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WHAT DISCRETE MODEL CORRESPONDS EXACTLY
TO A GRADIENT ELASTICITY EQUATION?

VASILY E. TARASOV

In this paper, we obtain exact discrete analogs of the gradient elasticity equations. The suggested discrete
equations have differences represented by infinite series. Physically, these equations describe models of
lattices with long-range interactions. Mathematically, unique difference equations correspond exactly to
continuum gradient elasticity equations.

1. Introduction

There are two basic approaches to describe elasticity of solid states: a microscopic approach based
on the classical and quantum theory of crystal lattices and solids [Born and Huang 1998; Böttger 1983;
Kittel 1987] and a macroscopic phenomenological approach based on the classical mechanics of continua
[Sedov 1971]. On the one hand, continuum equations can be considered as a limit case of discrete (lattice)
equations when the primitive lattice vectors tend to zero. On the other hand, different discretizations of the
continuum equations can be used to get discrete (difference) equations, which allow us to apply computer
simulations. Usually discretization of differential equations is realized by using the standard difference
operators. In some cases, the corresponding difference equations are similar to the lattice equations. For
example, the standard finite difference of second order corresponds to the nearest-neighbor interaction
of lattice particles. The standard finite difference of fourth order describes the next-nearest-neighbor
interaction [Tarasov 2014a; 2015b].

In this paper, we are not trying to find out which type of equation is primary and which is secondary.
We do not try to argue that discrete or continuous equations are primary. The main goal of our paper is to
define an exact correspondence between continuum and discrete (lattice) equations. We would like to de-
scribe the correspondence without using approximations and limit passages that discard some terms. The
mathematical basis of our consideration is the following correspondence principle: the correspondence
between the discrete (lattice) theory and the continuum theory lies not so much in the limiting condition
when the steps (or primitive lattice vectors) tend to zero as in the fact that mathematical operations
on these theories should obey the same laws in many cases. We will use a new type of difference
operator, which can be considered an exact discretization of partial derivatives and a lattice operator
on physical lattices with long-range interactions [Tarasov 2015a]. The proposed T -differences satisfy
the same algebraic relations as the corresponding derivatives. The suggested difference operators allow
us to have difference (lattice) equations, whose solutions are equal to the solutions of corresponding
continuum differential equations.

Keywords: elasticity, gradient elasticity, long-range interactions, exact discretization, difference equation.
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This article focuses on gradient elasticity models first suggested by Mindlin [1964; 1965; 1968; Erin-
gen 1983]. These models can be considered a special type of theory of nonlocal elastic continua and
continuous media with internal degrees of freedom [Carcaterra et al. 2015; Auffray et al. 2015; dell’Isola
et al. 2016b; Sedov 1968; Eringen 1972; 2002; Rogula 1982]. The theory of nonlocal continuum me-
chanics was initiated by Piola [dell’Isola et al. 2015; 2016a; Rahali et al. 2015]. Nonlocal elasticity
theory is based on the assumption that the forces between particles are long-range types that correspond
to the long-range character of interatomic forces.

There are three main approaches to derive equations of gradient elasticity: a phenomenological contin-
uum approach based on the postulation of equations, an approach based on homogenization of discrete
models, and an approach based on continuum limit of lattice models.

The first approach to derive equations of gradient elasticity in the framework of phenomenological
consideration was suggested by [Mindlin 1964; 1965; 1968], which suggest an elasticity theory of mate-
rials with microstructure, where two different types of quantities are used for the micro- and macroscales.
In the phenomenological approach, the gradient elasticity models differ in the assumed relation between
the microscopic deformation and the macroscopic displacement. It is important to note that, despite the
theoretical differences between these models, the equations for displacements of these models are iden-
tical [Mindlin 1964]. Using the phenomenology approach, the simplest equation of the one-dimensional
gradient elasticity has the form

∂2u(x, t)
∂t2 = c2 ∂

2u(x, t)
∂x2 + l2 ∂

4u(x, t)
∂x4 , (1-1)

where l2 is the scale parameter.
The second approach to obtain equations of gradient elasticity is the continualization (homogenization)

of a lattice with nearest-neighbor interactions [Mindlin 1968]. Usually a basis of this approach is models
of systems of particles and springs. In the simplest case of one-dimensional system of particles and
springs, where all particles have mass M and all springs have spring stiffness K , the equations of motion
have the form

