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A STUDY OF ELASTIC-PLASTIC DEFORMATION IN THE PLATE
WITH THE INCREMENTAL THEORY AND THE MESHLESS METHODS

MALGORZATA A. JANKOWSKA AND JAN ADAM KOŁODZIEJ

The paper concerns an application of the successive-approximation iteration process together with the
meshless methods, i.e., the method of fundamental solutions (MFS) and the method of particular solu-
tions (MPS), for the analysis of strains and stresses in the plate with some kind of narrowing subjected
to uniaxial tension. The elastoplastic boundary-value problem is based on the incremental theory of
plasticity with the stress-strain relation given in the form proposed by Chakrabarty. In the iteration
procedure a sequence of the successive distributions of the plastic strain increments corresponding to the
appropriate increments of load is produced. A final set of the plastic strain increments is further used
to obtain the total plastic strains. Furthermore, the solution of the elastoplastic boundary-value problem
can be simultaneously taken into account when the stress state of the plate is required. Such approach is
designated here to identify the regions of elastic and plastic behavior of the material.

1. Introduction

The most popular and commonly used method for solving the elastoplastic problems is the finite element
method (FEM). There are many papers on this subject (see, e.g., [Berezhnoı̆ and Paı̆mushin 2011; Bilotta
and Casciaro 2007; Cui et al. 2009; Liu et al. 2013; 2012]) as well as the available monographs (see, e.g.,
[Belytschko et al. 2000; Crisfield 1997; Kojić and Bathe 2005; Owen and Hinton 1980]). A numerical
method that is much less employed for this class of problems is the boundary element method (BEM).
Nevertheless, the number of publications on this topic is quite extensive and new ones are still emerging
[Deng et al. 2011; Gao and Davies 2000; Ochiai 2011]. We can also distinguish a coupling of these two
approaches in, e.g., [Boumaiza and Aour 2014; Dong and Bonnet 1998; Oysu and Fenner 2006]. Note
that all these methods require some kind of mesh to be prepared, and hence they are called mesh methods.
As an alternative approach for the mesh methods, the mesh-free methods have been developed in the
last decades. The meshless methods have been also applied for solving some elastic-plastic problems
[Boudaia et al. 2009; Dai et al. 2006; Liu et al. 2011; Pozo et al. 2009; Yeon and Youn 2005]. Nowadays,
many different variants of these methods are studied. We have, e.g., the element-free Galerkin method,
the meshless local Petrov–Galerkin method, the point interpolation method, the finite point method,
the finite difference method with arbitrary irregular grids, and so forth [Liu 2003]. The method of
fundamental solutions (MFS) and the method of particular solutions (MPS), subsequently used by the
authors, are both the meshfree methods. The main idea of the MFS is that an approximate solution of
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a given problem is formulated as a linear combination of fundamental solutions related to a governing
equation that is linear and homogeneous. Hence, if the appropriate fundamental solutions are known,
we obtain an approximate solution that satisfies a governing differential equation and only boundary
conditions are approximately met. On the other hand, the MPS can be applied for the boundary value
problems with linear nonhomogeneous governing equations. As is described in detail in, e.g., [Chen et al.
2014], a solution of such a problem is a sum of so-called homogeneous solution and particular solution.
Nowadays, there is a number of review papers that report on an application of the MFS for solving
some elliptic problems [Fairweather and Karageorghis 1998], wave scattering problems [Fairweather
et al. 2003] and inverse problems [Karageorghis et al. 2011]. On the other hand, there are still few
papers that conduct a review on the usage of the MFS for solving nonlinear problems. An application of
the method considered for nonlinear problems is quite popular in the area of fluid mechanics and there
are many papers that take into account this issue. Namely, for a governing equation given in a form
of Burgers’ equation we have [Young et al. 2008], similarly as for the Navier–Stokes equation [Young
et al. 2009] and for nonlinear water waves [Feng et al. 2013; Mollazadeh et al. 2011]. A solution of a
boundary value problem governed by a nonlinear Poisson equation is presented in, e.g., [Balakrishnan and
Ramachandran 1999; 2001; Balakrishnan et al. 2002; Burgess and Mahajerin 1987; Fallahi and Hosami
2011; Shanazari and Fallahi 2010; Tri et al. 2011; Tsai 2012; Wang and Qin. 2006; Wang et al. 2012].
Further, in [Chen 1995] the nonlinear thermal explosion problem by solving some nonlinear equation
is taken into consideration. An application of the MFS for nonlinear functionally graded materials is
given in [Li et al. 2014; Marin and Lesnic 2007; Wang and Qin. 2008; Wang et al. 2005], while the
nonlinear heat conduction problems solved by the MFS are presented in [Karageorghis and Fairweather
1989; Karageorghis and Lesnic 2008]. Finally, nonlinear plate problems as well as an application of the
MFS for nonlinear elasticity is reported in [Al-Gahtani 2012; Li and Zhu 2009; Uscilowska and Berendt
2013]. For the authors’ best knowledge there are few papers such that the MFS with the MPS are applied
to study elastic-plastic deformation. These articles deal with the torsion problem [Kołodziej et al. 2013]
and the plane problem for the stress state of a plate subjected to uniaxial extension [Jankowska and
Kołodziej 2015].

