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ON THE CAUSALITY OF THE RAYLEIGH WAVE

BARIŞ ERBAŞ AND ONUR ŞAHIN

An explicit hyperbolic-elliptic formulation for surface Rayleigh waves is analysed with an emphasis on
the causality of obtained results. As an example, a 3D moving load problem for a distributed vertical
load is considered. A simple approximate solution is derived for a near-resonant regime, and the related
point load solution is recast as a limiting case. It is shown that causality is characteristic only for the
longitudinal wave potential along the surface, where it is governed by a hyperbolic equation modelling
the small dilatation disturbances propagating at the Rayleigh wave speed.

1. Introduction

Propagation of surface waves has been investigated in numerous papers since the original contribution
of Rayleigh [1885]. In his well-known work, Chadwick [1976] presented a general formulation of the
Rayleigh wave field in terms of a single harmonic function. His results have been recently generalised
to 3D by Kiselev and Parker [2010]. Parker [2012] later generalised their results for evanescent Schölte
waves with an arbitrary profile. Surface waves in layered structures [Kiselev and Rogerson 2009; Kiselev
et al. 2007] have also attracted considerable attention. Among other contributions, we note the approach
of Rousseau and Maugin [2011] associating the quasiparticles with the Rayleigh wave, along with pa-
pers developing the mathematical theory of surface waves in anisotropic media, e.g., [Achenbach 1998;
Prikazchikov 2013; Parker 2013].

The issue of causality of the Rayleigh wave does not usually arise in linear elasticity governed by
hyperbolic equations with the characteristics corresponding to longitudinal and transverse wave speeds;
see, e.g., [Achenbach 1973; Poruchikov 1993]. This is only a feature of the specialised hyperbolic-elliptic
model oriented to the Rayleigh wave and neglecting bulk waves [Kaplunov et al. 2006; Erbaş et al. 2013;
Kaplunov and Prikazchikov 2013]. The advantages of this model are illustrated by investigation of the
near-resonant regimes of moving loads on an elastic half-space [Kaplunov et al. 2010; 2013; Erbaş et al.
2014].

In the case of a vertical load, the implementation of the aforementioned model begins with solving a
scalar hyperbolic equation for the longitudinal wave potential on the surface. The characteristics of this
equation are associated with the Rayleigh wave speed. Then the variation of the longitudinal potential
over the interior is found from a Dirichlet problem for a pseudostatic elliptic equation with the boundary
condition coming from the solution of the wave equation on the surface. Finally, the transverse wave
potential is determined. In particular, in the plane-strain setup, it is recovered as the harmonic conjugate
of the longitudinal wave potential; see also [Chadwick 1976].

It is obvious that we may only expect causality of the longitudinal wave potential along the surface,
where it is governed by a hyperbolic equation. The causality concept is not applicable to the transverse
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Figure 1. Distributed load moving along the x1 axis.

wave potential and the longitudinal wave potential over the interior, where both of them satisfy elliptic
equations. Fortunately, this only means that the considered surface wave formulation is valid only behind
bulk wave fronts. However, the presence of bulk waves ignored within this formulation may also hypo-
thetically result in formally noncausal solutions of the wave equation on the surface; see the discussion
of the Mach cones associated with a super-Rayleigh moving load in [Erbaş et al. 2014].

In this paper, we revisit the 3D steady-state moving load problem for an elastic half-space studied
earlier in [Kaplunov et al. 2013], with a special focus on the causality of the Rayleigh wave, including
analysis of the associated Mach cones. In contrast to [Erbaş et al. 2014] dealing with a point force,
we are mainly concerned with the case a distributed load, which is seemingly more relevant to modern
engineering applications, motivated by modelling of high-speed trains; see, e.g., [Cao et al. 2012; Galvín
and Domínguez 2007; El Kacimi et al. 2013; Gupta et al. 2010; Agostinacchio et al. 2013; Dieterman
and Metrikine 1997; Celebi 2006].

The paper is organised as follows. In Section 2, we formulate the problem in terms of the aforemen-
tioned hyperbolic-elliptic model. In Section 3, the super-Rayleigh solution on the surface is analysed,
with the causality concept embedded. Then the solution over the interior is constructed via the Poisson
formula, and the components of the transverse wave potentials are determined with the help of the relevant
differential relations on the surface. In Section 4, the steady-state solution for a distributed load over
the interior of the half-space is obtained. Finally, in Section 5, comparisons of solutions for point and
distributed forces are illustrated numerically.

