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MULTIOBJECTIVE OPTIMIZATION OF LAMINATED COMPOSITE PLATE
WITH ELLIPTICAL CUT-OUT USING ANN BASED NSGA-II

P. EMMANUEL NICHOLAS, M. C. LENIN BABU AND A. SATHYA SOFIA

Laminated composites are highly in demand for the applications where high strength and stiffness are
required at less weight. They generally fail due to buckling, as they are modeled as thin plates and
are loaded compressively. Therefore, the design parameters of the laminated composite plates are to be
optimized for the multiple-conflicting objectives buckling strength and weight. However, the composite
plates, which are used in real world applications, are to be made with cut-outs and finite element analysis
is required to analyze them. As it makes the optimization process more complex, a methodology is
proposed in this paper to carry out a multiobjective optimization for the rectangular composite plate made
with a central elliptical cut-out. The nondominated solutions are obtained using nondominated sorting
genetic algorithm (NSGA-II) in which the multilayer feed-forward neural network is used to replace the
time consuming finite element analysis. The numerical results show that the proposed method finds the
nondominated solutions efficiently and reduces the computational cost prominently.

1. Introduction

Fiber reinforced laminated composite structures have high specific strength and stiffness and so, they
are widely used in aerospace industries, automobile industries and wind turbine blades. In those ap-
plications, they are generally modeled as thin plates and shells and are compressively loaded. Hence,
they generally fail due to buckling and it is mandatory to optimize the design variables of the composite
plates for the multiple objectives such as maximum buckling strength and minimum weight. Aymerich
and Serra [2008] optimized conventional ply angles (0◦/± 45◦/90◦) to increase the buckling strength of
the composite plate. Almeida and Awruch [2009] carried out a multiobjective optimization to minimize
the weight and deflection of the composite plate. The conventional ply angles were used as design
variables and finite element method was used to evaluate the buckling strength of the structure. Omkar et
al. [2009; 2011] have optimized the composite plate for the multiple objectives weight and the total cost.
These multiobjective optimization problems were solved in the similar fashion of the single objective
optimization problem by assigning the suitable weights to the objective functions. However, the exact
values of the weights cannot be obtained, as the importance of each objective function cannot be clearly
quantified in the multiobjective optimization problems. Further, the ply angles having the same orienta-
tion are grouped in the optimum stacking sequences, as conventional ply angles are generally optimized
to improve the structural behavior of the composites. Kim et al. [2005] and Kim [2007] stated that the
thickness of the ply having a particular orientation is increased when the plies having the same orientation
are stacked together. They also mentioned that the interlaminar normal and shear stresses are developed
due to the grouping of plies having the same orientation. Campbell [2010] and Emmanuel Nicholas et
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al. [2014] recommend for maintaining the dispersed stacking sequences so as to avoid grouping of plies
having the same orientation.

In real world applications, it is indispensable to design the composite plates with cut-outs (holes) in
order to provide fasteners to assemble them as a complex structure. In aircraft industries, the cut-outs are
necessary to function as doors, windows and access ports. Al Qablan et al. [2009] stated that the cut-outs
are necessary for accessibility reasons and to reduce the weight of the composite structure. The finite ele-
ment analysis was used to find the buckling strength of the composite plate with cut-outs. Liu et al. [2006]
indicated that the design of interior cut-outs in laminated composite structures is of great importance in
the aerospace, automobile and structural engineering. Lopes et al. [2010] mentioned that the cut-outs on
composite structures are required to accommodate windows, doors, and bolted joints. Aydin Komur et
al. [2010] referred that the cut-outs are generally used in composites as design necessities. They analyzed
the buckling strength of a woven-glass-polyester laminated composite plate with circular/elliptical cutout.
The finite element method was used to study the effect of the cutout shape on the buckling strength. Erklig
and Yeter [2012] used finite element analysis to study the effects of various cut-out shapes on the lateral
buckling behavior of composite beams. Iyengar and Vyas [2011] carried out an optimization process
to maximize the buckling load of the laminated composite plate with and without cut-out. However,
the design space was restricted by using very few ply angles (±60◦,±45◦,±30◦, 0◦/90◦) as the design
variables. Liu et al. [2006] and Lopes et al. [2010] performed the shape optimization of multiple interior
cutouts by varying [θ/−θ ]2s stacking sequences. Rocha et al. [2014] considered the laminated composite
curved panel with a central circular cutout that is generally used in aerospace applications. He optimized
the structure consists of 8 plies by varying the conventional ply angles and ply thickness.