Subsequent considerations are directed forward further popularization and dissemination of the mesh-
less methods for solving some nonlinear boundary-value problems with a special attention that is paid
to elastoplastic problems. The authors based their research on the approach proposed in [Mendelson
1968]. It takes into account the incremental theory of plasticity together with the associated flow rule
given by the Prandtl–Reuss relation and the von Mises yield criterion to formulate the appropriate elasto-
plastic plane stress problem (see Section 2). The appropriate boundary conditions concern a problem
of uniaxial tension of a plate with a narrowing located in the middle of it (see also [Jankowska and
Kołodziej 2014; Jankowska and Kołodziej 2013]). Then, for the nonlinear stress-strain relationship, we
apply a model presented by Chakrabarty in [Chakrabarty 1987]. In Section 3 a new approach to the
successive-approximation iteration process [Mendelson 1968] is proposed. It employs a combination of
the meshless methods (the MFS-MPS) and the finite difference schemes (required for the approximation
of values of partial derivatives present in the right-hand side function of the problem). In the appropriate
algorithm, a sequence of the successive distributions of the plastic strain increments, corresponding to a
given increment of load, is produced. A final set of the plastic strain increments can be used to obtain the
total plastic strains. Then, the solution of the boundary-value problem let us determine the stress state of
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Figure 1. The stress-strain curve for the model proposed by Chakrabarty [1987] with
selected values of n.

the plate. In Section 4, the optimal values of the method’s parameters are proposed and the regions of the
elastic and plastic behavior of the material are shown. The approach enables to compute the equivalent
plastic strains and also related equivalent stresses in any point of the domain. It is due to the fact that
the approximate solution is a linear combination of fundamental solutions and particular solutions, i.e., a
continuous function with continuous derivatives. To conclude, some final remarks and further plans are
summarized in Section 5.

2. Problem formulation

2.1. Assumptions about the elastic-plastic constitutive model and the complete stress-strain relations.
The consideration given in the paper concerns some plane elastoplastic problem formulated for a plate
with a narrowing subjected to external loads related to the uniaxial stress σB. We assume that the material
is homogenous, isotropic and strains hardens isotropically. The material properties such as the Young
modulus E and the Poisson ratio ν are independent of the temperature and body forced are not considered.
For the nonlinear stress-strain relationship we employ a model proposed by Chakrabarty [1987]. It is
given by the equations

σ/σ0 =

{
ε/ε0, ε/ε0 ≤ 1,
(ε/ε0)

n, ε/ε0 ≥ 1.
(1)

Note that the curve in the plastic range is expressed by a simple power law (see also Figure 1) with a
dimensionless constant n such that its value is generally less than 0.5. The material is assumed to have
a definite yield point for the stress σ0 with the corresponding yield strain ε0 = σ0/E , where E is the
Young modulus. Furthermore, the slope of the stress-strain curve changes discontinuously at the yield
point (except for the case of n = 1).

The subsequent considerations are presented with the incremental theory of plasticity applied (see,
e.g., [Mendelson 1968]). Hence, we assume some loading path to a given state of stress and the total
plastic strain. The total loading path is divided into N increments of load. When the load is increased by
a small amount, it produces additional plastic strain 1ε p

i j . Following, e.g., [Mendelson 1968], the total
strain εi j can be written as

εi j = ε
e
i j + ε

p
i j +1ε

p
i j , (2)
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where εe
i j is the elastic component of the strain, ε p

i j is the accumulated plastic strain up to (but not
including) the current increment of load and 1ε p

i j is the increment of plastic strain due to the current
increment of load. If we assume that the elastic strain tensor is given by the Hooke’s law for isotropic
material and the plastic strains have been computed for the first k− 1 increments of load, then the total
strain at the end of the k-th increment of load can be given as follows:

εi j =
1+ν

E
σi j −

ν

E
σssδi j +

k−1∑
m=1

1ε
p
i j,m +1ε

p
i j . (3)

In the above equation we know the sum and the problem is how to calculate the plastic strain increment
1ε

p
i j (for the current, i.e., the k-th increment of load) and the corresponding stress. Hence, subsequently

for the equation (3) we use the stress-strain relation (1), the associated flow rule given by the Prandtl–
Reuss relation (4)1 with the von Mises yield criterion (4)2. The equivalent stress σeq, the equivalent plastic
strain increment 1ε p

i j and the deviatoric component Si j of the stress tensor are given by the equations

1ε
p
i j =

3
2
1ε

p
eq

σeq
Si j , σeq =

√
3
2 Si j Si j , 1ε p

eq =

√
2
31ε

p
i j1ε

p
i j , Si j = σi j −

1
3σssδi j . (4)

2.2. Plane elastic-plastic boundary-value problem. Now we formulate the boundary-value problem
describing the stress state of the plate that is subjected to uniaxial extension related to the stress σB .
However, before that we expand the equations (3)–(4) with the assumption that the generalized plane
stress problem is considered. We obtain the formulas for the components of the total strain (3) as

εxx = ε
e
xx + ε

p
xx +1ε

p
xx , εyy = ε

e
yy + ε

p
yy +1ε

p
yy, εxy = ε

e
xy + ε

p
xy +1ε

p
xy, (5)

where

εe
xx =

1
E
(σxx −µσyy), εe

yy =
1
E
(σyy −µσxx), εe

xy =
1

2G
σxy, (6)

ε p
xx =

k−1∑
m=1

1ε p
xx,m, ε p

yy =

k−1∑
m=1

1ε p
yy,m, ε p

xy =

k−1∑
m=1

1ε p
xy,m . (7)

Then, the expanded formulas for the Prandtl–Reuss relations (4)1 with the equivalent stress (4)2 and the
equivalent plastic strain increments (4)3 are of the form (see also [Mendelson 1968])

1ε p
xx =

1
2
1ε

p
eq

σeq
(2σxx − σyy), 1ε p

yy =
1
2
1ε

p
eq

σeq
(2σyy − σxx), 1ε p

xy =
3
2
1ε

p
eq

σeq
σxy, (8)

and

σeq =

√
σ 2

xx + σ
2
yy − σxxσyy + 3σ 2

xy, 1ε p
eq =

2
√

3

√
(1ε

p
xx)2+ (1ε

p
yy)2+1ε

p
xx1ε

p
yy + (1ε

p
xy)2. (9)

Subsequently, we take into consideration the boundary-value problem as proposed in [Mendelson
1968]. For its formulation the components of the total strain (5) with the relations (6)–(7) are substituted
into the compatibility and equilibrium equations for the plane problems (see, e.g., [Mendelson 1968;
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Figure 2. A plate with a narrowing subjected to uniaxial extension related to the stress
σB (reprinted from [Jankowska and Kołodziej 2015] with permission from Elsevier).

