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STRESS AND DISPLACEMENT ANALYSIS OF AN AUXETIC QUARTER-PLANE
UNDER A CONCENTRATED FORCE

PAWEŁ FRITZKOWSKI AND HENRYK KAMIŃSKI

The problem of a quarter-space under distributed normal and shear loads is considered. A mathematical
model is formulated for the plane strain state. Theoretical background of the Mellin integral transform
and calculation of residues is outlined. An analytical procedure involving the Mellin transform is pre-
sented for the general reduced problem of a quarter-plane. Numerical computation of residues allows for
evaluation of the inverse transforms for the displacements and stresses. Simulation results are obtained
for a special load case: a concentrated force. The deformation of the loaded boundary is analyzed for
various values of Poisson’s ratio. It turns out that auxetics exhibit locally negative stiffness, which leads
to an anomalous behavior of the system. A simple explanation of the unusual deformation mechanism
is proposed. The semianalytical solutions are compared with the results obtained by means of the finite
element method.

1. Introduction

In the framework of the classical elasticity theory, a number of fundamental problems have been formu-
lated in unbounded domains such as infinite or semi-infinite space. Prominent examples of this kind are
the Boussinesq and the Cerruti problems: an elastic half-space under a normal or tangent concentrated
force, respectively [Sadd 2005; Saada 1993; Nowacki 1970]. Usually the specific domain character
enables one to apply certain analytical procedures like the complex variable method or the integral trans-
form method (e.g., Laplace or Fourier transform), which can lead to closed-form solutions. Very often
it requires considerable model simplifications, e.g., by using the plane stress or plane strain assumption.
Nevertheless, such theoretical studies still provide significant information about more practical problems
related to, among others, fracture and contact mechanics [Sadd 2005; Saada 1993; Timoshenko and
Goodier 1951; Johnson 1985].

Nowadays, in the era of modern computational tools, mostly based on the finite element method, the
classical elasticity problems and analytical approaches seem to be of less importance. However, they
remain a helpful means of preliminary studies of unconventional systems whose anomalous behavior
goes beyond the well-known theoretical solutions. One such example is auxetics, i.e., materials with
negative Poisson’s ratio, ν < 0. Indeed, for decades scientists and researchers have been mainly focusing
on traditional engineering materials for which usually 0.25< ν < 0.35. But even today, despite numerous
present and potential applications of auxetics (e.g., in aerospace, biomedical and military engineering),
and constantly developed techniques for their manufacture [Prawoto 2012; Alderson and Alderson 2007],
the behavior and mechanical properties of these materials are not intuitive. Therefore, the authors of
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Figure 1. Elastic quarter-space with a loaded surface: (left) the primary, three-dimensional
problem and (right) the reduced problem of a quarter-plane.

excellent review papers not only report auxetics-related advances in research and technology but also
thoroughly discuss the concept and physical significance of Poisson’s ratio [Greaves et al. 2011] as well
as deformation mechanisms of auxetic systems [Evans and Alderson 2000; Prawoto 2012]. It should be
noted that the classical theory of elasticity places the following bounds on Poisson’s ratio of isotropic
materials [Sadd 2005; Greaves et al. 2011]: −1< ν < 1/2.

This paper is devoted to stress and deformation analysis of an elastic solid quarter-space subjected to
a line-distributed loading. Due to the plane strain state, the problem is reduced to a static analysis of a
quarter-plane under a concentrated force. A semianalytical approach is used to solve the displacement
field equations. More precisely, the Mellin transform technique is applied in combination with a numer-
ical calculation of residues. The main aim of this work is to investigate the effect of Poisson’s ratio on
deformation of the loaded surface and report on an application of the Mellin transform that has been
rather rarely employed in computational practice.

The paper is divided into six sections. In Section 2, a mathematical formulation of the problem is
presented. Section 3 outlines the concept of the Mellin integral transform and computation of residues.
In turn, a general solution procedure of the stated problem is specified in Section 4. Section 5 contains
simulation results and discussion. Conclusions and final remarks are given in Section 6.

2. Formulation of the problem

Let us consider the generalized problem of an elastic quarter-space shown in Figure 1, left. The vertical
boundary half-plane is fixed, while the horizontal one is free and subjected to distributed normal and
shear loads: P(x) and T (x), respectively. The solid material occupying the domain is assumed to be
homogeneous, isotropic and linear, and it is characterized by shear modulus G and Poisson’s ratio ν. In
the case of auxetics, ν < 0.

Since the support and loading conditions are independent of the z coordinate, the spatial problem can
be reduced to two dimensions (see Figure 1, right). Accordingly, the plane strain formulation is used
below. Now, we focus on a quarter-plane, i.e., the region with semi-infinite boundaries:

�=

{
0≤ x <∞,
0≤ y <∞.

(2-1)
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It can be actually treated as a domain in the shape of a right-angle infinite wedge. Therefore, the mathe-
matical model is formulated in a polar coordinate system (r, ϕ).