M
d2un(t)

dt2 = K (un+1(t)− 2un(t)+ un−1(t)). (1-2)

In the homogenization procedure, it is assumed that the continuum displacement u(x, t) is equal to the
lattice displacement un(t) of particle n by un(t)= u(nh, t), where h is the particle spacing. In this case,
the displacements un±1(t) are expressed in terms of the continuum displacement u(x ± h, t). Then the
Taylor series is used in the form

un±1(t)= u(x ± h, t)=
∞∑

m=0

(±h)m

m!
∂mu(x, t)
∂xm (1-3)

to substitute (1-3) into (1-2). Note that all odd-order derivatives of u(x, t) have canceled. As a result, the
division by the cross-section area A of the medium and the interparticle distance h gives the equation

∂2u(x, t)
∂t2 =

c2

h2

∞∑
m=0

2h2m

(2m)!
∂2mu(x, t)
∂x2m , (1-4)
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where ρ = M/(Ah) is the mass density and E = (K h)/A is the Young’s modulus, where c =
√

E/ρ is
the elastic bar velocity. Equation (1-1) is obtained by deleting all terms O(h6), and we get the equation
of the gradient elasticity

∂2u(x, t)
∂t2 = c2 ∂

2u(x, t)
∂x2 +

h2c2

12
∂4u(x, t)
∂x4 . (1-5)

It is easy to see that continualization (homogenization) by Taylor series cannot give the equation of the
gradient elasticity exactly. Therefore, the discrete equation (1-1) cannot be considered as an exact analog
to (1-2) of the gradient elasticity.

The third approach for obtaining the gradient elasticity equations has been suggested in [Tarasov
2014a; 2015b]. This approach is based on the models of lattices with the nearest-neighbor and next-
nearest-neighbor interactions, instead of the case (1-2) that corresponds to the lattice with the nearest-
neighbor interactions only. It was proved that two classes of the gradient models (with positive and
negative signs in front of the gradient term) can have a general lattice model as a microstructural basis.
To obtain the gradient elasticity equations, we consider a lattice model with the nearest-neighbor and next-
nearest-neighbor interactions with two different coupling constants. A generalization of this approach to
lattice models with long-range interactions has been suggested in recent papers [Tarasov 2013; 2014b;
2014c; 2016b] to describe the fractional nonlocal elastic materials. Note that the models of lattices with
the nearest-neighbor and next-nearest-neighbor interactions also cannot be considered as exact discrete
models of gradient elasticity.

In this paper, we do not plan to discuss these approaches of obtaining the gradient elasticity equations
in detail. Some aspects of this question have been discussed in the cited articles and in [Tarasov 2006a;
2006b; 2014d; 2015a]. We will solve an inverse problem. Considering these continuum equations as
already specified, we would like to get an exact discrete analog to the equations. In this paper, we get
discrete (lattice) equations that correspond exactly to the continuum gradient elasticity equation (1-1).
Physically, these discrete equations describe lattice models with long-range interactions [Tarasov 2006a;
2006b]. Mathematically, unique difference equations correspond exactly to the continuum gradient
elasticity equations. Note that exact correspondence means also that the difference equations have the
same general solutions as the associated differential equations. In the beginning, we will consider one-
dimensional gradient elasticity equations for simplification. Then we suggest a generalization for the
three-dimensional case by using an approach proposed in [Tarasov 2014d; 2015a].

2. Transformation of a discrete equation into a continuum gradient elasticity equation

Let us describe in details a transform of a discrete equation into a continuum gradient elasticity equation
to fix notation for further consideration.