Timoshenko and Goodier 1951]). Then, with the Airy stress function ψ =ψ(x, y) (see also [Timoshenko
and Goodier 1951]) such that

σxx =
∂2ψ

∂y2 (x, y), σyy =
∂2ψ

∂x2 (x, y), σxy =−
∂2ψ

∂x∂y
(x, y), (10)

we obtain the governing equation of the problem considered

5
4ψ(x, y)=−(g(x, y)+1g(x, y)), (11)

where

g(x, y)= E
(
∂2ε

p
xx

∂y2 +
∂2ε

p
yy

∂x2 − 2
∂2ε

p
xy

∂x∂y

)
,

1g(x, y)= E
(
∂2(1ε

p
xx)

∂y2 +
∂2(1ε

p
yy)

∂x2 − 2
∂2(1ε

p
xy)

∂x∂y

)
.

(12)

In order to formulate the boundary conditions of the problem, we introduce the geometry of the plate
(see Figure 2). It is characterized by the narrowing that occurs in the middle of it and is present along a
half of its length. It is specified by the characteristic length a and the distance b such that the appropriate
parts of the boundary, i.e., E1 E2, F1 F2, are arcs of circles with centers O1(0, a/4+ b), O2(0,−a/4− b)
and a radius R =

√
b2+ a2/16. The appropriate boundary conditions imposed according to the sides of

the plate are given as

0AB and 0DC : ψyy = σB, ψxy = 0, (13a)

0E1B, 0E2C and 0F1A, 0F2D : ψxx = 0, ψxy = 0, (13b)

0E1E2, 0F1F2 : ψyynx −ψxyny = 0, ψxx ny −ψxynx = 0, (13c)

where nx , ny are components of a unit vector n defined at a given point of the boundary, normal to the
surface and directed outside of the plate.

Note that in the equations (13a)–(13c) and later in the paper, we use the abbreviated notation for partial
derivatives, i.e., ψxx = ∂

2ψ/∂x2, ψyy = ∂
2ψ/∂y2 and ψxy = ∂

2ψ/∂x∂y, respectively.
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Subsequently, we solve the elastic-plastic boundary-value problem given in the nondimensional form.
Hence, with new coordinates defined by

X = x/a, Y = y/a, 9 = ψ/(a2σ0), (14)

the governing equation (11) with (12) is of the form

∇
49 = b̃(X, Y ), (15)

with the boundary conditions

0AB and 0DC : 9Y Y = σ̃B, 9XY = 0, (16a)

0E1B, 0E2C and 0F1A, 0F2D : 9X X = 0, 9XY = 0, (16b)

0E1E2, 0F1F2 : 9Y Y nx −9XY ny = 0, 9X X ny −9XY nx = 0, (16c)

where σ̃B = σB/σ0 and

b̃(X, Y )=−(g̃(X, Y )+1g̃(X, Y )), (17)

g̃(X, Y )=
(
∂2ε

p
X X

∂Y 2 +
∂2ε

p
Y Y

∂X2 − 2
∂2ε

p
XY

∂X∂Y

)
, (18)

1g̃(X, Y )=
(
∂2(1ε

p
X X )

∂Y 2 +
∂2(1ε

p
Y Y )

∂X2 − 2
∂2(1ε

p
XY )

∂X∂Y

)
. (19)

The dimensionless plastic strains ε p
X X = ε

p
xx/ε0, ε p

Y Y = ε
p
yy/ε0 and ε p

XY = ε
p
xy/ε0, present in (18), are

given by the formulas

ε
p
X X =

k−1∑
m=1

1ε
p
X X,m, ε

p
Y Y =

k−1∑
m=1

1ε
p
Y Y,m, ε

p
XY =

k−1∑
m=1

1ε
p
XY,m, (20)

where the dimensionless increments of plastic strains used in (19)–(20) are defined as 1ε p
X X =1ε

p
xx/ε0,

1ε
p
Y Y =1ε

p
yy/ε0 and1ε p

XY =1ε
p
xy/ε0, respectively. Further, with the dimensionless Airy stress function

9 =9(X, Y ) applied, the dimensionless total strains and the elastic strains, are of the form

εX X = ε
e
X X + ε

p
X X +1ε

p
X X , εY Y = ε

e
Y Y + ε

p
Y Y +1ε

p
Y Y , εXY = ε

e
XY + ε

p
XY +1ε

p
XY , (21)

εe
X X =9Y Y −µ9X X , εe

Y Y =9X X −µ9Y Y , εe
XY =−(1+µ)9XY , (22)

where εX X = εxx/ε0, εY Y = εyy/ε0, εXY = εxy/ε0, εe
X X = ε

e
xx/ε0, εe

Y Y = ε
e
yy/ε0, εe

XY = ε
e
xy/ε0.

Note that for the algorithm proposed in Section 3 that is designed for solving the boundary value
equation (15)–(16) with (17)–(19), the dimensionless Prandtl–Reuss relations are also required. Hence,
from the formula (8) we obtain

1ε
p
X X =

1
2
1̃ε

p
eq

σ̃eq
(2σX X − σY Y ), 1ε

p
Y Y =

1
2
1̃ε

p
eq

σ̃eq
(2σY Y − σX X ), 1ε

p
XY =

3
2
1̃ε

p
eq

σ̃eq
σXY , (23)
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where the dimensionless equivalent stress σ̃eq = σeq/σ0 and the dimensionless equivalent plastic strain
increments 1̃ε p

eq are of the form

σ̃eq =

√
σ 2

X X + σ
2
Y Y − σX XσY Y + 3σ 2

XY , (24)

1̃ε p
eq =

2
√

3

√
(1ε

p
X X )

2+ (1ε
p
Y Y )

2+1ε
p
X X1ε

p
Y Y + (1ε

p
XY )

2. (25)

The dimensionless stress components used in (24) are defined as σX X = σxx/σ0, σY Y = σyy/σ0, σXY =

σxy/σ0.