Let u(r, ϕ)= [ur , uϕ]T be the displacement vector, where ur and uϕ denote its radial and tangential
components. The strain-displacement relations involving only the in-plane strains have the forms

εr =
∂ur

∂r
, εϕ =

1
r

(
ur +

∂uϕ
∂ϕ

)
, εrϕ =

1
2

(
1
r
∂ur

∂ϕ
+
∂uϕ
∂r
−

uϕ
r

)
. (2-2)

From Hooke’s law, the corresponding stress components are given by

σr = λ(εr + εϕ)+ 2µεr , σϕ = λ(εr + εϕ)+ 2µεϕ, σrϕ = 2µεrϕ, (2-3)

where λ and µ are Lamé constants:

λ=
2Gν

1− 2ν
, µ= G. (2-4)

Finally, in the case of zero body forces, the Navier–Lamé equations reduce to [Nowacki 1970; Sadd 2005]

µ

(
∇

2ur −
ur

r2 −
2
r2

∂uϕ
∂ϕ

)
+ (λ+µ)

∂

∂r

(
1
r
∂

∂r
(rur )+

1
r
∂uϕ
∂ϕ

(rur )

)
= 0, (2-5a)

µ

(
∇

2uϕ −
uϕ
r2 −

2
r2

∂ur

∂ϕ

)
+ (λ+µ)

1
r
∂

∂ϕ

(
1
r
∂

∂r
(rur )+

1
r
∂uϕ
∂ϕ

(rur )

)
= 0. (2-5b)

Moreover, for the given quarter-plane problem, the unknown vector-valued function u(r, ϕ) must
satisfy the following mixed boundary conditions:

ur (r, 0)= uϕ(r, 0)= 0 (displacement conditions), (2-6a)

σϕ(r, π/2)= P(r) (traction condition), (2-6b)

σrϕ(r, π/2)= T (r) (traction condition). (2-6c)

Thus, the resulting mathematical model consists of the system of coupled partial differential equations
(2-5) together with four boundary conditions (2-6).

The boundary value problem is not of a simple nature. To solve it analytically, we apply operational
calculus with the Mellin transformation method. Owing to the fact that this mathematical tool is less
commonly used than other integral transforms (e.g., the Fourier or Laplace transforms), basic theoretical
concepts are outlined in the next section.

3. Mathematical background

In literature one can find a few applications of the classical Mellin transform to plane elasticity problems.
Sneddon [1951] considered an infinite elastic wedge subjected to surface stresses. Consequently, the
author used the stress formulation and an Airy stress function. A similar approach for a finite wedge was
employed by Tsamasphyros and Theocaris [1979]. They obtained the stress function as an asymptotic
expansion of the complex inversion integral. More recently, Martin [2003] analyzed the problem of a
composite elastic half-plane, made from two isotropic quarter-planes, subjected to a concentrated force.
An exact solution was constructed using Mellin transforms and the Melan solution for a homogeneous
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half-plane. Moreover, the Mellin transform was applied to some fracture and contact problems for wedge-
shaped domains; see, e.g., [Erdogan and Arin 1976; Theocaris and Makrakis 1987]. In these cases,
understandably, the stress formulation was preferable too.

The information given below is a concise selection from many handbooks devoted to both mathemat-
ical theory and applications. The interested reader is referred especially to [Kącki 1992; Bateman 1954;
Debnath and Bhatta 2007].

Let f (x) be a function of a real variable x . The Mellin integral transform of f is defined by

f̃ (s)=
∫
∞

0
f (x)x s−1 dx, (3-1)

where s is a complex variable. In further considerations, the transform will be denoted symbolically by

f̃ (s)=M[ f (x)]. (3-2)

The inverse Mellin transform, in turn, is defined formally as

f (x)=M−1
[ f̃ (s)] =

1
2π i

∫ c+i∞

c−i∞
f̃ (s)x−s ds, (3-3)

where i is the imaginary unit and c lies on the complex plane in the strip of analyticity of the function f̃ (s).
Additionally, for further purposes, two operational properties of the Mellin transform are listed below:

• Suppose that f̃ (s) is defined by (3-2) and there exists the Mellin transform of

g(x)=
(

x
d

dx

)n

f (x). (3-4)

Then
M[g(x)] = (−s)n f̃ (s). (3-5)

• Let f (x, y) be a function of two variables. If

Mx [ f (x, y)] = f̃ (s, y) (3-6)

is the Mellin transform of f with respect to x , then

Mx

[
∂n f (x, y)
∂yn

]
=
∂n f̃ (s, y)
∂yn . (3-7)

Suppose that f (x) is an unknown solution of a given problem. Moreover, let g(s) = f̃ (s) be its
Mellin transform, i.e., the solution of the problem transformed by means of the direct transformation.
Obviously, the inverse Mellin transform is used to recover f from g. In practice, the complex integral
(3-3) can be calculated by applying Cauchy’s residue theorem. Accordingly, if D is a region bounded by
a simple closed contour C and g(s) is analytic in D, except for a finite number of isolated singularities
at s1, s2, . . . , sn , then the counterclockwise contour integral∮

C
g(s) ds = 2π i

n∑
k=1

Res[g(s), sk], (3-8)

where Res[g(s), sk] denotes the residue of g(s) at sk [Bronsztejn et al. 2009; Kaplan 2002].
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As can be seen, calculating residues of the direct transform is crucial to an efficient evaluation of the
inverse transform. In particular, the following rule is indispensable in computational practice: if g(s) is
a function of the form

g(s)=
p(s)
q(s)

(3-9)

and it has a pole of first order at s0, then

Res[g(s), s0] =
p(s0)

q ′(s0)
. (3-10)

The outlined Mellin transform method together with a numerical computation of residues allow for a
semianalytical treatment of the quarter-plane problem, which is discussed in the next sections.