2. Statement of the problem

We consider the dynamic response of a 3D elastic isotropic half-space (−∞< x1, x2 <∞, 0≤ x3 <∞)
under the influence of a vertical load of magnitude P distributed along the x1 axis and moving along its
positive direction on the surface x3 = 0 of the half-space at a constant speed c; see Figure 1.

In this paper, we employ a hyperbolic-elliptic approximate model for the surface wave field [Kaplunov
et al. 2006; Erbaş et al. 2013]. Within the framework of this model, the Lamé potentials ϕ and ψi , i = 1, 2,
satisfy the pseudostatic elliptic equations over the interior

∂2ϕ

∂x2
3
+ k2

112ϕ = 0,
∂2ψi

∂x2
3
+ k2

212ψi = 0, i = 1, 2, (2-1)

where 12 = ∂
2/∂x2

1 + ∂
2/∂x2

2 is a 2D Laplacian, k2
i = 1− c2

R/c
2
i , i = 1, 2, and c1, c2 and cR are the

longitudinal, transverse and Rayleigh wave speeds, respectively. The components of the displacement
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vector may be written in terms of the Lamé potentials as

u1 =
∂ϕ

∂x1
−
∂ψ1

∂x3
, u2 =

∂ϕ

∂x2
−
∂ψ2

∂x3
, u3 =

∂ϕ

∂x3
+
∂ψ1

∂x1
+
∂ψ2

∂x2
; (2-2)

for more details, see [Kaplunov and Prikazchikov 2013]. The boundary conditions on the surface x3 = 0
include the hyperbolic equation

12ϕ−
1

c2
R

∂2ϕ

∂t2 = AP
a

π [(x1− ct)2+ a2]
δ(x2), (2-3)

together with the relations between the potentials

∂ϕ

∂xi
=

2
1+ k2

2

∂ψi

∂x3
, i = 1, 2. (2-4)

In (2-3), A is a constant depending on the material properties of a half-space given by

A =
k1k2(1+ k2

2)

2µ[k2(1− k2
1)+ k1(1− k2

2)− k1k2(1− k4
2)]
. (2-5)

Throughout the paper, we are mainly concerned with the steady-state regime in the moving frame
related to the coordinate λ= x1− ct . Rewriting (2-3) in the new coordinates, we get for the sub-Rayleigh
(c < cR) and super-Rayleigh (c > cR) cases, respectively,

∂2ϕ

∂x2
2
+ ε2 ∂

2ϕ

∂λ2 = AP
a

π [λ2+ a2]
δ(x2), (2-6)

∂2ϕ

∂x2
2
− ε2 ∂

2ϕ

∂λ2 = AP
a

π [λ2+ a2]
δ(x2), (2-7)

where

ε =

∣∣∣∣1− c2

c2
R

∣∣∣∣1/2. (2-8)

The adopted approximate formulation is valid when the load speed is close to the Rayleigh wave speed,
i.e., when ε� 1, which enables investigation of the near-resonant response dominated by the Rayleigh
wave contribution [Kaplunov et al. 2010; 2013]. Introducing the scaled variables

ξ1 =
λ

ε
, ξ2 = x2, ξ3 =

x3

ε
, (2-9)

the elliptic equations (2-1) become

∂2ϕ

∂ξ 2
3
+ k2

1
∂2ϕ

∂ξ 2
1
+ ε2k2

1
∂2ϕ

∂ξ 2
2
= 0,

∂2ψi

∂ξ 2
3
+ k2

2
∂2ψi

∂ξ 2
1
+ ε2k2

2
∂2ψi

∂ξ 2
2
= 0, i = 1, 2,

(2-10)
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along with boundary conditions (2-6) and (2-7) on the surface ξ3 = 0 rewritten as

∂2ϕ

∂ξ 2
2
+
∂2ϕ

∂ξ 2
1
= AP

a
π [ε2ξ 2

1 + a2]
δ(ξ2), (2-11)

∂2ϕ

∂ξ 2
2
−
∂2ϕ

∂ξ 2
1
= AP

a
π [ε2ξ 2

1 + a2]
δ(ξ2). (2-12)