3. The successive-approximation iteration process and the meshless methods

Subsequently, we propose two algorithms that concern the solution of the boundary-value equation (15)–
(16) with (17)–(19). The first one deals with a case when the whole region of the plate corresponds to
the elastic behavior of the material. We propose the iteration process that proceeds until (for a given
increment of load) the first points such that the plastic behavior of the material occurs. After that we can
start the other two nested iteration processes described in detail in the second algorithm. The procedure
proposed there let us determine the distribution of the plastic strain increments corresponding to a given
conditions of loading. Moreover, the elastic and plastic strains and the stress state at each point of the
plate can be also computed.

Note that both algorithms make use of the meshless methods (in each iteration step), i.e., the method
of fundamental solutions and the method of particular solutions that is applied only in the Algorithm 2.
Due to this reason we first generate some sets of points [Chen et al. 2014] that are required for the
meshless methods (see also Figure 3, left). We denote by Ns the number of source points (Xsi , Ysi ),
i = 1, 2, . . . ,Ns, that are located outside of the problem domain in a distance s from the boundary. For
the numerical experiments they are uniformly distributed on a fictitious boundary similar to the physical
one. We also choose the total number Nc of collocation points, (X i , Yi ), i = 1, 2, . . . , Nc. These points
should be located as uniform as possible on the physical domain. Then, for the interpolation procedure
of the right-hand side function (17), we select Ni interpolation points, (X i , Yi ), i = 1, 2, . . . ,Ni, that
are located inside of the computational domain. They used to be uniformly distributed similarly as the
source and collocation points.
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Special requirements of the subsequent algorithms make it essential to choose another set of uniformly
distributed points, so-called, discretization points, (X i , Yi ), i = 1, 2, . . . ,Nd. This set of points includes
all the interpolation points together with some appropriate points located on the boundary (see Figure 3,
left). The discretization points are further used for computation of values of partial derivatives present in
(18)–(19) at the interpolation points. Note that the distances between two neighboring interpolation points
does not have to be very small for the MPS. In fact the number of these points should not be also too large
(because it can lead to an ill-conditioned matrix of coefficients further used in the MPS). On the other
hand, the accuracy of a finite difference approximation increases when the distance between the points
involved in a finite difference formula becomes small enough. Hence, we introduce the number iMd of
additional intermediate discretization points that are located between each two interpolation points (see
Figure 3, left). All these discretization points are involved in the finite difference approximation. Note
that we also increase a number of the interpolation points in such a way that we add to the set considered
some selected discretization points located near the boundary (see Figure 3, right). This approach is
essential due to the fact that the material starts exhibiting the plastic behavior on the boundary and inside
the plate in the neighborhood of the narrowing.

Now, with the assumptions and notations introduced above, the computational procedure can be for-
mulated in the following way.

Algorithm 1 (elastic case). Assumptions and preliminary steps. We start from the assumption that the
whole region of the plate corresponds to the elastic behavior of the material. Hence, for each iteration step
we take b̃(X, Y )≡ 0 in the governing equation (15). Then, we choose some loading path to a given state of
stress, i.e., we take m = 1, 2, . . . , kp that corresponds to related values of stress σ̃B = σ̃B1, σ̃B2, . . . , σ̃Bkp ,
respectively. The iteration step kp is the last one performed during the algorithm’s execution. For m = kp

the material starts exhibiting the plastic behavior.

Step 1. Take m = 1 (̃σB = σ̃B1).

Step 2. For a given value of m (̃σBm), compute the approximate solution of the boundary value equation
(15)–(16) using the MFS. We obtain

9(X, Y )≈
Ns∑

i=1

ciφ1i (X, Y )+
Ns∑

i=1

diφ2i (X, Y ), (26)

where the functions φ1 = φ1(X, Y ), φ2 = φ2(X, Y ) are the fundamental solutions related to the homoge-
neous biharmonic equation ∇49 = 0. We have

φ1i = φ1i (X, Y )= ln ri , φ2i = φ2i (X, Y )= r2
i ln ri , ri =

√
(X − Xsi )2+ (Y − Ysi )2. (27)

Unknown values of the coefficients ci , di , i = 1, 2, . . . ,Ns, in (26), can be found, if we solve a linear
system of equations (28) obtained by collocating the boundary conditions. We get

G1l(9(X j , Y j ))= g1l(X j , Y j ), G2l(9(X j , Y j ))= g2l(X j , Y j ), (28)

for l = 1, 2, . . . ,Nl, j = 1, 2, . . . , Nc(l), where 9 is of the form (26), G1l , G2l are the differential
operators acting on 9, g1l = g1l(X, Y ), g2l = g2l(X, Y ) are given functions, Nl denotes the number of
characteristic parts of the boundary and Nc(l) denotes the number of collocation points located on a
given part l of the boundary.
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Step 3. Compute the equivalent stress σ̃eq,m (the equation (24)) at each discretization point. Then, check
if there exist one or more interpolation points such that σ̃eq,m > 1. If so, then finish the execution of the
Algorithm 1 and start the Algorithm 2. Else, take m =m+ 1 (̃σB = σ̃Bm), go back to Step 2 and continue
the iteration process.

Algorithm 2 (elastic-plastic case). Assumptions and preliminary steps. On the basis of the results ob-
tained with the Algorithm 1, the elastic-plastic behavior of the material is now considered. Hence, the
right-hand side function in the governing equation (15) is no longer equal to zero. The Algorithm 2
consists of two nested iteration processes. In the case of the main iteration process we continue the
loading path started by the Algorithm 1, i.e.„ we take m = kp, kp + 1, . . . , that corresponds to the stress
σ̃B = σ̃Bkp , σ̃Bkp+1, . . . , respectively. Note that since for the last iteration step kp in the Algorithm 1 the
elastic-plastic behavior of the material has been detected, then we repeat computations taking m = kp

(̃σB = σ̃Bkp ) and some initial distribution for the unknown plastic strain increments (further referred
by iter = 0). Generally, for a given stress σ̃Bm , we start the internal iteration process, taking iter =
1, 2, . . . . We compute successive approximations 1ε p (iter)

X X , 1ε p (iter)
Y Y , 1ε p (iter)

XY for the plastic strain in-
crements until a desired accuracy is achieved.