4. General analytical procedure

4A. Transformation of the problem. Let ũr and ũϕ denote the Mellin transforms of the displacements
with respect to the polar coordinate r , that is,

ũr (s, ϕ)=Mr [ur (r, ϕ)], ũϕ(s, ϕ)=Mr [uϕ(r, ϕ)]. (4-1)

Multiplying the governing equations (2-5) by r2 and using the properties (3-5) and (3-7) yields the
following transformed pair:

µ
∂2ũr

∂ϕ2 + (λ+ 2µ)(s2
− 1)ũr − [s(λ+µ)+ (λ+ 3µ)]

∂ ũϕ
∂ϕ
= 0, (4-2a)

(λ+ 2µ)
∂2ũϕ
∂ϕ2 +µ(s

2
− 1)ũϕ − [s(λ+µ)− (λ+ 3µ)]

∂ ũr

∂ϕ
= 0. (4-2b)

It should be noted that these equations are much simpler than the original ones.
Next, consider the stress-displacement relations that can be obtained by inserting (2-2) into (2-3).

Transformations of the stress components multiplied by r

t̃r (s, ϕ)=Mr [rσr (r, ϕ)],

t̃ϕ(s, ϕ)=Mr [rσϕ(r, ϕ)],

t̃rϕ(s, ϕ)=Mr [rσrϕ(r, ϕ)]

become

t̃r (s, ϕ)= [λ− s(λ+ 2µ)]ũr + λ
∂ ũϕ
∂ϕ

, (4-3a)

t̃ϕ(s, ϕ)= [(λ+ 2µ)− sλ]ũr + (λ+ 2µ)
∂ ũϕ
∂ϕ

, (4-3b)

t̃rϕ(s, ϕ)= µ
[
−(s+ 1)ũϕ +

∂ ũr

∂ϕ

]
. (4-3c)
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Now, boundary conditions (2-6) can be converted to

ũr (s, 0)= ũϕ(s, 0)= 0 (displacement conditions), (4-4a)

t̃ϕ(s, π/2)= P̃(s) (traction condition), (4-4b)

t̃rϕ(s, π/2)= T̃ (s) (traction condition), (4-4c)

where
T̃ (s)=Mr [rT (r)], P̃(s)=Mr [r P(r)]. (4-5)

To sum up, after the transformation the boundary value problem comprises the equilibrium equations
(4-2) and associated boundary conditions (4-4).

4B. Solution of the problem. Due to its relatively simple form, the transformed problem can be solved in
a quite conventional way. For the second-order partial differential equations (4-2), one can suppose that

ũr (s, ϕ)= C1ehϕ, ũϕ(s, ϕ)= C2ehϕ, (4-6)

where C1 and C2 are real constants, while h is a complex parameter to be determined. Inserting (4-6)
into (4-2) leads to a system of two characteristic equations. All their roots are complex:

h1 = i(s+ 1), h2 =−i(s+ 1), h3 = i(s− 1), h4 =−i(s− 1).

Hence, the solution is given by

ũr (s, ϕ)= A11 sin [(s+ 1)ϕ] + B11 cos [(s+ 1)ϕ] + A12 sin [(s− 1)ϕ] + B12 cos [(s− 1)ϕ], (4-7a)

ũϕ(s, ϕ)= A21 sin [(s+ 1)ϕ] + B21 cos [(s+ 1)ϕ] + A22 sin [(s− 1)ϕ] + B22 cos [(s− 1)ϕ], (4-7b)

where A11, B11, A12, . . . , A22 are real constants. As can be ascertained by substitution, in order to satisfy
(4-2), the relations

A21 = B11
η1s− η3

η1s+ η3
, A22 = B12, B21 =−A11

η1s− η3

η1s+ η3
, B22 =−A12 (4-8)

must be fulfilled, where auxiliary parameters are introduced for notational brevity:

η j = λ+ jµ, j = 1, 2, 3.

The next four constants can be determined from the prescribed boundary conditions. Taking into consid-
eration (4-4a) produces

B12 =−B11, A12 =−A11
η1s− η3

η1s+ η3
. (4-9)

Similarly, the traction conditions (4-4b) and (4-4c) require

A11 =−
T̃ (η1s+ η3)+ 4B11µs(η1s+ η2) cos ( 1

2πs)

4µs(η1s−µ) sin (1
2πs)

,

B11 =−
(η1s+ η3)

[
P̃(η1s−µ) sin ( 1

2πs)+ T̃ (η1s+ η2) cos ( 1
2πs)

]
2µs

[
2(η2

1s2−µ2)− η1η3 cos (πs)− η1η3
] .

(4-10)
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Figure 2. Elastic quarter-space with line-distributed loading: (left) the primary, three-
dimensional problem and (right) the reduced problem of a quarter-plane under a concen-
trated force.