The artificial neural network is generally used as a prediction tool in the applications, where the oppor-
tunities are not available or not possible to find the actual targets. Recently, ANN has been successfully
used to approximate the mechanical behaviors of the laminated composites. Zheng et al. [2009] success-
fully used the wavelet neural network to estimate the delamination locality. Bilgehan [2011] used artificial
neural network to analyze the buckling strength of slender prismatic columns. Chakraborty [2005] used
natural frequencies as inputs to the artificial neural network and predicted the existence of embedded
delaminations based on their size, shape and location in FRP composites. The natural frequencies of
laminated composite for different blends of size, shape and location of an embedded delamination were
obtained using finite element method and these samples have been used to train a back propagation neural
network (BPNN) to predict the delaminations in the composite structure. Karnik et al. [2008] carried out
delamination analysis in high speed drilling with the application of artificial neural network model. The
spindle speed, feed rate and point angle were used as the input parameters to the network structure.

Tsao and Hocheng [2008] used radial basis function network (RBFN) and predicted the thrust force
and surface roughness in composite materials during the drilling process. Al-Assaf and El Kadi [2001]
applied ANN to predict the mechanical properties of fiber reinforced polymeric composites. They exam-
ined the possibility of using neural network to predict the failure due to fatigue. The ply angle, stress
ratio and maximum stress were given as the inputs to the network and the number of cycles to failure
has been found as the output. Al-Haik et al. [2006] studied the visco-plastic behavior of composites
using a neural networks formulation. Mishra et al. [2010] used artificial neural network to predict the
residual tensile strength of unidirectional glass fiber reinforced plastic laminates with drilled hole. The
drill point geometry, feed rate and the spindle speed have been used as the input variables to the network.
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The number of neurons in the input and output layers were equal to the number of input and output
parameters. The number of neurons in the hidden layer was optimally found based on trial and error
method. Reddy et al. [2013] used artificial neural networks to predict the deflection and stresses of car-
bon fiber reinforced plastic (CFRP) laminated composite square plate subjected to uniformly distributed
load. Cardozo et al. [2011] used ANN based optimization method to optimize the stacking sequence of
laminated composite. However, the work is limited by using only the conventional ply angles.

It is observed from the literature review that many research works have been done on stacking sequence
optimization of rectangular laminated composite plate to increase the buckling strength and reduce the
weight of the structure. The in-plane and buckling strengths of the rectangular composite plate were
computed analytically during the optimization process. However, the literature review also reveals that
the composite plate, which is to be used in real world applications, has to be made with cut-out. Further,
it is exposed that the plate made with cut-out has to be analyzed using FEM and this increases the
computational cost. Though many researchers used FEM and ANN and studied the influences of cut-
out size, shape and its location on buckling strength and other mechanical behaviors of the composite
plate, the design factors of the composite plate made with cut-out have not been optimized adequately.
In addition, the conventional ply angles have been generally used as the design variables and also the
complex multiobjective optimization problems have been solved like the single objective optimization
problems. Hence, the ANN based methodology is proposed in this paper to obtain the Pareto-optimal
designs for the laminated composite plate made with cut-out, whereas the design space is critically
increased with the choice of reduced ply angle intervals.

2. Problem definition and solution methodology

2.1. Problem definition. The rectangular composite plate with central elliptical cut-out shown in Figure 1
is considered in this research work whereas the cut-out is oriented at an angle 60◦ from the major coor-
dinate axis. The simply supported boundary conditions and biaxial compressive loads are applied on all
the four sides of the plate. The ply angle (θ), number of plies (n) and stacking sequence are chosen as
design variables and the in-plane strengths obtained using Tsai–Wu criterion is set as design constraint.
The design space is critically increased using the concept of ply angles having the reduced intervals so as
to improve the degree of the objective functions and to reduce the number of grouping of plies having the
same orientation. The objective functions, design variables and constraints are defined in Equation (1).

