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PREFACE

This special issue contains contributions that were invited on the occasion of the Peridy-
namic Theory symposium held at the 17th U.S. National Congress on Theoretical and Applied
Mechanics (USNCTAM) at Michigan State University in June, 2014.

One theme of these papers is exploiting the potential of peridynamics in contemporary tech-
nology, particularly by including multiple physical effects and applying it to nanoscale mechan-
ics. The paper by Turner, Val Bloemen Waanders, and Parks develops an inverse method to
determine heterogeneous nonlocal material properties from experimental data, including digital
image correlation (DIC). Wildman and Gazonas couple peridynamic mechanics with a model
for electrical conduction and Joule heating to simulate fracture caused by high voltage dielectric
breakdown. Application of peridynamics to friction and wear at the nanoscale is demonstrated
in the paper by Ebrahim, Steigmann, and Komvopoulos.

Another general theme of the special issue is making peridynamic mechanics more practical
as a general analysis tool for applications involving fracture. The paper by Mitchell, Silling, and
Littlewood describes a new material model within peridynamics that helps avoid difficulties
due to the nonlocal nature of the theory in treating free surfaces. With the goal of applying
peridynamics only within a small subregion of a large structure where damage is expected,
Silling, Littlewood, and Seleson investigate techniques for varying the peridynamic horizon
within a model, including application to local-nonlocal coupling. In a related paper elsewhere in
this journal (DOI 10.2140/jomms.2015.10.167), Oterkus and Madenci describe a specialization
of peridynamics to anti-plane shear and torsion, resulting in a considerable simplification over
the full 3D equations.

These papers reflect a sample of the broad spectrum of research on the peridynamic theory
ongoing around the world.

STEWART SILLING

Sandia National Laboratories
OLAF WECKNER

The Boeing Company
Guest Editors
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A POSITION-AWARE LINEAR SOLID CONSTITUTIVE MODEL
FOR PERIDYNAMICS

JOHN A. MITCHELL, STEWART A. SILLING AND DAVID J. LITTLEWOOD

A position-aware linear solid (PALS) peridynamic constitutive model is proposed for isotropic elastic
solids. The PALS model addresses problems that arise, in ordinary peridynamic material models such
as the linear peridynamic solid (LPS), due to incomplete neighborhoods near the surface of a body. Im-
proved model behavior in the vicinity of free surfaces is achieved through the application of two influence
functions that correspond, respectively, to the volumetric and deviatoric parts of the deformation. The
model is position-aware in that the influence functions vary over the body and reflect the proximity of
each material point to free surfaces. Demonstration calculations on simple benchmark problems show a
sharp reduction in error relative to the LPS model.

1. Introduction

The peridynamic theory of solid mechanics allows for great flexibility in the development of constitutive
models. In contrast to classical, local models, which rely on a kinematic description of material defor-
mation at a point such as the deformation gradient, material models in the peridynamic theory determine
pairwise force densities based on the deformations of a nonlocal family of neighboring material points
[Silling 2000; Silling and Lehoucq 2010; Madenci and Oterkus 2014]. This enrichment of kinematic
information greatly expands the range of possible constitutive laws. Peridynamic material models de-
veloped to date fall into one of three categories: bond-based, ordinary state-based, and non-ordinary
state-based. Bond-based peridynamic models determine the pairwise force density that acts between
two material points based only on the histories of those points (e.g., initial and current positions). The
prototype microelastic brittle material model was the first peridynamic constitutive law to appear in the
literature [Silling 2000]. This model served as the foundation for a subsequently developed bond-based
plasticity model [Macek and Silling 2007]. The state-based theory for peridynamic constitutive models
represents a significant generalization of the bond-based approach [Silling et al. 2007]. The theory
of peridynamic states allows for constitutive models in which pairwise force densities are functions
of not only the material points in question, but also the full set of material points within the nonlocal
neighborhoods of those material points. State-based constitutive models in which pairwise force densities
act in the direction of the corresponding bond in the deformed configuration are referred to as ordinary
state-based models. Examples include the linear peridynamic solid (LPS) [Silling et al. 2007] and the
plasticity and viscoelasticity models developed by Mitchell [2011a; 2011b]. The third class of material
models, non-ordinary state-based, is comprised of constitutive models in which pairwise force densities
are not restricted to act in the bond direction. The correspondence model approach, in which classical

Keywords: peridynamics, PALS, ordinary state, lps, surface effects, elastic model, nonlocal, integral equations.
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(local) constitutive models are adapted for use within peridynamics, falls into this category [Silling et al.
2007; Foster et al. 2010; Tupek and Radovitzky 2014].

This study concerns the development of an ordinary, state-based constitutive model that improves upon
the performance of the material models currently available in the literature. The primary motivation is
the undesirable behavior of certain peridynamic material models in the vicinity of free surfaces. This
difficulty appears, for example, in a peridynamic simulation of a uniaxial tension test, illustrated in
Figure 1, using the LPS constitutive model and the mesh-free discretization approach of Silling and
Askari [2005]. In this simulation, the displacements at the end portions of the bar are prescribed, and the
forces on the grips, G y , are computed, along with the engineering strain in the gauge, ε. The Young’s
modulus may then be computed as

E = G y/Agε,

where Ag is the undeformed cross-sectional area of the bar in the vicinity of the gauge. The expected
value of Young’s modulus is the slope of the green curve in Figure 2. Modern three-dimensional finite
element codes can accurately reproduce the Young’s modulus in a simulation of the uniaxial tension
test for a linear elastic material. However, a typical three-dimensional peridynamic simulation using the
LPS material model predicts the red curve in Figure 2. The difference in slope between the two curves
shows that the peridynamic model under-predicts the load on the grips for a given value of strain. The
LPS material parameters are calibrated for points in the interior of a body and do not take into account
whether a point is near a boundary [Silling et al. 2007]. Due to the nonlocality of the peridynamic
equations, the LPS material model becomes inaccurate at points near a free surface. Here, some of
the peridynamic bonds that would be present in the interior are missing (Figure 3). Because bonds are
missing, they do not contribute to the net force on the cross-section of the gauge, hence the total force
is under-predicted. While this effect manifests for a number of constitutive models, it is not present for
all models; correspondence models are an exception because missing bonds are compensated for by the
shape tensor K .

The under-prediction of force at material points near a free surface is often referred to as the surface
effect in peridynamics. This effect presents a practical difficulty in applying bond-based models and
ordinary state-based models such as the LPS. Approaches for mitigating the surface effect have been
proposed by Kilic, Macek and Silling, and Mitchell. Following a bond-based approach, Kilic [2008] pro-
posed a position-aware correction that is computed iteratively for each material point. Macek and Silling
[2007] developed a position-aware force normalization that scales the stiffness of points near a surface
using a ratio of eigenvalues from local 3× 3 stiffness matrices, where eigenvalues are computed (with the
same material properties) for points near a free surface and on the interior. Mitchell [2013] developed a
position-aware scaling of moduli for the LPS model, but its efficacy was found to be somewhat sensitive
to complex surface geometries.

The present study proposes an alternative approach to peridynamic constitutive modeling in which
model parameters at a point reflect the point’s location within the body, removing the need for auxiliary
surface correction techniques. This position-aware approach is a significant departure from previously
developed constitutive models in that the constitutive model parameters are linked directly with the
geometry of the body. The position-aware linear solid (PALS) model presented herein is an extension
of the LPS model that substantially reduces the surface effect. This is accomplished by introducing
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Figure 1. Uniaxial tension test schematic.

influence functions that are calibrated according to the bulk elastic properties at each material point,
resulting in influence functions that differ for points near a free surface and points on the interior of the
body. Identification of the influence functions for each point in the body is accomplished by solving
a constrained minimization problem. Determination of the influence functions within a computational
simulation does not require an iterative process and is instead achieved through the solution of a linear
system of equations.

The present work is unique with respect to the construction and use of position-aware influence func-
tions. As very recently pointed out by Bessa, Foster, Belytschko and Liu [Bessa et al. 2014], only
constant-valued influence functions have been studied. Apparently, the two exceptions are the study by
Seleson and Parks [2011] and the approach for incorporating classical damage models into state-based
peridynamics by Tupek, Rimoli, and Radovitzky [Tupek et al. 2013]. Seleson and Parks used influence
functions to establish relationships between bond-based and state based peridynamics models and did not
consider position-aware influence functions. Influence functions developed by Tupek et al. are a product
of a Gaussian and a binary valued function (0 or 1) depending upon the state of damage between two
points defining a bond; this is somewhat position-aware but not in a way related to the present work.

An outline of the paper is as follows. An overview of peridynamic theory and the LPS model are
given in Section 2, including calibration of the LPS parameters in the interior of a body. The influence
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Figure 2. The LPS model under-predicts the Young’s modulus in a model of the uniaxial
tension test.
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Figure 3. Schematic of missing peridynamic bonds.

functions used in the PALS model are derived in Section 3, followed by the formulation of the PALS
force state in Section 4. The selection and usage of matching deformations required by the PALS model
are discussed in Section 5. Section 6 presents example calculations demonstrating the efficacy of the
PALS model in reducing the surface effect. Results and conclusions are given in Section 7.

2. Introduction to peridynamics and the LPS model

The peridynamic theory of solid mechanics [Silling 2000; Silling et al. 2007; Silling and Lehoucq 2010]
is an extension of classical continuum mechanics theory [Bonet and Wood 1997]. The peridynamics
extension permits discontinuities in displacements by replacing the stress divergence in the momentum
equation with a volume integral

ρ(x) ÿ(x, t)=
∫

B
f (x′, x, t) dVx′ + b(x, t), (1)

where y(x) is the current position vector of a material point x at time t , ρ is mass density in the unde-
formed body B, f is a pairwise bond force density per unit volume, b is the usual body force density,
and x′ is an arbitrary material point within the neighborhood Hx of the point x. In this section, the state-
based theory of peridynamics [Silling 2000; Silling et al. 2007; Silling and Lehoucq 2010] is reviewed
with emphasis on ordinary state-based constitutive models of relevance to this paper.

A bond vector is defined by
ξ = x′− x, 0< |ξ | ≤ δ,

where δ is the horizon of the material. Conceptually, δ is a relevant length scale and defines a spherical
neighborhood Hx ; it represents the maximum distance for nonlocal interactions in the material model.
Material points within the neighborhood Hx are referred to as the family of x. It will be assumed
throughout this paper that δ is independent of x.

In formulating peridynamic material models, it is convenient to use mathematical objects called states,
which are mappings from bonds in a family to some other quantity. Vector states map bonds to vectors,
and scalar states map bonds to scalars. An example of the notation used for states is as follows. The
value of a vector state A, at the material point x and time t , operating on a bond ξ , is given by

A[x, t]〈ξ〉, x ∈B, ξ ∈Hx .
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The deformed image of a bond ξ = x′− x is given by the deformation state Y :

Y [x, t]〈ξ〉 = y(x′, t)− y(x, t)

= (x′+ u(x′, t))− (x+ u(x, t)), (2)

where u is the displacement field. Further information on peridynamic states is given in [Silling et al.
2007].

The following scalar states are useful in material modeling:

• The undeformed bond length state x :

x〈ξ〉 = |ξ |.

• The deformed bond length state |Y |:

|Y |〈ξ〉 = |Y 〈ξ〉|. (3)

• The extension state e:
e〈ξ〉 = |Y |〈ξ〉− x〈ξ〉. (4)

In this paper, scalar states are underlined and written using italics, such as e; vector states are written
using bold and underlined, as in Y .

This paper is concerned with state-based constitutive models in which the pairwise bond force density
per unit volume f (x′, x, t) in (1) is given by

f (x′, x, t)= T [x, t]〈x′− x〉− T [x′, t]〈x− x′〉. (5)

The vector state T [x] is called the force state. In (5), f contains contributions from the force states at
both x and x′ (that is, both T [x, t] and T [x′, t]).

In ordinary state-based constitutive models, the vector force state is always parallel to the deformed
bond vector and written as

T 〈ξ〉 = t〈ξ〉M〈ξ〉, (6)

where t is a scalar state called the scalar force state, and M is a vector state that produces unit vectors
parallel to the deformed bond:

M〈ξ〉 =
Y 〈ξ〉
|Y |〈ξ〉

. (7)

It is assumed that deformed material points do not overlap, that is, Y 〈ξ〉 6= 0 for all ξ .
A simple material model in state-based peridynamics gives the force state as a function of the defor-

mation state and is written T (Y , x). The x in this expression accounts for possible heterogeneity. All
the material models considered in this paper are simple. The PALS model is inherently heterogeneous
since its parameters depend on position, in particular the proximity to a free surface.

In an ordinary state-based material model, the direction of the bond force is always given by (7).
Therefore, the material model is fully specified by scalar force state: t(Y , x).

The LPS model, which serves as the foundation for development of the PALS model, is summarized
below.
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Define the dot product of two scalar states a and b by

a • b =
∫

Hx

a〈ξ〉 b〈ξ〉 dVξ .

Let D = 1, 2, 3 be the number of dimensions. The weighted volume m and the dilatation θ are scalars
used in the decomposition of the extension state e into volumetric and deviatoric parts:

m = (ωx) • x, (8)

θ =
D
m
(ωx) • e, (9)

where ω is a scalar state called the influence function [Silling et al. 2007]. A key element of the consti-
tutive model developed in this paper is the additive decomposition of the scalar extension state (4) into
spherical and deviatoric parts given by

e = ei
+ ε, (10)

where the spherical extension state ei is defined by

ei
= θx/D. (11)

Using the above quantities, the deviatoric extension state ε is constructed as

ε = e− θx/D. (12)

All of the above quantities are dependent on x and Y , but these dependencies are omitted from the
notation for simplicity.

The scalar force state for the LPS model is derived from an elastic energy functional W of the form

W (θ, ε)= 1
2κθ

2
+

1
2αε •ωε, (13)

where κ is the bulk modulus and α is a constant. This implies that t is decomposed into scalar volumetric
and deviatoric force states:

t = t i
+ td , (14)

where
t i
=
∂W
∂θ

∂θ

∂ei , td
=
∂W
∂ε

. (15)

Here, the notation ∂/∂a, where a is a state, refers to the Fréchet derivative [Silling et al. 2007]. The
Fréchet derivative of a scalar-valued function ψ of a state a has the property that, for a differential
change da,

dψ =
∂ψ

∂a
• da. (16)

Although geometrically nonlinear, the LPS model is a peridynamic analogue of Hooke’s law for isotropic
materials. For points x in the interior of the body, equating the elastic energy density from the LPS
material with the strain energy density from the local theory leads to the calibration (for D = 3)

α = 15µ/m,
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where µ is the conventional shear modulus from the local theory and m is given by (8). The above
relation for α is inaccurate for points near a free surface. Experience with the LPS model in complex
geometries suggests that a simple correction to α near free surfaces [Mitchell 2013] is not general enough,
motivating the PALS model.

Using (15), the scalar force state for the LPS model takes the form

t = Dκθ
m

ωx +αωε. (17)

Observe that the scalar force state contains independent terms that depend on either the isotropic or
deviatoric part of the extension state.

An important side note relates to the use of (9) and (12) for cases when D = 1 or 2; conditions of
uniaxial stress and plane stress are local concepts which do not precisely exist in peridynamics, although
practical and useful analogies exist. In particular, (9) and (12) remain valid for these and other conditions
although care must be taken with respect to the choice of material parameters. The correct parameters
are found by assuming appropriate homogeneous deformations and equating the local energy density
with the peridynamic energy density.

3. PALS model and selection of influence functions

The PALS concept proposed in this paper is a kinematic correction to the dilatation and deviatoric exten-
sion states and circumvents the surface effect under a wide range of conditions. It also helps to reduce
errors introduced by spatial discretizations.

The basic idea is to introduce a set of constraints and associated Lagrange multipliers which force
the dilatation and deviatoric extension states to reproduce a set of predetermined deformations called
matching deformations. Using this set of matching deformations, two linear problems (one for dilatation
and one for deviatoric extension) are defined for each point; the solution to these linear problems gives
two sets of Lagrange multipliers that determine the influence functions ω(ξ) and σ(ξ). In general, these
influence functions are unique for each material point within the body; they determine the dilatation and
deviatoric extension state for any deformation; importantly, they reflect the position and proximity of the
point to free surfaces. Both ω and σ depend on x, although this dependence is omitted from the notation
in the following discussion.

In the remainder of this article, the following linear approximation to the extension state will be used:

e〈ξ〉 =
ξ ·U〈ξ〉
|ξ |

, U〈ξ〉 = Y 〈ξ〉− ξ for all ξ ∈Hx . (18)

The vector state U is called the displacement state.
In the PALS model, the elastic energy density at a point x is defined by

W (θ, ε)= 1
2κθ

2
+µ(σε) • ε, (19)

where µ is the shear modulus and ε is defined in (12); σ is a new influence function called the deviatoric
influence function. The dilatation θ is defined using the extension state e by

θ = (ωx) • e, (20)
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where ω is normalized such that the weighted volume m used in the LPS is not needed (that is, m = D).
The new influence function ω is constructed starting from a given influence function ω0 which is arbitrary.
Typically, one assumes that ω0 follows some convenient dependence on bond length such as a constant
or a Gaussian.

Assume that a set of displacement gradient tensors H1, H2, . . . , H K are given — these are the match-
ing deformations. The new influence function ω is constructed as a best approximation to ω0 subject to
constraints which ensure the dilatation for each of the matching deformations is reproduced exactly; ω is
determined such that the dilatation induced by each Hk and evaluated using (18) and (20) equals the trace
of the matching deformation Hk . Note that there are no symmetry requirements on the matching defor-
mations; this will become even more apparent in the construction of the deviatoric influence function.

Assume that a scalar state ω0 is given, and let λ1, λ2, . . . , λK be Lagrange multipliers — one for each
matching deformation Hk . To find ω, define a functional I by

I (ω, λ1, . . . , λK )= 1
2(ω−ω

0) • (ω−ω0)−

K∑
k=1

λk
[(ωx) • ek

− trace Hk
], (21)

where the linear extension states ek (see (18)) are defined using the matching deformations Hk by

ek
〈ξ〉 =

ξ · (Hkξ)

|ξ |
for all ξ ∈Hx . (22)

It is required that I be stationary with respect to ω and λ1, . . . , λK . Taking the first variation of I leads to

δ I =
∂I
∂ω
• δω+

K∑
k=1

∂I
∂λk

δλk, (23)

where ∂I/∂ω denotes the Fréchet derivative of I with respect to ω. Observe that, for a given k, 1≤ k ≤ K ,

∂I
∂λk = 0 =⇒ (ωx) • ek

= trace Hk, (24)

which means the state ω exactly reproduces the dilatations in the matching deformations. Furthermore,
referring to the first term on the right-hand side of (21), this ω approximates the desired ω0 in the least
squares sense. Evaluating the Fréchet derivative of the right-hand side of (21) with respect to ω gives

∂I
∂ω
= 0 =⇒ ω = ω0

+

K∑
k=1

λk xek . (25)

This relation reveals the structure of ω: it differs from ω0 by a linear combination of the states xek , k =
1, 2, . . . , K . To evaluate the λk explicitly, impose the K requirements from the matching deformations
using (25):

trace Hk
= (ωx) • ek

=

[(
ω0
+

K∑
n=1

λnxen
)

x
]
• ek

= (ω0x) • ek
+

K∑
n=1

λn(xen) • (xek), k = 1, 2, . . . , K . (26)
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This is a nonhomogeneous linear algebraic system with unknowns λ1, λ2, . . . , λK . The solution to this
system, together with (25), provides the desired influence function ω within a constant scale factor c.
For consistency with the decomposition of the extension state (see (10)–(12)) c is chosen so that

(cωx) • x = D. (27)

Now consider the deviatoric part of the strain energy. In the PALS model, as in the LPS model, this
is treated by summing the energies in the deviatoric bond extensions. Motivated by the stored elastic
energy density function in (19), it is convenient to express the deviatoric contribution in terms of the
total shear defined by

γ = (σε) • ε, (28)
thus, from (19),

W = 1
2κθ

2
+µγ. (29)

Recall that, in the classical theory, for any displacement gradient H ,

W = 1
2κθ

2
+µ trace[dev sym H]T [dev sym H]. (30)

The deviatoric tensor in this expression is the deviatoric strain tensor:

εd
= dev sym H, εd

i j =
1
2(Hi j + H j i )−

Hkkδi j

D
. (31)

Combining (28)–(30) provides the requirement on σ that, for any of the matching deformations Hk ,

(σεk) • εk
= trace[dev sym Hk

]
T
[dev sym Hk

]. (32)

Suppose a reference influence function σ 0 is given. Proceeding as with the dilatational contribution,
define a functional N (σ , τ 1, . . . , τ K ) by

N (σ , τ 1, . . . , τ K )= 1
2(σ − σ

0) • (σ − σ 0)−

K∑
k=1

τ k
[(σεk) • εk

− γ k
], (33)

where τ 1, τ 2, . . . , τ K are Lagrange multipliers,

γ k
:= trace[dev sym Hk

]
T
[dev sym Hk

], (34)
and

εk
= ek
− (trace Hk)x/D. (35)

The influence function σ and the associated Lagrange multipliers are found by taking the first variation
of (33):

δN = ∂N
∂σ
• δσ +

K∑
k=1

∂N
∂τk

δτk . (36)

Requiring N to be stationary,
∂N
∂τ k = 0 =⇒ (σεk) • εk

= γ k (37)

and
∂N
∂σ
= 0 =⇒ σ = σ 0

+

K∑
k=1

τ kεkεk . (38)
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This leads to the following nonhomogeneous linear algebraic system with unknowns τ k :

γ k
= (σ 0εk) • εk

+

K∑
n=1

τ n(εnεn) • (εkεk), k = 1, 2, . . . , K . (39)

When taken with (38), the τ n values that solve this system give the σ states for the PALS model at a
given point x.