The relations (2-4) for the potentials ϕ, ψ1 and ψ2 now take the form

∂ϕ

∂ξ1
=

2
1+ k2

2

∂ψ1

∂ξ3
,

∂ϕ

∂ξ2
=

2
ε(1+ k2

2)

∂ψ2

∂ξ3
. (2-13)

3. Revisit of the moving point force problem

Before considering the problem (2-10)–(2-13) for a distributed load, let us discuss the solution for a point
force for the super-Rayleigh regime (c> cR) earlier treated in [Kaplunov et al. 2013]. In the limit a→ 0,
the hyperbolic equation on the surface (2-3) becomes

12ϕ−
1
c2

R

∂2ϕ

∂t2 = APδ(x1− ct)δ(x2). (3-1)

The fundamental solution of the 2D wave equation is given by

F(x1, x2, t)=−
cR H

(
cR t −

√
x2

1 + x2
2

)
2π
√

c2
R
t2
− x2

1 − x2
2

(3-2)

[Zauderer 2006], where H(x) is the Heaviside function. As might be expected, it is causal in the variables
x1, x2 and t . Then the solution of (3-1) may be expressed as a convolution, i.e.,

ϕ(x1, x2, 0, t)=
∫ t

0
F(x1− ct, x2, t − τ) dτ

=−
APcR

2π

∫ t

0

H
(
cR (t − τ)−

√
(x1− cτ)2+ x2

2

)√
c2

R
(t − τ)2− (x1− cτ)2− x2

2

dτ, (3-3)

or in the form

ϕ(λ, x2, 0)=−
APcR

2π

∫ t

0

H
(
cR s−

√
(λ+ cs)2+ x2

2

)√
(c2

R
− c2)s2

− 2scλ− λ2
− x2

2

ds, (3-4)

where s = t− τ . The argument of the Heaviside function in the numerator of (3-4) is positive when λ < 0
in the considered super-Rayleigh case and s1 ≤ s ≤ s2, where

s1 = n+
√

n2−m, s2 = n−
√

n2−m, (3-5)

with

n =−
λc

c2− c2
R
, m =

λ2
+ x2

2

(c2− c2
R)

2
. (3-6)
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Figure 2. Mach cone.

As t→∞,

ϕ(λ, x2, 0)=−
APcR

2π

∫ s2

s1

1√
(c2

R
− c2)s2

− 2scλ− λ2
− x2

2

ds =−
AP
2ε
. (3-7)

We note that the roots s1 and s2 are real, provided that n2
−m ≥ 0; hence, ε2x2

2 − λ
2
≤ 0. Therefore,

since λ < 0,

ϕ(λ, x2, 0)=
AP
2ε

[
H
(

x2−
λ

ε

)
− H

(
x2+

λ

ε

)]
H(−λ). (3-8)

The obtained solution (3-8) does not violate the causality concept and predicts the Mach cone shown in
Figure 2. At the same time, we could immediately arrive at the same result by introducing the moving
coordinate λ into (3-1) to get

∂2ϕ

∂x2
2
− ε2 ∂

2ϕ

∂λ2 = Aδ(λ)δ(x2). (3-9)

It is interesting that making use of the conventional fundamental noncausal solution in the variables λ
and x2 in (3-9) results in (3-8) without the factor H(−λ) enabling the causality [Kaplunov et al. 2013].
Similar to [Kaplunov et al. 2013], the potential ϕ may now be recovered over the interior, x3 > 0, through
the Poisson formula [Courant and Hilbert 1962], resulting in

ϕ(λ, x2, x3)=
AP
2πε

k1η3

∫ 0

−∞

H(x2− η/ε)− H(x2+ η/ε)

(η− λ)2+ k1x2
3

dη =
AP
2πε

cot−1
(
λ+ ε|x2|

k1x3

)
. (3-10)

It is now a simple matter to get the potentials ψ1 and ψ2 using the relations (2-4). The result is

ψ1(λ, x2, x3)=−
APk1(1+ k2

2)

8πεk2
2

ln(k2
2 x2

3 + (λ+ ε|x2|)
2), (3-11)

ψ2(λ, x2, x3)=−
APk1(1+ k2

2) sgn(x2)

8πk2
2

ln(k2
2 x2

3 + (λ+ ε|x2|)
2). (3-12)

In what follows, we illustrate the behaviour of potentials for different values of the depth x3 — specif-
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Figure 3. Potential ϕ versus λ at x2 = 0.

ically, in Figure 3 we consider x3 = 0, 0.1, 0.2 and 0.5. It is seen that on the surface x3 = 0 the causality
principle holds true, that is, there is no contribution of the longitudinal wave potential ϕ appearing in
front of the load. However, as the depth increases (x3 > 0), it is observed that in the interior of the
half-space there appear some disturbances in front of the moving load. Figure 4 illustrates variation of
the potentials ψ1 and ψ2 for different depths. It is clear from Figure 4 and also from (3-11) and (3-12)
that the causality principle is not applicable to potentials ψ1 and ψ2, i.e., they may be treated as nonwave
potentials.