Usually a discrete analog to the gradient elasticity equation (1-1) is considered in the form of the
equation with finite difference of second order

d2un(t)
dt2 =

c2

h2 (un+1(t)− 2un(t)+ un−1(t)). (2-1)

Another discrete analog to the gradient elasticity equation (1-1) is considered in the form of the equation
with finite difference of second and fourth orders [Tarasov 2014a; 2015b]. As we shortly describe in
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Section 1, the discrete equation (2-1) cannot be an exact analog to the gradient elasticity equation (1-1).
Let us give some details to explain a connection between (1-1) and (2-1). The Fourier series trans-
form Fh,1, which is defined by

û(k, t)=
+∞∑

n=−∞

un(t)e−iknh
= Fh,1{un(t)}, (2-2)

maps the difference equation (2-1) to

∂2û(k, t)
∂t2 =−

2c2

h2

∞∑
m=1

(−1)m

(2m)!
(kh)2m û(k, t). (2-3)

The inverse Fourier integral transform F−1, which is defined by

u(x, t)=
1

2π

∫
+∞

−∞

dk û(k, t)eikx
= F−1

{û(k, t)}, (2-4)

gives
∂2u(x, t)
∂t2 =

2c2

h2

∞∑
m=1

h2m

(2m)!
∂2mu(x, t)
∂x2m . (2-5)

Equation (2-5) also can be obtained (for details, see Section 8 of [Maslov 1976]) by using the well-known
relation

exp
(

h
∂

∂x

)
f (x)= f (x + h).

It is easy to see that (1-1) can be obtained only in approximation of (2-5) by deleting all O(h6) terms. It
is important to note that the limit h→ 0 of (2-5) gives only the wave equation since

lim
h→0

2
h2

∞∑
m=1

h2m

(2m)!
∂2mu(x, t)
∂x2m =

∂2u(x, t)
∂x2 . (2-6)

It is important to emphasize that the gradient elasticity equation (1-1) cannot be obtained by the limit
h→ 0 [Tarasov 2014a]. Equation (2-5) gives (1-1) only by deleting all O(h6) terms. Therefore, (2-1)
cannot be considered as an exact discretization of (1-1) or its microstructural basis to derive equations
of gradient elasticity.

It should be noted that approaches based on models of lattices with the nearest-neighbor and next-
nearest-neighbor interactions [Tarasov 2014a; 2015b] can give (1-1) in the limit h→ 0 in contrast to
approaches based on lattice equation (2-1) with the nearest-neighbor interactions. At the same time,
the lattice equations with nearest-neighbor and next-nearest-neighbor interactions have infinite series of
even-order derivatives similar to (2-5) before taking the limit.

3. Exact difference analogs of derivatives

To have an exact discrete analog to the gradient elasticity equations, we should consider a problem of
discretization of these equations. Let us consider a problem of derivation of an exact discrete analog to
the gradient elasticity equation (1-1). To solve this problem, we should find new types of differences,
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which will be denoted by T12n , that correspond exactly to the derivatives ∂2n/∂x2n with n = 1 and n = 2.
In order for the difference T12n of even orders 2n (n ∈ N) to not correspond to the derivatives ∂2n/∂x2n

approximately, these differences should satisfy the condition

1
h2n F−1(Fh,1(

T12nun(t)))=
∂2nu(x, t)
∂x2n (3-1)

in contrast to the usual finite differences that are represented by infinite series of derivatives (see (2-5)).
Condition (3-1) can be realized if the difference T12n has the Fourier series transform in the form

Fh,1{
T12num(t)} :=

+∞∑
m=−∞

e−ikm T12num(t)= (−1)n(kh)2n û(k, t). (3-2)

In order to get (3-2), the differences T12n should be represented by the convolution

T12num(t) :=
+∞∑

j=−∞

K2n( j)um− j (t), (3-3)

where
F1,1{K2n( j)} = (−1)nk2n (3-4)

and K2n(−m)= K2n(m) hold for all m ∈ N and n ∈ N.
In order to apply F1,1 to the differences (3-3), we assume that um and K2n(m) are the real-valued

functions of discrete variable m ∈ Z such that um ∈ l2 and K2n(m) ∈ l1.
Using K2n(−m)= K2n(m), the kernels K2n(m) can be defined by

K2n(m)= F−1
1,1{(−1)nk2n

} = (−1)n
1
π

∫ π

0
k2n cos(km) dk. (3-5)

For m = 2 and m = 4, we get

K2(n)=−
2(−1)n

n2 (n 6= 0), K2(0)=−
π2

3
, (3-6)