Except for the interior of the body, where the neighborhood Hx does not intersect with the free surface,
λn and τ n depend on x. Because this calibration varies from point to point, the model is position aware.
In summary, the PALS model is calibrated at each x by the following steps:

(1) Define initial guesses for ω0 and σ 0.

(2) Choose K linearly independent displacement gradient tensors H1, . . . , H K . (In three dimensions,
we choose K = 6 because there are at most 6 linearly independent strain tensors.)

(3) Solve the K × K linear algebraic system given by (26) for λ1, . . . , λK .

(4) Find ω from (25) and normalize according to (27).

(5) Solve the K × K linear algebraic system given by (39) for τ 1, . . . , τ K .

(6) Find σ from (38).

In general, values of ω〈ξ〉 and σ 〈ξ〉 may be negative for some bonds in the family. This is acceptable
and does not lead to material instability, since it does not necessarily imply imaginary wave speeds
[Silling and Lehoucq 2010].

In a computational implementation, it is sufficient to evaluate and store the 2K Lagrange multipliers
(for each node in the discretization) at the start of a run and, on the fly, compute influence functions
as they are needed. This uses less memory (but requires more floating point operations) than saving
influence function values on each bond for every point. The cost of evaluating one of the two PALS
model influence functions is very similar to the cost of evaluating the LPS model influence function,
although it requires retrieval and use of K Lagrange multiplier values for each point.

The cost/benefit analysis of using the PALS model is problem-dependent and relates to the domain
geometry and the ratio of surface area to volume. Since peridynamics is fundamentally oriented towards
fracture, it is likely that surface effects increase as new surfaces are created with each fracture. If bonds
are broken during a simulation, the PALS model influence functions should be recomputed subject to a
cost/benefit analysis which is beyond the scope of this paper. Simple engineering demonstration calcu-
lations later in this paper were chosen which highlight the degree to which surface effects can degrade
the LPS model; in these cases the PALS model substantially reduces the surface effect.

4. PALS scalar force state

In the preceding section, the influence functions ω and σ were determined. Now we evaluate the bond
forces using these influence functions. Recall that the strain energy density is given by (19).

The scalar force state t is found from the Fréchet derivative of W with respect to e:

t = ∂W
∂e
.



A POSITION-AWARE LINEAR SOLID CONSTITUTIVE MODEL FOR PERIDYNAMICS 549

To evaluate t explicitly, consider a change in the elastic energy density due to a small change 1e in the
extension state and use (16):

∂W
∂e
•1e = t •1e. (40)

Using (12), (19), and (20) for the PALS stored elastic energy density W , the change 1W is explicitly
evaluated as

t •1e =1W = κθωx •1e+ 2µσε •
(
1e−

1θx
D

)
=

[(
κθ −

2µ
D
σε • x

)
ωx + 2µσε

]
•1e. (41)

From this, the scalar force state t is directly identified as

t =
(
κθ −

2µ
D
(σ x) • ε

)
ωx + 2µσε. (42)

The term involving (σ x) • ε appears because different influence functions ω and σ are used for the
dilatational and deviatoric terms in the elastic energy density. If ω ≡ σ , then this term vanishes, as in the
LPS model. The (vector) force state is found from (6).

5. Matching deformations

The PALS model development in Section 3 was generic with respect to the use of specific matching
deformations H1, H2, . . . , H K . In this section, a sample set of matching deformations is provided. The
matching deformations provided here were used in the example problems described in the next section;
they are expected to provide good results in general, although alternative choices are possible. When
D = 3 (three dimensions), the local theory strain tensor has 6 independent components, hence we choose
K = 6 matching deformations. The strain components will be denoted XX, YY, ZZ , XY, XZ , YZ . The
matching deformations (shown below) represent three deformations for uniaxial strain and three for
simple shear:

H1
=

XX 0 0
0 0 0
0 0 0

 , H2
=

0 0 0
0 YY 0
0 0 0

 , H3
=

0 0 0
0 0 0
0 0 ZZ

 , (43)

H4
=

 0 XY 0
XY 0 0
0 0 0

 , H5
=

 0 0 XZ
0 0 0

XZ 0 0

 , H6
=

0 0 0
0 0 YZ
0 YZ 0

 . (44)

Let (a, b, c) be components of a bond vector ξ and let |ξ | denote its length. It is convenient to set
the magnitudes of the strain components XX, . . . , YZ all equal to the same small positive number 1.
Using (18), the extension states ek are computed, one for each matching deformation:

e1
=
1a2

|ξ |
, e2

=
1b2

|ξ |
, e3

=
1c2

|ξ |
, e4

=
2ab1
|ξ |

, e5
=

2ac1
|ξ |

, e6
=

2bc1
|ξ |

. (45)

These extension states are used to form the symmetric 6× 6 matrix associated with the linear problems
defined in (26) and (39). Entries in the matrix are evaluated using a quadrature scheme that is consistent
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with the discretized form of the momentum equation. For example, if the mesh-free approach of Silling
and Askari [2005] is employed, then dot products between state a and b are approximated by

a • b =
∫

Hx

a〈ξ〉 b〈ξ〉 dVξ ≈

∑
j

a j b j V j ,

where j is a node number, V j is its associated volume in the undeformed configuration, and a j and b j

denote the value of the states a and b acting on the j-th bond (associated with node j).
In the remainder of this section, specific details are given for dilatation and shear. For the matching

deformations given above, components of the right-hand side vector associated with the linear problems
are given. It is shown that the Lagrange multipliers, λk and τ k are independent of 1 (magnitude of the
strain components implied by the matching deformations).

5.1. Dilatation influence function. As a starting point for computing the dilatation influence function ω
at a point, a reference influence function ω0 is assumed to be given. Then, using the definitions for en

defined in (45), it is helpful to define a scaled set of states ên as

en
=
1 ên

|ξ |
. (46)

Using this expression for the matching states, the linear problem defined in (26) is written as

12
K∑

k=1

(ên
• êk

)λk
= trace(Hn)−1ω0

• ên
, (47)

where K = 6 equations are generated by n = 1, 2, . . . , K . Because each Hn is proportional to the applied
deformation 1, the Lagrange multipliers λn are inversely proportional to 1. The linear problem in (47)
can be rewritten as

12
[Kλ]{λ} =1{R̂}, (48)

where [Kλ] denotes the 6× 6 matrix implied by (26) and (47), {λ} denotes the unknown array of six
Lagrange multiplier values, and {R̂} denotes the right-hand side array of components defined in (47).
Solving the scaled system gives the Lagrange multipliers as

{λ} = {λ̂}/1,

where {λ̂} = [Kλ]
−1
{R̂}. Based upon the matching deformations ((43) and (44)) and the corresponding

extension states given in (45), the dilatation influence function takes the form

ω = ω0
+

K∑
k=1

λ̂k êk
= ω0

+ λ̂1a2
+ λ̂2b2

+ λ̂3c2
+ 2λ̂4ab+ 2λ̂5ac+ 2λ̂6bc. (49)

As a final step, the above influence function is normalized according to (27).
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5.2. Deviatoric influence function. The procedure used to compute the deviatoric Lagrange multipliers
is analogous to the procedure for computing the dilatation Lagrange multipliers. The deviatoric Lagrange
multipliers are computed using the linear problem defined in (39). Using the matching deformations
provided in this section, the deviatoric extension states εk defined in (35) take the following specific form:

ε1
= e1
−

1
31|ξ |, ε2

= e2
−

1
31|ξ |, ε3

= e3
−

1
31|ξ |, ε4

= e4, ε5
= e5, ε6

= e6. (50)

Observe that the matching deviatoric extension states vary linearly with1 so that a set of scaled deviatoric
extension states can be defined as εk

=1ε̂
k . The linear problem in (39) can be rewritten as

14
[Kτ ]{τ } =1

2
{R̂}. (51)

Solving the scaled system gives the Lagrange multipliers as

{τ } = {τ̂ }/12,

where {τ̂ } = [Kτ ]
−1
{R̂}. Based upon the matching deformations ((43) and (44)) and the corresponding

extension states given in (50), the deviatoric influence function takes the form

σ = σ 0
+

K∑
k=1

τ̂ k ε̂
k
ε̂

k
, (52)

where σ 0 is the given reference influence function.

6. Demonstration calculations

Computational simulation results are presented below for the purpose of comparing the performance of
the PALS model against the LPS model. Results for a beam in tension, a hollow cylinder subjected to
torsional loading, and a tensile test simulation for material characterization are given. The simulations
were carried out using the Peridigm [Parks et al. 2012; Peridigm 2014] code following the mesh-free
method of Silling and Askari [2005]. All demonstration calculations are three-dimensional and results
were obtained by solving the momentum equation under conditions of static equilibrium. The Cubit
code [Cubit 2014] was utilized to generate the discretization, and the Paraview code [ParaView 2014]
was used for visualization of results. For further discussion of the numerical solution procedure, see
[Silling and Askari 2005] and [Littlewood ≥ 2015].

6.1. Square beam in tension. This demonstration calculation is a simpler version of the tensile test
described in the introduction (Section 1). A known/measured value for Young’s modulus E is given and
a simple peridynamics calculation is conducted to recover E and verify the efficacy of the PALS model.
In this calculation (schematic shown in Figure 4), one end of the beam is fixed while the other end has a
prescribed small displacement u0; Dirichlet boundary conditions are applied to the end sections (shown
in green) as u(z) = zu0/L , where z is an axial coordinate with an origin z = 0 centered in one of the
green sections. The equilibrium solution for the displacement field is computed and reaction forces P
are calculated as a post-processing step. From elementary mechanics of materials, the reaction force is
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Figure 4. Schematic of square beam for verification of Young’s modulus.

related to the applied displacement and geometric properties of the beam:

P = AE
L

u0, (53)

where A= b2 denotes the cross-sectional area of the beam, and L denotes the length of the beam. Material
and geometric properties used for these calculations are given in Tables 1 and 2. The horizon parameter
δ= 3.1h was used, where h= b/n is the mesh spacing, and n is the number of nodes along one axis of the
cross-section. Graphical results for these calculations are shown in Figure 5. Error in the effective value
of Young’s modulus (slope of the stress-strain curve) is shown in Table 3 for a few different numerical
mesh discretizations. The table gives results for two types of initial influence functions:

• Constant:
ω0
〈ξ〉 = σ 0

〈ξ〉 = 1.

• Gaussian:
ω0
〈ξ〉 = σ 0

〈ξ〉 = G(δ, ξ)= e−|ξ |
2/δ2
.

Although oscillations are observed in the PALS results shown, the PALS model errors are substantially
less than those of the LPS model for all discretizations.

6.2. Twist test. The focus of this example is on recovering the shear modulus µ. In this calculation, µ is
estimated by applying an angle of twist φ to a circular hollow cylinder. A schematic of the cylinder is de-
picted in Figure 6; material and geometric properties used in the calculations are given in Tables 1 and 4.

Under the assumptions that every cross-section of the cylinder remains plane and undistorted and
that the material remains linearly elastic, the relationship between the angle of twist φ and the applied

Property Value Units

Bulk modulus: k 1.5× 1012 dyne/cm2

Shear modulus: µ 6.923× 1011 dyne/cm2

Table 1. Isotropic elastic material properties.

Property Value Units
Edge length: b 0.5 cm
Length: L 5.0 cm

Table 2. Square beam geometric properties. See Figure 4.
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Figure 5. Computed stress-strain curves for the square beam in tension (Figure 4). The
slope represents the effective Young’s modulus in the computational model.

torque T is
T = µJφ/L , (54)

where J is the area polar moment of inertia of the cross-section, and L is the length of the cylinder.
Dirichlet boundary conditions are applied on points depicted in green (see Figure 6). The angles of twist
applied at the ends are

φ(0)= 0, φ(L)= φL .

The expected angle of twist on any cross-section with axial position z is φ(z)= zφL/L . The computa-
tional model finds a resultant torque T from which µ is recovered using (54). A relative error for recovery
of the shear modulus µ is computed. This error is calculated as (µ̂−µ)/µ, where µ̂ was estimated from
the PALS or LPS models using (54), and µ is the input value given in Table 1. For these calculations,
the horizon parameter δ = 3.1h was used, where h = (ro− ri )/n, and n is the number of nodes through
the thickness of the cylinder.

Mesh PALS LPS

n ω0
=σ 0
=1 ω0

=σ 0
=G(δ, ξ) ω0

=1 ω0
=G(δ, ξ)

3 0.00621 0.00621 0.649 0.649
5 0.000686 0.000685 0.173 0.173
7 0.00820 0.0082 0.0723 0.0723
9 0.00595 0.00595 0.0201 0.0201

Table 3. Relative error in the computed Young’s modulus for a beam under uniaxial tension.
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Figure 6. Schematic of twist test for verification of shear modulus.

Numerical results of demonstration calculations are given in Table 5 for a few different mesh discretiza-
tions. This is a particularly challenging problem because the expected solution is not a homogeneous
(affine) deformation since the shear strain depends on the radial coordinate; relatedly, the local elastic
energy density is independent of the axial coordinate z and varies quadratically as a function of the radial
coordinate; this is shown in Figure 7 for the finest discretization, n = 9, as listed Table 5. The PALS
model influence functions were computed at each point using affine matching deformations, so good
results are not guaranteed by this particular choice of matching deformations. Nevertheless, the PALS
model continues to show a significant reduction in error with respect to the LPS model. Better accuracy
with the PALS model would be expected for thinner walled tubes, since the deformation would more
closely approximate simple shear.

Several additional points are made with respect to Figure 7. This plot shows the spatial variation of
the elastic energy density for any cross-section along the axis of the cylinder. Each color bar is scaled
using the local analytic minimum and maximum values. Tick labels on color bars for LPS and PALS are
the minimum and maximum values computed while tick labels for the local analytic calculation are the

Property Value Units

Inner radius: ri 0.667 cm
Outer radius: ro 1.0 cm
Length L 5.0 cm

Table 4. Twist test geometric parameters.

Mesh PALS LPS

n ω0
=σ 0
=1 ω0

=σ 0
=G(δ, ξ) ω0

=1 ω0
=G(δ, ξ)

3 0.097 0.097 0.303 0.276
5 0.056 0.056 0.168 0.158
7 0.040 0.040 0.131 0.121
9 0.026 0.026 0.117 0.107

Table 5. Relative error in the computed shear modulus µ for the twist test example.
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Figure 7. Elastic energy density for twist test calculation using LPS and PALS; ω0
=

σ 0
= G(δ, ξ).

exact minimum and maximum values. As shown, the PALS model resolves the spatial variation of the
energy density better than the LPS model. As previously mentioned, these calculations were done using
Peridigm [Parks et al. 2012; Peridigm 2014]; in preparation for running Peridigm, the geometry of the
domain is first discretized (in this case with hexahedra); for each hexahedron an equivalent peridynamic
nodal volume is created and located at its centroid; although the plots in Figure 7 show a quadrilat-
eral discretization (which corresponds to a cross-sectional view of hexahedra), this is only for plotting
convenience. All calculations were fully 3D using the mesh-free method [Silling and Askari 2005].

6.3. Tension test. As a final demonstration calculation, the PALS model is applied to the motivation
problem described in Section 1 (see Figure 1). A full three-dimensional model of the specimen was used.
Improved accuracy in reproducing E using the PALS model, compared with the LPS model, is shown
in Figure 8.
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Figure 8. Stress-strain curve for a full 3D peridynamic model of the uniaxial tension
test with PALS and LPS; both on the same discretization.
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7. Summary and conclusions

A new position aware linear solid (PALS) model for peridynamics was introduced. The PALS model is
an ordinary-state-based peridynamics constitutive model that addresses inaccuracies in previous models,
most notably the linear peridynamic solid (LPS) [Silling et al. 2007], due to the surface effect [Mitchell
2013]. The PALS model addresses problems that arise due to missing bonds (see Figure 3) near the
surface of a peridynamic body. Using this new model, simple benchmark calculations demonstrate large
reductions in the surface effect. Although the development given in the present paper is for linear elastic
materials, work currently in progress suggests that previously developed plasticity and viscoelasticity
models [Mitchell 2011a; 2011b] can be extended to include some aspects of the PALS approach.
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PERIDYNAMICS ANALYSIS OF THE
NANOSCALE FRICTION AND WEAR PROPERTIES

OF AMORPHOUS CARBON THIN FILMS

SAYNA EBRAHIMI, DAVID J. STEIGMANN AND KYRIAKOS KOMVOPOULOS

State-based peridynamics theory was used to study the nanoscale friction and wear behavior of thin
films of amorphous carbon used as protective overcoats in hard-disk drives. Numerical results of the
coefficient of friction and wear depth are shown to be in good agreement with published experimental
results. Although long-range forces are not considered in the analysis, the results indicate that the present
approach yields fairly accurate estimates of the coefficient of friction and wear depth for films of thick-
ness larger than 10 nm and a grid size of 1.6 nm. The results of this study demonstrate that peridynamics
theory can be used to analyze various nanoscale friction and wear phenomena without being limited by
the excessive computational time and convergence difficulties encountered with traditional numerical
techniques, such as the finite element method.

1. Introduction

Thin films are used as protective overcoats in a wide range of applications where the tribological proper-
ties of proximal surfaces are of paramount importance to the functionality and endurance of mechanical
components possessing contact interfaces. For example, thin films of amorphous carbon (a-C) play a
critical role in the reliability and performance of magnetic recording devices because they protect the mag-
netic head and hard disk surfaces against mechanical wear during intermittent contact and inhibit corro-
sion of the magnetic medium of the hard disk. Because of the extremely small a-C film thickness and the
occurrence of head-disk surface interactions at nanoscopic surface protrusions (asperities), knowledge of
the nanoscale tribological and mechanical properties of thin a-C films is of high technological importance.

The nanomechanical/tribological properties of a-C films are greatly affected by the type of carbon atom
hybridization and the hydrogen content. Other elements (e.g., Si, N, B, F, and O) can be added to modify
the electromechanical properties of a-C films [Charitidis 2010]. The structure and elemental content of
a-C films strongly depend on the intricacies of the deposition process, which controls film nucleation and
growth [Lifshitz 1996; Grill 1999; Charitidis 2010]. Thus, small variations in the deposition conditions
may result in vastly different film properties. In view of the time-consuming experimental techniques
available for nanoscale mechanical and tribological testing of thin films, alternative approaches must be
used to examine the effects of structural changes on the resulting film properties.

High contents of tetrahedral carbon atom hybridization (sp3) characterize the structure of a-C films
exhibiting diamond-like behavior, whereas high contents of trigonal carbon atom hybridization (sp2)

Komvopoulos is the corresponding author.
Keywords: state-based peridynamics, friction, wear, thin films.
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generally produce graphite-like film behavior. A continuum description does not account for local differ-
ences in nanostructure [Luan and Robbins 2005], whereas molecular dynamics (MD) is limited by high
computational cost, model size, and type of potential function used to describe atomic interaction [Alder
and Wainwright 1959]. Therefore, nonlocal computational approaches, which are not subjected to the
aforementioned restrictions, must be developed to enhance the study of the interdependence of structure
and material behavior at the nanoscale.

Peridynamics [Silling 2000] is a relatively new theory which promises to bridge the material gap in
computational mechanics. Peridynamics is a continuum version of MD which uses integral equations
of motion to offset complexities associated with material discontinuities (e.g., defects, edges, and sharp
corners) instead of the conventional partial differential equations used in classical mechanics and does
not rely on a priori assumed defect or damage criteria (e.g., crack growth direction). Because of the
mathematical simplicity and computational affordability, peridynamics has been used to analyze vari-
ous computationally intense problems, such as dynamic fracture in brittle [Ha and Bobaru 2010; 2011;
Bobaru and Hu 2012; Liu and Hong 2012; Lipton 2014] and composite [Askari et al. 2006; Xu et al.
2008; Kilic et al. 2009; Hu et al. 2011; 2012] materials, multiscale damage [Askari et al. 2008; Alali and
Lipton 2012], and damage of nanofiber networks, including long-range effects of van der Waals forces
on nanofiber deformation [Bobaru and Silling 2004; Silling and Bobaru 2005; Bobaru 2007; Bobaru
et al. 2011]. Moreover, peridynamics has been used in failure analyses dealing with thin film cracking
in electronic packaging [Agwai et al. 2008; 2009; 2011] and also in conjunction with atomic force
microscopy and nanoindentation techniques to determine the mechanical properties of ultrathin films
[Celik et al. 2009].

The objective of this study is to introduce a two-dimensional (2D) peridynamics analysis of the nano-
tribological behavior of thin a-C films. Simulation results of the coefficient of friction and depth of wear
track due to a rigid (diamond) tip sliding against a-C films of different thickness and nanomechanical
properties are presented and compared with experimental results of a previous study [Lu and Komvopou-
los 2001] to validate the accuracy of the developed peridynamics models.