Thus, within the framework of the approximate formulation of the Rayleigh wave, the causality prin-
ciple is only valid on the surface and only for the longitudinal wave potential ϕ.
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Figure 4. Potentials ψ1 and ψ2 versus λ at x2 = 0 and x2 = 1, respectively.



ON THE CAUSALITY OF THE RAYLEIGH WAVE 455

4. Solution for distributed force

We may now derive the steady-state solution of (2-10)–(2-13) employing the adopted hyperbolic-elliptic
model. Consider first the super-Rayleigh regime. At leading order, elliptic equations (2-10) give

∂2ϕ

∂ξ 2
3
+ k2

1
∂2ϕ

∂ξ 2
1
= 0,

∂2ψi

∂ξ 2
3
+ k2

2
∂2ψi

∂ξ 2
1
= 0, i = 1, 2, (4-1)

which should be solved together with the hyperbolic equation (2-7) and relations (2-4). Using the funda-
mental solution of the wave operator

F(ξ1, ξ2)=
1
2 [H(ξ2− ξ1)− H(ξ2+ ξ1)], (4-2)

for ξ1 < 0, from the causality, the longitudinal wave potential on the surface may easily be obtained in
the form

ϕ(ξ1, ξ2, 0)=
AP
2πε

[
π

2
− tan−1(α(ξ1+ |ξ2|))

]
, (4-3)

where the notation α = ε/a is introduced. The sought-after solution for the Dirichlet problem for elliptic
equation (4-1) may be written using the 2D Poisson integral formula giving

ϕ(ξ1, ξ2, ξ3)=
AP

2π2ε
k1ξ3

{
π

2

∫
∞

−∞

1
(η− ξ1)2+ k2

1ξ
2
3

dη−
∫
∞

−∞

tan−1(α(η+ |ξ2|))

(η− ξ1)2+ k2
1ξ

2
3

dη
}

=
AP
2πε

cot−1
(
α(ξ1+ |ξ2|)

1+αk1ξ3

)
. (4-4)

In order to obtain the transverse wave potentials ψ1 and ψ2, we employ relations (2-13). Differentiation
of (4-4) gives

∂ϕ(ξ1, ξ2, ξ3)

∂ξ1
=−

AP
2πa

1+αk1ξ3

(1+αk1ξ3)2+α2(ξ1+ |ξ2|)2
. (4-5)

Taking into account (4-1)2 and (2-13)1, we get

∂ψ1(ξ1, ξ2, ξ3)

∂ξ3
=−

AP(1+ k2
2)

4πa
1+αk2ξ3

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2
; (4-6)

hence,

ψ1(ξ1, ξ2, ξ3)=−
AP(1+ k2

2)

8πεk2
ln((1+αk2ξ3)

2
+α2(ξ1+ |ξ2|)

2). (4-7)

Using (2-13)2 and following the same procedure as above, we obtain

ψ2(ξ1, ξ2, ξ3)=−
AP sgn(ξ2)(1+ k2

2)

8πk2
ln((1+αk2ξ3)

2
+α2(ξ1+ |ξ2|)

2). (4-8)
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Figure 5. Derivatives of super-Rayleigh full and approximate solutions, for ν = 0.25,
a = 0.1, ε = 0.1, ξ1 =−1 and ξ3 = 1.