K4(n)=+
4π2(−1)n

n2 −
24(−1)n

n4 (n 6= 0, n ∈ Z), K4(0)=+
π4

5
. (3-7)

As a result, the differences (3-3) of second and fourth orders are defined by

T12un := −

+∞∑
m=−∞

m 6=0

2(−1)m

m2 un−m −
π2

3
un, (3-8)

T14un :=

+∞∑
m=−∞

m 6=0

(
4π2(−1)m

m2 −
24(−1)m

m4

)
un−m +

π4

5
un. (3-9)

In the general case, we can use Equation 2.5.3.5 of [Prudnikov et al. 1986], which gives

K2n(m)=
n−1∑
k=0

(−1)m+k+n(2n)!π2n−2k−2

(2n− 2k− 1)!
1

m2k+2 (m ∈ Z, m 6= 0). (3-10)
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For m = 0, we have

K2n(0)=
(−1)nπ2n

2n+ 1
. (3-11)

These kernels define the differences T12n of even orders 2n for all n ∈ N by (3-3).

4. Transformation of a gradient elasticity equation into a discrete equation

In Section 2, we demonstrate that discrete equation (2-1) cannot be considered as an exact discrete analog
to (1-1).

Using the differences (3-8) and (3-9), we can consider an inverse problem. We will start with the
equation of gradient elasticity and then try to get an exact discrete analog to this continuum equation
without approximation by deleting terms. We would like to answer the questions: what do the gradient
elasticity equations describe exactly at discrete (lattice) level and what is an exact analog to the gradient
elasticity equations?

Let us consider the Fourier integral transform F , which is defined by

û(k, t)=
∫
+∞

−∞

dx u(x, t)e−ikx
= F{u(x, t)}. (4-1)

Applying this Fourier transform F to (1-1), we get

d2û(k, t)
dt2 =−c2k2û(k, t)+ l2k4û(k, t). (4-2)

Using the inverse Fourier series transform F−1
h,1 such that

un(t)=
h

2π

∫
+π/h

−π/h
dk û(k, t)eikhn

= F−1
h,1{û(k, t)}, (4-3)

(4-2) gives
d2un(t)

dt2 =
c2

h2
T12un(t)+

l2

h4
T14un(t), (4-4)

where T12 and T14 are the differences that are defined by (3-8) and (3-9). Substitution of (3-8) and (3-9)
into (4-4) gives

d2un(t)
dt2 =

+∞∑
m=−∞

m 6=0

(
4π2l2

−2c2h2

h4

(−1)m

m2 −
24l2

h4

(−1)m

m4

)
un−m(t)+

(
π4l2

5h4 −
π2c2

3h2

)
un(t) (n∈Z). (4-5)

These equations are an exact discrete analog to the equation of gradient elasticity (1-1).
Let us give some mathematical remarks about suggested difference equations. To use the Fourier

series transform, we assume that the function un(t) belongs to the Hilbert space l2 of square-summable
sequences, where the norm on the l p-space is defined by

‖u‖p :=

( +∞∑
n=−∞

|un|
p
)1/p

.
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It is easy to see that the differences (3-8) and (3-9) are defined by convolutions of um ∈ l2 and the
functions

a2n(m)=
(−1)m

m2n (m 6= 0, m ∈ Z)

that belong to the space l1. Using the Young’s inequality for convolutions [Young 1912a; 1912b; Hardy
et al. 1952, Theorem 276] in the form

‖
T12nu‖r = ‖a2n ∗ u‖r ≤ ‖a2n‖p‖u‖q , (4-6)

where
1
r
+ 1=

1
p
+

1
q
, (4-7)

we get that the result of the action of operators T12n also belongs to the Hilbert space l2 of square-
summable sequences, i.e.,

gm :=
T12num ∈ l2 (4-8)

since condition (4-7) holds.
As a result, the T -differences are the operators T12n

: l2
→ l2.

Note that, using Equation 5.1.2.3 of [Prudnikov et al. 1986], we can get
∞∑

m=1

K2n(m)=
∞∑

m=1

(−1)m

m2n = (2
1−2n
− 1)ζ(2n)=−

1
0(2n)

∫
∞

0

x2n−1

ex + 1
dx = T2n, (4-9)

where ζ(z) is the Riemann zeta function, 0(z) is the gamma function, and

T2 =−
π2

12
, T4 =−

7π4

720
.