2. State-based peridynamics formulation

Peridynamics is a theory of mechanics which uses a finite number of particles to discretize a deformable
solid body. Particle interaction is modeled within a predefined distance, referred to as the horizon. Be-
cause the governing equations in peridynamics are integrals of particle motion, material discontinuities
and high strain gradients do not present computational obstacles. The main peridynamics approaches
can be classified in bond-based and state-based formulations. Bond-based peridynamics presumes the
existence of a pairwise force function between any two particles, which is independent of the deforma-
tion associated with other particles [Silling 2000] and has been developed for a Poisson’s ratio of 0.33
and 0.25 for 2D and three-dimensional (3D) problems, respectively. State-based peridynamics relies on
a more general theory, which uses a more comprehensive constitutive model derived based on force- and
deformation-state concepts [Silling et al. 2007]. To obtain the force state at each particle, the deformation
(stretching) of all bonds within the horizon of each particle are considered without assuming a specific
value of the Poisson’s ratio. Similarities between state-based peridynamics and continuum theory have
been reported [Silling et al. 2007; Lehoucq and Silling 2008], including the convergence of state-based
peridynamics to classical elasticity theory [Silling and Lehoucq 2008].
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The general 3D peridynamics equation of motion is given by [Silling et al. 2007]

ρ(xi )ü(xi , t)=
∫

H

(
T [xi , t]〈x j − xi 〉− T [x j , t]〈xi − x j 〉

)
dV j + b(xi , t), (1)

where ρ is the mass density, xi and x j are the position vectors of particles i and j , respectively, u is
the displacement field, H is the domain of the spherical horizon with a radius δ, T is the force vector
state field, b is the body force density field, t is the time, and dV j is the volume of particle j . In the
present analysis, the deformable materials are assumed to be ordinary, implying that the force between
two particles acts in the bond direction.

For ordinary materials, the force vector is given by [Silling et al. 2007]

T = t M, (2)

where t is the scalar force state and M is the deformation direction vector. In the linear peridynamics
solid (LPS) model, the force scalar state is defined by [Silling et al. 2007]

t =
3K θ [x, t]

m[x]
ω〈ξ〉x〈ξ〉+

15G
m[x]

ω〈ξ〉ed
[x, t], (3)

where K and G are the bulk and shear modulus, respectively, θ is the dilatation, m is the weighted
volume, ed is the deviatoric component of the extension scalar state e, and ω is the influence function.
These parameters can be defined, following [Silling et al. 2007], as:

θ [x, t] =
3

m[x]

∫
H
ω〈ξ〉x〈ξ〉e[x, t]〈ξ〉 dV, (4)

m[x] =
∫

H
ω〈ξ〉x〈ξ〉x〈ξ〉 dV, (5)

e[x, t]〈ξ〉 = ‖ξ + η‖−‖ξ‖, (6)

ed
[x, t]〈ξ〉 = e[x, t]〈ξ〉− ei

[x, t]〈ξ〉 = e[x, t]〈ξ〉− 1
3θ [x, t]x〈ξ〉, (7)

where ξ = x j − xi is the relative position vector between particles i and j in the reference configuration
and η = u(x j , t)− u(xi , t) is the relative displacement vector between particles i and j at time t .

Because of the highly disordered structure of a-C films [Charitidis 2010], they can be modeled as
isotropic materials with an influence function ω〈ξ〉 = 1/‖ξ‖, as suggested elsewhere [Parks et al. 2010].

Damage is assumed to occur when bond stretching exceeds a predefined critical stretch sc, given by
[Silling and Askari 2005; Ha and Bobaru 2011]

sc =
√

4πG I /9Eδ, (8)

where G I is the critical energy release rate corresponding to the mode I stress intensity factor K I (i.e.,
G I = K 2

I /E ′, where E ′ = E (plane stress) or E/(1− ν2) (plane strain)). Equation (8) indicates that sc

is a function of the material properties and the characteristic length scale of the analyzed body, i.e., the
horizon radius δ.

Damage at a given material point (particle) is defined as the ratio of the number of broken bonds to
the total number of bonds D. Because D assumes values between 0 (no damage) and 1 (full damage)
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[Silling and Askari 2005], it can be used as a damage index to characterize the extent of material removal
(D = 1) and the evolution of permanent damage (0< D < 1) in the wear model.

3. Body discretization and computational details

To obtain a solution for the 2D version of (1), the body is discretized by a uniform grid (1x =1y) and
the integral is replaced by a summation including all interacting particles within the horizon of a given
particle. Thus, (1) can be expressed as

ρi ün
i =

NH∑
j=1

F(xn
i , xn

j , xn−1
i , xn−1

j )V j + bn
i , (9)

where the superscripts denote the time step and NH is the total number of particles interacting with the
particle of interest within its horizon. Time integration of (9) using the central difference method yields
the position and velocity of each particle at time step (n+ 1). The nodal area of the particles lying on
the horizon boundaries is accordingly modified [Parks et al. 2008].

In addition to the force vector state obtained from (2), short-range forces are also included in the
present analysis by introducing a short-range particle interaction distance

dpi =min{0.9‖xp − xi‖, 1.35(rp + ri )},

where xp and rp are the position and radius of particle p in the vicinity of particle i , respectively, and ri

is the radius of particle i , which is set equal to one-half of the grid size (i.e., ri =
1
21x) [Parks et al. 2010].

Long-range forces may also have a strong effect on nanoscale deformation and, despite the continuum
nature of peridynamics, it is possible to incorporate potential force functions from MD analysis in the
force state of peridynamics [Silling and Bobaru 2005; Bobaru 2007; Bobaru et al. 2011]. However,
for a separation distance of 2 nm, long-range forces reach ∼10% of their peak values [Bobaru 2007].
Consequently, because the grid size used in the present analysis is less than 2 nm (see Section 4 for
details), long-range forces are not considered for simplicity.

4. Peridynamics friction and wear models

State-based peridynamics friction and wear models are presented in this section and simulation results are
compared with published experimental results of the nanoscale tribological properties of thin a-C films
[Lu and Komvopoulos 2001] to illustrate the validity of the developed models. A 2D analysis of the
sliding process is valid provided the depth of penetration is significantly less than the width of the result-
ing plowing (wear) track [Komvopoulos et al. 1985]. Since in all simulation cases the ratio of the wear
depth to the wear track width is less than 0.1, a 2D peridynamics analysis of the sliding friction and wear
processes is justifiable. All simulations were performed with a custom-made peridynamics code written
in Fortran 90/95 and executed on a Linux platform with a quad-core 2.33 GHz Intel Xeon E5345 CPU.

4.1. Friction model. Figure 1 schematically shows a rigid spherical tip of radius R under normal load P ,
which is sliding against a thin a-C film firmly attached to a thick Si substrate. Because of the high elastic
modulus of diamond, in all numerical simulations the tip is modeled as rigid. The center of the tip
is initially set at a distance equal to R − 1

21x from the film surface. Short-range forces inhibit the
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Figure 1. Schematic of peridynamics friction model of a spherical diamond (rigid) tip
sliding at a constant velocity V against a thin a-C film, which is firmly adhered to a
thick Si substrate. The tip slides from left (x/S = 0) to right (x/S = 1) through a total
distance S. The shaded layer at the bottom of the substrate is modeled as rigid. The
coefficient of friction is obtained as the ratio of the computed tangential (friction) force
F , which opposes tip sliding, and the applied normal load P . The film thickness and
the tip radius are not drawn to scale.

development of particle-particle distances less than dpi , defined in Section 3. Both film and substrate
materials are assumed to be isotropic, predominantly exhibiting brittle behavior. The elastic properties,
density, and critical stretch of the Si substrate are given in Table 1, whereas the thickness, root-mean-
square (rms) roughness, elastic properties, and density of all a-C films examined in this study are given

Material Elastic modulus(a) (GPa) Poisson’s ratio(a) Density(a) (g/cm3) Critical stretch(b)

Silicon 132 0.278 2.329 0.01

Table 1. Mechanical properties and critical stretch of Si substrate. (a)Ref. [Lu and
Komvopoulos 2001]. (b)Ref. [Agwai et al. 2011].

Film # Thickness(a)

(nm)
Roughness,(a)

rms (nm)
Elastic

modulus(a) (GPa)
Poisson’s

ratio(a)
Density
(g/cm3)

# particles
(film)

# particles
(substrate)

1 31 0.51 105 0.278 3.139 5000× 19 5000× 606
2 34 0.20 197 0.278 4.058 5000× 21 5000× 604
3 39 0.15 206 0.278 4.143 5000× 24 5000× 601
4 53 0.27 139 0.278 3.500 5000× 33 5000× 592
5 59 0.23 101 0.278 3.094 5000× 36 5000× 589
6 69 0.15 192 0.278 4.017 5000× 43 5000× 582
7 95 0.24 155 0.278 3.661 5000× 59 5000× 566

Table 2. Thickness, roughness, elastic properties, and density of a-C films and number
of film and substrate particles used in the peridynamics friction analysis. (a)Ref. [Lu and
Komvopoulos 2001].
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in Table 2. The film density was calculated from the relation ρ = 1.37+ E2/3/44.65, where ρ and E
are given in g/cm3 and GPa, respectively [Casiraghi et al. 2007]. The number of particles used to
discretize the film and substrate media in each friction simulation are also given in Table 2. In all friction
simulations, the tip radius is equal to 20µm.

To enhance the convergence, load-control sliding experiments were simulated by the following method.
First, the normal load was incrementally applied using several time steps until the desired load (in the
range of 50–400µN) was reached. This incremental loading procedure is similar (though faster) to that
used in the experimental study [Lu and Komvopoulos 2001]. Subsequently, the tip was traversed in the
x-direction at a constant velocity V = 0.4µm/s through a total distance S = 4µm. To avoid boundary
effects on the friction results, the distance of the left and right boundaries of the discretized domain from
the initial (x/S = 0) and final (x/S = 1) tip positions was set equal to S/2 (Figure 1). An adaptive
dynamic relaxation (ADR) method similar to that presented in [Kilic and Madenci 2010], which was
accordingly modified for state-based formulation, was used in the friction analysis. The time step in the
ADR analysis of friction was set equal to 0.01 s. Artificial damping was used in the equations of particle
and tip motion. For the calculation of the damping coefficient of the rigid tip, the stiffness was increased
by a factor of 10 to account for the rigidity of the tip. Similar to the friction experiments reported in [Lu
and Komvopoulos 2001], only elastic deformation is modeled in the friction simulations, i.e., irreversible
damage such as bond breakage is not included in the friction model. The initial boundary conditions used
for time integration are zero displacements and velocities in all directions at all particles and the tip center.
Films of thickness larger than 10 nm are examined because the grid size is less than 2 nm. In addition,
because the rms roughness of the films (in the range of 0.15–0.51 nm [Lu and Komvopoulos 2001]) is
significantly smaller than the grid size, both film and substrate media are modeled as perfectly smooth.

Figure 2. Schematic of peridynamics wear model of a sharp conospherical diamond
(rigid) tip under a normal load P sliding at a constant velocity V and plowing through
a thin a-C film, which is firmly attached to a thick Si substrate. The tip slides against
the film surface from left (x/S = 0) to right (x/S = 1) through a total distance S. The
shaded layer at the bottom of the substrate is modeled as rigid. The film thickness and
the tip radius are not drawn to scale.
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Film # Thickness(a)

(nm)
Roughness,(a)

rms (nm)
Elastic

modulus(a) (GPa)
Poisson’s

ratio(a)
Density
(g/cm3)

Critical
stretch

# particles
(film)

# particles
(substrate)

8 17 0.19 113 0.278 3.230 0.0125 937× 10 937× 615
9 22 0.18 203 0.278 4.115 0.0125 937× 13 937× 612

10 10 0.20 226 0.278 4.317 0.0125 937× 6 937× 619

Table 3. Thickness, roughness, elastic properties, density, and critical stretch of a-C
films and number of film and substrate particles used in the peridynamics wear analy-
sis. (a)Ref. [Lu and Komvopoulos 2001].

4.2. Wear model. Figure 2 shows a schematic of the wear model consisting of a sharp rigid (diamond)
conospherical probe with a tip radius R plowing through an a-C film, which is firmly attached to a thick
Si substrate. After incremental loading of the probe to the desired normal load P = 10µN (load-control
simulations) at x/S = 0, the probe was traversed in the x-direction at a constant velocity V = 4µm/s
through a total distance S = 1µm and was finally unloaded at x/S = 1. To avoid boundary effects on
the wear results, the distance of the left and right boundaries of the discretized domain from the initial
(x/S = 0) and final (x/S = 1) tip positions was set equal to S/4. The thickness, rms roughness, elastic
properties, density, and critical stretch of the a-C films analyzed with the wear model and the number of
particles used to discretize the film and the substrate are given in Table 3. In all wear simulations, the
probe tip radius is equal to 1µm and the initial displacements and velocities of the tip and all particles
are set equal to zero. The previously mentioned ADR technique [Kilic and Madenci 2010] with a time
step of 0.001 s was also used in the wear analysis.

In the wear simulations, irreversible damage in the wake of the plowing tip comprises bond breakage.
Therefore, a critical bond stretch was used to capture bond breakage. In addition to the critical bond
stretch of the substrate (Table 1) and film (Table 3) materials, a conservative estimate of the critical bond
stretch of the a-C/Si interface was obtained from (8), where E is the elastic modulus of the substrate
and G I is the strain energy release rate due to indentation of the film by a conospherical diamond indenter,
which is equal to 0.037 J/m2 [Marshall and Evans 1984; Volinsky et al. 2002]. Using (8), the critical
stretch of the a-C/diamond interface was found to be equal to 0.007. The depth of the wear track on the
film surface was determined by calculating the average displacement of irreversibly deformed (0< D< 1)
particle layers of the film medium along the plowing path after the unloading of the probe tip.

5. Results and discussion

Simulation results obtained with the peridynamics friction and wear models are presented in this section
in conjunction with experimental results from a previous experimental study [Lu and Komvopoulos 2001]
to validate both peridynamics models.

5.1. Coefficient of friction. The coefficient of friction is defined as the ratio of the tangential (friction)
force and the applied normal load. At each time step, the friction force was calculated as the tangential
component of the total force generated by the sliding action of the tip; thus, a coefficient of friction was
computed at each time step. An overall coefficient of friction was calculated for each a-C film as the
average of all friction coefficient data.
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δ (nm) m Coefficient of friction

8 3.5 0.1421
8 4.0 0.1526
8 4.5 0.1567
8 5.0 0.1591
8 5.5 0.1456

Table 4. Coefficient of friction results from m-convergence tests.

Similar to local numerical methods, determining an appropriate grid size in peridynamics requires
convergence testing [Bobaru et al. 2009; Bobaru and Hu 2012]. Among various convergence tests, the
m-convergence test was used in the peridynamics friction model to calculate the coefficient of friction.
The δ-convergence test was not used because the decrease of the horizon radius to zero (i.e., no length
scale) should yield solutions converging to classical elasticity solutions, which not only do not hold at the
nanoscale [Luan and Robbins 2005] but are also length-scale independent. In the m-convergence test, δ
is fixed whereas m = δ/1x is gradually increased until the solution converges to an exact nonlocal peridy-
namics solution obtained for fixed δ [Bobaru et al. 2009]. Table 4 shows results from m-convergence tests
for film #7 (Table 2), P = 400 µN, δ = 8 nm, and m in the range of 3.5-5.5. The coefficient of friction
diverges with the increase of m from 5.0 to 5.5, suggesting an increasing effect of long-range forces.
Therefore, m = 5.0 (i.e., 1x = 1.6 nm) was used in the present peridynamics analysis. Because the focus
of this study is the analysis of thin a-C films, the convergence test was only carried out for the a-C film.

Table 5 shows a comparison between peridynamics and experimental results of the coefficient of
friction of a-C films with different thickness and rms roughness for P in the range of 50–400µN. Even
though the films were modeled to have ideally smooth surfaces, the agreement between numerical and
experimental results is very good. It is noted that the experimental coefficients of friction represent
averages of 300 data acquired along the entire sliding track and that the scatter in the measurements
increases with the decrease of the normal load, yielding standard deviation values in the range of 0.05–
0.08 [Lu and Komvopoulos 2001].
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Figure 3. Peridynamics and experimental results [Lu and Komvopoulos 2001] of the
coefficient of friction of an a-C film versus sliding distance for P = 400µN.
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Film # Thickness(a)

(nm)
Roughness(a),

rms (nm)
Normal load(a)

(µN)
Coeff. of friction
(peridynamics)

Coeff. of friction
(experimental)(a)

1 31 0.51 50 0.132 0.16
100 0.127 0.14
200 0.115 0.13
400 0.108 0.12

2 34 0.20 50 0.149 0.17
100 0.128 0.15
200 0.110 0.14
400 0.099 0.12

3 39 0.15 50 0.156 0.18
100 0.142 0.16
200 0.121 0.14
400 0.115 0.13

4 53 0.27 50 0.145 0.17
100 0.127 0.15
200 0.118 0.13
400 0.102 0.12

5 59 0.23 50 0.140 0.17
100 0.122 0.15
200 0.114 0.14
400 0.105 0.12

6 69 0.15 50 0.169 0.18
100 0.148 0.16
200 0.129 0.14
400 0.121 0.13

7 95 0.24 50 0.147 0.17
100 0.108 0.15
200 0.115 0.13
400 0.108 0.12

Table 5. Peridynamics and experimental results of the coefficient of friction of a-C films
versus film thickness, roughness, and normal load. (a)Ref. [Lu and Komvopoulos 2001].

Figure 3 shows a comparison between peridynamics and experimental results of a typical coefficient of
friction response for a 400 µN normal load. The peridynamics solution closely follows the experimental
trend, showing good agreement with the average response of the scattered experimental data. Figure 3
and Table 5 illustrate the validity of the peridynamics friction model and provide justification for the
modeling assumptions.

Figure 4 shows peridynamics results of the steady-state coefficient of friction (obtained as the average
of all numerical data in the 0–4µm sliding distance range) versus normal load for different a-C films
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Figure 4. Peridynamics results of the coefficient of friction of various a-C films versus
normal load.
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Figure 5. Contour maps of y-displacement (top image) and x-displacement (second
image) of particles in film #4 for x/S = 1, and corresponding high-magnification contour
maps (bottom two images) showing the displacement of particles in the near-surface
region of the film adjacent to the contact interface with the sliding rigid tip.

(Table 2). All peridynamics solutions show that the coefficient of friction decreases with increasing
normal load. This trend is in good agreement with experimental findings and is attributed to the inverse
proportionality of the coefficient of friction of predominantly elastically deformed surfaces to the cubic
root of the normal load [Lu and Komvopoulos 2001].

The top two images in Figure 5 show y- and x-displacement contour maps, respectively, for x/S = 1.
High-magnification views of the particle displacements under the tip, shown in the bottom two images in
Figure 5, provide insight into the highly stressed region of the film underneath the loaded tip. However,
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nm nm

Figure 6. Top left: damage contour map of film #9 after tip unloading (damage index
D = 1 corresponds to particles with all their bonds broken). Top right: corresponding
high-magnification damage contour map of damaged particle layers in the near-surface
region of the film. Bottom left: y-displacement contour map of damaged film #9 after
tip unloading. Bottom right: corresponding high-magnification contour map showing the
y-displacement of particles adjacent to the contact interface with the plowing rigid tip.

the zero displacements in the wake of the tip (top two images in Figure 5) reveal a full recovery of the
unloaded film region. Importantly, despite the fully elastic behavior of the film/substrate medium and the
adhesionless tip/film contact interface, the instantaneous coefficient of friction is not zero. Not only is
this finding in contrast with classical friction theories, which attribute friction to irreversible deformation,
but also reveals that frictionless contact is practically impossible.

5.2. Wear depth. To validate the peridynamics wear model, the experimentally measured depths of wear
tracks produced on a-C film surfaces by a sharp conospherical rigid tip [Lu and Komvopoulos 2001] are
compared with numerical results. Figure 6 (top left) shows damage at the film surface due to sliding
contact interaction. A damage index D = 1 is indicative of bond breakage. As the rigid tip plows
through the film, the particles near the surface are permanently displaced from their original positions.
Figure 6 (top right) shows a close-up view of the deformed grid below the tip, revealing much more
pronounced damage in the near-surface region of the a-C film adjacent to the sharp tip. Further insight
into nanoscale film wear is provided by the y-displacement contour map and the close-up view of the
near-surface damaged particle layers shown in Figure 6 (bottom left and right, respectively).

The wear depth is defined as the average displacement of all particles with partly broken bonds (i.e.,
0 < D < 1), located relatively far from the initial (x/S = 0) and final (x/S = 1) tip positions. The
displacements of particles with D = 1 were not included in the calculation of the wear depth. Table 6
shows numerical and experimental results of the wear depth of three a-C films for P = 10µN. For
films #8 and #9 the agreement is very good (∼ 4% error), whereas for film #10 the agreement is fair,
presumably because of the rougher film surface and errors due to the small film thickness (10 nm) relative
to the grid size (≈ 1.6 nm).
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Film # Thickness
(nm)

Roughness,(a)

rms (nm)
Normal

load (µN)
Wear depth (nm)
(peridynamics)

Wear depth (nm)
(experimental)(a)

8 17 0.19 10 0.730 0.76
9 22 0.18 10 0.391 0.40

10 10 0.20 10 0.161 0.20

Table 6. Comparison of peridynamics and experimental results of the wear depth of a-C
films versus film thickness, roughness, and normal load. (a)Ref. [Lu and Komvopoulos
2001].