Main iteration process:

Step 1-1. Take m = kp (̃σB = σ̃Bkp ).
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Step 1-2. For a given value of m (̃σBm), perform some preliminary steps, before the internal iteration
process starts. An initial distribution of plastic strain increments is denoted as iter= 0.

If m = kp, then

(a) take ε p
X X = ε

p
Y Y = ε

p
XY = 0 and g̃(X i , Yi )= 0, i = 1, 2, . . . ,Ni;

(b) choose some initial distribution for the plastic strain increments 1ε p (0)
X X , 1ε p (0)

Y Y , 1ε p (0)
XY for all

discretization points such that σ̃eq,kp > 1 (the Algorithm 1); for the remaining discretization points,
take 1ε p (0)

X X =1ε
p (0)
Y Y =1ε

p (0)
XY = 0.

Else, if m > kp, then

(a) use a final distribution of the plastic strain increments obtained for the stress σ̃Bm−1 to compute
current values of ε p

X X , ε p
Y Y , ε p

XY (the equation (20)) for all interpolation points such that σ̃eq,m−1 > 1;
otherwise, take ε p

X X = ε
p
Y Y = ε

p
XY = 0;

(b) compute current values of the function g̃(X i , Yi ) (the equation (18)) at all interpolation points such
that σ̃eq,m−1 > 1 (see also the remarks on the finite difference (FD) approximation of the partial
derivatives given below); otherwise, take g̃(X i , Yi )= 0;

(c) choose some initial distribution for the plastic strain increments 1ε p (0)
X X , 1ε p (0)

Y Y , 1ε p (0)
XY for all

discretization points such that σ̃eq,m−1 > 1; otherwise, take 1ε p (0)
X X =1ε

p (0)
Y Y =1ε

p (0)
XY = 0.

End If

Internal iteration process:

Step 2-1. Take iter= 1.

Step 2-2. Based on a given distribution of the plastic strain increments 1ε p (iter−1)
X X , 1ε p (iter−1)

Y Y ,
1ε

p (iter−1)
XY compute values of the function 1g̃(iter−1)(X i , Yi ), i = 1, 2, . . . ,Ni (the equation (19);

see also the remarks on the FD approximation of the partial derivatives).

Step 2-3. Compute values of the right-hand side function of the governing equation (15), i.e.,
b̃(iter−1)(X i , Yi ), i = 1, 2, . . . ,Ni (the equation (17)).

Step 2-4. Compute the approximate solution of the inhomogeneous boundary value equation (15)–
(16) using the MPS together with the MFS (see, e.g., [Chen et al. 2014]).

We represent the solution in a decomposed form as a sum of a particular solution 9(iter)
p (X, Y )

(see Step 2-4-1) and a general solution 9(iter)
h (X, Y ) (see Step 2-4-2), i.e.,

9(iter)(X, Y )=9(iter)
h (X, Y )+9(iter)

p (X, Y ). (29)

Step 2-4-1. Compute the particular solution.

The particular solution satisfies the governing equation (15) in the domain, although it does not
necessarily satisfy the boundary conditions. We can obtain the approximate particular solution if
we interpolate the right-hand side function given in (15) at the interpolation points using radial ba-
sis functions (RBFs) ϕk and some polynomial functions p j (for details see, e.g., [Chen et al. 2014;
Jankowska and Kołodziej 2015]). Note that we take the multiquadric (MQ) as RBFs. We have

ϕk =
√
(X − Xk)2+ (Y − Yk)2+ c2, (30)
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where c is a shape parameter. Hence, we obtain

b̃(iter−1)(X, Y )≈
Ni∑

k=1

αkϕk(X, Y )+
L∑

j=1

β j p j (X, Y ), (31)

where L , 0 ≤ L ≤ 6, denotes the number of polynomials p j = p j (X, Y ) in (31). Note that αk ,
β j in (31) are unknown coefficients to be determined. They can be obtained by solving the linear
system of equations of the form

Ni∑
k=1

αkϕk(X i , Yi )+

L∑
j=1

β j p j (X i , Yi )= b̃(iter−1)(X i , Yi ), i = 1, 2, . . . ,Ni,

Ni∑
j=1

α j pk(X j , Y j )= 0, k = 1, 2, . . . , L . (32)

When the constants αk and β j are computed, the approximate particular solution 9(iter)
p (X, Y ) is

of the following form:

9(iter)
p (X, Y )≈

Ni∑
k=1

αkψk(X, Y )+
L∑

j=1

β j q j (X, Y ), (33)

where ψk and q j are the particular solutions corresponding to the functions ϕk and p j , respectively.
Note that they are associated with the operator ∇4 of the governing equation such that the following
equations are satisfied ∇4ψk(X, Y )= ϕk(X, Y ) and ∇4q j (X, Y )= p j (X, Y ) (for details see, e.g.,
[Chen et al. 2014; Jankowska and Kołodziej 2015]).

Step 2-4-2. Compute the general solution.

The general solution 9(iter)
h (X, Y ) satisfies the homogeneous governing equation of the form

∇
49

(iter)
h (X, Y )= 0 with the modified boundary conditions

G1l(9
(iter)
h (X, Y ))= g1l(X, Y )−G1l(9

(iter)
p (X, Y )),

G2l(9
(iter)
h (X, Y ))= g2l(X, Y )−G2l(9

(iter)
p (X, Y )),

(34)

for l = 1, 2, . . . ,Nl. The above boundary value problem can be solved with the MFS. The approx-
imate general solution is of the form

9
(iter)
h (X, Y )≈

Ns∑
i=1

ciφ1i (X, Y )+
Ns∑

i=1

diφ2i (X, Y ), (35)

where the unknown values of coefficients ci , di , i = 1, 2, . . . ,Ns, present in (35), can be obtained,
if we solve a linear system of collocation equations (compare Step 2 of the Algorithm 1).