Using all the relationships (4-8), (4-9) and (4-10), one can find expressions for the Mellin transforms
of the desired displacement, strain and stress components. They are not presented here because of their
considerable complexity. Instead, we concentrate on displacements related to the loaded boundary:

ũr (s, π/2)=
T̃

2Gq(s)
κ(κ + 1) sin(πs)−

P̃
2Gq(s)

[
4s2
+ 2(κ + 1)s+ κ(κ − 1)(cos(πs)− 1)

]
, (4-11a)

ũϕ(s, π/2)=
P̃

2Gq(s)
κ(κ + 1) sin(πs)+

T̃
2Gq(s)

[
4s2
− 2(κ + 1)s+ κ(κ − 1)(cos(πs)− 1)

]
, (4-11b)

where κ denotes the Kolosov constant
κ = 3− 4ν (4-12)

and the common variable part of the denominators is

q(s)= s[1− 4s2
+ κ2
+ 2κ cos(πs)]. (4-13)

For a certain load case, the obtained formulas can be subjected to the inverse Mellin transform performed
numerically, which leads to displacement values ur and uϕ .

5. Case study and results

5A. Analytical results. Consider the specific problem indicated in the title. The original problem relates
to an elastic quarter-space with a line load that is applied at a distance a from the z axis (see Figure 2,
left). Consequently, in the plain strain formulation, the horizontal edge of the quarter-plane is loaded by
a concentrated force P0. Thus,

P(r)= P0δ(r − a), T (r)= 0,

where δ denotes the Dirac delta. Then the boundary conditions (2-6) become

ur (r, 0)= uϕ(r, 0)= 0 (displacement conditions), (5-1a)

σϕ(r, π/2)= P0δ(r − a) (traction condition), (5-1b)

σrϕ(r, π/2)= 0 (traction condition). (5-1c)
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Figure 3. Values of the real parts of poles versus Poisson’s ratio: real poles (solid) and
initial complex poles (dashed).

The nonhomogeneous traction condition can be easily transformed by using the so-called sifting property
of the Dirac delta:

P̃(s)=
∫
∞

0
r P(r)r s−1 dr =

∫
∞

0
r s P0δ(r − a) dr = P0as .

Taking into account that T̃ (s)= 0, the complete set of transformed conditions (4-4) is given by

ũr (s, 0)= ũϕ(s, 0)= 0 (displacement conditions), (5-2a)

t̃ϕ(s, π/2)= P0as (traction condition), (5-2b)

t̃rϕ(s, π/2)= 0 (traction condition). (5-2c)

By analogy to the general case, we present only the Mellin transforms of displacements of the loaded
surface. Equations (4-11) become

ũr (s, π/2)=−
P0as

2Gq(s)

[
4s2
+ 2(κ + 1)s+ κ(κ − 1)(cos(πs)− 1)

]
, (5-3a)

ũϕ(s, π/2)=
P0as

2Gq(s)
κ(κ + 1) sin(πs). (5-3b)

Expressions for t̃r , t̃ϕ and t̃rϕ are much more complex; however, they also include the denominator q(s).

5B. Some computational issues. As suggested in Section 3, the inversion process can be performed via
numerical evaluation of residues. This approach requires finding poles of the given Mellin transforms
multiplied by r−s . Since the integrands of the inversion integral (3-3) can be written in the form (3-9), the
function q(s) plays a key role. In fact, the solutions of the transcendental equation q(s)= 0 must be found.

It can be easily shown that the integrands do not have poles at s = 0, whereas the other zeros of q(s)
correspond to the poles of first order. Their location in the complex plane is symmetric with respect to
both axes. Figure 3 shows values of the real parts of a few initial poles, calculated for the whole range
−1≤ ν ≤ 1/2. There is a finite number 2nr of real poles, all of which lie near the origin (1≤ nr ≤ 3).
Moreover, there are infinitely many complex conjugate poles (nc =∞).
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Figure 4. Zero-level contour lines of the real part (solid) and the imaginary part (dashed)
of q(s): (left) ν = 0 and (right) ν = −0.25. The intersections of different contours
indicate poles’ loci.

Achieving a good insight into the pattern of singularities’ locations is essential to construct an algo-
rithm for evaluation of residues. Due to the mentioned symmetry, we concentrate on the right half-plane.
In Figure 4 two isoline plots are presented for ν = 0 and ν = −0.25. They display just the zero-level
contours of the real and imaginary parts of the function q(s). Thus, a real pole srk = αrk (k = 1, 2, . . . , nr )
of p(s)/q(s) is indicated by the intersection of a real-part-related contour with the real axis. A complex
pole sck = αck +βcki (k = 1, 2, . . . , nc), in turn, lies at the intersection of two contours of different types
and has a corresponding conjugate, s̄ck = αck −βcki . As ν = 0, for example, in the right half-plane three
real poles sr1, sr2 and sr3 are followed by all the complex poles sck and s̄ck (k= 1, 2, . . . , nc). For the other
case, in turn, a single real pole sr1 is located between the first and second complex conjugate pairs, sc1, s̄c1

and sc2, s̄c2. Generally, the difference between the real parts of two directly neighboring complex poles
1αc = αck+1−αck ≈ 2, whereas the imaginary difference decreases exponentially to zero (1βc→ 0).