As a result, the T -differences acting on um = 1 converge.
The main property of the suggested differences (3-8) and (3-9) are that the Fourier series transform

Fh,1 of these differences is represented by

Fh,1(
T12num(t))= (ikh)2n û(k, t). (4-10)

This equation leads us to the corresponding equality

1
h2n F−1(Fh,1(

T12num(t)))=
1

h2n F−1((ikh)2n û(k, t))=
∂2nu(x, t)
∂x2n , (4-11)

which means that this difference of order 2n gives the derivative ∂2n/∂x2n exactly. The T -differences of
orders 2n are connected with the derivatives ∂2n/∂x2n not only asymptotically by the limit h→ 0. It’s
obvious that the limit h→ 0 also gives this derivatives

lim
h→0

F−1(Fh,1(
T12n))

h2n =
∂2n

∂x2n . (4-12)

As a result, the suggested equations (4-5) with T -difference can be considered not only as approxi-
mations of the gradient elasticity equations. The suggested discrete equations (4-5) are exact discrete
analogs to the continuum gradient elasticity equation (1-1).
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5. Exact difference equations for three-dimensional gradient elasticity

In this section, we propose discrete equations of three-dimensional gradient elasticity by using the ap-
proach suggested in [Tarasov 2014d; 2015a].

The Mindlin equations [1964; 1965; 1968] of three-dimensional gradient elasticity have the form

ρ
∂2ui (r, t)
∂t2 − ρl2

1

3∑
j=1

∂4ui (r, t)
∂x2

j ∂t2
= (λ+µ)

3∑
j=1

∂2u j (r, t)
∂xi ∂x j

+µ

3∑
j=1

∂2ui (r, t)
∂x2

j

− (λ+µ)l2
2

3∑
k=1

3∑
j=1

∂4u j (r, t)
∂x2

k ∂xi ∂x j
−µl2

3

3∑
k=1

3∑
j=1

∂4ui (r, t)
∂x2

k ∂x2
j
+ fi (r, t), (5-1)

where the ui (r, t) are components of the displacement field for the continuum, fi (r, t) are the compo-
nents of the body force, λ and µ are the Lame constants, li (i = 1, 2, 3) are the Mindlin scale parameters,
ρ is the mass density, r =

∑3
j=1 x j e j , and e j ( j = 1, 2, 3) are the basis vectors of the Cartesian coordinate

system of R3.
Using the Fourier transforms F−1

h,1 ◦ F , the equations with T -differences for (5-1) have the form

ρ
∂2ui [n, t]
∂t2 −

ρl2
1

h2

3∑
j=1

T12
j
∂2ui [n, t]
∂t2 =

λ+µ

h2

3∑
j=1

T11
i

T11
j u j [n, t] +

µ

h2

3∑
j=1

T12
j ui [n, t]

−
(λ+µ)l2

2

h4

3∑
k=1

3∑
j=1

T12
k

T11
i

T11
j u j [n, t] −

µl2
3

h4

3∑
k=1

3∑
j=1

T12
k

T12
j ui [n, t] + fi [n, t], (5-2)

where we assume h1 = h2 = h3 = h and u j [n, t] := F−1
h,1 ◦ Fu j (r, t) are discrete fields such that

u j [n, t] = hu j (hn, t). In (5-2), we use T11
j and T12

j , which are the partial T -differences of first and
second orders. The partial T -difference of first order is defined by

T11
j ui [n, t] :=

+∞∑
m j=−∞

m j 6=0

(−1)m j

m j
ui [n−m j e j , t]. (5-3)

The partial T -difference of second order has the form

T12
j ui [n, t] :=

+∞∑
m j=−∞

m j 6=0

2(−1)m j+1

m2
j

ui [n−m j e j , t] −
π2

3
ui [n, t]. (5-4)

Here e j ( j = 1, 2, 3) are the basis vectors of the Cartesian coordinate system of R3, and n=
∑3

j=1 n j e j ,
where n j ∈ Z.