Rewriting (2-2) in terms of scaled variables (2-9) and using the results (4-4), (4-7) and (4-8), we get for
the displacement components

u1 =
α

ε2

AP
2π

[
1+ k2

2

2
1+αk2ξ3

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2
−

1+αk1ξ3

(1+αk1ξ3)2+α2(ξ1+ |ξ2|)2

]
, (4-9)

u2 =
APα sgn(ξ2)

2πε

[
1+ k2

2

2
1+αk2ξ3

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2
−−

1+αk1ξ3

(1+αk1ξ3)2+α2(ξ1+ |ξ2|)2

]
, (4-10)

u3 =−
APα2(1+ k2

2)

4πk2

ξ1+ |ξ2|

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2

−
APα2

2πε2

[
(1+ k2

2)

2k2

ξ1+ |ξ2|

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2
− k1

ξ1+ |ξ2|

(1+αk1ξ3)2+α2(ξ1+ |ξ2|)2

]
. (4-11)

We remark that keeping the O(ε2) terms in the elliptic equations (4-1), the full solution for the potential
ϕ may be obtained via Poisson’s formula for a half-space, giving

ϕ(ξ1, ξ2, ξ3)=
APξ3

4π2ε

∫
∞

−∞

∫
∞

−∞

cot−1(αk1(η1+ ε|η2|))

[(η1− ξ1/k1)2+ (η2− ξ2/(εk1))2+ ξ
2
3 ]

3/2
dη1 dη2. (4-12)

We may now compare the approximate solution (4-4) with its full counterpart (4-12) for the longitudinal
wave potential ϕ. We compare the normalised derivative 8= (2π/AP)∂ϕ/∂ξ2 in Figure 5.

Let us now present the results for the sub-Rayleigh regime (c < cR). The solution of (2-11) on the
surface x3 = 0 may be written as

ϕ(ξ1, ξ2, 0)=
AP
4πε

ln(ξ 2
1 + (α

−1
+ |ξ2|)

2). (4-13)

The approximate solution over the interior follows, again, from the 2D Poisson formula giving

ϕ(ξ1, ξ2, ξ3)=
AP
4πε

ln(ξ 2
1 + (|ξ2| + k1ξ3+α

−1)2). (4-14)



ON THE CAUSALITY OF THE RAYLEIGH WAVE 457

�0:5

0

0:5

�1 �0:5 0 0:5 1

ˆ

�2

Full Solution

Approximate Solution

Figure 6. Derivatives of sub-Rayleigh full and approximate solutions for a = 0.1,
ε = 0.1, ξ1 =−1 and ξ3 = 1.

The full solution of the sub-Rayleigh case may be expressed in an integral form as

ϕ(ξ1, ξ2, ξ3)=
APξ3

8π2ε

∫
∞

−∞

∫
∞

−∞

ln((η1/ε)
2
+ ((εαk1)

−1
+ |η2|)

2)

[(η1− ξ1/k1)2+ (η2− ξ2/(εk1))2+ ξ
2
3 ]

3/2
dη1 dη2. (4-15)

The numerical comparison of the normalised derivative of the full and approximate solutions, 8 =
(4πε/AP)∂ϕ/∂ξ2, is presented in Figure 6.

Following the procedure presented in detail for the super-Rayleigh case, potentials ψ1 and ψ2 are
found to be

ψ1(ξ1, ξ2, ξ3)=
AP(1+ k2

2)

4πεk2
tan−1

(
|ξ2| + k2ξ3+α

−1

ξ1

)
, (4-16)

ψ2(ξ1, ξ2, ξ3)=
AP sgn(ξ2)(1+ k2

2)

8πk2
ln(ξ 2

1 + (|ξ2| + k2ξ3+α
−1)2). (4-17)

The resulting displacement components are

u1 =
1
ε2

AP
2π

[
ξ1

ξ 2
1 + (|ξ2| + k1ξ3+α−1)2

−
1+ k2

2

2
ξ1

ξ 2
1 + (|ξ2| + k2ξ3+α−1)2

]
, (4-18)

u2 =
1
ε

AP sgn(ξ2)

2π

[
|ξ2| + k1ξ3+α

−1

ξ 2
1 + (|ξ2| + k1ξ3+α−1)2

−
1+ k2

2

2
|ξ2| + k2ξ3+α

−1

ξ 2
1 + (|ξ2| + k2ξ3+α−1)2

]
, (4-19)

u3 =
AP(1+ k2

2)

4πk2

|ξ2| + k2ξ3+α
−1

ξ 2
1 + (|ξ2| + k2ξ3+α−1)2

+
1
ε2

AP
2π

[
k1

|ξ2| + k1ξ3+α
−1

ξ 2
1 + (|ξ2| + k1ξ3+α−1)2

−
1+ k2

2

2k2

|ξ2| + k2ξ3+α
−1

ξ 2
1 + (|ξ2| + k2ξ3+α−1)2

]
. (4-20)
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Figure 7. Super-Rayleigh vertical displacement versus ξ1 for a = 0.005, a = 0.002 and
the point load (a = 0).