Although there is an infinite number of isolated complex singularities, residue values gradually de-
crease with increasing absolute value of the real part αck . Consequently, the true solution can be well-
approximated by a finite (truncated) sum of residues of the direct transforms. The degree of accuracy of
this approximation is affected by two factors. Firstly, one should reasonably select the number n∗c of the
complex poles being taken. Secondly, the numerical solution of q(s)= 0 plays a vital role. In our simu-
lations the real roots are found with the use of Muller’s method. The complex roots, in turn, are obtained
by a consecutive application of the method of successive approximations (a fixed-point iteration scheme).

In practice, calculation of the so-called Bromwich integral (3-3) may seem a bit enigmatic. The
integration must be performed along an infinite line L that is parallel to the imaginary axis (Re(s)= c).
In the given problem, two lines, L1 and L2, are used as illustrated in Figure 5. Thus, c1 = c and c2 =−c
where c is a small positive value so that c < sr1 as well as c < Re(sc1). Additionally, two half-circles
of radius R, 01 and 02, are chosen as the completion paths. For R→∞ the lines and curves constitute
closed contours, C1 = L1∪01 and C2 = L2∪02, which enclose all the poles in the right and left complex
half-planes, respectively. Convergence of the computation can be ensured by the proper choice of the
inversion contour.
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Figure 5. Two alternative inversion contours to use in the Bromwich integral.

Generally, the Mellin transforms of the displacements, ũr (s, ϕ) and ũϕ(s, ϕ), have the form f̃ (s, ϕ)=
p(s, ϕ)/q(s, ϕ). The integrands for the inversion formula (3-3), in turn, are given by

f̃ (s, ϕ)r−s
=

( r
a

)−s p∗(s, ϕ)
q(s, ϕ)

. (5-4)

It can be shown that the behavior of these functions is determined by the factor (r/a)−s . For r ≥ a the
functions tend to zero if Re(s)→+∞. Thus, the integral of (5-4) along the curve 01 vanishes in the
limit for R→∞, and the Bromwich integral can be evaluated by means of the contour C1. In the other
case, when r < a, the integrands tend to zero if Re(s)→−∞. Consequently, the contour C2 is used
for the inversion integral since the integral along the curve 02 vanishes for R→∞. In both cases, the
integration is performed by summing up the residues enclosed by C1 or C2.

5C. Simulation results. Although an immanent feature of numerical calculations is that they are per-
formed for specific values of model parameters, the results reported below have a nondimensional form.
More precisely, the dimensionless displacements are defined as

Ux(x, y)=
Ga
P0

ux(x, y)× 106, Uy(x, y)=
Ga
P0

u y(x, y)× 106. (5-5)

The polar components, Ur (r, ϕ) and Uϕ(r, ϕ), are computed in the same way. Analogously, the following
nondimensional stresses are introduced:

Sx(x, y)=
a
P0
σx(x, y), Sy(x, y)=

a
P0
σy(x, y), Sxy(x, y)=

a
P0
σxy(x, y). (5-6)

Let us start with an overall look at the displacement and stress fields. Figure 6 shows the distribution
of the vertical displacement Uy , normal stress Sy and shear stress Sxy in a rectangular subregion of the
quarter-plane, 〈0, 2a〉× 〈0, a〉, for two values of Poisson’s ratio: ν = 0.25 and ν =−0.5. Generally, in
both cases the distributions are qualitatively similar, and far away from the fixed boundary, their nature
resembles the results for an elastic half-plane (see, e.g., [Sadd 2005; Saada 1993]). The effects of the
concentrated force are highly localized. The displacement Uy decreases radially outward from the point
of application of the load. The contours of constant tensile stress Sy form closed curves converging at
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Figure 6. Displacement and stress distributions in a rectangular region for ν = 0.25 (left
column) and ν =−0.5 (right column): (top) vertical displacement Uy , (middle) normal
stress Sy and (bottom) shear stress Sxy . Results obtained for n∗c = 5× 103.
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Figure 7. Vertical displacement of the loaded surface for various values of Poisson’s
ratio: (top left) ν = 0.25, (top right) ν = −0.25, (bottom left) ν = −0.5 and (bottom
right) ν =−0.75. Results obtained for n∗c = 3× 104.
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Figure 8. The effect of the anomalous vertical displacement of the loaded surface for
negative Poisson’s ratio: ν =−0.75 (solid), ν = 0 (dashed) and ν = 0.25 (dotted).

this point. In this sense they bring to mind the isochromatic photoelastic fringe patterns (isolines of
the principal shear stress) for a point load, well-known from contact mechanics [Sadd 2005; Johnson
1985]. The shear stress field indicates that below the free surface, for example at the level y1 = a/10,
a change in sign of Sxy(x, y1) occurs at x = a (compare the classical Flamant problem [Sadd 2005]).
The stress becomes vanishingly small at a sufficiently large distance from this point. Obviously, due to
the constraints, the general view is disturbed by some local effects near the fixed boundary, which is
discussed later.