Step 2-5. Since the solution9(iter) is known, compute σ̃ (iter)
eq,m (the equation (24)) at all discretization

points.
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Note that Steps 2-2 to 2-4 describe how to compute the approximate solution of the inhomogeneous
boundary-value equation (15)–(16) based on the plastic strain increments obtained in the previous
iteration step. The successive approximations of the plastic strain increments can be found with
the approach proposed in [Mendelson 1968] in the following way.

Step 2-6. Compute a new distribution of the plastic strain increments at all discretization points.

For all discretization points such that σ̃ (iter−1)
eq,m > 1, apply a method presented in a block diagram

(see Figure 4). This approach uses the stresses σX X , σY Y , σXY obtained with the solution 9(iter)

together with the equivalent plastic strain increment 1̃ε p (iter−1)
eq (the equation (25)) and the corre-

sponding equivalent stress σ̃ (iter−1)
eq determined from the stress-strain curve (see Figure 5) to find

a new distribution 1ε p (iter)
X X , 1ε p (iter)

Y Y , 1ε p (iter)
XY of the plastic strain increments with the Prandtl–

Reuss relations (23).

For the remaining discretization points, take 1ε p (iter)
X X =1ε

p (iter)
Y Y =1ε

p (iter)
XY = 0.

Step 2-7. Take two successive distributions of the plastic strain increments to compute the max-
imum distance d between two approximate solutions and the root mean square error δ(iter) of the
boundary conditions fulfillment at Nt test points located on the boundary at each iteration step, i.e.,

d =max{dX X , dY Y , dXY }, δ(iter)
=

√∑Nt
i=1
[
σb(X i , Yi )− σ

(iter)
a (X i , Yi )

]2
/Nt, (36)

where
di j =

√∑Ni
k=1
[
1ε

p (iter)
i j (Xk, Yk)−1ε

p (iter−1)
i j (Xk, Yk)

]2
/Ni. (37)

σb denotes an exact value of the stress at a given test point on the boundary and σa represents the
approximate value of the stress computed with the method proposed. Choose a tolerance value
TOL. If d ≤ TOL and the root mean square error δ(iter) provides a sufficient accuracy of the result,
then stop the internal iteration process and go further to Step 1-3. Else, take iter= iter+1 and go
back to Step 2-2.

Note that if the distance d is increasing for successive iterations, then the iteration process is not
convergent and it is stopped. Similarly as in the case when the maximum number of iterations is
exceeded before the accuracy is achieved.

Step 1-3. Take m = m+ 1, go back to Step 1-2 and continue the main iteration process.

Finite difference approximation of partial derivatives. We can approximate values of all partial deriva-
tives of the plastic strain increments that are needed in (19) for the function 1g̃(X, Y ) with the finite
difference formulas (see, e.g., [Anderson et al. 1984; Orkisz 1998; Li and Wang 2003]). Then, values
of the partial derivatives of the accumulated plastic strains that are required in (18) for the function
g̃(X, Y ) can be easily obtained. The simplest method assumes the differentiation of the equations (20)
and then the computation of the sums of the appropriate partial derivatives of the plastic strain increments.
Note that values of the partial derivatives present in (19) are computed for the plastic strain increments
corresponding to the interpolation points but for the appropriate finite difference equations we take the
plastic strain increments that correspond to the discretization points. Such an approach increases an
accuracy of the finite difference approximation. That is why, throughout the Algorithm 2, we compute
values of the plastic strain increments at all discretization points.
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The discretization points used in finite difference formulas are presented in Figures 3 and 6. We denote
by O a given interpolation point. Furthermore, A1, A2, A3 and B1, B2, B3 represent the neighboring
discretization points lying on the same line as the point O along the x-axis. Similarly, C1, C2, C3 and
D1, D2, D3 are the neighboring discretization points lying along the y-axis. We can also distinguish
another set of uniformly distributed discretization points E , F , G, H (see Figure 6, left). The distance
between two points along the x-axis is equal to h and the distance between two points along the y-axis
is represented by k. Subsequently, we refer to these distances as mesh increments.

Let P stands for any interpolation or discretization point considered. Subsequently, we denote by u P

a value of the appropriate increment of plastic strains 1ε p
X X , 1ε p

Y Y or 1ε p
XY at the point P , respectively.

For the great majority of the interpolation points, values of the appropriate partial derivatives can be
approximated with the central finite difference formulas (see also Figure 6, left) given as

∂2uO

∂x2 ≈
u B1− 2uO + u A1

h2 ,
∂2uO

∂y2 ≈
u D1− 2uO + uC1

k2 ,
∂2uO

∂x∂y
≈

uE − uF − uG + u H

4hk
. (38)

Nevertheless, since the plate is of irregular domain, then for some selected interpolation points located
near the boundary, we have to use special formulas for the finite difference approximation. These for-
mulas take into account different mesh increments. Such a general case is presented in Figure 6, right.
As we can see, for given values of h and k, the distances between some neighboring points along the x
and y axes can be smaller. In general, they can be determined by the coefficients (positive and less or
equal to 1) denoted and defined as α1 = |A1O|/h, β1 = |B1O|/h, γ1 = |C1O|/k and η1 = |D1O|/k (see
Figure 6, right), respectively.

