizons. This approach is clearer in the discretized method, which will next be summarized.

Equation (6) is typically discretized in a pointwise fashion, wherein a domain is broken up into a
regular grid and quadrature is performed with a simple midpoint rule. This approach will also be adopted
here, though we will use exact quadrature weights at the edges of the horizon. In other words, where the
horizon intersects with a rectangular cell, the exact area of that cell will be used, rather than the area of
the entire cell as is sometimes used [Seleson 2014]. More specifically, (6) is discretized spatially as

ρ
∂2

∂t2 ui j =

Ni j∑
m,n|rmn∈Hri j

f
(
ηi j,mn, ξi j,mn,

1Ti j +1Tmn

2

)
Vi j,mn, (12)

where ui j = u(ri j ), ξi j,mn = ri j − rmn , ηi j,mn = ui j − umn , Vi j,mn is the area (or volume in 3D) of the
mn-th node in the horizon, Hri j , of node i j , and Ni j is the current number of nodes in the horizon of
node i j . (In this section, the indices i , j , m, and n are used, though the mechanical variables will be
solved on a staggered grid, offset by 1

2 in both directions. For compactness, the factor of 1
2 is dropped

here. For the actual locations of all field variables, see Figure 1.) Temporal derivatives are discretized

i + 1/2, j + 1/2

i, j 8

u, E, ε, σ, T

Figure 1. Staggered grid used for the numerical implementation, with variables labeled.
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using a velocity-Verlet method, resulting in the update equations

vk+1/2
= vk
+
1t
2

ak,

uk+1
= uk
+1tvk+1/2,

ak+1
=

FPD

ρ
,

vk+1
= vk+1/2

+
1t
2

ak+1,

(13)

where a = ∂2u/∂t2 is the acceleration, v = ∂u/∂t is the velocity, FPD is the internal force given as the
right-hand side of (12), and 1t is the time step size.

Finally, damage occurs when two nodes suffer a stretch exceeding the critical stretch (defined in (11))
and can be written in discretized form as

si j,mn =
‖ηi j,mn + ξi j,mn‖−‖ξi j,mn‖

‖ξi j,mn‖
−α

1Ti j +1Tmn

2
> s0. (14)

In this case, any nodes satisfying the damage criterion will be removed from each other’s horizons, thus
decreasing Ni j for each. In other words, node mn will no longer contribute to the internal force of node i j
in (12) (and vice versa). A damage parameter can then be defined as

di j = 1−
Ni j

N initial
i j

(15)

where N initial
i j is the initial number of bonds in the horizon of node i j .

2.2. Electrostatic model. As peridynamics is most easily discretized with a particle method, a finite
difference method is a natural choice for the electrostatic model. Here, the electrostatic forces will be
computed beginning with the quasistatic model

∇ · (σ (T, ‖E‖)∇8)+
∂

∂t
∇ · (ε∇8)= 0, (16)

where σ(T, |E|) is the conductivity and is a nonlinear function of the electric field and temperature, ε is
the permittivity, and 8 is the electrostatic potential [Koch and Weiland 2011]. Note that the electrical
material properties are time-varying. As stated above, (16) is a quasistatic model and can be derived by
starting from either Poisson’s electrostatic equation or the conservation of charge. In both cases, current
density is given by Ohm’s law, which has the form

J = σ E, (17)

where J is the current density. The quasistatic formulation used here is most appropriate for problems
with finite conductivity, rather than infinite or zero as is assumed in many electrostatic problems. This for-
mulation allows for a more accurate computation of charge and current flow, though no electromagnetic
waves are generated.

In order to simplify the solution of (16), the conductivity will be linearized after temporal discretization.
In other words, a Taylor series expansion will be used about the previous time step. For now, assume
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that the conductivity is given by either

σ(T, ‖E‖)= σ0 fm(T )eγ ‖E‖, (18)
or

σ(T, ‖E‖)= σ0eγ ‖E‖
+ fa(T ), (19)

where σ0 is the conductivity at low temperature and field, fm(T ) and fa(T ) are some functional depen-
dence on the temperature T , and γ is a parameter of the model. In addition, we assume coupling between
material damage d (defined in (15)) and permittivity, modeling the formation of voids. Here, we use a
linear relationship between damage and permittivity:

εi j = ε0[εr (1− di j )+ di j ], (20)

corresponding to a permittivity of εrε0 when di j = 0 and ε0 when di j = 1, where ε0 is the permittivity of
free space.