6. Conclusions

Nanoscale material behavior can be challenging because classical continuum theory breaks down at the
nanoscale, whereas MD analysis is limited to very small scales of limited practical use. Peridynamics
promises to bridge the material gap in computational mechanics. In this study, state-based peridynamics
theory was used to develop friction and wear models of thin films. Favorable comparisons between
peridynamics solutions and experimental results of thin films obtained under identical testing conditions
illustrate the validity of the peridynamics friction and wear models developed in this study. Long-range
forces were not considered and film surfaces were modeled as perfectly smooth, because the film rough-
ness was significantly less than the grid size. Despite these assumptions, very good agreement was
obtained between peridynamics and experimental results of films with thickness equal to or larger than
10 nm. The results of this study demonstrate the potential of peridynamics to capture the nanoscale
tribological behavior of thin films, which is difficult (if not impossible) to achieve at the nanoscale with
other numerical techniques, such as finite element analysis and the boundary element method.
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INVERSE PROBLEMS IN HETEROGENEOUS AND FRACTURED MEDIA
USING PERIDYNAMICS

DANIEL Z. TURNER, BART G. VAN BLOEMEN WAANDERS AND MICHAEL L. PARKS

The following work presents an adjoint-based methodology for solving inverse problems in heteroge-
neous and fractured media using state-based peridynamics. We show that the inner product involving
the peridynamic operators is self-adjoint. The proposed method is illustrated for several numerical ex-
amples with constant and spatially varying material parameters as well as in the context of fractures.
We also present a framework for obtaining material parameters by integrating digital image correlation
(DIC) with inverse analysis. This framework is demonstrated by evaluating the bulk and shear moduli
for a sample of nuclear graphite using digital photographs taken during the experiment. The resulting
measured values correspond well with other results reported in the literature. Lastly, we show that this
framework can be used to determine the load state given observed measurements of a crack opening.
This type of analysis has many applications in characterizing subsurface stress-state conditions given
fracture patterns in cores of geologic material.

1. Introduction

Detecting fractures is important in many areas of engineering and geoscience. From material reliability to
characterization of petroleum source rock, the goal is to predict the magnitude and orientation of fractures
by calibrating the properties of numerical models so that eventually accurate predictions can be issued.
Model calibration is a mathematical inversion process in which the differences between observations
and numerical predictions are reconciled by perturbing model parameters such as boundary conditions,
loadings, and material properties. Given a sufficient number of observations, accurate numerical models
can be calculated, which in turn can then support the improvement of system design and operating
conditions. In this paper, we are interested in solving inverse problems that determine loading conditions
and material properties for fractured linear elasticity problems. Given calibrated numerical models, the
design of engineering systems to ensure material reliability can be improved or more accurate flow
patterns can increase the extraction of hydrocarbon in petroleum reservoirs. Various challenges arise in
this type of an inversion problem, consisting of (1) achieving accurate and efficient modeling of fractures,
(2) handling of large numbers of inversion parameters, (3) addressing sparsity of observations inherent
in most large-scale inversion problems, (4) managing discontinuities from fractures, and (5) accounting
for nonlinearities in the material inversion problem.

Our first challenge is to numerically model fractures accurately and efficiently in addition to being
more conducive to the inverse setting. In particular, sensitivity objects will need to be extracted from the
forward model to efficiently calculate the gradient as part of an optimization algorithm. Consequently,
any approach must be able to generate derivatives with respect to the state variable (displacements in

Keywords: peridynamics, fractured media, inverse problems, digital image correlation.
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the case of linear elasticity). To accommodate this prerequisite and model fractures, we leverage peri-
dynamics, which has rapidly gained popularity as a nonlocal model for solid mechanics and naturally
incorporates discontinuities (cracks). As opposed to partial derivative based models, integral equations
are used instead, thereby avoiding differentiability requirements on the displacement field in the forward
case. One of the goals of the paper is to demonstrate that this differentiability condition is not violated in
the inverse setting. First introduced in 2000, peridynamics has been successfully applied in a number of
areas [Silling 2000; Silling et al. 2007; Silling and Askari 2005; Silling and Lehoucq 2008]. The method-
ology has evolved from a bond- to a state-based approach to allow the modeling of more general linear
elastic materials with Poisson’s ratio other than 1

4 . Furthermore, this paper graduates peridynamics from
a powerful forward modeling capability to, in some respects, an even more powerful inversion capability.
Our inversion approach extends to other optimization formulations such as design and control problems.

The second and third challenges motivate the use of large-scale inversion techniques to solve a least
square problem constrained by peridynamics. Also known as a constrained optimization problem or in
the case of partial differential equation (PDE) based dynamics, PDE-constrained optimization [Akçelik
et al. 2006], these techniques are designed to take advantage of embedded sensitivity calculations from
the forward simulation to efficiently calculate the objective function gradient. For moderate numbers of
inversion parameters, direct sensitivities can be used, but for large numbers of inversion variables, such
as material properties, the size of which is equal to the number of degrees of freedom of the problem,
an adjoint-based sensitivity calculation is required. In this paper, we explore the adjoint of peridynamics
by leveraging nonlocal vector calculus (NLVC) [Du et al. 2013b] and demonstrate that the inner product
of the forward operators with a vector is self-adjoint. Furthermore, we establish an inverse formulation
based on the displacement of the material points without having to accommodate the so-called damage
model that determines which broken bonds are part of a fracture. This addresses the fourth challenge,
which identified a need to manage discontinuities from fractures.

The final challenge is addressed through the application of Newton-based optimization algorithms
with line-search globalization and Tikhonov regularization to solve our target inverse problems. The
constrained optimization problem is converted to an unconstrained formulation by forming a Lagrangian.
Taking variations with respect to the state, Lagrange multipliers, and inversion parameters, the optimality
conditions are derived. In the case of inverting for loading conditions, the optimality conditions are linear
and therefore equal to the final Karush–Kuhn–Tucker (KKT) matrix. For material inversion, the optimal-
ity conditions are nonlinear and a linearization step via a Newton method is needed to arrive at the KKT
system. In our numerical example, the observational data provides information at each computational
node and therefore regularization does not dramatically improve the quality of the inversion. It should be
noted that our solution techniques are applied to an unconstrained optimization problem by exercising
a nonlinear elimination of the constraints. In subsequent sections of the paper, our derivation of the
optimality conditions for a constrained optimization problem is primarily for presentational reasons; an
alternative approach could be to differentiate the unconstrained objective function and apply the chain
rule. With additional algebraic manipulations, the adjoint equation could be derived [van Bloemen Waan-
ders et al. 2005].

The observational data in our numerical examples comes from digital image correlation (DIC), which
is a noncontact, full-field displacement measurement technique. DIC uses digital images of the exper-
imental sample to determine deformations [Sutton et al. 2009; Chu et al. 1985; Pan et al. 2009; Hild
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and Roux 2006]. The process works by correlating subsets of pixels from an image of the undeformed
experimental sample to a subset of an image of the deformed sample. This technique provides a much
richer set of displacement data than would otherwise be possible using mechanical gauges. We use
DIC to provide the observations of the material behavior, which are subsequently used in the objective
function of the optimization. Using optimization, we determine the material parameter values that lead
to the best fit between the simulated displacement field and the displacement field obtained.

The backdrop of this work is in the field of materials characterization, and we build upon a number of
previous works. Of particular interest are those that investigate heterogeneous or structurally damaged
media. Hild and Roux [2006] review various methods for material property identification using several
different flavors of DIC. Grédiac [2004] evaluates the efficacy of DIC-based methods for composite
materials. An anisotropic damage law is calibrated using DIC by Périé et al. [2009], who show that the
proposed method obtains close correlation even under significant noise.

It will be important to distinguish the emphasis of this work on materials characterization for frac-
tured media rather than determining fracture parameters using inversion. Asmaro [2013] uses a similar
integration of DIC and inversion to obtain fracture parameters for concrete materials. Her inversion
process is based on a finite element model that uses hinge elements. Many of the difficulties encountered
in this approach are circumvented in this work through the use of peridynamics, which more naturally
incorporates cracks.

This work makes the following contributions:

• Solutions of the inverse problem are presented for state-based peridynamics using an adjoint-based
method.

• Inversions demonstrate the state of material loading given fracture parameters such as crack aperture.

• A novel framework is presented for determining material parameters by integrating DIC with peri-
dynamics inverse analysis.

• The applicability of this framework is shown for heterogeneous materials where the material param-
eters vary throughout the problem domain.

In the sections that follow, we briefly summarize state-based peridynamics, define the constrained
optimization problem and optimality conditions that represent the peridynamics inverse problem, and
verify the proposed methodology for a material inversion and a loading inversion in the context of a frac-
tured medium. We demonstrate the framework for incorporating digital image correlation by analyzing
a compact tension specimen of nuclear graphite.

2. State-based peridynamics

Peridynamics was introduced as a framework to address the shortcomings of PDE-based approaches in
which material discontinuities are not conveniently handled. The integral representation of the force cal-
culation between material points avoids the problem of differentiating through a discontinuity. Although
recent extensions to finite element methods have been introduced to address these issues, it is not clear
if these methods can address the inverse problem and achieve either differentiability or computational
efficiency for the inverse problem. In the next two sections, we outline the basic peridynamics formulation
and map this approach to the inverse setting.
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The peridynamic state-based balance of linear momentum is written as

ρ ü =
∫

Hx

{
T [x]〈x′− x〉− T [x′]〈x− x′〉

}
dVx′ + b(x), (1)

where T is the force state and b(x) is a volumetric force. Here we use the underline notation to denote
a state, which can be conceptualized as a scalar, vector, or tensor quantity of interest that involves a
convolution with values of this field in the neighborhood of the material point in question. One can think
of a state as being a quantity that derives its value from a sum of contributions over the region surrounding
point x. Within a spherical neighborhood, Hx , of a material point at x, the force interactions between x
and all other material points inside the neighborhood are nonzero. We use the state-based formulation
for peridynamics to avoid the well-known restrictions on the material parameters that result from the
bond-based formulation. The convention 〈x′− x〉 denotes a bond between points x and x′. The original
scalar length of a bond is denoted, x . The current length of a bond is denoted, y, and is a function of the
displacement field, u(x). Without loss of generality, we ignore the inertial term and focus our attention
on quasistatic analysis as this will clarify the presentation. Neglecting the inertial term has no impact
on the development of the inversion process and can easily be reintroduced to obtain transient quantities.
The quasistatic governing equations can be written in terms of the linear peridynamic operator, Lu

Lu(x)+ b(x)= 0 in �⊂ Rd (2)

where

Lu(x) :=
∫

Hx

{
T [x]〈x′− x〉− T [x′]〈x− x′〉

}
dVx′, (3)

d is the spatial dimension and � is the domain. Readers unfamiliar with the notation of state-based
peridynamics should consult [Silling et al. 2007] in which the state-based formulation is presented. In
general, a peridynamic state produces a quantity from a summation of values over a material point’s fam-
ily. In the case of the force state, the resulting vector is the force density at a point given the interactions
with all the bonds in the family. For an ordinary material, the force between material points acts along a
unit vector between the two points in the deformed configuration (as shown at the top of Figure 1) such
that the force state can be expressed as

T = t M, (4)

where M is the unit vector pointing from x+ u(x) to x′+ u(x′) and t is the scalar force state.
For a linear, elastic material (parametrized by k and µ), in plane-strain, the constitutive relationship

between the scalar force state and the deformation is

t = k̃
(

2θ
m

x
)
+ α̃

(
y− x

(
1+

θ

2

))
, (5)

where m is the weighted size

m =
∫

Hx

x2 dVx′, (6)

θ is the dilatation

θ =
2
m

∫
Hx

(y− x)x dVx′, (7)
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x3

x2

x1

x′

x x′+ u(x′)

x+ u(x)

u(x)

x u(x′)

y

x+ u(x) T [x]〈x′− x〉

T [x′]〈x− x′〉

x′+ u(x′)

Figure 1. Geometry of deformation for peridynamics. This figure shows a bond be-
tween two material points as it evolves from the reference to the deformed configuration.
The nodes in the figure above represent the cell centroids in the discretization of peridy-
namics. The cells surrounding each node are not drawn in this figure. The force-state
interaction of these two material points is shown in the top of the figure which illustrates
that the resulting forces align with the bond between the material points. Here we are
using a ordinary material formulation in which the force between material points is
always directed along the bond between them.

and the coefficients are k̃= (k+µ/9) and α̃= 8µ/m. (Here we are using the two-dimensional formulation
proposed in [Le et al. 2014]. Extending this formulation to three dimensions is trivial.)

In the discrete setting, using single point quadrature, (1) becomes1

c(u, k, µ)≡
Nx∑

i=1

{
T [x]〈x′i − x〉− T [x′i ]〈x− x′i 〉

}
Vxi + b(x)= 0 (8)

for all points in the domain, where Nx is the number of discrete neighbors of x in Hx and Vxi is the cell
area of neighbor i . The structure of (8) is important from the perspective that it preserves symmetry of
the resulting tangent matrix. This ensures that the discrete operator, Ju (to be defined below) has the
following property, Ju = J T

u , even if the material parameters vary throughout the domain, for example
k(x) 6= k(x′). Also note that the quantities θ and y are dependent on the peridynamic displacement field,
u.

1Note that in the formulation above we have used a constant, unit, influence function (w = 1), which we have omitted for
brevity.
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The weighted size and dilatation are computed in the discrete setting as

m =
N∑

i=1

x2Vx′i , (9)

θ =
2
m

N∑
i=1

(y− x)xVx′i . (10)

3. Peridynamics inverse problem

In this section, our optimization problem is formulated, the optimality conditions are derived, and we
prove that the inner product involving the forward operators is self-adjoint. This realization has obvious
benefits to implementing the inverse process.

3.1. Inverse problem. The inverse problem can be stated as the following nonlinear, constrained, least
squares optimization problem:

min
u,k,µ

g(u, k, µ) subject to


c(u, k, µ)= 0 in �,
u = u0 in �u,

b= q in �q
(11)

where c(u, k, µ) is the constraint equation given by (8). �u and �q are the volume constraint regions for
displacement and loading, respectively. Note that as opposed to traditional boundary value problems in
which the boundary conditions are prescribed over a surface, in peridynamics, the boundary conditions
are prescribed over a volume. Typically, to represent a displacement boundary condition, rather than
apply a prescribed displacement on the surface nodes, ghost cells are added to the domain at the boundary,
for which the displacement is given. For loading boundary conditions, the prescribed load is distributed
among a collection of cells interior to the domain. The above problem is nonlinear due to the constraint
equation’s dependence on the decision variables.2 We employ a least squares misfit of the computed
displacements with a set of observed displacements, u∗, at Nobs observation points, as our objective
function, g(u, k, µ), with Tikhonov regularization [Tikhonov and Arsenin 1977]:

g(u, k, µ)=
1
2

Nobs∑
j=1

∫
�

((ux − u∗x)
2
+ (u y − u∗y)

2)δ(x− x j ) d�+
ψk

2

∫
�

k2 d�+
ψµ

2

∫
�

µ2 d�. (12)

In the objective function above, � represents the problem domain, ψk and ψµ are the regularization
parameters and δ is the Dirac delta. We wish to invert the system of state-based peridynamics equations
above for the material parameters k and µ, which represent our decision variables. The parameters ψµ
and ψk represent tunable parameters that drive the optimization process to a unique solution. The third
and fourth terms in the functional provide that for large values of ψµ and ψk the functional is quadratic
in nature.

2Formally speaking, since we solve the above system in a staggered fashion, it would be more appropriate to denote the
minimization problem as ming(u(k, µ)) where u satisfies c(u(k, µ))= 0.
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3.2. Optimality conditions. Introducing the Lagrange multiplier field, λ(x) (the adjoint variable) the
following Lagrangian functional can be constructed using the inner product

L(u,λ, d) := g(u, d)+
∫
�

c ·λ− d ·λ dx, (13)

where d represents the decision variables that include k and µ. Linearizing the peridynamic operator and
taking variations of L(u,λ, d) with respect to u, d and λ produces optimality conditions given below.
It can be shown that taking the variation with respect to u leads to L∗ = Ju = ∂c/∂u, i.e. that the
peridynamic operator is self-adjoint, the proof of which is demonstrated in the following section.

The optimality conditions for (11) are as follows:

c= 0 in � (state), (14)

J T
u λ+ gu = 0 in � (adjoint), (15)

J T
d λ+ gd = 0 in � (decision). (16)

In the discrete context, u ∈ RM is the state variable vector, λ ∈ RM is the adjoint variable vector, and
d ∈ RP is the decision variable vector. For the numerical examples that follow, the decision vector is
assembled as a single column vector

d =



k1
...

kP/2

µ1
...

µP/2


. (17)

The other terms in the optimality conditions include: Ju = ∂c/∂u ∈ RM×M which is a matrix that
represents the variation of the constraint with respect to the state variables; Jd = ∂c/∂d ∈RM×P , a matrix
that represents the variation of the constraint with respect to the decision variables; gu = ∂g/∂u ∈ RM ,
and gd = ∂g/∂d ∈ RP , that represent the sensitivity of the objective function to the state and decision
variables, respectively.

In addition to the optimization problem being nonlinear, the state equation is also nonlinear due to the
dependence of the displacement at x on the displacement at x′ (hence the nonlocal nature of peridynam-
ics). To treat this complexity, in the calculation of Ju, we first linearize the state equation and compute
Ju using central finite differencing. The above optimization problem can be solved using a variety of
methods. For the numerical examples that follow, a reflective trust-region algorithm was used with a
conjugate gradient solver. For any given method, the gradient of the objective function with respect to
the decision variables, ∇d(g)= dg/dd, must be computed. To compute ∇d(g), the following algorithm
was used. First, the adjoint equation is solved for λ, as

λ=−J−T
u gu. (18)
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Once the adjoint variables are determined, the gradient of the objective function can be computed as

∇d(g)=−gd − J T
d λ. (19)

3.3. Self-adjointness of the peridynamic operator. The self-adjointness of L is not immediately obvious
given the state-based representation of peridynamics. The state-based formulation involves a multilay-
ered convolution, the first is used to obtain the dilatation which is then convolved for the force state. To
prove this property we turn to NLVC [Du et al. 2013a; Gunzburger and Lehoucq 2010; Du et al. 2013b;
Alali et al. 2014] in an effort to analyze the peridynamic operator in a more straightforward manner.
The self-adjointess of peridynamics on bounded domains has also been studied in [Mengesha and Du
2014; 2015]. NLVC is a recently introduced formalism with appropriate nonlocal corollaries to all of
the components of local balance laws. In addition, NLVC can be used to cast nonlocal theories (like
peridynamics) in a more abstract and general mathematical setting which is more amenable to analysis.
Following the presentation in [Alali et al. 2014], the peridynamics operator, L from (2) can be written
as

Lu =−G(c1G∗u)−G(c2G∗u), (20)

where G, G∗ and G∗ are defined as the nonlocal gradient operator, the adjoint of the nonlocal gradient
operator and the average of the adjoint, respectively. For a scalar function ξ(x, y) these are given as

(Gξ)(x)=
∫

Rd
(ξ( y, x)+ ξ(x, y))α(x, y) d y, (21)

(G∗u)=−(u( y)− u(x)) ·α(x, y), (22)

(G∗u)(x)=−
∫

Rd
(u( y)− u(x)) ·α(x, y) d y, (23)

where α(x, y) is an appropriate antisymmetric vector-valued kernel (α(x, y) = −α( y, x)). We have
cast the peridynamic equations in the NLVC setting to derive the adjoint of L, denoted as L∗. Given the
function spaces and duality pairings defined in [Alali et al. 2014], the adjoint of the peridynamic operator
is defined such that it satisfies

〈v,Lu〉 = 〈u,L∗v〉, (24)

where 〈 · , · 〉 is the vector inner product, given by 〈a(x), b(x)〉 =
∫

Rd
a(x) · b(x) dx. Expanding the terms

of (20), gives

G(c1G∗u)=−
∫

Rd

[
c1( y)(u(x)− u( y)) ·α( y, x)+ c1(x)(u( y)− u(x)) ·α(x, y)

]
α(x, y) d y,

G(c2G∗u)=−
∫

Rd

[
c2( y)

∫
Rd
(u(z)−u( y)) ·α( y, z) d z+c2(x)

∫
Rd
(u(z)−u(x)) ·α(x, z) d z

]
α(x, y) d y.

The inner product of Lu and v is then

〈v,Lu〉 =
∫

Rd

∫
Rd

[
c1( y)(u(x)−u( y))·α( y, x)+c1(x)(u( y)−u(x))·α(x, y)

]
α(x, y)·v(x) dx d y

+

∫
Rd

∫
Rd

[
c2( y)

∫
Rd
(u(z)−u( y))·α( y, z) d z+c2(x)

∫
Rd
(u(z)−u(x))·α(x, z) d z

]
α(x, y)·v(x) dx d y.
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Expanding all terms in the inner product gives

〈v,Lu〉 =
∫

Rd

∫
Rd

c1( y)(u(x) ·α( y, x))(α(x, y) · v(x)) dx d y

−

∫
Rd

∫
Rd

c1( y)(u( y) ·α( y, x))(α(x, y) · v(x)) dx d y

+

∫
Rd

∫
Rd

c1(x)(u( y) ·α(x, y))(α(x, y) · v(x)) dx d y

−

∫
Rd

∫
Rd

c1(x)(u(x) ·α(x, y))(α(x, y) · v(x)) dx d y

+

∫
Rd

∫
Rd

c2( y)
∫

Rd
(u(z) ·α( y, z)) d z(α(x, y) · v(x)) dx d y

−

∫
Rd

∫
Rd

c2( y)
∫

Rd
(u( y) ·α( y, z)) d z(α(x, y) · v(x)) dx d y

+

∫
Rd

∫
Rd

c2(x)
∫

Rd
(u(z) ·α(x, z)) d z(α(x, y) · v(x)) dx d y

−

∫
Rd

∫
Rd

c2(x)
∫

Rd
(u(x) ·α(x, z)) d z(α(x, y) · v(x)) dx d y.