Maximize the buckling strength λb = f ([θ1/θ2/θ3 . . . /θn])

and minimize the weight (total thickness) T =
∑k

i=1 ti
subject to θi =−90◦ to 90◦with an increment “1”
ti = 0 or 0.125 mm
f1σ11i + f2σ22+ f6σ12+ f11σ

2
11+ f22σ

2
22++ f66σ

2
12+ 2 f12σ11σ22 ≤ 1

G ≤ 4
where n = number of plies in the plate
ti = thickness of each ply “i”
1= any value of 45◦, 15◦, 5◦ and 1◦

i = 1, 2, 3, . . . , n/2 (i.e., stacking sequence is symmetric)
and G = number of continuous plies having the same orientation. (1)
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2.2. Solution methodology. The artificial neural network is considered in the optimization procedure
to predict the buckling strength of the laminated composite plate made with cut-out. The proposed
optimization method comprises of three modules. In the first module, the stacking sequences of the
laminated plate made with cut-out are randomly generated using MATLAB code and buckling strength
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Figure 1. Geometry of the structure.
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Figure 2. Loading and boundary conditions.
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Property Values

E1 133.86 GPa
E2 = E3 7.706 GPa

G12 = G13 4.306 GPa
G23 2.76 GPa

v12 = v13 0.301
v23 0.396
Vf 0.55

F1T 1500 MPa
F1C 1200 MPa
F2T 40 MPa
F2C 246 MPa
F6 68 MPa

Table 1. Material properties of the (AS4D/9310) carbon/epoxy composite.

of each configuration is evaluated using the commercial finite element analysis software ABAQUS. In
the second module, the neural network (ANN) structure is constructed using MATLAB code and it is
trained using the sample data generated in the first module. The genetic algorithm, in which the trained
ANN is used to predict the fitness values, is used as the optimization tool in the third module.

2.3. Finite element analysis and data generation. The finite element method is used to analyze the
structure when the geometry, material property or loading condition is irregular. The commercial finite
element analysis software ABAQUS is used in this paper to equip the sample data so as to train and test
the ANN. The stacking sequences of the rectangular composite plate made with the elliptical cut-out
are randomly generated from the specified design space and the buckling strength and the ply stresses
(through which the safety factor is found using Tsai–Wu criterion) of each configuration are calculated
using ABAQUS. The MATLAB code is used to generate the stacking sequences randomly and python
script is used to interface ABAQUS with MATLAB. The material properties listed in Table 1 are applied
to the plate. The maximum number of plies is set as 24, whereas each ply has a uniform thickness of 0
or 0.125 mm. The value of ply thickness is set as 0 so as to vary the number of plies.

The simply supported boundary conditions (as given in Equation (2)) and biaxial compressive load
are applied along the edges of the plate as shown in Figure 2. The finite element model of the plate is
generated using four node shell element (S4R) where each node has six degrees of freedom. The sample
finite element model of the plate with cut-out is shown in Figure 3. In this paper, the number of elements
is optimally found as 5300 by using the convergence graph shown in Figure 4.

w0(x, 0)= 0, w0(x, b)= 0, w0(0, y)= 0, w0(a, y)= 0,

Mxx(0, y)= 0, Mxx(a, y)= 0, Myy(x, o)= 0, Myy(x, b)= 0.
(2)

2.4. Artificial neural network. As the design space of this work is critically increased and FEA is re-
quired to analyze the plate, ANN is used in this paper to predict the buckling strength and the safety
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Figure 3. Finite element model of the composite plate with cut-out.
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Figure 4. Convergence of number of elements.
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Sl.No Training Algorithm Acronym

1 resilient backpropagation RP
2 scaled conjugate gradient SCG
3 conjugate gradient with Powell/Beale restarts CGB
4 Fletcher–Powell conjugate gradient CGF
5 Polak–Ribière conjugate gradient CGP
6 Levenberg–Marquardt LM
7 BFGS quasi-Newton BFG

Table 2. Various training algorithms.

factor during the optimization process. A multilayer feed-forward back- propagation neural network is
used. The neural network is built in four stages. In the first stage, the sample data with their targets are
collected. The network object with suitable neuron in each layer, number of layers, transfer function for
each layer and the training algorithm of the network are chosen in the second stage. The created network
is trained in stage three with the samples generated in stage one. The network is tested in stage four
with the remaining samples and after the satisfaction of the performance of the network with these test
samples, the network is simulated for the new inputs.