This model is spatially discretized using a staggered grid for the material properties and a weak form
given by ∮

∂�

σ∇8 · n̂ d`+
∂

∂t

∮
∂�

ε∇8 · n̂ d`= 0, (21)

where the material properties are assumed to be constant through the region � enclosed by the contour ∂�
with unit normal n̂. A region �i j is then rectangular with side lengths 1x and 1y, centered on the
point ri j . The electrostatic potential is then solved at each point ri j and denoted as 8i j . Applying a finite
difference approximation to ∇8, along with the assumption of constant material properties in each �i j

and equal grid spacing along both x and y (i.e., 1x =1y) gives the discretization

∇ · (a∇8)≈−A08i j + A18i+1, j + A28i, j+1+ A38i−1, j + A48i, j−1, (22)
where

A0 = ai+1/2, j+1/2+ ai+1/2, j−1/2+ ai−1/2, j+1/2+ ai−1/2, j−1/2,

A1 =
1
2(ai+1/2, j+1/2+ ai+1/2, j−1/2),

A2 =
1
2(ai−1/2, j+1/2+ ai+1/2, j+1/2),

A3 =
1
2(ai−1/2, j−1/2+ ai−1/2, j+1/2),

A4 =
1
2(ai+1/2, j−1/2+ ai−1/2, j−1/2)

(23)

and a is an inhomogeneous material property.
In addition to the above discretization, we require a finite difference approximation incorporating

an anisotropic material due to the linearization of the conductivity (discussed below). Generically, for
anisotropic materials, the first term of (21) becomes∮

∂�

(B∇8) · n̂ d`, (24)

where B is a second-rank tensor representing a generic anisotropic material property. The numerical
formulation for an isotropic material can then be extended by following the same assumptions, in partic-
ular that the materials and derivative approximations are constant along each part of the contour integral.
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Following this procedure leads to

∇ · (B∇8)≈−B08i j + B18i+1, j + B28i, j+1+ B38i−1, j + B48i, j−1, (25)

where

B0 =
1
2(b

xx
i+1/2, j+1/2+ bxx

i+1/2, j−1/2+ bxx
i−1/2, j+1/2+ bxx

i−1/2, j−1/2)

+
1
2(b

yy
i+1/2, j+1/2+ byy

i+1/2, j−1/2+ byy
i−1/2, j+1/2+ byy

i−1/2, j−1/2), (26)

B1 =
1
2(b

xx
i+1/2, j+1/2+ bxx

i+1/2, j−1/2)+
1
4(b

yx
i+1/2, j+1/2+ byx

i−1/2, j+1/2)

−
1
4(b

yx
i−1/2, j−1/2+ byx

i+1/2, j−1/2), (27)

with the remaining terms B2, B3, and B4 being derived similarly, and the bxx , bxy , byx , and byy are the
corresponding components of B.

The spatially discretized equation can then be written as

Dσ8+
∂

∂t
Dε8= 0, (28)

where Da is the discretized operator defined above and Dσ is a nonlinear function of the potential.
Because the permittivity is time-varying in this model, the above is rewritten

Dσ8+ D∂ε/∂t8+ Dε

∂

∂t
8= 0. (29)

An implicit backward Euler approximation can then be applied to the temporal derivatives, giving

(1t Dσ k + 2Dεk − Dεk−1)8k
= Dεk8k−1, (30)

where 1t is the time step size. Now, the nonlinearity in the conductivity can be linearized by expanding
the conductivity (given in (18) or (19)) times the electric field in a Taylor series about the field at the
previous time step, Ek−1:

σ(T k, ‖Ek
‖)Ek

≈ σ0 fm(T k)eγ ‖Ek−1
‖

[
Ek
+ γ

Ek−1
⊗ Ek−1

‖Ek−1‖
(Ek
− Ek−1)

]
, (31)

where ⊗ denotes a tensor outer product so that the second term behaves as an anisotropic material,
necessitating the use of (25)–(27). (Using the version of the conductivity given in (19) follows similarly.)
Noting that E =−∇8 and using the notation of (30), we find

(1t Dσ k
1
+1t Dσ k

2
+ 2Dεk − Dεk−1)8k

= (Dεk +1t Dσ k
2
)8k−1, (32)

where the conductivity terms Dσ k
1

and Dσ k
2

are the discretizations of the first and second terms of the
linearization in (31) as given by (22)–(23) and (25)–(27), respectively. After appropriate boundary con-
ditions are applied, (32) can be solved at each time step for the electrostatic potential.