Using the antisymmetry of α(x, y) and a change of variable from x→ y in some of the terms above
leads to

〈v,Lu〉 =
∫

Rd

∫
Rd

c1( y)(u(x) ·α( y, x))(α(x, y) · v(x)) dx d y

×

∫
Rd

∫
Rd

c1(x)(u(x) ·α(x, y))(α(x, y) · v( y)) dx d y

−

∫
Rd

∫
Rd

c1( y)(u(x) ·α(x, y))(α( y, x) · v( y)) dx d y

−

∫
Rd

∫
Rd

c1(x)(u(x) ·α(x, y))(α(x, y) · v(x)) dx d y

+

∫
Rd

∫
Rd

∫
Rd

c2( y)(u(x) ·α(x, y))(α( y, z) · v(z)) d z dx d y

−

∫
Rd

∫
Rd

∫
Rd

c2( y)(u(x) ·α(x, y))(α( y, z) · v( y)) d z dx d y

+

∫
Rd

∫
Rd

∫
Rd

c2(x)(u(x) ·α(x, y))(α(x, z) · v(z)) d z dx d y

−

∫
Rd

∫
Rd

∫
Rd

c2(x)(u(x) ·α(x, y))(α(x, z) · v(x)) d z dx d y

= 〈u,L∗v〉.

Here we have shown that the peridynamic operator is self-adjoint, i.e.,

L∗ = LT
= L. (25)
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Parameter Exact Computed Error (%)
k 666.67 666.67 0.0000644
µ 400.0 399.9984 0.000395

Table 1. Results for the constant material parameter verification problem.

4. Numerical examples

We present here three illustrative examples that demonstrate the effectiveness of the proposed method.
The first problem is a verification problem in which the parameters k and µ are determined as constants
for the entire domain (nonspatially varying) and compared with the exact result. In the second problem
we invert for a spatially varying, heterogeneous material parameter µ(x) and compare the result with the
exact solution. In the last problem, digital image correlation is used to experimentally determine k and
µ for a sample of nuclear graphite in a compact tension test.

4.1. Verification for constant material parameters. Consider a 2D, square domain � ∈ RL×L , where
L = 1000, subjected to zero displacement along the bottom edge (y = 0) and an applied force in the x and
y directions, Fx = 1000.0 and Fy = 1000.0, respectively, along the top edge as shown in Figure 2.3 For
this problem, the observed displacement field, u∗, was manufactured by solving the forward problem
with k = 666.67 and µ = 400.0. Both material parameters were held constant over the domain (i.e.
P = 2). The goal of this inverse problem is to solve for the constants k and µ, given the loading and least
squares misfit of the computed displacement field, u, to the observed displacement field, u∗, using the
objective function defined by (12). For this problem no regularization was used (ψk = 0 and ψµ = 0).

The domain was discretized into cells of size h × h, where h = 100.0.4 The initial guess for k
and µ where seeded with values of 100.0 and 100.0, respectively. Table 1 shows the results for this
example. The results suggest that constant parameters can be inverted for with great accuracy using the
methodology above. The convergence of the objective function is plotted in Figure 3.

Fy

Fx

�q

�u

y
x

(0, 0)
ux = 0, u y = 0

Figure 2. Domain and boundary conditions for academic verification problems.

3The force is applied by distributing the magnitude of the force over the cells along the top edge of the domain and adding
the value to the momentum balance residual (8) for each point. As the horizon increases, the force is distributed over a layer of
points near the boundary of thickness, δ.

4Along the boundary, the centroid of the cell was placed on the edge of the domain such that h = 10.0 results in 11 cells in
x and y, or 121 cells total.
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Figure 3. Convergence of the objective function per iteration for the constant material
parameters problem. The y-axis is log(g(u, k, µ)).

4.2. Inversion for heterogeneous material properties. In this example we invert for µ(x), a spatially
varying material parameter, using the same domain and boundary conditions shown in Figure 2. The
value of µ is determined for every cell in the domain (i.e. P = 121). Observed values of displacement
were populated using the following material parameters, which represent the exact solution.

k(x)=−γkrk0+ k0, (26)

µ(x)= γµrµ0+µ0 (27)

where r = ‖x‖, γk = 0.00025, γµ = 0.0002, k0 = 666.67 and µ0 = 400.0. The initial guess for d was
seeded with a constant µ= µ0 throughout the domain. Note that we only solve for µ(x) and not k(x).

A comparison between the computed result and the exact solution is shown in Figure 4. The maximum
error in the computed solution is 1.2%. These results suggest that the method above is effective for
constant material parameters as well as spatially varying fields. A plot of the convergence of the objective
function for each iteration is shown in Figure 5.

4.3. Inversion for material parameters using digital image correlation data. The last example illus-
trates the proposed method’s usefulness in determining material parameters by inversion using exper-
imental data generated with digital image correlation. For this example, the parameters k and µ are
determined for a sample of (nonirradiated) nuclear graphite loaded in a compact tension test. The bound-
ary conditions for the problem are established by using the digital image correlation displacements as a
prescribed displacement over a thin layer of cells that circumscribe the area of interest. To simplify the
analysis, the parameters are evaluated for a load state early in the loading cycle before nonlinear behavior
is present. A picture of the experimental setup is shown in Figure 6. The setup involves a single axis
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Figure 4. Top: exact µ(x) shown as (left) a contour plot and (right) a surface plot.
Bottom: computed µ(x) shown as (left) a contour plot and (right) a surface plot.

Figure 5. Convergence of the objective function per iteration for the heterogeneous
problem. The y-axis is log(g(u, k, µ)).
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Digital microscope

Clevis grips

Load frame

Compact tension
specimen

Figure 6. Experimental setup.

Figure 7. Left: reference image, taken prior to loading. Right: deformed image, taken
early in the loading cycle. (Displacements are not visible the naked eye.)

load frame with the graphite sample loaded by clevis grips. Displacement control was used to load the
sample until failure. A Leica digital microscope was used to obtain the images shown in Figure 7.5

Digital image correlation algorithm. The process of inverting for material parameters using digital image
correlation is outlined below:

(1) An image is taken with the microscope to serve as the reference image.

(2) The load step is advanced.

(3) Another image is taken to serve as the deformed image.

(4) Control points are established for the reference and deformed images.

(5) Displacements are calculated using a correlation algorithm (these will serve as the observed dis-
placements, u∗).

(6) A computational mesh is constructed such that each cell corresponds to a control point from the
image correlation.

5It was not necessary to apply a speckle pattern to the sample since there is enough variation in surface due to the natural
voids in the graphite.
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Figure 8. Left: x-displacements (px) calculated using digital image correlation. Right:
y-displacement (px).

(7) Along the outer boundary of the domain, the observed displacements are prescribed as a boundary
condition for the inverse analysis.

(8) The material parameters are seeded with values of 1.0.

(9) The peridynamics model is inverted for k and µ until the objective function is minimized (the
computed displacements from the peridynamics model match the observed image correlation dis-
placements).

The differential method presented in [Sutton et al. 2009] was used to perform the image correlation.
Bilinear interpolation was used to achieve subpixel accuracy. The digital microscope was calibrated such
that 1 pixel is equivalent to 0.0147 mm. A mesh spacing of 50 pixels was used for the computed results
for both the image correlation and the inverse analysis. The experimental displacements, calculated by
the image correlation algorithm are shown in Figure 8.

The material parameters determined by the inverse analysis are presented in Table 2 and the error in
the computed displacements is shown in Figure 9. Table 2 also shows the range of reported values in the
literature. Note that the inverted material parameters fall within the reported range. Using the inverted
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Figure 9. Left: error in the x-displacements (px) calculated using the inverted material
parameters. Right: y-displacement error (px).
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Parameter Reported Range (GPa) Computed (GPa)
k 2.3–15.3 9.18
µ 1.7–11.5 6.77

Table 2. Results for inversion problem using digital image correlation.

material parameters, Poisson’s ratio is calculated as ν = 0.204 which is close to the value of ν = 0.2
commonly used for nuclear graphite.

5. Inversion for load state given fracture parameters

The framework presented above can also be used to determine the state of loading given observed fracture
parameters such as the crack aperture. Consider an alternative objective function given as

g(h)=
1
2

Nobs∑
j=1

∫
�

(h− h∗)2δ(x− x j ) dx (28)

where h∗ is the measured value of the crack aperture at location x j and h is the computed crack aperture
in the simulation. The decision variable in this case is the loading applied to the material, d = [Fy].
Under these modifications, we optimize for the loading that results in a fracture with the same aperture
as the observed value.

The geometry and boundary conditions for this problem are shown in Figure 10. The material param-
eters are given as k = 66.7 GPa and µ= 40 GPa. The initial crack length, a was 1.0mm. The boundary
conditions include a constant applied loading, Fy applied to a strip of width 2δ along the top of the
domain. The displacement was constrained along a strip of width 2δ along the bottom of the domain.

A comparison of the inverted value for the loading given the crack aperture is shown in Figure 11.
The observed values for the crack aperture were obtained by solving the forward problem for various
magnitudes of the loading Fy and taking the relative distance between points on either side of the resulting
fracture. A critical stretch damage model was used in the forward problem in which bonds that are
stretched beyond a critical stretch break and no longer contribute to the material stiffness. The critical

x

y 2δ

20.0

uy = 0 uy = 0

ux = 0
uy = 0

h

a

2δ

10.0

Fy

Figure 10. Geometry and boundary conditions for the load state inversion problem.
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Figure 11. Inverted load state vs. exact value for the load state inversion problem.

stretch value for this problem was 0.001. The exact solution for the applied loading is represented by
the loading used in the forward problem to obtain the observed crack apertures. The inverted value for
the load state matches closely the exact solution suggesting that this approach to inverting for the load
state is quite robust. Note that our inversion approach can solve for material properties in this dataset
with minimal effort.

6. Conclusions

We have presented an adjoint-based methodology for peridynamics inverse problems and shown by means
of several numerical examples, that this method can be used effectively to determine material properties
for heterogeneous materials. We have also presented a framework for determining material properties
that integrates digital image correlation with peridynamics inverse analysis. We have illustrated that this
framework can be used to determine the load state of a material given observed fracture parameters such
as the crack aperture. This peridynamics inversion capability can be used in a variety of engineering
applications and provides a robust method to calibrate peridynamical models from sparse field or exper-
imental measurements. While the solution of inverse problems in finite-element PDE based approaches
may pose challenges associated with fractures, peridynamics presents a natural environment for inverse
problems with discontinuities.
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VARIABLE HORIZON IN A PERIDYNAMIC MEDIUM

STEWART A. SILLING, DAVID J. LITTLEWOOD AND PABLO SELESON

A notion of material homogeneity is proposed for peridynamic bodies with variable horizon but constant
bulk properties. A relation is derived that scales the force state according to the position-dependent
horizon while keeping the bulk properties unchanged. Using this scaling relation, if the horizon depends
on position, artifacts called ghost forces may arise in a body under a homogeneous deformation. These
artifacts depend on the second derivative of the horizon and can be reduced by employing a modified
equilibrium equation using a new quantity called the partial stress. Bodies with piecewise constant
horizon can be modeled without ghost forces by using a simpler technique called a splice. As a limiting
case of zero horizon, both the partial stress and splice techniques can be used to achieve local–nonlocal
coupling. Computational examples, including dynamic fracture in a one-dimensional model with local–
nonlocal coupling, illustrate the methods.

1. Introduction

The peridynamic theory is a strongly nonlocal formulation of solid mechanics, based on long-range forces,
that is adapted to the study of continuous bodies with evolving discontinuities, including cracks [Silling
2000; Silling et al. 2007; Silling and Lehoucq 2010]. Each material point x in the reference configuration
of a body B interacts through the material model with other material points within a distance δ(x) of
itself. The maximum interaction distance δ(x) is called the horizon of x. The material points within the
horizon of x comprise a set called the material family of x:

Fx = {q ∈ B : 0< |q− x| ≤ δ(x)},

where | · | denotes the Euclidean norm. The vector from x to any neighboring material point q ∈ Fx ,
ξ = q − x, is called a bond. The set of bonds from x to its neighbors within its horizon is called the
family of x, denoted Hx :

Hx = {ξ ∈ R3
: x+ ξ ∈ Fx}.

In an elastic peridynamic solid, the strain energy density W (x) is determined by the collective deforma-
tion of Fx . To express this collective deformation, it is convenient to define the function

Y [x, t]〈 · 〉 :Hx→ R3

that maps bonds into their images under the deformation y. For any material point q ∈ Fx at time t ≥ 0,
let

Y [x, t]〈q− x〉 = y(q, t)− y(x, t). (1-1)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Keywords: elasticity, nonlocality, local–nonlocal coupling, peridynamics.
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The function Y [x, t]〈 · 〉 is an example of a state, which is a mapping with domain Hx . By convention, the
bond ξ ∈Hx that a state operates on is written in angle brackets, i.e., 〈ξ〉. The state Y [x, t] is called the
deformation state at x and at time t . The deformation state is the basic kinematical quantity for purposes
of material modeling, and, in this role, it is analogous to the deformation gradient in the classical theory
of continuum mechanics, F = ∂ y/∂x.

In the present discussion, for convenience, we will adopt the generalization that a state operating on
a bond vector outside of the family of a given point x is defined, but its value is zero:

|ξ |> δ(x)=⇒ A[x]〈ξ〉 = 0.

The inner product of two states A and B is defined by

A • B =
∫
H

A〈ξ〉 · B〈ξ〉 dVξ . (1-2)

In (1-2) and the rest of this paper, we use the symbol H instead of Hx when it is not necessary to refer
to a specific x ∈ B. The norm of a state A is defined by

‖A‖ =
√

A • A.

In an elastic material, the strain energy density W (x) depends through the material model on the
deformation state, and this dependence is written as

W (x)= Ŵ (Y [x]).

When manipulating functions of states such as W , it is helpful to introduce the Fréchet derivative. Given
the function Ŵ (Y), its Fréchet derivative ŴY is a functional derivative with the property that if δY is a
small increment in the deformation state, then

Ŵ (Y + δY)= Ŵ (Y)+ ŴY (Y) • δY + o(‖δY‖). (1-3)

Note that ŴY is a state-valued function even though Ŵ is scalar-valued.
Let 8 y denote the total potential energy in a bounded elastic body B under external force density field

b, subjected to the deformation y:

8 y =

∫
B
(W (x)− b(x) · y(x)) dVx . (1-4)

To derive the Euler–Lagrange equation corresponding to stationary values of this functional, set the first
variation of (1-4) to zero. Combining (1-1), (1-3), and (1-4), and neglecting higher-order terms in the
small increment in the deformation state, leads to

0= δ8 y =

∫
B
(δW (x)− b(x) · δ y(x)) dVx

=

∫
B
(ŴY (Y [x]) • δY [x] − b(x) · δ y(x)) dVx

=

∫
B

(∫
B

ŴY (Y [x])〈q− x〉 · (δ y(q)− δ y(x)) dVq − b(x) · δ y(x)
)

dVx .
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Using the change of dummy variables q↔ x to eliminate δ y(q), we obtain

0=
∫
B

(∫
B
(ŴY (Y [q])〈x− q〉− ŴY (Y [x])〈q− x〉) dVq − b(x)

)
· δ y(x) dVx .

Since this must hold for every choice of the variation δ y, the Euler–Lagrange equation, which is the
peridynamic equilibrium equation, is given by

Lpd(x)+ b(x)= 0 (1-5)

for all x ∈ B. In (1-5), the peridynamic internal force density at x is given by

Lpd(x) :=
∫
B
{T [x]〈q− x〉− T [q]〈x− q〉} dVq, (1-6)

where T [x] is the force state at x, which is related to the strain energy density by

T [x] = ŴY (Y [x]). (1-7)

The pairwise bond force density f on a point x due to its interaction with any point q ∈ Fx is given by

f (q, x)= T [x]〈q− x〉− T [q]〈x− q〉. (1-8)

The peridynamic internal force density (1-6) may be written more succinctly in terms of the pairwise
bond force density as

Lpd(x)=
∫
B

f (q, x) dVq . (1-9)

In general,
T [x] = T̂ (Y [x]) and T [q] = T̂ (Y [q]),

where T̂ is the material model expressed in terms of the force state.
By invoking d’Alembert’s principle, the dynamic form of the balance of linear momentum is found

from (1-5) to be
ρ(x) ÿ(x, t)= Lpd(x, t)+ b(x, t) (1-10)

for all x ∈ B and for any t ≥ 0, where ρ is the mass density.
The mechanical interpretation of the force state is that T [x]〈q− x〉 represents a bond force density

on x due to its interaction with q. More general material models, whether elastic or not, may be written
in the form

T [x] = T̂ (Y [x], . . . , x),

where T̂ is the material model, which may depend on additional variables besides Y . The dimensions of
T and f are force per unit volume squared. The dimensions of W are the same as in the classical theory,
i.e., energy per unit volume.

If at any x, T depends only on Y and x (but not additional variables such as loading history), then the
material model is simple, and we write

T [x] = T̂ (Y [x], x).

All elastic materials are simple.



594 STEWART A. SILLING, DAVID J. LITTLEWOOD AND PABLO SELESON

If T̂ has no explicit dependence on x, then the body is homogeneous. If it is simple and homogeneous,
we write

T [x] = T̂ (Y [x]).

Since δ is in effect a material property, any homogeneous body has constant δ.
If δ is constant in B, then the region of integration in (1-6) and (1-9) may be changed from B to Fx .

The vast majority of applications of peridynamics to date assume constant horizon.

2. The peridynamic stress tensor

As shown in [Lehoucq and Silling 2008], given a continuously differentiable pairwise bond force density
f with asymptotic second-order decay with the bond length, the peridynamic internal force density can
be expressed as

Lpd
=∇ · νpd in B,

where νpd is the peridynamic stress tensor field defined for any x by

νpd(x) :=
1
2

∫
S

∫
∞

0

∫
∞

0
(v+w)2 f (x+ vm, x−wm)⊗m dw dv d�m, (2-1)

where S is the unit sphere, d�m is a differential solid angle in the direction of the unit vector m, and f
is given by (1-8).

Suppose the deformation is continuously differentiable, and let F be the classical deformation gradient
tensor field,

F =∇ y in B.

Define the deformation gradient state field F by

F[x]〈ξ〉 = F(x)ξ for all x ∈ B and ξ ∈Hx . (2-2)

An equivalent statement to (2-2) is

F = FX in B,

where X is the identity state defined by

X〈ξ〉 = ξ for all ξ ∈Hx .

Suppose the deformation is such that there is a tensor F∗ such that

y(x+ ξ)− y(x)= F∗ξ for all x ∈ B and ξ ∈Hx .

Then the deformation is called uniform. In this case,

Y = F in B and F[x]〈ξ〉 = F∗ξ for all x ∈ B and ξ ∈Hx . (2-3)
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If the body is homogeneous and the deformation is uniform, then the peridynamic stress tensor is easily
computed making use of the change of variables z = v+w:

νpd
=

∫
S

∫
∞

0

∫
∞

v

z2T̂ (F)〈zm〉⊗m dz dv d�m

=

∫
S

∫
∞

0

∫ z

0
z2T̂ (F)〈zm〉⊗m dv dz d�m

=

∫
S

∫
∞

0
z3T̂ (F)〈zm〉⊗m dz d�m

=

∫
S

∫
∞

0
T̂ (F)〈zm〉⊗ (zm)(z2 dz d�m)

= ν0, (2-4)

where ν0 is the collapsed stress tensor defined by

ν0
:=

∫
H

T̂ (F)〈ξ〉⊗ ξ dVξ . (2-5)

Also define the collapsed internal force density field by

L0
:= ∇ · ν0 in B. (2-6)

As discussed in [Silling and Lehoucq 2008], the collapsed stress tensor is an admissible first Piola–
Kirchhoff stress tensor whose constitutive model depends on the local deformation gradient tensor
through (2-5). The collapsed internal force density field provides the “local limit of peridynamics” in
the sense that as δ→ 0,

Lpd
→ L0,

provided that the deformation is twice continuously differentiable and T̂ obeys the scaling relation de-
rived in the next section.

3. Rescaling a material model at a point

The remainder of this paper concerns methods for allowing changes in the horizon as a function of
position such that the “bulk properties” are invariant to this change. The first step is to specify what this
required invariance means.

Suppose an elastic material model is given for a particular value of horizon (without loss of generality,
we will assume that this horizon has the value 1), and denote the corresponding strain energy density
function by Ŵ1. Now consider a different value of horizon, δ, and denote the corresponding strain energy
density function by Ŵ . As a physical requirement, the strain energy density for any uniform deformation
must be invariant with respect to changes in δ. By reasoning similar to that in [Silling and Lehoucq 2008],
it is assumed that for any deformation state Y ,

Ŵ (Y)= Ŵ1(Y 1), (3-1)
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where Y 1 is the reference deformation state defined by

Y 1〈n〉 := δ−1Y 〈δn〉 for all n ∈H1, (3-2)

where H1 is the family of x with horizon 1. In the remainder of this paper, the symbols n or m will
generally be used instead of ξ to denote bonds in H1. To derive the force state T , observe that (3-1)
implies

ŴY • dY = (Ŵ1)Y 1
• dY 1.

Hence, using (1-7),
T • dY = T 1 • dY 1.

Combining this with (1-2), (1-3), and (3-2) leads to the following scaling relation for peridynamic mate-
rial models in three dimensions:

T̂ (Y)〈ξ〉 = δ−4T̂ 1(Y 1)〈δ
−1ξ〉 for all ξ ∈H

for any deformation state Y on H. Repeating the above derivation for one- or two-dimensional models
leads to

T̂ (Y)〈ξ〉 = δ−(1+D)T̂ 1(Y 1)〈δ
−1ξ〉 for all ξ ∈H, (3-3)

where D is the number of dimensions and Y 1 is given by (3-2). The state T̂ 1 is called the reference
material model.