Now let us turn to a displacement analysis of the loaded surface. In Figure 7 the vertical displacement
Uϕ(r, π/2)=−Uy(x, 0) is presented for various values of Poisson’s ratio. For ease of comparison, all
the plots have equal axis scales. As can be seen, values of the sharp peak at the loading point grow
with decreasingly lower ν. The deformation behavior is intuitively reasonable and seems qualitatively
identical in each case. However, a closer look at the curves allows one to notice an interesting detail.
If ν > 0 the vertical displacement component of every point on the boundary is directed upward, i.e.,
has the same direction as the active force. But for the auxetic case, ν < 0, a strict minimum of the
function Uϕ(r, π/2) arises in the range 0< r < a: the edge deflects locally in the opposite direction to
the load. This unusual valley effect can be clearly observed in Figure 8. Zero Poisson’s ratio seems to
be the intermediate case, when the deflection curve is tangent to the horizontal axis at r = 0.

Figure 9 shows how Poisson’s ratio affects the zero locus x0 of the function −Uy(x, 0). Evidently, the
distance between the zero-crossing and the origin increases as ν tends to −1. In the opposite case, when
ν = 0, the two points overlap, i.e., there is no additional minimum for x > 0. Thus, ν = 0 can be treated
as the critical value, νcr, below which the valley effect always occurs; the effect intensifies with stronger
auxetic behavior exhibited by the material.

In general, mutually opposite directions of the active force and the resulting displacement contradict
practical experience. This property is referred to as negative stiffness and should be distinguished from
negative Poisson’s ratio. However, systems with such an anomaly exist not only in theory. Experimental
realization of composite materials with negative stiffness has been discussed, for example, in [Lakes et al.
2001; Lakes 2001].
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Figure 9. Locus of the zero of Uϕ(r, π/2) versus Poisson’s ratio.

In [Maruszewski et al. 2010; Poźniak et al. 2010] it is suggested that the unusual deformation found
in our simulations may be treated as locally negative compliance. The authors numerically investigated
similar behavior of simple two- or three-dimensional systems. In the planar case, they considered a
unit square domain whose two opposite sides are fixed, whereas the others are subjected to uniform
compression loading. The elastostatic problem was solved under the plane stress assumption by using
the finite element method (FEM). The results indicate counterintuitive deformation of the square near its
vertices for negative Poisson’s ratio. Nevertheless, the papers do not contain the definite conclusion that
ν = 0 is the critical value for occurrence of this effect. With the FEM approach, the evaluated νcr strongly
depends on the mesh density. Analyzing the result convergence, the authors stated that νcr ≥ −0.25
[Poźniak et al. 2010] or νcr ≥−0.2 [Maruszewski et al. 2010].

Finally, the question about the mechanism of the anomalous deformation arises. The contour plots
shown in Figure 10 refer to a smaller fragment of the quarter-plane: 〈0, a〉 × 〈0, a〉. In the left-hand
column the distribution of the stress Sy is presented more clearly than before. The right-hand plots, in
turn, display isolines of the first (maximum) principal strain ε1, which is scaled according to

E1 = 2(1+ ν)G
a2

P0
ε1. (5-7)

For various values of ν both the fields have quite similar character in the area below the load. The most
significant differences appear at the fixed edge, near the origin.

When it comes to the normal stress Sy , there is an evident change in sign due to a decrease of Poisson’s
ratio. The corner of compressive stress (for ν = 0.25) becomes a neutral zone (Sy = 0) with a closed
area of low compression (for ν = 0) and is eventually transformed into a corner of tensile stress and a
wedge neutral zone at the free surface (for ν =−0.5). In the latter case one should notice the specific
saddle-shaped arrangement of the near zero-level contours.

This gradual transformation of the normal stress, among others, entails an essential change in the
maximum principal strain E1. As ν > 0, the material undergoes elongation just under the free surface,
which results mainly from the pulling force and the counterdirected reaction. For the critical value, ν = 0,
the strain E1 is close to zero at the boundary but still nonnegative in the area below. As ν < 0, however,
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Figure 10. Stress and strain distribution in a square region. Normal stress Sy (left col-
umn) and the first principal strain E1 (right column): (top) ν = 0.25, (middle) ν = 0 and
(bottom) ν =−0.5.

the maximum strain here becomes negative, and the isolines form a valley that strictly corresponds to
the anomalous deformation of the loaded surface.

These differences arising when ν is varied may be basically explained by the example of a finite-sized
elastic solid under uniaxial tensile load. First, consider the unconstrained case illustrated in Figure 11, left.
Typically for conventional (nonauxetic) materials, elongation is accompanied by transverse contraction
(see Figure 11, middle). Auxetics, by contrast, expand laterally in the same conditions (see Figure 11,
right). Now, suppose that geometric constraints (fixed support) are imposed on the left side of the square.
In the normal case (ν > 0), the contraction of the solid generally produces a pulling horizontal (leftward)
reaction force. Near the top-left corner, the displacement tendency of the vertex causes a slight pushing
(rightward) reaction. As an overall result, the tension zone appears under the free surface. In the auxetic
case, in turn, the lateral expansion must generate a pushing (rightward) reaction. The high horizontal
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Figure 11. Deformation of an unconstrained elastic square under a tensile point load:
(left) initial geometry and loading, (middle) deformation scheme in an ordinary, nonaux-
etic case and (right) deformation scheme in an auxetic case.

compression at the corner may lead to a local contraction in the transverse (vertical) direction, which
manifests itself by the valley effect.