Next, forces can be computed from the electrostatic potential by computing the electric field, E, charge
density, q =∇ · (εE), and polarization vector P and applying the Lorentz force

FL = q E (33)
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and the Kelvin polarization force
FK = P · ∇E, (34)

where the polarization vector P is given by

P = (ε− ε0)E, (35)

and ε is the permittivity of the dielectric [Lewis 1998]. The electric field E is computed from a finite
difference approximation of E =−∇8, and the charge density q is computed from a finite difference
approximation of Gauss’s law.

Another advantage of the staggered-grid approach adopted above is that we actually require the electric
field, not just the electrostatic potential. The electric field can be computed on the material grid as

x̂ · Ei+1/2, j+1/2 ≈−
8i+1, j+1−8i, j −8i, j+1+8i+1, j

21x
,

ŷ · Ei+1/2, j+1/2 ≈−
8i+1, j+1−8i, j +8i, j+1−8i+1, j

21y
.

(36)

The advantage here is that the potential 8 was computed on a grid offset from the grid used for the mate-
rial properties and hence the peridynamic simulation. The forces needed for the peridynamic simulation
must be computed by finite difference of the potential, so we can again take advantage of the offset grid
and use a central difference.

These electrostatic forces are then coupled to the mechanical simulation with the equation of motion

ρ
∂2

∂t2 u = FPD+ FL+ FK, (37)

where FPD represents the mechanical forces found on the right-hand side of (12).
A simplifying assumption used here is that the mechanical displacement does not couple to the elec-

trostatic simulation. In other words, relative motion implied by any nonzero displacement is ignored in
the computation of the electrostatic potential.

2.3. Thermal model. Typically, the heat equation for a coupled thermomechanical problem will include
terms depending on mechanical heating, diffusion, and any heat sources. Here, the thermodynamics
of the model is dominated by Joule heating, so mechanical heating is ignored. Also, due to the short
time scales and low thermal conductivities of most dielectric materials, thermal diffusion can be ignored.
Joule heating is then defined as

Q = J · E, (38)

where Q is the power generated per unit volume due to current density J . The conduction current density
is then given by (17), giving

Q = σ‖E‖2. (39)

The temperature at a point in space can be computed by summing the power at each point via

∂

∂t
T =

1
cpρ

Q, (40)
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where cp is the specific heat capacity of the material at constant pressure and ρ is again the mass density.
An explicit forward Euler discretization of the above gives

T k+1
= T k

+
1t
cpρ

Q. (41)

The temperature is also used to alter material properties, specifically conductivity. Typically, an
Arrhenius-type relation is used for temperature-conductivity coupling [Boggs and Kuang 1998; Noskov
et al. 2001], which has a temperature dependency of exp(−aT−1). This type of temperature dependence
can be included as an additive term to the conductivity as

fa(Ti j )=

{
σ1e−β1T−1

i j , Ti j < Tv,

σ2e−β2T−1
i j , Ti j ≥ Tv,

(42)

where two phases can be included depending on the temperature. The parameters σ1, σ2, β1, β2, and Tv

are given.
In addition, a basic exponential-type multiplicative model can be stated as [Nyberg et al. 1975]

fm(Ti j )=


1, Ti j < Tm,

eβ(Ti j−Tm), Tm ≤ Ti j < Tv,

fmax, Ti j ≥ Tv,

(43)

where the coefficient β is given by

β =
log( fmax)

Tv− Tm
. (44)