From (2-2) and (3-2), the deformation gradient state has the following invariance with respect to
changes in δ:

F1〈n〉 = δ−1 F〈δn〉 = δ−1 Fδn= Fn= F〈n〉 for all n ∈H1.

Hence,
F1 = F in H∩H1, (3-4)

which is a result that could be anticipated owing to the fact that F is dimensionless. From (2-5), (3-2)
and (3-3),

ν0
=

∫
H

T̂ (F)〈ξ〉⊗ ξ dVξ

=

∫
H1

δ−(1+D)T̂ 1(F1)〈n〉⊗ (δn)(δDdVn)

=

∫
H1

T̂ 1(F1)〈n〉⊗ n dVn, (3-5)

which shows that the collapsed stress tensor is also invariant with respect to changes in δ. Note that this
invariance does not require the body to be homogeneous.

4. Variable scale homogeneous bodies

Recall from Section 1 that any homogeneous body necessarily has constant horizon. Therefore, it is
necessary to define a relaxed concept of homogeneity that captures the meaning of having a peridynamic
body with constant “bulk properties” without adhering to the strict definition of homogeneity. The refer-
ence material model defined in Section 3 provides a way to do this.
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Definition. Suppose a reference material model T̂ 1 is given in B, independent of position. In addition,
let the horizon δ(x) be prescribed as a function of position. If, at any x ∈ B,

T̂ (Y [x], x)〈ξ〉 =
1

(δ(x))1+D T̂ 1(Y 1[x])
〈

ξ

δ(x)

〉
for all ξ ∈Hx, (4-1)

then B is a variable scale homogeneous (VSH) body. Note that a homogeneous body is a VSH body
with constant horizon.

By the results of Section 3, an elastic VSH body under uniform deformation has constant W . However,
it does not necessarily have constant νpd and is therefore not necessarily in equilibrium in the absence
of body forces. (Recall that (2-4) applies only to homogeneous bodies, and homogeneity implies that δ
is constant.) As shown in the next section, nonconstant δ in a VSH body leads to ghost forces at points
where the horizon changes.

5. Ghost forces

We demonstrate that in the absence of body forces, a uniform deformation of a VSH body is not nec-
essarily in equilibrium. To see this, assume a uniform deformation, take δ to be twice continuously
differentiable, and compute the net internal force density Lpd(x). Extending the integration domain in
(1-6) to the entire space for convenience, and using (4-1), we obtain, for any x,

Lpd(x)=
∫

R3
{T [x]〈q− x〉− T [q]〈x− q〉} dVq

=

∫
R3

{
δ−(1+D)(x)T 1〈m〉− δ−(1+D)(q)T 1〈n〉

}
dVq , (5-1)

where

m =
q− x
δ(x)

and n=
x− q
δ(q)

. (5-2)

Holding x fixed,

dVq =

∣∣∣∣det
(
∂m
∂q

)∣∣∣∣−1

dVm = δ
D(x)dVm, (5-3)

dVq =

∣∣∣∣det
(
∂n
∂q

)∣∣∣∣−1

dVn =
δD(q)

1+ n · ∇δ(q)+ O(|∇δ|2)
dVn. (5-4)

From (5-1)–(5-4), it follows that

Lpd(x)=
∫

R3

T 1〈m〉
δ(x)

dVm−

∫
R3

T 1〈n〉
δ(q)

(
1

1+ n · ∇δ(q)+ O(|∇δ|2)

)
dVn

=

∫
R3
ε(x, q)T 1〈m〉 dVm, (5-5)
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where

ε(x, q)=
1
δ(x)
−

1
δ(q)

(
1

1+ n · ∇δ(q)+ O(|∇δ|2)

)
=

1
δ(x)
−

1
δ(q)+∇δ(q) · (x− q)+ O(δ|∇δ|2)

. (5-6)

Now approximate δ(x) by the first three terms of a Taylor expansion around q, that is,

δ(x)= δ(q)+∇δ(q) · (x− q)+ 1
2∇∇δ(q)(ξ ⊗ ξ)+ · · · ,

where ξ = q−x. Using this to eliminate the term∇δ(q)·(x−q) in (5-6) leads, after further straightforward
manipulations, to

ε(x, q)=
1
δ(x)
−

1

δ(x)− 1
2∇∇δ(q)(ξ ⊗ ξ)+ · · ·

= −
1
2∇∇δ(q)m⊗m+ · · · ,

where m is given by (5-2). From this result and (5-5), the peridynamic internal force density at x is
estimated from

Lpd(x)=−
1
2

∫
R3
∇∇δ(q)(m⊗m)T 1〈m〉 dVm+ · · · .

We thus obtain

|Lpd(x)| ≤
1
2

∫
R3

max
Hx
{|∇∇δ|}|m⊗m||T 1〈m〉| dVm+ · · · .

Since, by assumption, δ is twice continuously differentiable, and since |m| ≤ 1, this result implies

Lpd(x)= O(|∇∇δ|)O(‖T 1‖). (5-7)

The departure from equilibrium represented by nonzero values of Lpd is called ghost force and is an
artifact of the position dependence of the horizon. Observe that the leading term in the ghost force
depends on the second derivative of δ. In fact, it can be shown directly that if δ is a linear function of
position, then the ghost force vanishes.

An illustration of the effect of ghost force in a VSH bar in equilibrium is shown in Figure 1. The
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Figure 1. Ghost strain in a VSH body in equilibrium. Left: horizon as a function of
position. Right: strain as a function of position.
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peridynamic reference material model T̂ 1 is a bond-based model [Silling 2000] with a nominal Young’s
modulus of 1. The horizon in the bar depends on position as shown in the left figure. The numerical
approximation method is discussed in the Appendix. Two cases are considered for the spatial dependence
of the horizon: piecewise linear (“not smoothed”) and cubic spline (“smoothed”). The ends of the bar
have prescribed displacements corresponding to a nominal strain in the bar of 1. The strain (defined as
du/dx) in equilibrium for the two cases is shown in the right figure. The strain is computed numerically
using a central finite difference formula. If there were no ghost forces, the strain would be constant and
equal to 1. Because of ghost forces, anomalies in strain (“ghost strains”) appear that equilibrate the ghost
forces. The smoothed δ(x) has lower ghost strains than the nonsmoothed one. This result is consistent
with (5-7), which predicts that ghost forces are proportional to the second derivative of δ(x).

In this example, the anomalies in strain are less than 2%, even for the nonsmoothed case. This depar-
ture from constant strain could be acceptable in many applications. Ghost forces in a VSH peridynamic
body are always self-equilibrated, that is, they do not exert a net force on the body. This follows from the
fact that the peridynamic equilibrium equation always conserves linear momentum, even if the material
model depends on position. To address applications in which these ghost forces are not acceptable, or it
is desired to have a jump in δ(x), we will introduce two methods, partial stress and splice, that exhibit
zero ghost forces in a uniform deformation of a VSH body.

6. The partial stress field

We investigate a modified form of the momentum balance that eliminates ghost forces in a VSH body
under a uniform deformation. The momentum balance is expressed in terms of a new field called the
“partial stress” tensor field.

Consider a peridynamic body B and let its force state field T be given. Let the partial stress tensor
field νps be defined by

νps(x) :=
∫
Hx

T [x]〈ξ〉⊗ ξ dVξ for all x ∈ B. (6-1)

Also define the partial internal force density by

Lps(x) := ∇ · νps(x) for all x ∈ B. (6-2)

If the material model is simple, the partial stress can be expressed in the form

νps(x)= ˆνps(Y [x]) for all x ∈ B,

where

ˆνps(Y)=
∫
H

T̂ (Y)〈ξ〉⊗ ξ dVξ . (6-3)

Note the similarity between νps and ν0 defined by (2-5). The difference is that νps depends on the
(nonlocal) deformation state Y , while ν0 depends on the (local) deformation gradient tensor. In the
special case of a uniform deformation of a homogeneous body (which implies δ = constant and Y = F),
clearly νps

≡ ν0.
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By repeating the manipulations leading to (3-5), it is easily shown that in a VSH body with reference
material model T̂ 1,

νps(x)=
∫
H1

T̂ 1(Y 1[x])〈n〉⊗ n dVn for all x ∈ B, (6-4)

where Y 1 is given by (3-2). Since, in a uniform deformation, Y 1 is constant (and equal to F), it follows
from (2-3), (2-6), (3-4), (3-5), (6-2), and (6-4) that in a VSH body under a uniform deformation,

νps
≡ ν0 and Lps

≡ L0
≡ 0. (6-5)

This establishes that, for a VSH body under a uniform deformation, ghost forces are absent in the partial
stress formulation of the momentum balance equation, regardless of the spatial dependence of horizon.
This observation motivates the use of this modified momentum balance in the transition region of the
horizon.

7. The partial stress as an approximation to peridynamics

With the intent of modeling some parts of a body using the partial internal force density (6-2) and
other parts using the peridynamic internal force density (1-6), the relation between the two will now be
investigated. Since the plan is to make a transition between Lps and Lpd where the horizon is constant,
we investigate the way these fields approximate each other under this assumption.

Proposition 1. Let B be a homogeneous body (which implies constant δ). Let a twice continuously
differentiable deformation y of B be prescribed. Then

νpd
− νps

= O(δ)O(‖∇T 1‖) in B (7-1)

and

Lpd
− Lps

= O(δ)O(‖∇∇T 1‖) in B. (7-2)

Proof of (7-1). Let x ∈ B be fixed. Combining (1-8), (2-1), and (4-1) leads to

νpd(x)=
∫
S

∫
∞

0

∫
∞

0
(v+w)2T [x−wm]〈(v+w)m〉⊗m dw dv d�m

=

∫
S

∫
∞

0

∫
∞

0
(v1+w1)

2T 1[x− δw1m]〈(v1+w1)m〉⊗m dw1 dv1 d�m,

where v = δv1 and w = δw1. A Taylor expansion for T 1 yields

T 1[x− δw1m] = T 1[x] − δw1∇T 1[x]m+ · · · .

After repeating the manipulations leading up to (2-4), and after evaluating the triple integral, the first
term in this Taylor expansion gives the partial stress defined by (6-1). Thus

νpd
= νps

+ O(δ)O(‖∇T 1‖),

proving (7-1).
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Proof of (7-2). Let x ∈ B be fixed. Applying a Taylor expansion to T [q] around x and setting ξ = q− x
leads to

T [q] = T [x] +∇T [x]ξ + 1
2∇∇T [x](ξ ⊗ ξ)+ · · · .

Combining this with (1-6), we find

Lpd(x)=
∫
Hx

{T [x]〈ξ〉− T [q]〈−ξ〉} dVξ

=

∫
Hx

{
T [x]〈ξ〉−

(
T [x]〈−ξ〉+∇T [x]〈−ξ〉ξ + 1

2∇∇T [x]〈−ξ〉(ξ ⊗ ξ)+ · · ·
)}

dVξ .

Replacing ξ by −ξ , the first two terms in the integrand cancel. Bringing the gradient operator in the
third term of the integrand outside the integral yields

Lpd(x)=∇ ·
∫
Hx

T [x]〈ξ〉⊗ ξ dVξ −
1
2

∫
Hx

∇∇T [x]〈ξ〉(ξ ⊗ ξ) dVξ + · · ·

= Lps(x)−
1
2

∫
Hx

∇∇T [x]〈ξ〉(ξ ⊗ ξ) dVξ + · · · .

Using (3-3) to express the remainder in terms of the reference force state, and setting ξ = δm, this implies

Lpd(x)= Lps(x)−
δ

2

∫
H1

∇∇T 1[x]〈m〉(m⊗m) dVm+ · · · .

Since |m| ≤ 1, this proves (7-2). �

Because of (7-2), it follows that at the interface between subregions where Lps and Lpd are used in
the momentum balance, there are no ghost forces if the deformation is uniform (since T 1 is constant in
B).

In Figure 2, we present an example of the propagation of a stress pulse in a VSH bar. The horizon
increases from 0.1 on the left to 1.0 on the right through a transition region of thickness 0.1. The
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Figure 2. Stress pulse in a VSH bar: horizon as a function of position.
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Figure 3. Stress pulse in a VSH bar: time history of displacement at x =−10. The two
curves are for a fully peridynamic (PD) model, and for peridynamic with a partial stress
(PS) region surrounding the transition in δ. The PS curve has a different reflection than
the PD model.

numerical approximation method is discussed in the Appendix. An incident wave pulse is applied on the
left boundary. The total thickness of the pulse is 4.0, which is thin enough that we expect to see some
effect of nonlocality as the pulse moves into the high-δ region. Two cases are considered: (1) the full
peridynamic equation applied throughout the domain, and (2) the partial stress model applied in a region
containing and surrounding the transition region with the full peridynamic equation applied everywhere
else. In case (2), the total width of the partial stress region is 10. Figure 3 compares the time history of
the displacement at the point x =−10 for the two cases, showing both the incident and reflected pulses.
Evidently, the use of the partial stress model in the transition region reduces the reflections. Figure 4
shows the comparison at the point x = 10, showing the transmitted pulses, which are essentially the
same for both models. The change in shape of the transmitted pulse compared with the incident pulse
is primarily due to nonlocality: as δ increases, short wavelength components of the pulse experience a
lower wave speed. This effect of nonlocality on wave speed is reflected in the dependence on the horizon
of dispersion curves for linear waves [Silling and Lehoucq 2010; Seleson and Parks 2011].

This example illustrates that it is hopeless to try to find a coupling method that transmits waves without
reflection between regions with different horizons. However, as the example demonstrates, different
coupling methods can have different transmission and reflection properties that may be more or less
desirable for different applications.

8. Partial stress as an approximation to the local theory

In Section 7, the relationship between the partial stress and the full peridynamic versions of the internal
force density were discussed. Here, we investigate the approximate relationship between the partial stress
formulation and the local theory. The appropriate material model in the local theory uses the collapsed
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Figure 4. Stress pulse in a VSH bar: time history of displacement at x = 10. The
transmitted pulses are similar between the two models, with the primary effect being the
nonlocality of the material model.

stress tensor defined by (2-5), because, as shown in (6-5), it coincides with the partial stress for uniform
deformations.

Proposition 2. Let B be a homogeneous body (which implies constant δ). Let the reference material
model T̂ 1 be a continuously differentiable function (of the reference deformation state). Let y be twice
continuously differentiable in B. Then

νps
− ν0
= O(δ)O(‖∇T 1‖) in B, (8-1)

where νps and ν0 are defined by (6-1) and (2-5), and

Lps
− L0

= O(δ)O(‖∇∇T 1‖) in B, (8-2)

where Lps and L0 are defined by (6-2) and (2-6).

Proof of (8-1). Let x ∈ B be fixed. From (3-2) and a Taylor expansion of y around x,

Y 1[x]〈n〉 = δ−1( y(x+ δn)− y(x))

= δ−1(( y(x)+ δF(x)n+ 1
2δ

2
∇F(x)(n⊗ n)+ . . . )− y(x)

)
.

= F(x)n+ 1
2δ∇F(x)(n⊗ n)+ · · · .

Hence,

Y 1 = F+ O(δ)O(‖∇F‖), (8-3)

and similarly

∇Y 1 =∇F+ O(δ)O(‖∇∇F‖). (8-4)
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By the chain rule for Fréchet derivatives and (8-4),

∇T 1 = K •∇Y 1

= K • (∇F+ O(δ)O(‖∇∇F‖)), (8-5)

where K = (T̂ 1)Y 1 , that is, the Fréchet derivative of T̂ 1 (also known as the micromodulus double state
[Silling 2010]). From (8-5), it is immediate that

O(‖∇T 1‖)= O(‖∇F‖). (8-6)

From (8-3), (8-6), and a Taylor expansion of T̂ 1 near Y 1, it follows that

T̂ 1(Y 1)= T̂ 1(F)+K • (Y 1− F)+ · · ·

= T̂ 1(F)+ O(δ)O(‖∇F‖)

= T̂ 1(F)+ O(δ)O(‖∇T 1‖).

(8-7)

From (2-5), (6-4), and (8-7),

νps(x)=
∫
H1

T̂ 1(Y 1[x])〈n〉⊗ n dVn

=

∫
H1

(T̂ 1(F[x])〈n〉+ O(δ)O(‖∇T 1‖))⊗ n dVn

=

∫
H1

T̂ 1(F[x])〈n〉⊗ n dVn+ O(δ)O(‖∇T 1‖)

= ν0(x)+ O(δ)O(‖∇T 1‖),

which proves (8-1).
The proof of (8-2) is similar to that of (8-1), making use of the relations Lps

=∇ ·νps and L0
=∇ ·ν0.

�

Since T̂ 1 is constant in a VSH body under a uniform deformation, (8-1) and (8-2) imply (6-5), provided
the conditions of Proposition 2 are satisfied.

Comparing (7-1) with (8-1), and comparing (7-2) with (8-2), it follows that under the conditions of
Proposition 2 (which are stronger than those of Proposition 1),

νpd
− ν0
= O(δ)O(‖∇T 1‖) in B, (8-8)

Lpd
− L0

= O(δ)O(‖∇∇T 1‖) in B. (8-9)

This result is consistent with the conclusion in [Silling and Lehoucq 2008] that the collapsed internal
force density is the “local limit of peridynamics”.

9. A splice between two peridynamic subregions

Let two values of horizon be denoted by δ+ and δ−, and assume δ− ≤ δ+. Let a reference material model
T̂ 1 be given. Suppose, for a given deformation, two force state fields are computed everywhere using
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(3-3). For any x ∈ B, define

T+[x]〈ξ〉 :=
1

δ1+D
+

T̂ 1(Y 1[x])
〈

ξ

δ+

〉
and T−[x]〈ξ〉 :=

1

δ1+D
−

T̂ 1(Y 1[x])
〈

ξ

δ−

〉
.

Further suppose that B is divided into two disjoint subregions, B+ and B−, and assume that the internal
force density at any x ∈ B is given by

L(x)= Lsplice(x) :=

{∫
B{T+[x]〈q− x〉− T+[q]〈x− q〉} dVq if x ∈ B+,∫
B{T−[x]〈q− x〉− T−[q]〈x− q〉} dVq if x ∈ B−.

The resulting model of B is called a splice of the subregions B+ and B−.

Remark. A splice is not the same as a VSH body with δ(x) prescribed as a step function. The difference
is that in a splice, a point x near the interface “sees” the force states on the other side of the interface
corresponding to the same value of horizon as itself, δ(x). In contrast, in a VSH body, each point is
assigned a unique value of horizon, and the force state at each point is uniquely computed according to
that horizon.

In many applications, a splice provides a viable and convenient way to model a VSH body that has
piecewise constant values of horizon. It is immediate that a splice model has zero internal force density
under a homogeneous deformation, since the values of T+ and T− are constant throughout B+ and B−,
respectively. This implies that a splice model produces no ghost forces under a uniform deformation.
This is the main advantage of a splice over a VSH body. The splice is similar to an adaptivity concept
for 1D bond-based peridynamics proposed by Bobaru et al. [2009] and in 2D by Bobaru and Ha [2011].
A related approach has been used in the context of atomistic-to-continuum coupling by Seleson and
Gunzburger [2010].

It follows from Proposition 2 that in a splice, recalling that δ− ≤ δ+,

ν
pd
+ − ν

pd
− = O(δ+)O(‖∇T 1‖) on B

and
Lpd
+ − Lpd

− = O(δ+)O(‖∇∇T 1‖) on B,

provided that the conditions of Proposition 2 are satisfied.

10. Local-nonlocal coupling

The situation frequently arises that we wish to model most of a body using the classical (local) theory,
and only a small portion (such as in the vicinity of a growing crack) with peridynamics. A method
for achieving the transition between the two is referred to as local–nonlocal coupling. Methods that
have been proposed for local–nonlocal coupling include Arlequin [Han and Lubineau 2012], morphing
[Lubineau et al. 2012; Azdoud et al. 2013; 2014], and blending [Seleson et al. 2013a; 2015]. Liu and
Hong [2012] proposed a coupling method using interface elements. Methods that achieve coupling by
treating peridynamic bonds as finite elements are described in [Macek and Silling 2007] and [Oterkus
et al. 2012], which contains additional references. Related issues in nonlocal diffusion were investigated
by Seleson, Gunzburger, and Parks [2013b]. Wu [2014] investigated a local–nonlocal coupling method
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for correspondence materials in state-based peridynamics. An adaptive method for coupling peridynamic
and local regions is discussed by Wildman and Gazonas [2014].

One option for local–nonlocal coupling is to use the partial stress field as a bridge between local and
peridynamic subregions. In this approach, B is divided into three disjoint subregions B0, Bps, and Bpd.
To avoid ghost forces under a uniform deformation, δ > 0 is assumed to be constant in Bpd. Changes in
δ occur entirely within Bps, such that δ is continuous in B. (Recall from (6-5) that νps

≡ ν0 and Lps
≡ L0

where δ ≡ 0.) The internal force density is given by

L(x)=


Lpd(x) if x ∈ Bpd,

Lps(x) if x ∈ Bps,

L0(x) if x ∈ B0.