A choice of the appropriate finite difference formula depends on a position of the interpolation point
with respect to the boundary. In most cases, each interpolation point has all their neighboring discretiza-
tion points, i.e., A1, B1, C1, D1, E , F , G, H , even if some mesh increments are smaller than h and k.
Then, we can use the following central finite difference formulas:

∂2uO

∂x2 ≈
2(α1u B1− (α1+β1)uO +β1u A1)

α1β1(α1+β1)h2 ,
∂2uO

∂y2 ≈
2(γ1u D1− (γ1+ η1)uO + η1uC1)

γ1η1(γ1+ η1)k2 , (39)

∂2uO

∂x∂y
≈

1
2h

(
∂u B1

∂y
−
∂u A1

∂y

)
. (40)

Note that values of the partial derivatives of the first order present in (40) can be approximated with the
central finite difference formula (41)1, where P denotes a given discretization point (e.g., A1, B1 in (40))
and the notation |P indicates that the appropriate value is chosen with respect to the point P . We have

∂u P

∂y
≈

u D1|P − uC1|P

(γ1|P + η1|P )k
,

∂u P

∂y
≈

3u P − 4uC1|P + uC2|P

2k
,

∂u P

∂y
≈
−3u P + 4u D1|P − u D2|P

2k
. (41)

Finally, we consider the case when a given interpolation point (located very close to the boundary of
the narrowed region) does not have some of its neighboring discretization points. We deal with such a
situation rarely. If a number of uniformly distributed interpolation points is large, then a distance between
a given interpolation point and some corresponding (located on the boundary) discretization point that
should be also considered is equal or close to zero (see Section 3 and Figure 3). In such a case we do
not include this point in the set of all discretization points used for further computations. Hence, for the
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Figure 6. The distribution of the discretization points used in the finite difference formulas.

approximation of the second order derivatives with respect to x and y, we can use the backward (42)1,
(43)1 or forward (42)2, (43)2 finite difference formulas given as follows:

∂2uO

∂x2 ≈
2uO − 5u A1+ 4u A2− u A3

h2 ,
∂2uO

∂x2 ≈
2uO − 5u B1+ 4u B2− u B3

h2 , (42)

∂2uO

∂y2 ≈
2uO − 5uC1+ 4uC2− uC3

k2 ,
∂2uO

∂y2 ≈
2uO − 5u D1+ 4u D2− u D3

k2 . (43)

Similarly, in the case of the mixed second order partial derivative, we can apply the following backward
(44)1 or forward (44)2 finite differences:

∂2uO

∂x∂y
≈

1
2h

(
3
∂uO

∂y
− 4

∂u A1

∂y
+
∂u A2

∂y

)
,

∂2uO

∂x∂y
≈

1
2h

(
−3
∂uO

∂y
+ 4

∂u B1

∂y
−
∂u B2

∂y

)
. (44)

Depending on the existence and the location of the neighboring discretization points, for the approxima-
tion of the first order partial derivatives present in (44) we can choose the appropriate formula from (41).

Note that for the approximation of the partial derivatives proposed above, we take the finite difference
formulas of the second order. The only exception are the finite differences (39) and (41)1. They are of the
first order accuracy due to the mesh increments that are smaller than h and k. However, for α1 = β1 = 1
in (39)1 and γ1 = η1 = 1 in (39)2, the appropriate finite difference formulas reduce to the forms (38)1 and
(38)2 of the second order accuracy, respectively. Similarly, the equation (41)1 becomes for γ1 = η1 = 1
the central finite difference of the second order.

4. Numerical experiments

For the problem considered we choose the plate with two different depths of the narrowing. We refer to
them as: 1-A (if a = 1, b = 0.5) and 1-B (if a = 1, b = 0.25), respectively. We choose n = 0.5 for the
parameter of the elastic-plastic model (1) and we take the following material parameters: E = 2× 1011

[Pa], ν = 0.3, σ0 = 2× 108 [Pa], ε0 = 1× 10−3. Further, for these two boundary-value problems we
choose the loading paths to the state of stress σ̃B. The algorithm proposed in Section 3 produces a
sequence of results for each successive value of σ̃Bm , if the appropriate step size is chosen as hσ̃B =

σ̃Bm − σ̃Bm−1 = 0.0125. The first interpolation points such that the plastic deformation occurs can be
detected for σ̃B = 0.6375 in the case of the geometry 1-A and σ̃B = 0.475 in the case of the geometry 1-B.
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Figure 7. The root mean square error (left) and the root mean square error normalized
with σ̃B (right) of the boundary conditions fulfillment obtained for the plate of the ge-
ometry 1-B after a constant number of eight iteration steps.

The parameters of the meshless methods were chosen so that the acceptable and small root mean
square error of the solution could be achieved. Subsequently, we denote by Mc, Ms and Mi the number
of collocation, source and interpolation points located on the shorter side of the plate (e.g., AB or CD).
Furthermore, iMd is the number of additional intermediate discretization points placed between each
two interpolation points (see Figure 3). We have Mi= 11, iMd = 4, s = 0.2 and c = 0.1. We also take
Mc= 80, Ms= 80 for the geometry 1-A and Mc= 60, Ms= 60 for the geometry 1-B, respectively. For
these values of parameters the distance between two neighboring interpolation points along the x and y
axes is equal to 4.1667×10−2 and the mesh increments for the finite difference approximation are given
by h = k = 8.3333×10−3.

The optimal computational procedure preferred by the authors assumes that the number of iteration
steps required to obtain the solution related to succeeding stresses σ̃Bk is chosen so that the root mean

Geometry 1-A 1-B

Side of plate / Boundary condition δ δ

(0AB, 0DC) 9Y Y = σ̃B 6.220×10−4 3.601×10−4

(0E1B, 0E2C, 0F1A, 0F2D) 9X X = 0 2.777×10−3 7.253×10−4

(0AB, 0DC, 0E1B, 0E2C, 0F1A, 0F2D) 9XY = 0 2.287×10−3 2.174×10−4

(0E1E2) 9Y Y nx −9XY ny = 0 4.020×10−3 2.880×10−4

(0E1E2) 9X X ny −9XY nx = 0 1.637×10−3 6.977×10−4

(0F1F2) 9Y Y nx −9XY ny = 0 4.019×10−3 2.880×10−4

(0F1F2) 9X X ny −9XY nx = 0 1.636×10−3 6.977×10−4

(0) Total 2.496×10−3 4.691×10−4

Final distance d 4.825×10−4 4.018×10−3

Table 1. Values of the root mean square error δ of the boundary conditions fulfillment
for the different boundary conditions corresponding to the appropriate sides of the plate,
the final distance d between to two last successive distributions of the plastic strain
increments obtained with the algorithm proposed for σ̃B = 0.8 and the geometries 1-A
and 1-B. Eight iterations in total were used in each case.