In addition, if the temperature exceeds Tv, the conductivity is fixed at a maximum value, which will be
σ = 106 S m−1 throughout. In this model, the temperatures Tm and Tv may then refer to phase changes at
which it may be expected that temperature influences the conductivity of the material. Temperature Tm

is used to indicate the point at which the temperature begins to affect conductivity, and temperature Tv

is the point at which temperature no longer influences conductivity.
Several coupled effects are ignored in the current model. Specifically, neglected but expected first-

or second-order effects include the mechanical material properties dependence on temperature and the
energy required to complete phase changes. Here, mechanical material properties (including the damage
criterion) are not dependent on temperature while typically a material will soften as it approaches its
melting point. In this model, temperatures may span all states of matter for a given material, so accurate
material temperature-dependent models may be difficult to find in the literature. Also, phase changes and
the energy required to complete a phase change are also ignored. A phase change from solid to liquid will
of course change the governing equation of motion, though in this model, typically if the temperature
rises above a certain point, enough damage has already been accumulated so that the material is not
effectively behaving as a solid. Also, equations of state are not used to model gas pressure exerted on
the damaged material. These effects will be considered in a future implementation. Other effects that
may not be as significant include the dependence of the electrostatic potential on deformation, thermal
diffusion, and the heat generated by mechanical deformation.
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2.4. Algorithm summary. The algorithm sequence can be summarized as follows.

(1) Specify any initial electrical material properties given by the problem geometry, and compute initial
potential.

(2) Update the displacement and velocity based on acceleration using (13).

(3) Update the temperature using (41).

(4) Compute the damage due to bond-breakage using condition (14) and the internal forces FPD.

(5) Update the permittivity based on the damage using (20).

(6) Update the conductivity based on the electric field and temperature using (31).

(7) Compute the electrostatic potential (8) from (16), with specified initial and boundary conditions.

(8) Compute the electrostatic forces from the potential (FL and FK) with (33) and (34).

(9) Update the velocity and acceleration using the all forces FPD, FL, and FK.

(10) Repeat starting at Item (2).

In addition, Figure 2 illustrates the time-stepping process: arrows indicate the dependence of variables
at various points in the algorithm. The algorithm progresses to the right (increasing k) and upward on
the diagram as indicated by the arrows.

In both simulations (electrostatic and peridynamic), the spatial grid and time step size are the same,
though the electrostatic potential is solved on an offset grid (see Figure 1). In this case, the time step
size is governed by the requirements of the peridynamic simulation, which has a Courant-like stability
condition [Silling and Askari 2005], and the accuracy of the linearization of the conductivity as given
in (31). The spatial grid size is determined by the input geometry, as typically sharp features are re-
quired to produce a high electric field necessary for breakdown. Though this approach is deterministic,
some random noise may be added to the electrical material properties to generate stochastic breakdown
patterns.

k k+ 1/2 k+ 1

k k+ 1/2 k+ 1

k k+ 1/2 k+ 1

k k+ 1/2 k+ 1

k k+ 1/2 k+ 1

a, v

E,8 σ, ε,8, E, FL, FK

d, FPD

E, σ T

a, v v u

Figure 2. Schematic diagram of the time-stepping sequence.
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Mechanical: ρ = 2400 kg m−3; E = 72 GPa; δ = 0.15 mm; G0 = 5 J m−2

Electrical: ε0 = 8.85× 10−12 F m−1; εr = 20; σ0 = 10−19 S m−1

Thermal: cp = 800 J kg−1 K−1; Tm = 500 K; Tv = 1000 K

Coupled: α = 9× 10−6 K−1; fmax = 100; γ = 5× 10−8 m V−1

Table 1. Physical constants.

Field equations. The relevant field equations are summarized as three unknowns (u, 8, and T ) and the
three equations

ρ
∂2

∂t2 u = FPD+ FL+ FK, (45)

∇ · (σ (T, ‖E‖)∇8)+
∂

∂t
∇ · (ε∇8)= 0, (46)

∂

∂t
T =

1
cpρ

Q. (47)

Each equation is discretized spatially using either finite differences or a grid-based mesh-free approach.
Temporal discretizations are also finite difference-based, though the electrostatic equation uses backward
Euler, the peridynamic equation uses velocity Verlet, and the thermodynamic equation uses forward
Euler.

Constitutive models. The coupled constitutive models (using the multiplicative form of the temperature-
conductivity coupling) are summarized as

εi j = ε0[εr (1− di j )+ di j ], (48)

σ k
i j = σ0 fm(T k

i j )e
γ ‖Ek−1

i j ‖

[
Ek

i j + γ
Ek−1

i j ⊗ Ek−1
i j

‖Ek−1
i j ‖

(Ek
i j − Ek−1

i j )

]
, (49)

fm(Ti j )=


1, Ti j < Tm,

eβ(Ti j−Tm), Tm ≤ Ti j < Tv,

fmax, Ti j ≥ Tv.