The performance of the neural network during the training and after the training periods highly depends
on the choice of the network objects such as the numbers of hidden layers, number of neurons, transfer
functions and the training algorithm. Yuen and Lam [2006] mentioned that these parameters are to be de-
cided based on the experience or rule of thumb only. Bolanča et al. [2014] obtained the network structure
by optimally varying these parameters. Kermanshahi and Iwamiya [2002] and Chakraborty [2005] also
recommended for finding the network objects using the trial and error method. Four layers network is
chosen for this work with the neurons 24, 30, 15 and 2, respectively. The input and output layers consist
of 24 and 2 neurons, respectively, as the ANN has 24 inputs (layer angles) and 2 outputs (buckling
strength and safety factor). The number of neurons in the hidden layers, transfer functions and the
training algorithm are chosen based on the trial and error method [Mishra et al. 2010]. Since the design
space is increased here with the choice of dispersed layer angles, 1000 samples of stacking sequences
with their targets are generated for each ply angle interval. The inputs and the targets are normalized
between −1 to 1. Tan-sigmoid transfer function is used for the first three layers and linear transfer
function is used in the last layer. Seven networks having same number of layers, neurons and same
type of transfer functions have been constructed and they have been trained separately using the various
training algorithms given in the Table 2.

After the successful training, the networks were validated using the new data. Further, the average and
the maximum error have also been found for each training algorithm and they are compared in Figure 5.
It shows that the error level is high for the network trained by BFG type training algorithm and less
for the network trained by CGF type training algorithm. Similarly, the average error rate is found to be
maximum for the network trained by BFG type training algorithm and minimum for the network trained
by CGF type training algorithm. Hence, the CGF type training algorithm is selected to train the network.
The architecture of ANN is shown in Table 3.
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Figure 5. Networks error comparisons.

Ply angle interval Neurons in each layer Transfer functions Training algorithm

45◦ 24-30-15-2 Tansig-Tansig-Tansig-Linear FRCGA†

30◦ 24-30-15-2 Tansig-Tansig-Tansig-Linear FRCGA†

15◦ 24-30-15-2 Tansig-Tansig-Tansig-Linear FRCGA†

5◦ 24-30-15-2 Tansig-Tansig-Tansig-Linear FRCGA†

Table 3. Architecture of ANN. †Fletcher–Reeves conjugate gradient algorithm.

2.5. Nondominated sorting genetic algorithm. The nondominated sorting genetic algorithm (NSGA-
II), proposed by Deb [2001], is used in this research work to obtain the Pareto optimal designs of the
multiobjective optimization problem. It comes under the category of elitist multiobjective evolutionary
algorithm. As the name suggests, an elite-preserving operator favors the elites of a population by giving
them an opportunity to be directly carried over to the next generation. In this way, a good solution found
at the beginning of the run will never be removed unless a better solution is found out.

Initially, the population is randomly generated and the solutions are sorted into each front based on
nondomination. The dual objectives in the multiobjective optimization problem are maintained by using
a fitness assignment scheme that prefers nondominated solutions. In the current population, the very first
front is absolutely a nondominant set and the second front is dominated only by the solutions available
in the first front and the sorting of fronts happen so on. A solution “S1” is said to dominate another
solution “S2”, if the following conditions are completely satisfied:
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• The solution S1 is not inferior to S2 in all the objectives.

• The solution S1 is strictly better than S2 in at least one objective.

