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ON LOW-FREQUENCY VIBRATIONS OF A COMPOSITE STRING WITH
CONTRAST PROPERTIES FOR ENERGY SCAVENGING FABRIC DEVICES

ASKAR KUDAIBERGENOV, ANDREA NOBILI AND LUDMILLA PRIKAZCHIKOVA

Free vibrations of a two-component string with high-contrast material parameters are considered at dif-
ferent boundary conditions to illustrate the very low-frequency energy harvesting capability of fabric
devices. It is revealed that, only for the case of mixed boundary conditions, low-frequency (locally)
almost rigid-body vibrations are admissible, provided that material parameter ratios lie in some well
defined interval. A low-frequency perturbation procedure is carried out to determine the eigenfrequen-
cies as well as the eigenforms. The analysis is extended to a piecewise inhomogeneous string and to a
string supported on an elastic foundation. It is shown that both situations may still admit low-frequency
vibrations, under certain restrictions on the material properties. This is particularly remarkable given
that the situation of elastic support normally possesses two nonzero cutoff frequencies. The results
may be especially relevant for energy scavenging fabric devices, where very low-frequency (< 10 Hz)
mechanical vibrations of textile fibers are harvested through friction.

1. Introduction

Low-frequency mechanical vibrations of composite structures have been the object of extensive studies;
see the classic textbooks [Graff 1975; Le 1999] and, for a modern account, [Wang and Wang 2013]. In
recent years, a revival of interest in the subject has been taking place owing to the appearance of new
applications connected to the development of multiphase or multilayered structures with high contrast
in the geometrical and mechanical properties. Alongside multilayered composite structures with high-
contrast material parameters, which are currently widely used in various fields of civil and mechanical en-
gineering [Horgan and Chan 1999; Elishakoff 2005], another promising application area is related to the
rapidly developing field of metamaterials. Metamaterials are engineered materials endowed with unique
properties, often stemming from the interplay of periodically arranged phases exhibiting extremely high
contrast [Martin et al. 2012]. The same principle of phase periodicity is adopted to design and construct
waveguides with tailored filtering properties [Gei et al. 2009; Piccolroaz and Movchan 2014; Kaplunov
and Nobili 2016].

Mechanical vibrations arise naturally in a variety of environments and they can be harvested to power
self-sustaining micro- and especially nanodevices. Despite high-frequency vibrations being very attrac-
tive in light of their high energy content, much greater interest lies in the exploitation of low-frequency
vibrations for their ubiquitous character (body movements such as footsteps or heartbeat, wind or thermal
generated vibrations, air flow and noise) [Song et al. 2006].
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“Progetto Giovani Ricercatori 2015” scheme, grant U2015/000125.
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Figure 1. Schematics of a textile energy harvester; compare [Qin et al. 2008, Figure 2a].
A microwire is wound around the vibrating string and frictional energy is harvested
through pulling or vibrating. Note that friction causes (mechanical) tension to vary
along the string.

Recently, textile fabric devices have been proposed as a mean of scavenging very low-frequency
(< 10 Hz) mechanical energy through the coupling of a vibrating string wound around by electrically
coupled microwires [Qin et al. 2008; Nobili and Lanzoni 2010]. A device schematics is given in Figure 1,
although other arrangements are equally possible. In this paper, we focus attention on low-frequency
vibrations of a two-component piecewise-constant finite string, in an attempt to better elucidate the energy
harvesting capability of the passive element in an energy scavenging device. For the best performance,
the string is endowed with high contrast in the material and/or in the geometrical properties. Continuity
conditions are assumed between the components.

The analysis is carried out for three types of boundary conditions, namely free-free, fixed-fixed and
fixed-free (mixed) end conditions. It is shown that the low-frequency behavior is possible only for the
case of mixed boundary conditions, which appears especially attractive for energy harvesting purposes.

A low-frequency perturbation approach is adopted to obtain the lowest eigenfrequency and the corre-
sponding eigenform, whose character appears almost rigid-body like.

The analysis of the case of variable material parameters confirms that the low-frequency regime is
accessible only in a fixed-free setup, although the almost rigid-body behavior is now restricted to the
strong component. Finally, vibrations of a high-contrast two-component piecewise homogeneous string
supported on a Winkler elastic foundation are considered [Nobili 2012]. In this case, the asymptotic
approximation is carried out for frequencies standing in the vicinity of the cut-off frequency of the
stronger component, which still can be made very small under some conditions on the ratios of the
geometrical and mechanical properties.