(10-1)

The convergence properties of this method are given by (7-2) and (8-2).
Another option for local–nonlocal coupling is to use the idea of a splice described in Section 9. The

body is divided into two disjoint subregions B0 and Bpd that use the local model and the full peridynamic
model (constant δ > 0), respectively. The internal force density in the splice model is given by

L(x)=
{

Lpd(x) if x ∈ Bpd,

L0(x) if x ∈ B0.
(10-2)

The convergence properties of such a splice model are given by (8-9).
These two options for local–nonlocal coupling differ primarily in the way they transmit waves whose

wavelength is smaller than or on the order of δ. As illustrated in the example in Section 7, the transition
from a local region to a nonlocal region involves a change in the dispersion properties of the material,
resulting in reflections of waves. However, because the partial stress coupling method (10-1) allows a
gradual change in length scale, it can be used to reduce wave reflections compared to the splice approach
(10-2). As discussed in the Appendix, numerical computation of Lps requires the suppression of zero
energy mode oscillations, similar to correspondence material models [Littlewood 2010; 2011; Breitenfeld
et al. 2014]. The root cause of these oscillations is the noninvertibility of ˆνps(Y), that is, there are many
possible deformations of the family that result in the same partial stress tensor.

As an example, we apply these two methods for local–nonlocal coupling to the problem of spall
initiated by the impact of two brittle elastic plates. The impactor has half the thickness of the target and
strikes the target from the left side. As shown in the wave diagram in Figure 5, the compressive waves
that issue from the contact surface between the impactor and the target eventually intersect each other
at the midplane of the target plate. When this happens, the waves, which by that time are both tensile,
reinforce each other to create a thin region where the stress is strongly tensile. Within this tensile region,
the strength of the material is exceeded and a crack forms. The formation of this crack creates release
pulses that move in both directions. The velocity induced by the rightward-moving release pulse as it
reflects from the free surface of the target bar can be measured using VISAR or other techniques [Field
et al. 2004]. With the help of analysis or computational modeling, the exact characteristics of the crack
release (or “pullback”) pulse can be interpreted using suitable data processing techniques to reveal the
dynamic strength properties of materials under strong tension (spall).

In the computational model of this spall experiment, the impactor and target plates have thicknesses
of 20 and 40, respectively. The numerical solution method is described in the Appendix. The impact
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Figure 5. Wave diagram for the impact of a plate (from the left) on a target plate. Waves
reinforce at the midplane of the target plate to cause fracture. Numbers in italics represent
particle velocity.

velocity is 0.1. The elastic modulus and density of both plates are 1. The reference material model T̂ 1
is chosen to be the bond-based prototype microelastic brittle (PMB) material model [Silling and Askari
2005] with a critical bond strain for failure of 0.04. The entire region is discretized into 1000 nodes.
The objective is to model the relatively small part of the body where damage can occur using the full
peridynamic equations. This peridynamic region is coupled to local regions using either of the following
two methods:

• Partial stress: a peridynamic region of thickness 10, centered at the midpoint of the target plate, is
enclosed by layers of thickness 4 where the partial stress method is applied. Beyond this, the local
equations are used. In the peridynamic and partial stress regions, the horizon is δ = 0.13.

• Splice: a peridynamic region of thickness 10 and horizon δ = 0.13, centered at the midpoint of the
target plate, is spliced to local regions.

For comparison, results using the full peridynamic model in the entire domain (δ = 0.13 throughout) are
also computed.

The computed velocity profile at time t = 70, using the splice method for local–nonlocal coupling,
is shown in Figure 6. Comparing this figure with the wave diagram in Figure 5, a number of salient
features may be seen. The crack appears as a sharp jump in velocity as a function of position at x = 40.



608 STEWART A. SILLING, DAVID J. LITTLEWOOD AND PABLO SELESON

Figure 6. Velocity as a function of position at t = 70 in the spall example problem using
the splice method for local–nonlocal coupling. There are no significant artifacts from
the local–nonlocal transitions, which are located at x = 37 and x = 43.
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Figure 7. Velocity history at the free (right) surface of the target plate, showing the
release pulse from the dynamic fracture occurring in the interior of the target bar. The
three curves are for fully peridynamic (PD), local–nonlocal coupling using partial stress
(PS), and local–nonlocal coupling using a splice.

The two release (pullback) pulses move away from the crack at the wave velocity, which is c = 1.0. In
Figure 5, the particle velocities are indicated with italic numbers. The computed velocity history at the
free surface is shown in Figure 7 for the two local–nonlocal coupling methods, partial stress (PS) and
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splice, along with the full peridynamic model. The dips in velocity represent the crack release pulse
created in the interior of the target due to spall.

As demonstrated in Figure 7, the three methods give nearly the same results in this example. However,
a fully peridynamic model in multiple dimensions would require a much higher computational cost than
either of the proposed local–nonlocal coupling methods, due to the large number of nonlocal interactions
required to discretize the material model. So, in multiple dimensions, in problems where damage is con-
fined to a small subregion, the splice or partial stress methods potentially offer a significant reduction in
computational cost, while avoiding ghost forces. This anticipated cost reduction is a primary motivation
for development of local–nonlocal coupling methods.

11. Discussion

In this paper, we proposed a notion of a homogeneous body (a “variable scale homogeneous” body) that
characterizes a peridynamic medium with variable horizon but constant bulk material properties. We
analyzed the origin and effect of ghost forces due to changes in the horizon in the full peridynamic model.
The importance of these ghost forces depends on the application; they may or may not be acceptable in a
computational simulation. These anomalies can be reduced by making δ(x) a smoothly varying function.

If the ghost forces under a uniform deformation are not acceptable, the partial stress field can be
used to effect a transition between regions with different horizons. The partial stress field appears in a
modified form of the equilibrium equation. The partial stress approaches the collapsed stress in the limit
of zero horizon, if the deformation is continuously differentiable. The collapsed stress, ν̂0(F), provides
a material model for the first Piola–Kirchhoff stress in the local formulation.

The partial stress formulation is not thermodynamically consistent in the sense that along a cyclic
loading path of a family in an elastic material, nonzero net work may appear:

∮
ˆνps(Y) · d F 6= 0. (11-1)

(An exception to this is a uniform deformation, in which case Y = F.) The root cause of this inconsistency,
which is evident in (11-1), is that the partial stress concept mixes local and nonlocal kinematics. The
partial stress is therefore not suitable as a basis for a general theory of continuum mechanics. The full
peridynamic theory, like the local theory, is thermodynamically consistent [Silling and Lehoucq 2010;
Oterkus et al. 2014a; 2014b], that is,∮

T̂ (Y) • dY = 0 and
∮
ν̂0(F) · d F = 0.

To connect subregions with constant δ to each other, or to achieve local–nonlocal coupling, subregions
can be connected using a splice. This method allows the peridynamic material model in each subregion
to “see” force states in the other subregion with the same horizon as itself. The methods proposed in this
paper may provide a means to reduce the computational cost of modeling a crack with peridynamics by
connecting it to a larger surrounding region that is modeled with the local theory.
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Appendix: Computational details

All the numerical examples in this paper involving nonlocal models used the method described in [Silling
and Askari 2005]. This method uses a midpoint quadrature rule in a Lagrangian discretization of the body.
The approximation in one dimension for the peridynamic internal force density is

Lpd
i =

∑
j∈Fi

(Ti j − T j i )V j ,

where i and j are node numbers, V j is the volume of node j , Fi is the set of nodes in the material family
of i , and

Ti j = T̂ (Y [xi ], xi )〈x j − xi 〉, T j i = T̂ (Y [x j ], x j )〈xi − x j 〉,

Y [xi ]〈x j − xi 〉 = y j − yi , Y [x j ]〈xi − x j 〉 = yi − y j .

The partial stress is computed as
ν

ps
i =

∑
j∈Fi

Ti j (x j − xi )V j .

The partial stress internal force density is approximated by

Lps
i =

ν
ps
i+1− ν

ps
i−1

21x
,

where 1x is the mesh spacing. For computations involving the PDEs of the local theory, the Piola
(collapsed) stress is approximated by the finite difference formula

ν0
i+1/2 = ν̂

0(Fi+1/2) with Fi+1/2 =
yi+1− yi

1x
.

where ν̂0 is the material model for the Piola stress. The internal force density in the local model is
approximated by

L0
i =

ν0
i+1/2− ν

0
i−1/2

1x
.

For dynamics, time integration is performed using explicit central differencing:

v
n+1/2
i − v

n−1/2
i = an

i 1t,

yn+1
i − yn

i = v
n+1/2
i 1t,

where 1t is the time step size. At time step n, the acceleration is computed from

ρan
i = Ln

i + bn
i + η

n
i ,

where L is either Lpd, Lps, or L0, ρ is mass density, b is a prescribed body force density, and η is a linear
artificial viscosity:

ηn
i = αρc1x(vn

i+1− 2vn
i + v

n
i−1),

where c is the wave speed and α is a dimensionless constant on the order of 1/4. The linear artificial vis-
cosity is effective in reducing zero energy mode oscillations that can appear due to the noninvertibility of
the partial stress tensor and, when a correspondence material model is used, of the peridynamic force state.
Other methods for controlling zero energy mode oscillations are described by Breitenfeld et al. [2014]
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and by Littlewood [2010; 2011]. The artificial viscosity ηn
i is not applied if the bonds from i to i + 1 or

i to i − 1 are damaged according to the material damage model at time step n. Otherwise, the artificial
viscosity would create nonphysical forces across a crack surface.
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A DYNAMIC ELECTRO-THERMO-MECHANICAL MODEL
OF DIELECTRIC BREAKDOWN IN SOLIDS USING PERIDYNAMICS

RAYMOND A. WILDMAN AND GEORGE A. GAZONAS

The electro-thermo-mechanical breakdown of dielectric solids is modeled using peridynamics to de-
scribe the brittle fracture of a material under high electric fields. A coupled electrostatic, elastodynamic,
thermodynamic model is used wherein electrostatic forces are computed and applied to the mechanical
model and temperature effects are included. Fracture is simulated using peridynamics, a reformulation
of elasticity that incorporates material failure. Coupling occurs between the electrostatic and mechanical
forces and also the electrical material properties: specifically, the Lorentz and Kelvin forces are used to
couple the electrostatic fields to the stress fields, conductivity is treated as nonlinear and a function of tem-
perature, and mechanical damage is used to alter the permittivity. Results demonstrate that the method is
capable of reproducing branching breakdown patterns seen in experiments using a deterministic method.

1. Introduction

Dielectric breakdown in a solid is a process involving the application of high voltage to a material,
which leads to a rapid increase in the conductivity and temperature of that material, ultimately resulting in
permanent material damage. In a solid material, an electromechanical breakdown process is accompanied
by high temperatures, melting, vaporization, and ionization of the material, as well as physical fractures
not necessarily associated with the rise in conductivity. Overall, dielectric breakdown represents a highly
coupled multiphysics problem that can be challenging for numerical methods to capture.

The simulation of dielectric breakdown was first addressed with the dielectric breakdown model
(DBM) or diffusion limited aggregation model [Niemeyer et al. 1984; Irurzun et al. 2002; Arshak
et al. 2008]. The DBM is a stochastic method capable of reproducing the fractal patterns seen in the
breakdown of various materials. Unfortunately, DBM is static and cannot reproduce breakdown velocity.
Several other models are similar in nature in that they use networks of circuit components to model
breakdown. These network models use fuse-like components that are destroyed when subjected to high
fields [Joshi et al. 2002; Boksiner and Leath 2003; Quiña et al. 2008]. In addition to simulation methods,
a simple relation between breakdown strength and a material’s elastic properties can be derived, giving
a rough estimate of electromechanical breakdown strength [Zebouchi and Malec 1998]. A coupled
thermal/electrostatic model is given by [Noskov et al. 2001], which couples conductivity to temperature
in a multiphysics model. A large field of study is focused on breakdown in thin films, in which a
percolation model can be used to develop statistical characteristics [Lloyd et al. 2005; Nigam et al.
2009]. Parallels have been made between dielectric breakdown and the brittle fracture of materials under
mechanical loading, leading to J-integral approaches [Beom and Kim 2008; Fan et al. 2009], a fracture
energy-based approach [Schneider 2013], and a charge-free zone model [Zhang and Xie 2013]. Most
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recently, sophisticated, coupled methods have been proposed, which model the evolution of charge in
gases [Chaudhury and Boeuf 2010] and liquids [Jadidian et al. 2013]. Finally, phase field modeling has
been used to model the dynamic character of breakdown in a solid [Pitike and Hong 2014].

Many of the early methods discussed above are quasistatic in that they strictly dictate the breakdown
velocity, though not the breakdown path. Most dynamic models are for thin films, which give accurate
breakdown statistics for those geometries. The method presented here most closely resembles the coupled
thermal/electrostatic model [Noskov et al. 2001], though here we extend that model through the addition
of mechanical fracture. Similarly to that approach, breakdown is simulated as a change in conductivity
and not using a specific breakdown field strength, such as that used in the phase field model [Pitike and
Hong 2014]. The phase field approach assumes a breakdown field strength as a material property, and
not as a measured quantity.

On the experimental side, dielectric breakdown can be difficult to study due to its short time scales and
high energies. Despite this, several studies illustrate breakdown with high-speed photography [Yamada
et al. 1990; Auckland et al. 1975; Budenstein 1980; Auckland et al. 1981]. Breakdown in solids has
been studied in detail in single crystals in [Neusel et al. 2012]. In addition, the combined mechanical
and electrical loading of glasses has been compared using fracture toughness, providing useful data for
validating numerical schemes [Yan et al. 2010].

In the proposed approach, peridynamics will be used to simulate mechanical failure of a solid material.
Peridynamics is a formulation of continuum mechanics that replaces the local divergence operators with
nonlocal integral operators to facilitate fracture modeling [Silling 2000]. It has been shown to capture
complex branching fracture patterns in brittle solids subjected to high mechanical loads [Ha and Bobaru
2010].

A method is proposed that uses a coupled peridynamic/finite difference method to model electrome-
chanical breakdown in solids. The method will couple electrostatic potential, elastodynamic fields, tem-
perature, and their constitutive models. Peridynamics is most readily discretized using a point-based
scheme, compatible with finite difference methods [Wildman and Gazonas 2014], which will be used
in the electrostatic simulation. In this model, thermal diffusion is ignored due to the short time scales
and low thermal conductivities of the dielectrics considered, though temperature increase due to Joule
heating is considered. Coupling occurs between the electrostatic forces and the elastic wave equation,
the mechanical damage and the permittivity, the temperature and the conductivity, and the electric field
and the conductivity [Flynn 1955; von Olshausen and Sachs 1981].

The remainder of the paper proceeds as follows: Section 2 discusses the coupled formulation including
the relevant physics and discretization. Section 3 presents numerical results including homogeneous mate-
rials and materials with randomized conductivity of varying levels. Finally, Section 4 concludes the paper.

2. Formulation

The formulation of the coupled model is presented in this section. First, peridynamics is discussed in
more detail, including its discretization and damage model. Next, the electrostatic solver is discussed,
which uses a staggered grid to compute the electrostatic potential. The thermal model is then described,
which only includes temperature increase due to Joule heating. Finally, the coupling of the various field
equations and constitutive models is summarized.
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2.1. Peridynamics. Peridynamics is a continuum model for brittle-elastic fracture [Silling 2000; Silling
et al. 2007; Emmrich and Weckner 2006], which (in its original, bond-based form) replaces the divergence
of the elastic stress tensor with an integral of a microforce function. It is characterized by a nonlocal
interaction region, in that the force at a given point in space is influenced by the action at surrounding
points at nonvanishing distances. The nonlocal region is governed by a specific size, or horizon, and it
can be shown that for certain formulations, in the limit as this horizon approaches zero, elastodynamics is
recovered [Silling and Lehoucq 2008; Lehoucq and Silling 2008]. For simplicity, a standard, bond-based
peridynamics approach is used here, and summarized below.

A standard, body-force-free formulation of continuum elastodynamics (incorporating thermal expan-
sion) can be stated as the partial differential equation

ρ
∂2

∂t2 u =∇ · τ , (1)

where bold type with an overbar represents a second-rank tensor, the stress τ is given by

τ = C : ε = C :
[ 1

2(∇u+ u∇)−α1T
]
, (2)

two overbars represent a fourth-rank tensor, 1T is the temperature difference relative to ambient, α is
the thermal expansion tensor, and C is a fourth-rank constitutive tensor. In 2D plane strain, the isotropic,
linear elastic constitutive tensor is given in Voigt notation by

C =

2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ

 , (3)

where Lamé’s parameters λ and µ are

λ=
Eν

(1+ ν)(1− 2ν)
(4)

and

µ=
E

2(1+ ν)
, (5)

and E is Young’s modulus and ν is Poisson’s ratio.
Peridynamics proposes to replace the divergence of the stress on the right-hand side of (1) with the

integral-based internal force formulation

ρ
∂2

∂t2 u =
∫

Hr

f (u′− u, r ′− r, T ) dV ′, (6)

where Hr is the horizon at point r and is typically spherical with radius δ and the microforce function
can be defined as

f (η, ξ , T )= c[s(η, ξ)−α1T ]
η+ ξ

‖η+ ξ‖
, (7)

with bond stretch s(η, ξ) given as

s(η, ξ)=
‖η+ ξ‖−‖ξ‖

‖ξ‖
, (8)
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c being a constitutive parameter, relatable to the elastic parameters as

c =
6E

πδ3(1− ν)
. (9)

Poisson’s ratio is restricted to ν = 1
3 for plane stress and ν = 1

4 for plane strain [Ha and Bobaru 2010], and
isotropic thermal expansion is modeled using the scalar thermal expansion coefficient α and temperature
(relative to ambient) 1T [Kilic and Madenci 2010; Oterkus and Madenci 2012; Oterkus et al. 2014].

Most importantly, peridynamics incorporates damage into its formulation by allowing for “bond-
breaking” or the removal of points from horizons under high strain. The typical damage criterion is
defined using the bond stretch s as

s−α1T > s0, (10)

where s0 can be related to the fracture energy G0 as [Ha and Bobaru 2010]

s0 =

√
4πG0

9Eδ
. (11)

If two bonds have a stretch that satisfies the inequality of (10), then those bonds are removed from each
other’s horizons. This approach is clearer in the discretized method, which will next be summarized.

Equation (6) is typically discretized in a pointwise fashion, wherein a domain is broken up into a
regular grid and quadrature is performed with a simple midpoint rule. This approach will also be adopted
here, though we will use exact quadrature weights at the edges of the horizon. In other words, where the
horizon intersects with a rectangular cell, the exact area of that cell will be used, rather than the area of
the entire cell as is sometimes used [Seleson 2014]. More specifically, (6) is discretized spatially as

ρ
∂2

∂t2 ui j =

Ni j∑
m,n|rmn∈Hri j

f
(
ηi j,mn, ξi j,mn,

1Ti j +1Tmn

2

)
Vi j,mn, (12)

where ui j = u(ri j ), ξi j,mn = ri j − rmn , ηi j,mn = ui j − umn , Vi j,mn is the area (or volume in 3D) of the
mn-th node in the horizon, Hri j , of node i j , and Ni j is the current number of nodes in the horizon of
node i j . (In this section, the indices i , j , m, and n are used, though the mechanical variables will be
solved on a staggered grid, offset by 1

2 in both directions. For compactness, the factor of 1
2 is dropped

here. For the actual locations of all field variables, see Figure 1.) Temporal derivatives are discretized

i + 1/2, j + 1/2

i, j 8

u, E, ε, σ, T

Figure 1. Staggered grid used for the numerical implementation, with variables labeled.
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using a velocity-Verlet method, resulting in the update equations

vk+1/2
= vk
+
1t
2

ak,

uk+1
= uk
+1tvk+1/2,

ak+1
=

FPD

ρ
,

vk+1
= vk+1/2

+
1t
2

ak+1,

(13)

where a = ∂2u/∂t2 is the acceleration, v = ∂u/∂t is the velocity, FPD is the internal force given as the
right-hand side of (12), and 1t is the time step size.

Finally, damage occurs when two nodes suffer a stretch exceeding the critical stretch (defined in (11))
and can be written in discretized form as

si j,mn =
‖ηi j,mn + ξi j,mn‖−‖ξi j,mn‖

‖ξi j,mn‖
−α

1Ti j +1Tmn

2
> s0. (14)

In this case, any nodes satisfying the damage criterion will be removed from each other’s horizons, thus
decreasing Ni j for each. In other words, node mn will no longer contribute to the internal force of node i j
in (12) (and vice versa). A damage parameter can then be defined as

di j = 1−
Ni j

N initial
i j

(15)

where N initial
i j is the initial number of bonds in the horizon of node i j .

2.2. Electrostatic model. As peridynamics is most easily discretized with a particle method, a finite
difference method is a natural choice for the electrostatic model. Here, the electrostatic forces will be
computed beginning with the quasistatic model

∇ · (σ (T, ‖E‖)∇8)+
∂

∂t
∇ · (ε∇8)= 0, (16)

where σ(T, |E|) is the conductivity and is a nonlinear function of the electric field and temperature, ε is
the permittivity, and 8 is the electrostatic potential [Koch and Weiland 2011]. Note that the electrical
material properties are time-varying. As stated above, (16) is a quasistatic model and can be derived by
starting from either Poisson’s electrostatic equation or the conservation of charge. In both cases, current
density is given by Ohm’s law, which has the form

J = σ E, (17)

where J is the current density. The quasistatic formulation used here is most appropriate for problems
with finite conductivity, rather than infinite or zero as is assumed in many electrostatic problems. This for-
mulation allows for a more accurate computation of charge and current flow, though no electromagnetic
waves are generated.