A rank (fitness) value is assigned to the individuals of each front based on the front number in which
they exist. Solutions available in the first front are assigned with a fitness value of 1 and solutions of the
second front are assigned with a fitness value of 2 and so on. In addition to the fitness value, a factor
called crowding distance is also calculated for each solution. The main objective of finding the crowding
distance is to show the closeness of a solution to the ones of its neighbours. The systematic procedure
of finding the crowding distance is given below.

• Let “P” be the number of solutions existing in a front and “M” the number of design objectives.

• For each objective function, the solutions in the front are sorted in the worst order of its objective
values (fm) and the sorted indices vector (Im) is found (usually the size of “I” is equal to the size
of “P”).

• A large distance values are assigned to the boundary solutions as given in (3).

dm
1 = dm

p =∞. (3)

• For the remaining solutions ( j = 2 to P − 1), the crowding distance is calculated using (4).

dm
j = I m

j +
I m

j+1− I m
j−1

f m
max− f m

min
. (4)

The parents are selected from the current population based on their rank and crowding distance by
using the tournament selection. The solution having a lower rank than another solution is selected. If
both solutions are having the same rank, then the crowding distance is used to select the best solution.
The solution with higher crowding distance is selected to the mating pool to reproduce the offspring. The
uniform crossover and mutation operators are applied to generate the next populations. As the number
of plies is also included as one of the design variables, the size of the chromosome in the multiobjective
optimization is increased twice than that of the size used in the single objective optimization. The
processes of uniform crossover and mutation applied in the multiobjective optimization problem are
given in Tables 4 and 5.

The symmetric laminated composite plate having maximum of eight plies above or below to the
mid-plane is considered in this example. As number of plies, angle of each ply and stacking sequence
are optimized in the multiobjective optimization problem, each chromosome has sixteen genes in this
example. The genes in first half of the chromosome represent the ply angle, whereas the genes in the next
half of the chromosome represent the ply thickness. The genes in the second half of the chromosome
remain unchanged during the crossover and mutation processes, as each ply has a constant thickness of
0.1 mm.

A distinct operator, named as ply deletion operator, is additionally used in the multiobjective opti-
mization to vary the number of plies of the laminated composite plate. The ply deletion operator is used
to take out a gene from the second half of the chromosome and to replace it with an empty stack code.
This operator is applied based on the probability given by the user. If the randomly generated number is
greater than the user given probability, the thickness of any ply is randomly chosen and set as zero. An
example for the ply deletion operator is given in Table 5.
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Before crossover

Ply angle Ply thickness

45 30 20 50 −45 −30 90 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
−20 10 30 −20 90 60 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

After crossover

Ply angle Ply thickness

45 30 30 50 90 −30 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
−20 10 20 −20 −45 60 90 0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 4. An example of uniform crossover for NSGA-II.

Before mutation

Ply angle Ply thickness

45 30 30 50 90 −30 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

After mutation

Ply angle Ply thickness

45 30 30 50 90 −30 −25 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 5. An example of uniform mutation for NSGA-II.

Before ply deletion

Ply angle Ply thickness

45 30 30 50 90 −30 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

After ply deletion

Ply angle Ply thickness

45 30 30 50 90 −30 45 −30 0.1 0.1 0.1 0.1 0.1 0.1 0 0.1

Table 6. An example of ply deletion operator for NSGA-II.

3. Numerical results and discussion

3.1. Validation of neural network. In general, the trained network performs well during the training
session. However, there may be possibilities of over fitting when the same network is applied to the newly
generated data. Hence, the trained network must be validated before it is included in the optimization
procedure. The laminated composite plate made with the elliptical cut-out is considered, in which the
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Figure 6. NN predictions versus actual targets for various ply angle intervals.

cutout is oriented at an angle 60◦ and located at the center of the plate as shown in Figure 1. Twenty
stacking sequences are generated for different ply angle intervals and the buckling strengths have been
predicted using the trained networks as well as the finite element method. The results obtained using
FEM and ANN have been compared in the Figure 6, which shows that the predictions of outputs are
nearer to the actual targets in all the cases.