It is worth mentioning that the eigenfrequencies of a composite string correspond to the lowest cutoff
frequencies for a plate (or a shell) from the standpoint of 3D elasticity [Kaplunov 1995]. The same
analogy can be extended to incorporate the effects of prestress [Kaplunov et al. 2002] and anisotropy
[Kaplunov et al. 2000].

The paper is organized as follows. In Section 2, three types of boundary conditions for the ends of
the string are considered and it is revealed that the low-frequency regime is possible only in the case
of free-fixed boundary conditions. A restriction on the material parameters entailing such behavior is
also obtained. In Section 3, a perturbative approach is first conducted on piecewise homogeneous string
and then extended to the case of variable material properties. It is shown that, although the almost
rigid-body eigenbehavior retrieved in the former case is lost in the latter, low-frequency vibrations are
still admissible under suitable conditions. The effect of an elastic support is considered in Section 4
and it brings a cutoff frequency which may be greatly decreased. Finally, conclusions are drawn in
Section 5.



LOW-FREQUENCY VIBRATIONS FOR ENERGY SCAVENGING DEVICES 233

2. Frequency equation for a two-component string

Let us consider a finite linear string made of two-components, named 1 and 2, with high material and
geometric contrast parameters. The length of the components is h1 and h2. Let the x axis be taken to lie
along the string with the origin coinciding with the interface between the two components (see Figure 2).

The governing equation of the string in harmonic motion is

d2ui

dx2 +
ω2

c2
i

ui = 0, i = 1, 2, (2-1)

where ui is the transverse displacement in the relevant component of the string, Ti and ci =
√

Ti/ρi the
corresponding string tension and wave speed, ρi the linear mass density and ω> 0 the vibration frequency
[Wang and Wang 2013, Chapter 2]. The conditions enforcing displacement and traction continuity at the
interface between the components are given by

u1(0)= u2(0), T1
du1

dx
(0)= T2

du2

dx
(0). (2-2)

Let introduce the following notation for the ratios of the material parameters in the two components of
the string:

T =
T1

T2
, h =

h1

h2
, ρ =

ρ1

ρ2
, c =

c1

c2
, (2-3)

together with the nondimensional frequency parameters

λi =
ω

ci
hi > 0, i = 1, 2. (2-4)

It is observed that the parameters λ1 and λ2 are related through the connection

λ2 =
1
h

√
T
ρ
λ1. (2-5)

The general solution of the constant coefficient linear ODEs (2-1) is given by

u1(x)= A cos
(
λ1

x
h1

)
+ B sin

(
λ1

x
h1

)
, 0≤ x ≤ h1,

u2(x)= C cos
(
λ2

x
h2

)
+ D sin

(
λ2

x
h2

)
, − h2 ≤ x ≤ 0,

(2-6)

where A, B,C, D are arbitrary constants.

T2

−h2

2

T1− T2

0
1

h1

x

Figure 2. A two-component fixed-free string. The tension jump T1− T2 approximate
the effect of friction with the microwire (see Figure 1); a more refined model considering
continuous variation of the tension is discussed in Section 3B.
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For a one-parameter asymptotic analysis, the small positive quantity ε is introduced as follows:

ε =
T
h
� 1. (2-7)

Besides, let

η =
T
c
=
√

Tρ, (2-8)

whence (2-5) gives the connection
λ2 =

ε

η
λ1. (2-9)

We shall consider three types of end conditions for the string and, in each case, investigate the possibility
for low-frequency vibrations.

2A. Traction free end conditions. The boundary conditions for a string with traction free ends can be
written in the form

du1

dx
(h1)= 0 and

du2

dx
(−h2)= 0. (2-10)

Substituting the general solution (2-6) into the boundary conditions (2-10) and into the continuity rela-
tions (2-2) we arrive at a homogeneous system of algebraic equations which is linear in the integration
constants. As well known, such system possesses nontrivial solution provided that the determinant of
the associated coefficient matrix is equal to zero, namely∣∣∣∣∣∣∣∣

− sin λ1 cos λ1 0 0
0 0 sin λ2 cos λ2

1 0 −1 0
0 η 0 −1

∣∣∣∣∣∣∣∣= 0. (2-11)

Such requirement leads to the frequency equation

η tan λ1+ tan λ2 = 0, (2-12)

which, clearly, cannot sustain low-frequency vibrations (i.e., vibrations at λ1, λ2� 1) unless materials
with exotic properties, like negative density, are considered (see, for example, [Martin et al. 2012] and
references therein).