Note that it is easy to generalize these difference equation to the case of various h j ( j = 1, 2, 3). For
example, in this case, we should use u j [n, t] = h j u j (x(n), t), where x(n)=

∑3
i=1 h j n j e j .

For the three-dimensional case, the simplified continuum equations of gradient elasticity have the form

ρ
∂2ui (r, t)
∂t2 =

3∑
j,k,l=1

Ci jkl
∂2

∂x j ∂xl

(
1+ l2

3∑
m=1

∂2

∂x2
m

)
uk(r, t)+ fi (r, t), (5-5)
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where ui (r, t) are components of the displacement field for the continuum, fi (r, t) are the components
of the body force, and Ci jkl is the fourth-order elastic stiffness tensor. For isotropic materials, Ci jkl are
expressed in terms of the Lame constants λ and µ by

Ci jkl = λδi jδkl +µ(δikδ jl + δilδ jk), (5-6)

where λ and µ are the usual Lame constants.
The equations with T -differences for (5-5) of the three-dimensional gradient elasticity have the form

ρ
∂2ui [n, t]
∂t2 =

1
h2

3∑
j,k,l=1

Ci jkl
T11

j
T11

l

(
1+

l2

h2

3∑
m=1

T12
m

)
uk[n, t] + fi [n, t]. (5-7)

If we consider the case with ux(r, t) = u(x, t) and fx(r, t) = f (x, t), where the other components,
u y , uz , fy , and fz , are equal to zero, then we get the considered one-dimensional gradient elasticity
equations.

Equations (5-2) and (5-7) are equations of exact discretization of the three-dimensional gradient elas-
ticity equations. These equations with T -differences are connected with the partial differential equation
of gradient elasticity without approximations.

To solve linear partial differential and difference equations of the gradient elasticity, we can use the
method of separation of variables. For simplification, we will consider (1-1) and (4-4). For these equa-
tions, the fields u(x, t) and un(t) are represented in the forms

u(x, t)= u(x)T (t), un(t)= u[n]T (t). (5-8)

Substitution of (5-8) into (1-1) and (4-4) gives equations of u(x) and u[n] that can be represented as

l2 ∂
4u(x)
∂x4 + c2 ∂

2u(x)
∂x2 +ω

2u(x)= 0, (5-9)

l2

h4
T14u[n] +

c2

h2
T12u[n] +ω2u[n] = 0, (5-10)

where T1m is the T -difference of order m with respect to n. The equations for T (t) are the same for
(1-1) and (4-4).

To solve (5-10), we assume that the solution of (5-10) is proportional to exp(λn) for some constant λ.
Substitute u[n] = exp(λn) into difference equation (5-10), and use the relation

T11 exp(λn)= λ exp(λn), (5-11)

which is proved by the Poisson–Abel technique in [Tarasov 2016a]. Then we get a general solution of
difference equation (5-10) in the form

u[n] = C1eλ+·hn
+C2e−λ+·hn

+C3eλ−·hn
+C4e−λ−·hn, (5-12)

where

λ± :=

√
±

1
2l2

√
c4− 4l2ω2−

c2

2l2 . (5-13)
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Differential equation (5-9) has the general solution

u(x)= c1eλ+·x + c2e−λ+·x + c3eλ−vx
+ c4e−λ−·x . (5-14)

It is easy to see that solutions (5-12) and (5-14) are connected by the relation u[n] = hu(hn) for all n ∈ Z

and h > 0, where Ck = hck (k = 1, 2, 3, 4).
Equation (5-10) can be considered as an exact discretization of differential equation (5-9). The exact

discretization means that the difference equation has the same general solution as the associated differ-
ential equation. The criterion of exact discretization of differential equations can be formulated in the
following form [Potts 1982; Mickens 2000; Tarasov 2016a].

An exact discretization is a map from a differential equation to a discrete (difference) equation, for
which the solution u[n] of the discrete equation and the solution u(x) of the associated differential equa-
tion are the same, i.e., if and only if the discrete function u[n] is exactly equal to the function u(x)
for x = hn, i.e., u[n] = hu(hn) (n ∈ Z) for arbitrary values of h > 0.