3.2. Multiobjective optimization. The ANN based NSGA-II is constructed and used to find the Pareto
optimal solutions of the complex multiobjective optimization of the laminated composite plate with
cutout. The maximum thickness of the plate is set as 3 mm whereas each ply has a thickness of 0.125 mm.
The number of plies, angle of each ply and stacking sequences are optimized for five different ply angle
intervals (45◦, 30◦, 15◦ and 5◦). Hence, five different networks are constructed, trained and used for
the multiobjective optimization problem. After the training, the networks are validated using new data.
The performances of the networks during the testing period are shown in Figure 7 and it shows that the
predictions of the networks are very close to the FEM results. Hence, the networks are recommended to
be used in NSGA-II to predict the fitness values.

The Pareto optimal solutions obtained for different ply angle intervals using ANN based NSGA-II are
shown in Figure 8. The results prove that the number of solutions in the Pareto optimal set is significantly
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Figure 7. Performance of the networks during the testing.

increased by reducing the ply-angle interval. Only three solutions were found in the Pareto optimal set
when conventional ply angles have been optimized. The number of solutions in the Pareto optimal set
was increased from three to five when the ply angle interval has been reduced from 45◦ to 30◦. Further,
it is found that the number of solutions was increased to six and twelve when the ply angle interval has
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Figure 8. Pareto optimal solutions for the composite plate with cut-out.

been reduced to 15◦ and 5◦, respectively. The results also show that the boundaries of the Pareto optimal
front are significantly increased by using the concept of ply angles having the reduced intervals.

Based on the trial and error method the maximum number of generations is set as 300, whereas each
generation works with 40 populations. If FEM had been used to analyze the plate, ABAQUS would have
been called 12,000 times during the optimization process. As each run of FEM consumes approximately
18 seconds, more than sixty hours are required to complete the stacking sequence optimization problem.
Further, GA is one of the stochastic optimization (SO) methods and hence, it has to be run several times
in order to ensure for the global optima. This makes the FEM based optimization process more complex.
However, the same optimization problem has been completed in less than 15 minutes using ANN based
optimization method. Though the data generation task (for which FEM must be used) consumes about
5 hours, the weights and biases of the trained network are stored and used in future at any number of
times in order to find the optimum GA control parameters and to ensure for global optima.

The number of Pareto optimal solutions obtained for various ply angle intervals are given in Table 7
and they are compared based on the objective values of the boundary solutions. It is found that only
three Pareto optimal solutions were obtained when conventional ply angles have been optimized. The
number of Pareto optimal solutions was increased from three to five by reducing the ply angle interval
from 45◦ to 30◦. Further, the number of solutions in the Pareto optimal set was increased to six and
twelve, when the ply angle interval has been reduced to 15◦ and 5◦, respectively. Thus, the concept of
ply angles having the reduced intervals not only reduces the number of groupings of plies having the
same orientation, but also increases the number of solutions in the Pareto optimal set as well as enhances
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Ply angle
interval (“1”)

Number of
solutions

in the Pareto
optimal set

Maximum buckling strength
and the corresponding

plate thickness

Maximum plate thickness
and the corresponding

buckling strength

Buckling strength† Thickness†† Thickness†† Buckling strength†

ANN FEA ANN FEA

45◦ 3 28.29 27.88 10 15 130.55 134.7
30◦ 5 16.36 16.14 10 25 750.23 738.45
15◦ 6 6.856 7.05 7.5 27.5 1433.25 1485.2
5◦ 12 1.2 1.17 2.5 27.5 1403.15 1359.52

Table 7. Comparison of Pareto optimal solutions. Units are †N/mm and ††mm.

the degree of the objective functions. In addition, the predictions of ANN are once again compared using
FEA in Table 7, which proves that the performance of ANN is quite good even for the new data.

4. Conclusions

The Pareto optimal solutions for the laminated composite plate made with cut-out have been obtained
using ANN based NSGA-II. The predictions of ANN have been found to be very close to the actual
solutions. As weights and biases of the network can be stored, it is able to run NSGA several times
to ensure the global optima. The number of solutions in the Pareto optimal set has been significantly
increased by reducing the ply angle interval. The boundaries of the Pareto optimal set have been increased
using the concept of reduced ply angle intervals. Accordingly, the degree of the objective functions has
been enriched.
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