2B. Fixed end conditions. The situation of a string with fixed ends is now considered. In this case, the
boundary conditions (2-10) are replaced by

u1(h1)= 0 and u2(−h2)= 0. (2-13)

Following the usual procedure, we arrive at the frequency equation

tan λ1+ η tan λ2 = 0, (2-14)

which closely resembles (2-12). Hence, low-frequency vibrations in a string with fixed ends cannot be
achieved. However, an interesting remark appears in [Wang and Wang 2013], where it is observed that,
in the case of a fixed-fixed two-segment string, the eigenfrequency is a decreasing function of the density
ratio ρ.
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2C. Fixed-free ends. Let us consider yet another type of boundary conditions, namely the fixed-free
end conditions, wherein

u1(h1)= 0 and
du2

dx
(−h2)= 0. (2-15)

The frequency equation may be written as

tan λ1 tan λ2 = η.

In the low-frequency regime, characterized by λ1� 1 and λ2� 1, the frequency equation is approximated
by

λ1λ2 = η,

or, employing the connection (2-9), by the following condition on λ1:

λ1 =
η
√
ε
� 1. (2-16)

Clearly, (2-9) demands
λ2 =
√
ε� 1. (2-17)

According to the definitions (2-7) and (2-8), the (order) inequalities (2-16) and (2-17) amount to

ρh� 1 and
T
h
� 1, (2-18)

respectively. In particular, the first inequality may be rewritten in term of masses as

m1 = ρ1h1� ρ2h2 = m2;

that is, the mass of one string component must be much smaller than the other’s (note that 1 and 2 are
interchangeable). Together, the inequalities (2-18) require

η2
� ε� 1,

which, by the definitions (2-7) and (2-8), gives a single condition on the geometric/mechanical parameters
allowing for low-frequency vibrations, namely

T � h�
1
ρ
. (2-19)

Low-frequency vibrations may arise, for example, in a string with soft and light part 1, while part 2 is
stiff and heavy, i.e., T1� T2 and ρ1� ρ2. Besides, the corresponding string component lengths, h1 and
h2, need be chosen of the same order of magnitude, i.e., h1/h2 ∼ 1.

3. Asymptotic analysis of low-frequency vibrations in a composite string with free-fixed ends

The study of the frequency equation carried out in Section 2 leads to the conclusion that low-frequency
vibrations are only possible for a string with free-fixed end conditions, provided some restriction on the
material parameter ratios is met. For a more refined analysis, a low-frequency asymptotic approximation
is now employed. A constant coefficient boundary-value problem is considered first and then results are
generalized to the variable coefficients situation.
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3A. Piecewise homogeneous string. For a two-component string with homogeneous material parame-
ters, the equations of motion (2-1) hold together with the boundary conditions (2-10) and the continuity
relations (2-2) at the interface. We restrict our attention to low-frequency vibrations at η ∼ ε, whence
λ1 ∼ λ2 ∼

√
ε. To this aim, let

η = αε, where α = O(1). (3-1)

Hence, the connection (2-9) between λ1 and λ2 now reads

λ2 = α
−1λ1. (3-2)

Let us introduce nondimensional spatial variables in each component of the string

ξ1 =
x
h1
∈ [0, 1] and ξ2 =

x
h2
∈ [−1, 0].

Then, our boundary-value problem may be rewritten in terms of the dimensionless variables

d2u∗i
dξ 2

i
+ λ2

i u∗i = 0, i = 1, 2, (3-3)

together with the fixed-free end conditions

u∗1(1)= 0,
du∗2
dξ2

(−1)= 0

and the continuity conditions

u∗1(0)= u∗2(0), ε
du∗1
dξ1

(0)=
du∗2
dξ2

(0)

at the interface ξ1 = ξ2 = 0. Here, it is let u∗i (ξi ) = ui (x/hi ), i = 1, 2. Assuming for u∗i a regular
asymptotic expansion in the small parameter ε, we write

u∗i = u(0)i + εu
(1)
i + ε

2u(2)i + O(ε3), i = 1, 2, (3-4)

while, in the low-frequency regime, it is

λ2
1 = ε(30+ ε31+ ε

232+ O(ε3)). (3-5)

Clearly, λ2 follows from the connection (3-2).