Despite its simplicity and schematic nature, the above explanation casts some light on the mechanism
of the anomalous deformation of the quarter-plane. To some degree, the expansion-contraction behavior
of the conventional and auxetic materials is reflected in the streamline patterns for the displacement field
in the system (see Figure 12).

5D. Comparison to FEM results. Usually approximate methods are tested and validated by comparing
their results to exact solutions. However, another well-established computer method also can be a source
of the reference data. Very often the finite element method is employed for this purpose as one of the
dominant tools applied in various fields of science and engineering. For instance, FEM results were used
to test efficiency of mesh-based and meshless techniques in [Walczak et al. 2014; Bai and Lu 2004; Liu
2010]. Similar comparative study is carried out below for the semianalytical approach. All the presented
results have been obtained using the COMSOL Multiphysics environment.
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Figure 12. Streamline patterns for the displacement field: (left) ν = 0.25 and (right) ν =−0.5.
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Figure 13. Finite element mesh near the loading point (a clipped view).

Some commercial FEM systems offer various implementations of infinite elements, which allows one
to model unbounded domains. However, we decided to restrict the linear static analysis to a finite-sized
square solid:

�̂=

{
0≤ x ≤ b,
0≤ y ≤ b,

(5-8)

where b > a. Apart from the boundary conditions (5-1) reformulated in the Cartesian coordinate system,
the following ones are imposed on the right and bottom edges:

ux(b, y)= 0 (displacement condition), (5-9a)

u y(x, b)= 0 (displacement condition). (5-9b)

It is assumed that b= 10a to reduce the effect of the boundaries on the elastic field near the loading point.
At the same time, the reasonable domain size protects the discrete model from an excessive number of
finite elements.

For an efficient mesh generation, a quarter-disc of radius 2a, centered at the origin, is set apart from the
whole domain. The defined maximal element size within this subregion is significantly lower than outside.
Moreover, taking into account the peak character of the loaded boundary displacement, a nonuniform
mesh distribution is applied: mesh density increases towards the loading point. An exemplary fragment
of the discretized system �̂ is shown in Figure 13. The quadratic quadrilateral elements are used in the
entire domain.

Figure 14 presents numerical results for ν = 0.25 and ν = −0.5 in the nondimensional form: the
distribution of displacement Uy and stress Sy as well as the vertical displacement of the loaded surface
−Uy(x, 0). Thus, the graphs correspond to Figure 6 (top/middle left and top/middle right) and Figure 7
(left). The displacement and stress fields produced by two different methods are in close agreement with
each other. When it comes to the loaded boundary, the maximal displacements obtained with FEM are
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Figure 14. Displacement and stress field for ν = 0.25 (left column) and ν =−0.5 (right
column): (top) normal stress Sy , (middle) vertical displacement Uy and (bottom) upward
displacement −Uy of the loaded surface.

2–5% greater than the ones from the semianalytical solutions. The simulations were performed for the
number of finite elements ne = 13 938 and the number of degrees of freedom ndof = 112 606.

In order to examine the convergence of computations, a series of numerical experiments were con-
ducted for gradually increasing mesh density inside the quarter-disc subdomain. As can be seen in
Figure 15, left, a significant growth of the maximal value −Uy(a, 0) occurs for relatively small numbers
of degrees of freedom. Nevertheless, the displacement stabilizes when ndof > 118 000. An analogous
test for the semianalytical approach (see Figure 15, right) indicates more regular change of the peak
displacement with the number of complex poles n∗c : logarithmic convergence rate is clearly observed
(notice the logarithmic scale on the horizontal axis).

It should be emphasized that achieving such an agreement between both methods has been somewhat
troublesome from the viewpoint of FEM. Using gradually finer but uniform meshes in the whole quarter-
disc region does not bring the expected results: the maximal displacement grows much slower than the
number of degrees of freedom. Consequently, gaining reliable values becomes unattainable even for
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Figure 15. Convergence of the maximal vertical displacement for ν = 0.25 (•) and
ν =−0.5 (�): (left) FEM results and (right) results of the semianalytical approach.

users of PCs with relatively large memory resources. Hence, increasing the mesh density locally (at the
loading point) is indispensable.

However, these difficulties and, more generally, the requirement for high-resolution computations by
the two methods (large ndof and n∗c , respectively) relate mainly to a small neighborhood of the loading
point. The displacement and stress fields far enough from this point are rather weakly affected by a
change in ndof and n∗c .

A comparison of the curve Uϕ(r, π/2) from Figure 8 (n∗c = 3× 104) and the one obtained by FEM
(ndof = 112 606) for ν = −0.75 is presented in Figure 16. As can be seen, the applied discretization
method is sufficient and the results capture the valley effect very well. Noticeable differences appear for
x/a > 3/2, and they grow with increasing x . However, this discrepancy can be effectively eliminated by
adjusting ndof and n∗c to ensure very close values of the peak displacements −Uy(a, 0) provided by both
approaches.