It should be noted that discretization of an equation by standard finite differences (5-9) cannot be
considered as an exact discretization since f11 exp(λn) 6= λ exp(λn) and (5-12) is not the solution of the
corresponding finite difference equation.

In elasticity theory, the boundary conditions play an important role. The boundary conditions for
T -difference equations have a form that is similar to the boundary conditions of the corresponding
differential equations. In these boundary conditions, the function ui [n] should be used instead of the
function ui (x) and the T -differences T1m

j instead of the partial derivatives ∂m/∂xm
j of order m ∈ N. For

a simple example, the exact discrete analog to the boundary conditions(
∂mu(x)
∂xm

)
x=0
= 0,

(
∂mu(x)
∂xm

)
x=L
= 0, (5-15)

for some values m ∈ {0, 1, 2, 3}, where ∂0u(x)/∂x0
:= u(x), have the form

T1mu[0] = 0, T1mu[N ] = 0, (5-16)

where hN = L , N ∈ N, u[n] = hu(hn), and T10u[n] = u[n]. For example, the discrete analog to the
periodic boundary condition u(x + L)= u(x) takes the form u[n+ N ] = u[n]. The boundary conditions
for the difference equations define the constants of the corresponding general solution.

As a result, we can see that discrete (lattice) equations with T -differences can be solved analytically.
Thus, obtained solutions of these discrete equations are the same as those of the associated differential
equations of continuum models.

6. Physical interpretation of the difference equations

In this section, we describe a direct connection between the proposed T -differences and lattice models
with long-range interactions. We prove that the discrete (lattice) equations with T -differences, which are
suggested for the gradient elasticity models, correspond to lattice models with long-range interactions of
power-law type.

From a mathematical point of view, the previous discrete (lattice) models of the gradient elasticity are
based on the standard (forward, backward, and central) finite differences. These models assume that we
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consider nearest-neighbor and next-nearest-neighbor interactions only, which do not correspond exactly
to real physical properties of interactions of particles. The characteristic properties of the underlying
physical interactions, which are electromagnetic interactions, are of a long-range nature. The models will
more adequately describe elastic materials and media, if these models take into account the long-range
character of interatomic forces. One of the most widely used long-range interactions is the interaction of
the type 1/|n|α , or equivalently 1/|n−m|α . The integer values of α correspond to the well-known physical
cases that correspond to the Coulomb potential for α = 1 and the dipole-dipole interaction for α = 3.
Moreover, in various cases, these interactions are crucial. For example, the excitation transfer in molecu-
lar crystals and the vibron energy transport in polymers are due to the transition dipole-dipole interaction
of the type 1/|n|3. Polyatomic molecules contain charged groups with a long-range Coulomb interaction
1/|n|1 between them. For excitons and phonons in semiconductors and molecular crystals, the dispersion
curves of two elementary excitations intersect or are close, which leads to an effective long-range transfer.

It should be noted that classical and quantum descriptions of media with long-range interactions are
the subject of continued interest in physics. The long-range interactions have been studied in discrete
systems as well as in their continuous analogs. For example, discrete and lattice models with long-range
interactions have been studied in the references below. An infinite one-dimensional model with long-
range interactions is described in [Dyson 1969a; 1969b; 1971]. Two-dimensional and three-dimensional
classical models with long-range interactions are considered in [Joyce 1969], and their quantum general-
ization has been suggested in [Nakano and Takahashi 1994a; 1994b; 1995; Sousa 2005]. Kinks, solitons,
breathers, dynamical chaos, and synchronization in lattice models with long-range particle interactions
are studied in different papers (for example, see [Gaididei et al. 1995; Mingaleev et al. 1998; Rasmussen
et al. 1998; Gorbach and Flach 2005; Korabel and Zaslavsky 2007; Korabel et al. 2007; Zaslavsky et al.
2007] and references therein).