56 MALGORZATA A. JANKOWSKA AND JAN ADAM KOŁODZIEJ

0.000
0.023
0.045
0.068
0.090
0.112
0.135
0.158
0.180
0.202
0.225

0.2

0.1

0.0

− 0.1

− 0.2

− 0.4 − 0.2 0.0
x

y

0.2 0.4

0.155
0.281
0.407
0.533
0.659
0.785
0.911
1.037
1.163
1.289
1.415

0.2

0.1

0.0

− 0.1

− 0.2

− 0.4 − 0.2 0.0
x

y

0.2 0.4

0.155
0.259
0.362
0.466
0.569
0.673
0.776
0.880
0.983
1.087
1.190

0.2

0.1

0.0

− 0.1

− 0.2

− 0.4 − 0.2 0.0
x

y

0.2 0.4

ε̃
p
eq+ 1̃ε

p
eq; σ̃B = 0.8 ε̃eq; σ̃B = 0.8 σ̃eq; σ̃B = 0.8

0.000
0.064
0.128
0.192
0.256
0.320
0.384
0.448
0.512
0.576
0.640

0.2

0.1

0.0

− 0.1

− 0.2

− 0.4 − 0.2 0.0
x

y

0.2 0.4

0.000
0.209
0.418
0.627
0.836
1.045
1.254
1.463
1.672
1.881
2.090

0.2

0.1

0.0

− 0.1

− 0.2

− 0.4 − 0.2 0.0
x

y

0.2 0.4

0.005
0.149
0.293
0.437
0.581
0.725
0.869
1.013
1.157
1.301
1.445

0.2

0.1

0.0

− 0.1

− 0.2

− 0.4 − 0.2 0.0
x

y

0.2 0.4

ε̃
p
eq+ 1̃ε

p
eq; σ̃B = 0.8 ε̃eq; σ̃B = 0.8 σ̃eq; σ̃B = 0.8

Figure 8. The comparison of the equivalent plastic strains ε̃ p
eq+ 1̃ε

p
eq (left), the equiv-

alent total strains ε̃eq (middle) and the equivalent stress σ̃eq (right) in the plate of the
geometry 1-A (top) and 1-B (bottom), respectively.

square error and a given tolerance imposed on the iteration process are sufficiently small. Nevertheless,
since the accuracy of the solution is acceptable also for the constant number of iterations, we always
perform eight iteration steps. Note that all computations were performed with the C++ libraries for the
floating-point conversions in the double extended precision format (dedicated for the Intel C++ compiler)
as proposed in [Jankowska 2010].

First, we present the accuracy of the approximate solution obtained for different conditions of loading
for the plate of the geometry 1-B. As we can see in Figure 7, the root mean square error and the normalized
root mean square error of the boundary conditions fulfillment obtained after a constant number of 8
iteration steps remain of the same order. The curve profiles indicate however that for larger values of
the stress σ̃B more iteration steps (or just their different numbers) are required to retain the assumed
accuracy.

In Table 1 we can see a comparison of values of the root mean square error of the boundary conditions
fulfillment for the different boundary conditions corresponding to the appropriate sides of the plate and
the final distance between two last successive distributions of the plastic strain increments. Such results
are provided for the loading state related to σ̃B = 0.8 and both geometries 1-A and 1-B. Then, the
appropriate distributions of the equivalent plastic strains, the equivalent total strains and the equivalent
stress in the plate obtained for the same value of σ̃B = 0.8 and both geometries are presented in Figure 8.
The regions of elastic and plastic deformation can be observed there.

5. Conclusions

A method for solving some plane elastoplastic boundary-value problem describing the stress state in the
plate subjected to uniaxial extension is proposed. It is based on the successive-approximation iteration
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process that is further combined with the meshless methods (the method of fundamental solutions and the
method of particular solutions). Due to the special form of the right-hand side function of the governing
equation the approximation of some partial derivatives with finite difference formulas is also applied. The
authors introduce a new set of auxiliary discretization points that is utilized to control the finite difference
approximation accuracy. Such points are not directly used for solving a sequence of nonhomogeneous
boundary-value problems involved. Hence, the dimensions of some linear systems of equations that
appear in each iteration step due to the meshless methods applied, are as always limited to the number
of collocation and interpolations points. Note that the discretization points are uniformly located in the
domain (except for the ones that are placed in the neighborhood of the narrowing). However, there is
an increasing number of papers that propose an application of irregular grid (cloud) of points for the
finite difference approximation (see the generalized finite difference (GFD) methods proposed, e.g., in
[Orkisz 1998; Benito et al. 2007]). On the other hand, an application of the meshless methods for the
problem considered is easy even in the case of complicated geometries. Furthermore, since the solution,
i.e., the stress function, is approximated by linear combinations of fundamental solutions and particular
solutions, we can compute values of stresses and strains not only in the interpolation or discretization
points but at any point in the domain.

In the opinion of the authors the meshless methods are good alternative to the mesh methods in the case
of many scientific problems. So far they were mainly used for solving some linear initial-boundary value
problems with the Picard iteration process or the Newton–Raphson method as possible algorithms for
nonlinear problems. Recently, several efficient algorithms that can be used together with the meshless
methods for solving the nonlinear problems, appeared in the literature. Some of them are based on
perturbation techniques that transform a nonlinear problem into a sequence of linear problems (see, e.g.,
the homotopy analysis method (HAM) described in [Liao 2004; Tsai 2012] and the asymptotic numerical
method (ANM) proposed in [Tri et al. 2012]). Furthermore, we can use the Kansa method [1990] by an
approximation of a solution with a linear combination of radial basis functions. Such an approach results
in a nonlinear system of equations to be solved.
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