3A.1. Leading order problem. At the leading order, the equations of motion (3-3) give

u(0)1 = A0ξ1+ B0,

u(0)2 = C0ξ2+ D0,

where A0, B0, C0 and D0 are integration constants. Using the boundary and continuity conditions, we
arrive at

u(0)1 = D0(1− ξ1), (3-6a)

u(0)2 = D0, (3-6b)
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which shows a local rigid-body behavior (rotation for 1 and translation for 2). Given that frequency
cannot be derived at this stage, we need proceed to the next order.

3A.2. First-order problem. At the first order, compatibility gives the leading-order frequency term

30 = α
2,

whereupon
λ2

1 = α
2ε(1+ O(ε)), λ2

2 = ε(1+ O(ε)).

Expressions for first-order correction to displacements, u(1)1 and u(1)2 , take up the form:

u(1)1 =
1
6α

2 D0(1− ξ1)(2− ξ1)ξ1+ D1(1− ξ1),

u(1)2 =−D0ξ2

(
ξ2

2
+ 1

)
+ D1,

where D1 is yet another integration constant.

3A.3. Second order. At the second order, compatibility yields the first-order correction to the frequency

31 =−
α2(1+α2)

3
,

and we arrive at the expansion

λ2
1 = εα

2
(

1−
1+α2

3
ε+ O(ε2)

)
.

3B. Piecewise inhomogeneous string. It is now assumed that the material properties of each component
of the string are no longer constant along the length, namely Ti = Ti (x) > 0, ρi = ρi (x) > 0, i = 1, 2.
The equation for harmonic transverse vibrations [Wang and Wang 2013] are

d
dx

(
Ti (x)

dui

dx

)
+ ρi (x)ω2ui = 0, i = 1, 2, (3-7)

while the fixed-free boundary conditions (2-15), together with the continuity relations (2-2), hold. It is
expedient to introduce the nondimensional quantities

T ∗i (ξi )=
Ti (x)
Ti (0)

, ρ∗i (ξi )=
ρi (x)
ρi (0)

, i = 1, 2, (3-8)

as well as the ratios

T =
T1(0)
T2(0)

, ρ =
ρ1(0)
ρ2(0)

. (3-9)

In terms of the dimensionless coordinates ξi , (3-7) becomes

d
dξi

(
T ∗i (ξi )

du∗i
dξi

)
+ λ2

i ρ
∗

i (ξi )u∗i = 0, (3-10)

where

λ2
i =

ω2h2
i ρi (0)

Ti (0)
, i = 1, 2, (3-11)
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u(
0)
/

D
0

ξ

Figure 3. Leading order eigenforms for T ∗1 (ξ1)= 1+ A2ξ 2
1 and T ∗2 (ξ2)= 1 at A = 0.1

(solid), A = 1 (dashed) and A = 10 (dot-dashed).

and the connection (3-2) still holds. The boundary conditions give

u∗1(1)= 0,
du∗2
dξ2

(−1)= 0,

while continuity at the interface reads

u∗1(0)= u∗2(0), ε
du∗1
dξ1

(0)=
du∗2
dξ2

(0),

where the small parameter ε is introduced as at (2-7). Solution of this boundary value problem is taken
in the form of the asymptotic expansions (3-4) and (3-5) for u∗i and λ1, respectively.

At the leading order we obtain

u(0)1 (ξ1)= D0

(
1−

φ1(ξ1)

φ1(1)

)
, (3-12a)

u(0)2 (ξ2)= D0, (3-12b)

where D0 is an integration constant and we have let

φi (ξi )=

∫ ξi

0

dt
T ∗i (t)

, i = 1, 2. (3-13)

In order to better illustrate the leading-order expressions for the first eigenform (3-12), a string with
quadratic and constant behavior for the dimensionless tensions T ∗1 and T ∗2 is considered, i.e.,

T ∗1 (ξ1)= 1+ A2ξ 2
1 and T ∗2 (ξ2)= 1.