In order to simplify the solution of (16), the conductivity will be linearized after temporal discretization.
In other words, a Taylor series expansion will be used about the previous time step. For now, assume
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that the conductivity is given by either

σ(T, ‖E‖)= σ0 fm(T )eγ ‖E‖, (18)
or

σ(T, ‖E‖)= σ0eγ ‖E‖
+ fa(T ), (19)

where σ0 is the conductivity at low temperature and field, fm(T ) and fa(T ) are some functional depen-
dence on the temperature T , and γ is a parameter of the model. In addition, we assume coupling between
material damage d (defined in (15)) and permittivity, modeling the formation of voids. Here, we use a
linear relationship between damage and permittivity:

εi j = ε0[εr (1− di j )+ di j ], (20)

corresponding to a permittivity of εrε0 when di j = 0 and ε0 when di j = 1, where ε0 is the permittivity of
free space.

This model is spatially discretized using a staggered grid for the material properties and a weak form
given by ∮

∂�

σ∇8 · n̂ d`+
∂

∂t

∮
∂�

ε∇8 · n̂ d`= 0, (21)

where the material properties are assumed to be constant through the region � enclosed by the contour ∂�
with unit normal n̂. A region �i j is then rectangular with side lengths 1x and 1y, centered on the
point ri j . The electrostatic potential is then solved at each point ri j and denoted as 8i j . Applying a finite
difference approximation to ∇8, along with the assumption of constant material properties in each �i j

and equal grid spacing along both x and y (i.e., 1x =1y) gives the discretization

∇ · (a∇8)≈−A08i j + A18i+1, j + A28i, j+1+ A38i−1, j + A48i, j−1, (22)
where

A0 = ai+1/2, j+1/2+ ai+1/2, j−1/2+ ai−1/2, j+1/2+ ai−1/2, j−1/2,

A1 =
1
2(ai+1/2, j+1/2+ ai+1/2, j−1/2),

A2 =
1
2(ai−1/2, j+1/2+ ai+1/2, j+1/2),

A3 =
1
2(ai−1/2, j−1/2+ ai−1/2, j+1/2),

A4 =
1
2(ai+1/2, j−1/2+ ai−1/2, j−1/2)

(23)

and a is an inhomogeneous material property.
In addition to the above discretization, we require a finite difference approximation incorporating

an anisotropic material due to the linearization of the conductivity (discussed below). Generically, for
anisotropic materials, the first term of (21) becomes∮

∂�

(B∇8) · n̂ d`, (24)

where B is a second-rank tensor representing a generic anisotropic material property. The numerical
formulation for an isotropic material can then be extended by following the same assumptions, in partic-
ular that the materials and derivative approximations are constant along each part of the contour integral.
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Following this procedure leads to

∇ · (B∇8)≈−B08i j + B18i+1, j + B28i, j+1+ B38i−1, j + B48i, j−1, (25)

where

B0 =
1
2(b

xx
i+1/2, j+1/2+ bxx

i+1/2, j−1/2+ bxx
i−1/2, j+1/2+ bxx

i−1/2, j−1/2)

+
1
2(b

yy
i+1/2, j+1/2+ byy

i+1/2, j−1/2+ byy
i−1/2, j+1/2+ byy

i−1/2, j−1/2), (26)

B1 =
1
2(b

xx
i+1/2, j+1/2+ bxx

i+1/2, j−1/2)+
1
4(b

yx
i+1/2, j+1/2+ byx

i−1/2, j+1/2)

−
1
4(b

yx
i−1/2, j−1/2+ byx

i+1/2, j−1/2), (27)

with the remaining terms B2, B3, and B4 being derived similarly, and the bxx , bxy , byx , and byy are the
corresponding components of B.

The spatially discretized equation can then be written as

Dσ8+
∂

∂t
Dε8= 0, (28)

where Da is the discretized operator defined above and Dσ is a nonlinear function of the potential.
Because the permittivity is time-varying in this model, the above is rewritten

Dσ8+ D∂ε/∂t8+ Dε

∂

∂t
8= 0. (29)

An implicit backward Euler approximation can then be applied to the temporal derivatives, giving

(1t Dσ k + 2Dεk − Dεk−1)8k
= Dεk8k−1, (30)

where 1t is the time step size. Now, the nonlinearity in the conductivity can be linearized by expanding
the conductivity (given in (18) or (19)) times the electric field in a Taylor series about the field at the
previous time step, Ek−1:

σ(T k, ‖Ek
‖)Ek

≈ σ0 fm(T k)eγ ‖Ek−1
‖

[
Ek
+ γ

Ek−1
⊗ Ek−1

‖Ek−1‖
(Ek
− Ek−1)

]
, (31)

where ⊗ denotes a tensor outer product so that the second term behaves as an anisotropic material,
necessitating the use of (25)–(27). (Using the version of the conductivity given in (19) follows similarly.)
Noting that E =−∇8 and using the notation of (30), we find

(1t Dσ k
1
+1t Dσ k

2
+ 2Dεk − Dεk−1)8k

= (Dεk +1t Dσ k
2
)8k−1, (32)

where the conductivity terms Dσ k
1

and Dσ k
2

are the discretizations of the first and second terms of the
linearization in (31) as given by (22)–(23) and (25)–(27), respectively. After appropriate boundary con-
ditions are applied, (32) can be solved at each time step for the electrostatic potential.

Next, forces can be computed from the electrostatic potential by computing the electric field, E, charge
density, q =∇ · (εE), and polarization vector P and applying the Lorentz force

FL = q E (33)
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and the Kelvin polarization force
FK = P · ∇E, (34)

where the polarization vector P is given by

P = (ε− ε0)E, (35)

and ε is the permittivity of the dielectric [Lewis 1998]. The electric field E is computed from a finite
difference approximation of E =−∇8, and the charge density q is computed from a finite difference
approximation of Gauss’s law.

Another advantage of the staggered-grid approach adopted above is that we actually require the electric
field, not just the electrostatic potential. The electric field can be computed on the material grid as

x̂ · Ei+1/2, j+1/2 ≈−
8i+1, j+1−8i, j −8i, j+1+8i+1, j

21x
,

ŷ · Ei+1/2, j+1/2 ≈−
8i+1, j+1−8i, j +8i, j+1−8i+1, j

21y
.

(36)

The advantage here is that the potential 8 was computed on a grid offset from the grid used for the mate-
rial properties and hence the peridynamic simulation. The forces needed for the peridynamic simulation
must be computed by finite difference of the potential, so we can again take advantage of the offset grid
and use a central difference.

These electrostatic forces are then coupled to the mechanical simulation with the equation of motion

ρ
∂2

∂t2 u = FPD+ FL+ FK, (37)

where FPD represents the mechanical forces found on the right-hand side of (12).
A simplifying assumption used here is that the mechanical displacement does not couple to the elec-

trostatic simulation. In other words, relative motion implied by any nonzero displacement is ignored in
the computation of the electrostatic potential.

2.3. Thermal model. Typically, the heat equation for a coupled thermomechanical problem will include
terms depending on mechanical heating, diffusion, and any heat sources. Here, the thermodynamics
of the model is dominated by Joule heating, so mechanical heating is ignored. Also, due to the short
time scales and low thermal conductivities of most dielectric materials, thermal diffusion can be ignored.
Joule heating is then defined as

Q = J · E, (38)

where Q is the power generated per unit volume due to current density J . The conduction current density
is then given by (17), giving

Q = σ‖E‖2. (39)

The temperature at a point in space can be computed by summing the power at each point via

∂

∂t
T =

1
cpρ

Q, (40)
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where cp is the specific heat capacity of the material at constant pressure and ρ is again the mass density.
An explicit forward Euler discretization of the above gives

T k+1
= T k

+
1t
cpρ

Q. (41)

The temperature is also used to alter material properties, specifically conductivity. Typically, an
Arrhenius-type relation is used for temperature-conductivity coupling [Boggs and Kuang 1998; Noskov
et al. 2001], which has a temperature dependency of exp(−aT−1). This type of temperature dependence
can be included as an additive term to the conductivity as

fa(Ti j )=

{
σ1e−β1T−1

i j , Ti j < Tv,

σ2e−β2T−1
i j , Ti j ≥ Tv,

(42)

where two phases can be included depending on the temperature. The parameters σ1, σ2, β1, β2, and Tv

are given.
In addition, a basic exponential-type multiplicative model can be stated as [Nyberg et al. 1975]

fm(Ti j )=


1, Ti j < Tm,

eβ(Ti j−Tm), Tm ≤ Ti j < Tv,

fmax, Ti j ≥ Tv,

(43)

where the coefficient β is given by

β =
log( fmax)

Tv− Tm
. (44)

In addition, if the temperature exceeds Tv, the conductivity is fixed at a maximum value, which will be
σ = 106 S m−1 throughout. In this model, the temperatures Tm and Tv may then refer to phase changes at
which it may be expected that temperature influences the conductivity of the material. Temperature Tm

is used to indicate the point at which the temperature begins to affect conductivity, and temperature Tv

is the point at which temperature no longer influences conductivity.
Several coupled effects are ignored in the current model. Specifically, neglected but expected first-

or second-order effects include the mechanical material properties dependence on temperature and the
energy required to complete phase changes. Here, mechanical material properties (including the damage
criterion) are not dependent on temperature while typically a material will soften as it approaches its
melting point. In this model, temperatures may span all states of matter for a given material, so accurate
material temperature-dependent models may be difficult to find in the literature. Also, phase changes and
the energy required to complete a phase change are also ignored. A phase change from solid to liquid will
of course change the governing equation of motion, though in this model, typically if the temperature
rises above a certain point, enough damage has already been accumulated so that the material is not
effectively behaving as a solid. Also, equations of state are not used to model gas pressure exerted on
the damaged material. These effects will be considered in a future implementation. Other effects that
may not be as significant include the dependence of the electrostatic potential on deformation, thermal
diffusion, and the heat generated by mechanical deformation.
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2.4. Algorithm summary. The algorithm sequence can be summarized as follows.

(1) Specify any initial electrical material properties given by the problem geometry, and compute initial
potential.

(2) Update the displacement and velocity based on acceleration using (13).

(3) Update the temperature using (41).

(4) Compute the damage due to bond-breakage using condition (14) and the internal forces FPD.

(5) Update the permittivity based on the damage using (20).

(6) Update the conductivity based on the electric field and temperature using (31).

(7) Compute the electrostatic potential (8) from (16), with specified initial and boundary conditions.

(8) Compute the electrostatic forces from the potential (FL and FK) with (33) and (34).

(9) Update the velocity and acceleration using the all forces FPD, FL, and FK.

(10) Repeat starting at Item (2).

In addition, Figure 2 illustrates the time-stepping process: arrows indicate the dependence of variables
at various points in the algorithm. The algorithm progresses to the right (increasing k) and upward on
the diagram as indicated by the arrows.

In both simulations (electrostatic and peridynamic), the spatial grid and time step size are the same,
though the electrostatic potential is solved on an offset grid (see Figure 1). In this case, the time step
size is governed by the requirements of the peridynamic simulation, which has a Courant-like stability
condition [Silling and Askari 2005], and the accuracy of the linearization of the conductivity as given
in (31). The spatial grid size is determined by the input geometry, as typically sharp features are re-
quired to produce a high electric field necessary for breakdown. Though this approach is deterministic,
some random noise may be added to the electrical material properties to generate stochastic breakdown
patterns.

k k+ 1/2 k+ 1

k k+ 1/2 k+ 1

k k+ 1/2 k+ 1

k k+ 1/2 k+ 1

k k+ 1/2 k+ 1

a, v

E,8 σ, ε,8, E, FL, FK

d, FPD

E, σ T

a, v v u

Figure 2. Schematic diagram of the time-stepping sequence.
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Mechanical: ρ = 2400 kg m−3; E = 72 GPa; δ = 0.15 mm; G0 = 5 J m−2

Electrical: ε0 = 8.85× 10−12 F m−1; εr = 20; σ0 = 10−19 S m−1

Thermal: cp = 800 J kg−1 K−1; Tm = 500 K; Tv = 1000 K

Coupled: α = 9× 10−6 K−1; fmax = 100; γ = 5× 10−8 m V−1

Table 1. Physical constants.

Field equations. The relevant field equations are summarized as three unknowns (u, 8, and T ) and the
three equations

ρ
∂2

∂t2 u = FPD+ FL+ FK, (45)

∇ · (σ (T, ‖E‖)∇8)+
∂

∂t
∇ · (ε∇8)= 0, (46)

∂

∂t
T =

1
cpρ

Q. (47)

Each equation is discretized spatially using either finite differences or a grid-based mesh-free approach.
Temporal discretizations are also finite difference-based, though the electrostatic equation uses backward
Euler, the peridynamic equation uses velocity Verlet, and the thermodynamic equation uses forward
Euler.

Constitutive models. The coupled constitutive models (using the multiplicative form of the temperature-
conductivity coupling) are summarized as

εi j = ε0[εr (1− di j )+ di j ], (48)

σ k
i j = σ0 fm(T k

i j )e
γ ‖Ek−1

i j ‖

[
Ek

i j + γ
Ek−1

i j ⊗ Ek−1
i j

‖Ek−1
i j ‖

(Ek
i j − Ek−1

i j )

]
, (49)

fm(Ti j )=


1, Ti j < Tm,

eβ(Ti j−Tm), Tm ≤ Ti j < Tv,

fmax, Ti j ≥ Tv.

(50)

In total, the permittivity depends on the damage (which depends on the mechanical deformation) and the
conductivity depends on the temperature and electric field. The thermal properties (thermal conductivity
and specific heat) are not coupled in this model, and neither are the mechanical properties.

Constants. Finally, the physical constants encompass the typical constants for the electrical, thermal, and
mechanical properties, as well coupling constants needed in the constitutive models listed above. Typical
values of these constants are given in Table 1 and will be used in Section 3 unless specified otherwise. The
mechanical constants, thermal expansion coefficient, and heat capacity used here resemble a soda-lime
glass, while the electrical and other coupling coefficients are chosen arbitrarily. Some constants, such
as the coupling coefficient γ , can be difficult to find in the literature for many materials, so reasonable
values are assumed. In addition, the effect of the temperature-conductivity coupling coefficient fmax is
studied below. Future work will include validation of the model with experiments.
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3. Numerical results

Several numerical results will be presented in this section. Throughout, a point-plane geometry will be
analyzed using the material properties listed in Table 1. In addition to the homogeneous material case,
randomized conductivity will be demonstrated. Discretization refinement will also be explored. Finally,
the effect of the temperature-conductivity coupling coefficients will be studied.

In each example, the voltage of the ground plane is fixed at 0, the point probe is held at a voltage
described below, and (for simplicity) the remaining sides are treated as homogeneous Neumann boundary
conditions. In each case, the voltage given (Vmax) is the maximum voltage following an exponential ramp,
according to

8probe(t)= Vmax(1− e−t/τ ), (51)

where the time constant is τ = 0.3µs in each case.

3.1. Uniform material properties: weak temperature dependence. A point-plane-type geometry was
simulated first with uniform material properties, wherein a point probe of length 2.5 mm and width
150µm was suspended above a ground plane separated by a distance of 7.5 mm. The simulation region
was 10 mm×10 mm. The material properties listed in Table 1 were used along with a spatial discretization
of 1x = 1y = 50µm and a temporal discretization of 1 ns. The simulation was run for 5000 time
steps (5µs) for two different maximum voltages. First, a maximum voltage of 3 MV was used with
the mechanical fracture damage shown in Figure 3, left. The electric field at the final time is shown in
Figure 3, right, in units of V m−1.

A maximum voltage of 4 MV was simulated next, using a spatial discretization of 1x =1y = 40µm,
peridynamic horizon of δ = 0.12 mm, and the same temporal discretization and material properties as
above. Figure 4, left, shows the damage after 5µs, Figure 4, right, shows the magnitude of the electric
field, and Figure 5 shows the conductivity on a logarithmic scale. Clearly, the increased maximum voltage
leads to higher damage in the material. Also note that, due to the weak dependence of the conductivity
on temperature, the fractures observed are not associated with high conductivity. This is in contrast to
typical dielectric breakdown models in which all breakdown or material damage is associated with high
conductivity. Stronger dependence of conductivity on temperature is explored in a subsequent subsection.

Figure 3. Mechanical damage including point electrode (left) and electric field (right)
after 5µs with Vmax = 3 MV.
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Figure 4. Mechanical damage including point electrode (left) and electric field (right)
after 5µs with Vmax = 4 MV.

Figure 5. Conductivity after 5µs with Vmax = 4 MV.

3.2. Randomized conductivity: weak temperature dependence. A random, background conductivity
will be added following a Gaussian distribution. The distribution will set the exponent of the conductivity
so that the actual conductivity is exponentially related to the random distribution. More specifically, the
randomized background conductivity is set as

σ0(ri j )= σm + 10R(σm ,ω), (52)

where σm = 10−19 is the base material’s conductivity and R(µ, ω) is a random variable from Gaussian
distribution with mean µ and standard deviation ω. The standard deviation will be varied to alter the
background conductivity.

First, a maximum voltage of 3 MV was simulated (using the same discretization as the 3 MV example
above) with a standard deviation of ω = 6 used to alter the background conductivity. The results after
5µs are shown in Figure 6 (damage and conductivity). By comparison with Figure 3, left, it can be seen
that the damage pattern is similar in extent, though its path is altered by the randomized conductivity.

Next, a maximum voltage of 4 MV was simulated again using the same discretization and material
properties as the 4 MV above. The background conductivity was again randomized using a standard
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Figure 6. Mechanical damage including point electrode (left) and conductivity on a log
scale (right) after 5µs with Vmax = 3 MV with randomized background conductivity.

Figure 7. Mechanical damage including point electrode (left) and conductivity on a log
scale (right) after 5µs with Vmax = 4 MV with randomized background conductivity.

deviation of ω = 6, though the actual distribution of conductivity is not the same as the above example.
In other words, the conductivity was generated using a different seed for the random number generator.
Figure 7 shows the damage after 5µs (left) and the conductivity on a logarithmic scale (right).

3.3. Discretization refinement. The above test with a maximum voltage of 4 MV was repeated, though
now with a time step size of 1t = 0.5 ns. The resulting damage is shown in Figure 8, left. As can be
seen by comparing with Figure 4, left, the damage pattern is stable between the two time step sizes.

Next, the breakdown simulation was run with a spatial discretization of 1x = 1y = 33.33µm, a
peridynamic horizon of δ = 0.1 mm, and a time step size of 1t = 1 ns. In this case, the width of the
point probe had to be reduced to 100µm to conform to the computational grid. Nevertheless, the results
show a stable fracture pattern (Figure 8, right) compared with the coarse discretization.

3.4. Strong temperature dependence. Due to positive feedback, increasing the temperature-conductivity
coupling coefficient ( fmax or β) leads to much higher temperatures than those seen in the previous ex-
amples. The model is not formulated to couple temperature to all relevant material properties (e.g.,



A DYNAMIC ELECTRO-THERMO-MECHANICAL MODEL OF DIELECTRIC BREAKDOWN IN SOLIDS 627

Figure 8. Mechanical damage including point electrode after 5µs with Vmax = 4 MV
using a time step size of 1t = 0.5 ns (left) and using a spatial step size of 1x =1y =
33.33µm (right).

mechanical properties), so a first approach is to limit the maximum Joule heating power allowed in the
simulation. In this section, a maximum heating power of Q = 1016 W is used. An immediate effect
seen if higher temperatures are allowed is that the thermal expansion can lead to rapid degradation of the
material and instability in the simulation.

In this example, the temperature-conductivity coupling coefficient was raised to fmax = 106. Uni-
form material properties were used with the coarse discretization in both space and time of the 4 MV
example above. A maximum voltage of 4 MV was simulated, giving the damage seen in Figure 9. With
the increased coupling coefficient, the damage pattern has changed and now has an additional branch
originating at the ground plane.

3.5. Additive temperature-conductivity model. Finally, the additive form (see (42)) of the temperature-
conductivity coupling is tested. The parameters used are transition temperature Tv = 1000 K, base
conductivities of σ1 = 104 S m−1 and σ2 = 3× 104 S m−1, and exponents of β1 = 1.2× 104 K−1 and

Figure 9. Mechanical damage including point electrode after 5µs with Vmax = 4 MV
using a temperature-conductivity coupling coefficient of fmax = 106.
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Figure 10. Mechanical damage including point electrode (left) and temperature distri-
bution (right) after 5µs with Vmax = 4 MV using the additive temperature-conductivity
coupling model.

β2 = 1.2× 103 K−1. The simulation was run with both a maximum voltage of 3 MV and 4 MV. With a
maximum voltage of 3 MV and 4 MV, the resulting damage was similar to that given above for the weak
temperature dependence. The damage after 5µs for a maximum voltage of 4 MV is shown in Figure 10,
left. The temperature after 5µs is shown in Figure 10, right, illustrating that, while there is mechanical
fracture in the material, a highly conductive region has not propagated completely through the material.

4. Conclusions

A coupled electrostatic, thermodynamic, elastodynamic model of dielectric breakdown in solids was pre-
sented. The method uses a finite difference solver to compute the electrostatic potential due to an applied
voltage. The Lorentz and Kelvin forces couple the electric field to the mechanical forces, thus generating
stress in the solid. Peridynamics is used to then simulate the mechanical fracture of the material due to
high strains. The electrical permittivity is coupled to the damage, and a nonlinear conductivity is used
to model the effects of high electric fields. Finally, temperature is considered in the model using Joule
heating as the heat source, and thermal expansion and temperature effects on the electrical conductivity
are considered. Results show mechanical fracture patterns consistent with those seen in brittle solids
undergoing dielectric breakdown. In addition, discretization refinement was performed and shows that
the proposed method generates stable fracture patterns. Several additions to the model are possible,
for example, coupling of temperature to mechanical material properties, deformation to electrostatic
potential, and more realistic phase changes.
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