It should be noted that the kernels (3-10), (3-8), (5-3), and (5-4) of the suggested T -differences can
be considered linear combinations of kernels of the type 1/|n|α , with integer α ∈N. We can assume that
the suggested T -differences (3-8) of second and fourth orders in gradient elasticity equations correspond
to the well-known underlying interatomic and intermolecular forces such as the Coulomb force of the
type 1/|n|2 and the dipole-dipole force of the type 1/|n|4. From a mathematical point of view, these linear
combinations are selected from the set of other combinations by the fact that they exactly correspond to
the continuum models, which are described by differential equations of integer orders. The suggested
type of long-range interactions, which are described by the kernels of the suggested T -differences, is
distinguished from other interactions by exact correspondence to continuum differential equations and
by preservation of the main characteristic properties of differential equations and corresponding solutions.

7. Conclusion

In this paper, we focused our consideration on gradient elasticity models that were suggested by Mindlin
[1964; 1965; 1968; Eringen 1983]. It should be noted that the proposed approach can also be applied
to the gradient elasticity models suggested by Aifantis [1994; 1992; 2011; Metrikine and Askes 2002;
Askes and Aifantis 2011]. The standard approach has certain disadvantages compared to the proposed
approach of obtaining exact discrete (lattice) analogs of continuum equations. Let us explain this point
in more detail. From a mathematical point of view, the standard discrete (lattice) models of the gradient
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elasticity are based on a mathematical approach that uses the forward, backward, and central finite differ-
ences. From the physical point of view, these models assume nearest-neighbor and next-nearest-neighbor
interactions in the media [Tarasov 2014a; 2015b; Askes and Aifantis 2011]. These models are not quite
adequate for the following reasons. From a mathematical point of view, it is well-known that the finite
differences of cannot be considered an exact discretization of the derivatives: solutions of equations with
standard finite differences do not coincide with solutions of the corresponding differential equations, and
the standard finite differences do not satisfy the same algebraic relations as the operators of differenti-
ation. The correspondence between the discrete (lattice) theory and the continuum theory lies not so
much in the limiting condition of the steps (or primitive lattice vectors) as in the fact that mathematical
operations on these theories should obey the same laws in many cases. From a physical point of view,
the standard discrete (lattice) models, which are based on an assumption of nearest-neighbor and next-
nearest-neighbor interactions only, do not fully reflect the physical reality. The characteristic properties
of the underlying physical interactions, which are electromagnetic interactions, are of a long-range nature.
The models will more adequately describe elastic materials and media, when these models will take into
account the long-range character of interatomic forces that can be characterized as 1/|n|α. The integer
values of α correspond to the well-known physical cases that correspond to the Coulomb force for α = 1
and the dipole-dipole force for α = 4. Moreover, in various cases, these interactions are crucial.

In this paper, we propose discrete (lattice) equations that correspond exactly to the gradient elasticity
equations. From a mathematical point of view, these discrete equations are uniquely equations with differ-
ences that correspond exactly to the continuum equations. From a physical point of view, these equations
describe microstructural models of lattices with long-range interactions of the type 1/|n|α with integer α.

The main advantage of the suggested discrete (lattice) equations is the connection with continuum
equations without any approximation. Moreover, these discrete (difference) equations have the same
general solutions as the associated differential equations. The exact discretization means that the differ-
ence equation has the same general solution as the associated differential equation. It should also be
emphasized that these discrete equations allow us to obtain analytical solutions. This is based on the fact
that the proposed T -differences satisfy the same algebraic relations as the operators of differentiation.

The computer simulations of discrete systems with long-range interactions of the form 1/|n|α are
actively used for integer and noninteger values of α (for example, see [Gaididei et al. 1995; Mingaleev
et al. 1998; Rasmussen et al. 1998; Gorbach and Flach 2005; Korabel and Zaslavsky 2007; Korabel et al.
2007; Zaslavsky et al. 2007]). The suggested T -differences can be considered linear combinations of
interactions of the type 1/|n|α with integer α. Therefore, we assume that computer simulations of the
suggested T -difference (lattice) equations, which are exact discretizations of corresponding differential
equations of continua, can be successfully realized.

We assume that the suggested equations with T -differences can be important in application since they
allow us to reflect characteristic properties of complex elastic materials and media at the microscale
and nanoscale, where long-range interactions play a crucial role in determining the properties of these
materials and media (see [Ostoja-Starzewski 2002; Tarasov 2010] and references therein).
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