Then, it is

φ1(ξ1)=
1
|A|

arctan(|A|ξ1) and φ2(ξ2)= ξ2.

In Figure 3, the leading-order expressions for the first eigenform, given by Equations (3-12), are plotted
at three values of the parameter A. As expected, the locally rigid-body behavior is retrieved for small
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T2 −h2
2

T1− T2

0
1

h1 x

Figure 4. A two-component free-fixed string supported by a Winkler elastic foundation.
The foundation is introduced to account for an embedding elastic matrix

values of A. However, it is perhaps less obvious that large values of A lead to a step function. Besides,
we further observe that the transformation u∗i (ξi )=U∗i (zi ), with the mapping

ξi 7→ zi | zi (ξi )=
φi (ξi )

φi ((−1)i+1)
,

can be used to turn the variable coefficient problem (3-10) into Lioville’s normal form [Horgan and Chan
1999; Wang and Wang 2013].

Bringing the analysis one step further, we obtain the displacement first-order correction

u(1)1 (ξ1)= D030

(
1

φ1(1)

∫ ξ1

0

∫ σ2
0 ρ∗1 (σ1)φ1(σ1) dσ1

T ∗1 (σ2)
dσ2−81(ξ1)

)
+ A(1)1 φ1(ξ1)+ B(1)1 ,

u(1)2 (ξ2)=−D030
1
α282(ξ2)+C (1)

1 φ2(ξ2)+ D(1)
1 ,

being

8i (ξ)=

∫ ξ

0

∫ σ2
0 ρ∗i (σ1) dσ1

T ∗i (σ2)
dσ2, i = 1, 2.

Here, compatibility gives the leading-order term in the frequency expansion

30 =
α2

φ1(1)m∗2
,

having set the dimensionless mass of the 2-component

m∗2 =
∫ 0

−1
ρ∗2 (σ1)dσ1.

Clearly, the expression for λ2 may be readily obtained from (3-2).

4. Piecewise homogeneous string on a Winkler foundation

In this section, near-zero frequency vibrations of a two-component piecewise homogeneous string on a
Winkler foundation are considered (Figure 4).

The equations of motion for a string on a Winkler foundation [Graff 1975] are

d2ui

dx2 +

(
ω2

c2
i
−
κ

Ti

)
ui = 0, i = 1, 2, (4-1)

where κ is the Winkler foundation modulus (whose physical dimensions are force over length squared).
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These equations clearly show that local cutoff frequencies exist [Kaplunov and Nobili 2015], namely

ωcutoff
2
i =

κ

ρi
,

such that harmonic vibrations are possible only whenever ω > max(ωcutoff1, ωcutoff2). Equations (4-1)
are most conveniently put in dimensionless form

d2ui

dξ 2
i
+ γ 2

i ui = 0, i = 1, 2, (4-2)

where it is let

γ 2
i = λ

2
i −β

2
i and β2

i =
h2

i

Ti
κ, i = 1, 2. (4-3)

It is remarked that the λi are defined according to (2-4) and therefore the connection (2-9) still holds. Ob-
viously, we demand λi >βi for global vibrations to take place, which shows that βi are the dimensionless
local cutoff frequencies. Furthermore, the connection

β2
2 =

ε

h
β2

1 (4-4)

stands between β1 and β2. The general solution of the ODEs (4-2) is given by

u1(ξ1)= A cos(γ1ξ1)+ B sin(γ1ξ1), 0≤ ξ1 ≤ 1, (4-5a)

u2(ξ2)= C cos(γ2ξ2)+ D sin(γ2ξ2), −1≤ ξ2 ≤ 0, (4-5b)

where A, B,C, D are arbitrary constants. As in the case of a string with homogeneous parameters,
we shall consider three types of boundary conditions, namely free-free, fixed-fixed and fixed-free end
conditions. The frequency equation for harmonic vibrations of a string is, for the case of fixed ends,

ε
γ1

γ2
tan γ1+ tan γ2 = 0,

while, for the case of free ends, it is

ε
γ1

γ2
tan γ2+ tan γ1 = 0.