5. Numerical comparison of solutions for point and distributed forces

In this section, we illustrate numerically the comparisons of the results for distributed load against those
for point load discussed in [Kaplunov et al. 2013]. To this end, we set Poisson’s ratio to ν = 0.25
corresponding to the value cR = 0.9194c2. In the present problem, the load exhibits a gaussian-like
profile, and as the parameter a approaches zero, the profile becomes a delta function moving along the
x1 axis. It is reasonable to expect, as a gets smaller, a considerable agreement between the displacements
of both problems. We employ the same normalisation for the displacements presented in Section 5 of
[Kaplunov et al. 2013], namely

Ui (ξ1, ξ2, ξ3)=
2π
AP

ui (ξ1, ξ2, ξ3).
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Figure 8. Super-Rayleigh vertical displacement versus ξ2 for a = 0.005, a = 0.002 and
the point load (a = 0).
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Figure 9. Super-Rayleigh horizontal displacement versus ξ1 for a = 0.005, a = 0.002
and the point load (a = 0).

We first consider the super-Rayleigh case for which the load speed is taken as c = 0.924c2 corresponding
to ε = 0.1. Figure 7 displays comparisons of vertical displacements U3 plotted against the moving
coordinate ξ1, with the depth being ξ3 = 0.1. As expected, the singular behaviour under the point load
corresponding to the coordinate ξ1 =−1 is smoothed out by the distributed load, and it is clear that in the
limit as a→ 0 we recover the solution for the point load problem. Figure 8 demonstrates the variation
of the vertical displacement U3 against the other horizontal variable ξ2. Here, we take ξ1 =−1 at depth
ξ3 = 0.1. A similar surface discontinuity is also evident here, which is again flattened for large values of
a. Figure 9 presents a cross-section of displacement U1. We observe that the delta-like profile near the
singularity for the point load has been smoothed by the inclusion of the parameter a. Finally, numerical
illustration for the sub-Rayleigh case is presented in Figure 10, which shows variation of the vertical
displacement U3 along the horizontal variable ξ2. In the sub-Rayleigh case, the speed of the load is taken
as c = 0.9148c2, corresponding again to ε = 0.1.
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Figure 10. Sub-Rayleigh vertical displacement versus ξ2 for a = 0.05, a = 0.01 and the
point load (a = 0).
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6. Concluding remarks

In this paper, a 3D problem for a distributional load of a gaussian-like profile moving along the surface of
an elastic half-space is investigated. The hyperbolic-elliptic model in [Kaplunov and Prikazchikov 2013;
Kaplunov et al. 2013] is specialised to tackle near-resonant behaviour ignoring the effect of longitudinal
and transverse bulk waves. The presence of a small parameter expressing the proximity of the load speed
to the Rayleigh wave speed enables us to reduce the 3D elliptic problems for the interior to 2D ones for
the vertical cross-section along the load trajectory.

Various aspects of the Rayleigh wave causality are addressed. In contrast to the consideration in
[Kaplunov et al. 2013], the steady-state location of the Mach cones, characteristic of the super-Rayleigh
regime, is evaluated at a large time limit of the associated transient solution. Noncausality of the trans-
verse wave potential, as well as the longitudinal wave potential over the interior, is due to the approximate
nature of the adopted mathematical model.

The transition from the distributed load solution to the point load one is analysed numerically. As
might be expected (see Figure 8), a distributed load smooths the singularities typical for a point load,
e.g., those at Mach cones. We also mention that the effect of a distributed load is similar, in a sense, to
that of an elastic coating [Erbaş et al. 2014].

A similar approach considered in this work may be readily extended to interfacial waves, e.g., Stoneley,
Schölte, etc., and also to the media where the effects of prestress, layered structure and anisotropy are
rather essential.
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[Erbaş et al. 2013] B. Erbaş, J. D. Kaplunov, and D. A. Prikazchikov, “The Rayleigh wave field in mixed problems for a
half-plane”, IMA J. Appl. Math. 78:5 (2013), 1078–1086.
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