6. Conclusions

In this paper, the distributions of the vertical displacement as well as the normal and shear stresses
in a finite subregion of the quarter-plane have been discussed. Much attention has been paid to the
deformation of the loaded boundary, which has been analyzed for various values of Poisson’s ratio. It
has been found that auxetics exhibit an anomalous deformation of the loaded surface near the fixed
boundary: the valley effect that intensifies with stronger auxeticity of the material. The obtained results
indicate that ν = 0 is just the critical value below which the effect always occurs. A simple explanation
of the unusual deformation mechanism has been suggested by using the example of an unconstrained
auxetic and nonauxetic solid under a tensile load. The presented solutions are in close agreement with
the FEM results, although the latter ones have been obtained for a finite-sized solid.

The discussed valley effect can be treated as a kind of ersatz of negative stiffness (or negative com-
pliance). In the case of the analyzed system, it arises from a combination of specific conditions: con-
straints (fixed boundary), load (vertical concentrated force) and material (ν ≤ 0). But generally, the
systems exhibiting negative stiffness are interesting from both theoretical and practical points of view.
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Combining an ordinary material with the one of negative stiffness may produce a composite having
amazing properties, e.g., very large elastic modulus. In theory, it is possible to construct a material of
zero compliance [Maruszewski et al. 2010; Poźniak et al. 2010]. Such modern trends in science and
engineering require efficient numerical simulations that cast new light on unusual phenomena that have
not yet been investigated experimentally.

Assuming the semi-infinite character of the domain allows for a semianalytical treatment of the prob-
lem. Such an approach has a huge advantage compared to purely numerical techniques. One can focus
on the displacement and stress analysis of the loaded surface only, without the necessity of solving the
problem in the whole domain. Moreover, the proposed method is free from various difficulties connected
to the discretization process. Based on the obtained results, it may be concluded that the semianalytical
approach exhibits logarithmic convergence.
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mathematical sciences publishers msp

http://dx.doi.org/10.1038/nmat3134
http://dx.doi.org/10.1017/CBO9781139171731
http://dx.doi.org/10.1103/PhysRevLett.86.2897
http://dx.doi.org/10.1038/35069035
http://dx.doi.org/10.1038/35069035
http://dx.doi.org/10.1201/9781420082104
http://dx.doi.org/10.1016/S0020-7683(03)00032-5
http://dx.doi.org/10.5772/9795
http://dx.doi.org/10.5772/9795
http://www.ipme.ru/e-journals/RAMS/no_22310/pozniak.pdf
http://www.ipme.ru/e-journals/RAMS/no_22310/pozniak.pdf
http://dx.doi.org/10.1016/j.commatsci.2012.02.012
http://dx.doi.org/10.1016/j.commatsci.2012.02.012
http://www.sciencedirect.com/science/book/9780126058116
http://dx.doi.org/10.1007/BF00013081
http://dx.doi.org/10.1007/BF00013081
http://dx.doi.org/10.1007/BF00041099
http://dx.doi.org/10.1002/pssb.201484261
http://dx.doi.org/10.1002/pssb.201484261
mailto:pawel.fritzkowski@put.poznan.pl
mailto:henryk.kaminski@put.poznan.pl
http://msp.org


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
msp.org/jomms

Founded by Charles R. Steele and Marie-Louise Steele

EDITORIAL BOARD

ADAIR R. AGUIAR University of São Paulo at São Carlos, Brazil
KATIA BERTOLDI Harvard University, USA

DAVIDE BIGONI University of Trento, Italy
YIBIN FU Keele University, UK

IWONA JASIUK University of Illinois at Urbana-Champaign, USA
C. W. LIM City University of Hong Kong

THOMAS J. PENCE Michigan State University, USA
DAVID STEIGMANN University of California at Berkeley, USA

ADVISORY BOARD

J. P. CARTER University of Sydney, Australia
D. H. HODGES Georgia Institute of Technology, USA

J. HUTCHINSON Harvard University, USA
D. PAMPLONA Universidade Católica do Rio de Janeiro, Brazil

M. B. RUBIN Technion, Haifa, Israel

PRODUCTION production@msp.org

SILVIO LEVY Scientific Editor

Cover photo: Ev Shafrir

See msp.org/jomms for submission guidelines.

JoMMS (ISSN 1559-3959) at Mathematical Sciences Publishers, 798 Evans Hall #6840, c/o University of California, Berkeley,
CA 94720-3840, is published in 10 issues a year. The subscription price for 2016 is US $575/year for the electronic version, and
$735/year (+$60, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues, and changes of address
should be sent to MSP.

JoMMS peer-review and production is managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://msp.org/jomms/
mailto:production@msp.org
http://msp.org/jomms/
http://msp.org/
http://msp.org/


Journal of Mechanics of Materials and Structures
Volume 11, No. 1 January 2016

Special issue
Trends in Continuum Physics (TRECOP 2014)

Preface BOGDAN T. MARUSZEWSKI, WOLFGANG MUSCHIK,
ANDRZEJ RADOWICZ and KRZYSZTOF W. WOJCIECHOWSKI 1

Stress and displacement analysis of an auxetic quarter-plane under a concentrated
force PAWEŁ FRITZKOWSKI and HENRYK KAMIŃSKI 3
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