(50)

In total, the permittivity depends on the damage (which depends on the mechanical deformation) and the
conductivity depends on the temperature and electric field. The thermal properties (thermal conductivity
and specific heat) are not coupled in this model, and neither are the mechanical properties.

Constants. Finally, the physical constants encompass the typical constants for the electrical, thermal, and
mechanical properties, as well coupling constants needed in the constitutive models listed above. Typical
values of these constants are given in Table 1 and will be used in Section 3 unless specified otherwise. The
mechanical constants, thermal expansion coefficient, and heat capacity used here resemble a soda-lime
glass, while the electrical and other coupling coefficients are chosen arbitrarily. Some constants, such
as the coupling coefficient γ , can be difficult to find in the literature for many materials, so reasonable
values are assumed. In addition, the effect of the temperature-conductivity coupling coefficient fmax is
studied below. Future work will include validation of the model with experiments.
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3. Numerical results

Several numerical results will be presented in this section. Throughout, a point-plane geometry will be
analyzed using the material properties listed in Table 1. In addition to the homogeneous material case,
randomized conductivity will be demonstrated. Discretization refinement will also be explored. Finally,
the effect of the temperature-conductivity coupling coefficients will be studied.

In each example, the voltage of the ground plane is fixed at 0, the point probe is held at a voltage
described below, and (for simplicity) the remaining sides are treated as homogeneous Neumann boundary
conditions. In each case, the voltage given (Vmax) is the maximum voltage following an exponential ramp,
according to

8probe(t)= Vmax(1− e−t/τ ), (51)

where the time constant is τ = 0.3µs in each case.

3.1. Uniform material properties: weak temperature dependence. A point-plane-type geometry was
simulated first with uniform material properties, wherein a point probe of length 2.5 mm and width
150µm was suspended above a ground plane separated by a distance of 7.5 mm. The simulation region
was 10 mm×10 mm. The material properties listed in Table 1 were used along with a spatial discretization
of 1x = 1y = 50µm and a temporal discretization of 1 ns. The simulation was run for 5000 time
steps (5µs) for two different maximum voltages. First, a maximum voltage of 3 MV was used with
the mechanical fracture damage shown in Figure 3, left. The electric field at the final time is shown in
Figure 3, right, in units of V m−1.

A maximum voltage of 4 MV was simulated next, using a spatial discretization of 1x =1y = 40µm,
peridynamic horizon of δ = 0.12 mm, and the same temporal discretization and material properties as
above. Figure 4, left, shows the damage after 5µs, Figure 4, right, shows the magnitude of the electric
field, and Figure 5 shows the conductivity on a logarithmic scale. Clearly, the increased maximum voltage
leads to higher damage in the material. Also note that, due to the weak dependence of the conductivity
on temperature, the fractures observed are not associated with high conductivity. This is in contrast to
typical dielectric breakdown models in which all breakdown or material damage is associated with high
conductivity. Stronger dependence of conductivity on temperature is explored in a subsequent subsection.

Figure 3. Mechanical damage including point electrode (left) and electric field (right)
after 5µs with Vmax = 3 MV.
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Figure 4. Mechanical damage including point electrode (left) and electric field (right)
after 5µs with Vmax = 4 MV.

Figure 5. Conductivity after 5µs with Vmax = 4 MV.

3.2. Randomized conductivity: weak temperature dependence. A random, background conductivity
will be added following a Gaussian distribution. The distribution will set the exponent of the conductivity
so that the actual conductivity is exponentially related to the random distribution. More specifically, the
randomized background conductivity is set as

σ0(ri j )= σm + 10R(σm ,ω), (52)

where σm = 10−19 is the base material’s conductivity and R(µ, ω) is a random variable from Gaussian
distribution with mean µ and standard deviation ω. The standard deviation will be varied to alter the
background conductivity.

First, a maximum voltage of 3 MV was simulated (using the same discretization as the 3 MV example
above) with a standard deviation of ω = 6 used to alter the background conductivity. The results after
5µs are shown in Figure 6 (damage and conductivity). By comparison with Figure 3, left, it can be seen
that the damage pattern is similar in extent, though its path is altered by the randomized conductivity.

Next, a maximum voltage of 4 MV was simulated again using the same discretization and material
properties as the 4 MV above. The background conductivity was again randomized using a standard
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Figure 6. Mechanical damage including point electrode (left) and conductivity on a log
scale (right) after 5µs with Vmax = 3 MV with randomized background conductivity.