Clearly, both equations do not allow for low-frequency vibrations. Conversely, the frequency equation
for the fixed-free case reads

ε
γ1

γ2
= tan γ1 tan γ2, (4-6)

which may admit low-frequency vibrations. Indeed, assuming γ1 and γ2 small — which amounts to
considering near-cutoff vibrations (see also [Craster et al. 2010]) — we get

γ 2
2 = ε+ O(ε3),

whence the condition for γ2 to be small is given by

ε = T/h� 1. (4-7)
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The (squared) scaled frequency λ2
2 is readily obtained from (4-3) through shifting by the local cutoff

frequency β2
2 , i.e.,

λ2
2 = β

2
2 + ε+ O(ε3),

which, in light of (4-4), is enough for low-frequency vibrations of the 2-component (assuming that β1

is of order unity or smaller and h of order unity or larger). In order to achieve global low-frequency
vibrations, we demand λ1 to be small as well and, using the connections (2-9), this requires

λ2
1 =

η2

ε

(
β2

1

h
+ 1+ O(ε2)

)
� 1, (4-8)

which amounts to the condition
(β2

1 + h)ρ� 1. (4-9)

Similarly to what was chosen in Section 3, this condition may be fulfilled taking, for instance,

η = η0ε. (4-10)

It remains to be seen whether γ1 is also small as it was initially assumed. To this aim, using the definition
(4-3), we further demand that

0< β2
1 (ρ− 1)+ ρh� 1. (4-11)

Together, Equations (4-9) and (4-11) imply

β2
1 < (β

2
1 + h)ρ� 1,

whereupon β1 needs also be a small quantity. For instance, we could set

β1 = εβ0. (4-12)

Leading order asymptotic expansions for the displacement may be equally well derived. To this end,
we first write the eigenforms u1 and u2 through introducing the general solution (4-5) into the fixed-free
boundary conditions (2-15) and into the continuity relations (2-2)

u1(ξ1)= D
(
sin(γ1ξ1)− tan(γ1) cos(γ1ξ1)

)
,

u2(ξ2)= D
(
ε
γ1

γ2
sin(γ2ξ2)− tan(γ1) cos(γ2ξ2)

)
,

where it is understood that γ1 and γ2 are related through the frequency Equation (4-6). Then, we introduce
the smallness assumptions (4-10) and (4-12) together with the expansion (4-8) for λ1 and proceed to
expand in the small parameter ε. Thus, the asymptotic expansion for the eigenform is obtained:

u1 = D(1− ξ1)+ O(ε),

u2 = D+ O(ε).

It is perhaps surprising to observe that, under the smallness assumptions, the presence of the Winkler
foundation does not alter the leading-order shape of the eigenforms (see Equations (3-6)), and a local
rigid body-motion is again retrieved.
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5. Conclusions

Very low-frequency vibrations in a two-component high-contrast string have been investigated for the
case of fixed-fixed, free-free and free-fixed boundary conditions, in an attempt to enhance the energy
scavenging capability of the soft element in a fabric device. It is shown that low-frequency vibrations
are achievable only for the case of fixed-free end conditions, which seems especially apt at harvesting
low-power energy sources. Besides, conditions on the material and geometrical property ratios were
given in order to sustain near-zero frequency vibrations. Piecewise constant as well as variable material
parameters are considered. In the former case, the exact solution is obtainable and an almost rigid-body
motion is found. The almost rigid-body behavior is especially welcome as it warrants little wear in
the system. Conversely, the latter situation can only be addressed in an approximate way, through a
two-scale approach, and it is shown that, although the almost rigid body behavior is generally lost, low-
frequency vibrations can still be sustained, provided that suitable conditions on the material parameters
hold. The question whether low-frequency vibrations may be still admitted in a soft element supported
by a Winkler foundation was then addressed, because energy harvesters may be embedded in an elastic
matrix. In this case, the soft string is assumed piecewise constant and an exact solution is obtained. As
expected, two cutoff frequencies appear which, however, may be brought close to zero under suitable
smallness assumptions on the material parameter ratios. A somewhat surprising result is obtained, for
the local rigid-body character of the leading-order expressions for the eigenforms, already met in the
unsupported case, is again retrieved. It is finally observed that our results apply equally well to the
analysis of low-frequency vibrations in composite plates and shells treated within the framework of 3D
elasticity. For example, in case of a two-layered elastic plate, the eigenfrequencies λ1, λ2 would be
associated with the lowest cutoff frequencies; see, for instance, [Kaplunov et al. 1998; Le 1999].
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