Figure 7. Mechanical damage including point electrode (left) and conductivity on a log
scale (right) after 5µs with Vmax = 4 MV with randomized background conductivity.

deviation of ω = 6, though the actual distribution of conductivity is not the same as the above example.
In other words, the conductivity was generated using a different seed for the random number generator.
Figure 7 shows the damage after 5µs (left) and the conductivity on a logarithmic scale (right).

3.3. Discretization refinement. The above test with a maximum voltage of 4 MV was repeated, though
now with a time step size of 1t = 0.5 ns. The resulting damage is shown in Figure 8, left. As can be
seen by comparing with Figure 4, left, the damage pattern is stable between the two time step sizes.

Next, the breakdown simulation was run with a spatial discretization of 1x = 1y = 33.33µm, a
peridynamic horizon of δ = 0.1 mm, and a time step size of 1t = 1 ns. In this case, the width of the
point probe had to be reduced to 100µm to conform to the computational grid. Nevertheless, the results
show a stable fracture pattern (Figure 8, right) compared with the coarse discretization.

3.4. Strong temperature dependence. Due to positive feedback, increasing the temperature-conductivity
coupling coefficient ( fmax or β) leads to much higher temperatures than those seen in the previous ex-
amples. The model is not formulated to couple temperature to all relevant material properties (e.g.,
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Figure 8. Mechanical damage including point electrode after 5µs with Vmax = 4 MV
using a time step size of 1t = 0.5 ns (left) and using a spatial step size of 1x =1y =
33.33µm (right).

mechanical properties), so a first approach is to limit the maximum Joule heating power allowed in the
simulation. In this section, a maximum heating power of Q = 1016 W is used. An immediate effect
seen if higher temperatures are allowed is that the thermal expansion can lead to rapid degradation of the
material and instability in the simulation.

In this example, the temperature-conductivity coupling coefficient was raised to fmax = 106. Uni-
form material properties were used with the coarse discretization in both space and time of the 4 MV
example above. A maximum voltage of 4 MV was simulated, giving the damage seen in Figure 9. With
the increased coupling coefficient, the damage pattern has changed and now has an additional branch
originating at the ground plane.

3.5. Additive temperature-conductivity model. Finally, the additive form (see (42)) of the temperature-
conductivity coupling is tested. The parameters used are transition temperature Tv = 1000 K, base
conductivities of σ1 = 104 S m−1 and σ2 = 3× 104 S m−1, and exponents of β1 = 1.2× 104 K−1 and

Figure 9. Mechanical damage including point electrode after 5µs with Vmax = 4 MV
using a temperature-conductivity coupling coefficient of fmax = 106.
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Figure 10. Mechanical damage including point electrode (left) and temperature distri-
bution (right) after 5µs with Vmax = 4 MV using the additive temperature-conductivity
coupling model.

β2 = 1.2× 103 K−1. The simulation was run with both a maximum voltage of 3 MV and 4 MV. With a
maximum voltage of 3 MV and 4 MV, the resulting damage was similar to that given above for the weak
temperature dependence. The damage after 5µs for a maximum voltage of 4 MV is shown in Figure 10,
left. The temperature after 5µs is shown in Figure 10, right, illustrating that, while there is mechanical
fracture in the material, a highly conductive region has not propagated completely through the material.

4. Conclusions

A coupled electrostatic, thermodynamic, elastodynamic model of dielectric breakdown in solids was pre-
sented. The method uses a finite difference solver to compute the electrostatic potential due to an applied
voltage. The Lorentz and Kelvin forces couple the electric field to the mechanical forces, thus generating
stress in the solid. Peridynamics is used to then simulate the mechanical fracture of the material due to
high strains. The electrical permittivity is coupled to the damage, and a nonlinear conductivity is used
to model the effects of high electric fields. Finally, temperature is considered in the model using Joule
heating as the heat source, and thermal expansion and temperature effects on the electrical conductivity
are considered. Results show mechanical fracture patterns consistent with those seen in brittle solids
undergoing dielectric breakdown. In addition, discretization refinement was performed and shows that
the proposed method generates stable fracture patterns. Several additions to the model are possible,
for example, coupling of temperature to mechanical material properties, deformation to electrostatic
potential, and more realistic phase changes.
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