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WHAT DISCRETE MODEL CORRESPONDS EXACTLY
TO A GRADIENT ELASTICITY EQUATION?

VASILY E. TARASOV

In this paper, we obtain exact discrete analogs of the gradient elasticity equations. The suggested discrete
equations have differences represented by infinite series. Physically, these equations describe models of
lattices with long-range interactions. Mathematically, unique difference equations correspond exactly to
continuum gradient elasticity equations.

1. Introduction

There are two basic approaches to describe elasticity of solid states: a microscopic approach based
on the classical and quantum theory of crystal lattices and solids [Born and Huang 1998; Böttger 1983;
Kittel 1987] and a macroscopic phenomenological approach based on the classical mechanics of continua
[Sedov 1971]. On the one hand, continuum equations can be considered as a limit case of discrete (lattice)
equations when the primitive lattice vectors tend to zero. On the other hand, different discretizations of the
continuum equations can be used to get discrete (difference) equations, which allow us to apply computer
simulations. Usually discretization of differential equations is realized by using the standard difference
operators. In some cases, the corresponding difference equations are similar to the lattice equations. For
example, the standard finite difference of second order corresponds to the nearest-neighbor interaction
of lattice particles. The standard finite difference of fourth order describes the next-nearest-neighbor
interaction [Tarasov 2014a; 2015b].

In this paper, we are not trying to find out which type of equation is primary and which is secondary.
We do not try to argue that discrete or continuous equations are primary. The main goal of our paper is to
define an exact correspondence between continuum and discrete (lattice) equations. We would like to de-
scribe the correspondence without using approximations and limit passages that discard some terms. The
mathematical basis of our consideration is the following correspondence principle: the correspondence
between the discrete (lattice) theory and the continuum theory lies not so much in the limiting condition
when the steps (or primitive lattice vectors) tend to zero as in the fact that mathematical operations
on these theories should obey the same laws in many cases. We will use a new type of difference
operator, which can be considered an exact discretization of partial derivatives and a lattice operator
on physical lattices with long-range interactions [Tarasov 2015a]. The proposed T -differences satisfy
the same algebraic relations as the corresponding derivatives. The suggested difference operators allow
us to have difference (lattice) equations, whose solutions are equal to the solutions of corresponding
continuum differential equations.

Keywords: elasticity, gradient elasticity, long-range interactions, exact discretization, difference equation.
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This article focuses on gradient elasticity models first suggested by Mindlin [1964; 1965; 1968; Erin-
gen 1983]. These models can be considered a special type of theory of nonlocal elastic continua and
continuous media with internal degrees of freedom [Carcaterra et al. 2015; Auffray et al. 2015; dell’Isola
et al. 2016b; Sedov 1968; Eringen 1972; 2002; Rogula 1982]. The theory of nonlocal continuum me-
chanics was initiated by Piola [dell’Isola et al. 2015; 2016a; Rahali et al. 2015]. Nonlocal elasticity
theory is based on the assumption that the forces between particles are long-range types that correspond
to the long-range character of interatomic forces.

There are three main approaches to derive equations of gradient elasticity: a phenomenological contin-
uum approach based on the postulation of equations, an approach based on homogenization of discrete
models, and an approach based on continuum limit of lattice models.

The first approach to derive equations of gradient elasticity in the framework of phenomenological
consideration was suggested by [Mindlin 1964; 1965; 1968], which suggest an elasticity theory of mate-
rials with microstructure, where two different types of quantities are used for the micro- and macroscales.
In the phenomenological approach, the gradient elasticity models differ in the assumed relation between
the microscopic deformation and the macroscopic displacement. It is important to note that, despite the
theoretical differences between these models, the equations for displacements of these models are iden-
tical [Mindlin 1964]. Using the phenomenology approach, the simplest equation of the one-dimensional
gradient elasticity has the form

∂2u(x, t)
∂t2 = c2 ∂

2u(x, t)
∂x2 + l2 ∂

4u(x, t)
∂x4 , (1-1)

where l2 is the scale parameter.
The second approach to obtain equations of gradient elasticity is the continualization (homogenization)

of a lattice with nearest-neighbor interactions [Mindlin 1968]. Usually a basis of this approach is models
of systems of particles and springs. In the simplest case of one-dimensional system of particles and
springs, where all particles have mass M and all springs have spring stiffness K , the equations of motion
have the form

M
d2un(t)

dt2 = K (un+1(t)− 2un(t)+ un−1(t)). (1-2)

In the homogenization procedure, it is assumed that the continuum displacement u(x, t) is equal to the
lattice displacement un(t) of particle n by un(t)= u(nh, t), where h is the particle spacing. In this case,
the displacements un±1(t) are expressed in terms of the continuum displacement u(x ± h, t). Then the
Taylor series is used in the form

un±1(t)= u(x ± h, t)=
∞∑

m=0

(±h)m

m!
∂mu(x, t)
∂xm (1-3)

to substitute (1-3) into (1-2). Note that all odd-order derivatives of u(x, t) have canceled. As a result, the
division by the cross-section area A of the medium and the interparticle distance h gives the equation

∂2u(x, t)
∂t2 =

c2

h2

∞∑
m=0

2h2m

(2m)!
∂2mu(x, t)
∂x2m , (1-4)
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where ρ = M/(Ah) is the mass density and E = (K h)/A is the Young’s modulus, where c =
√

E/ρ is
the elastic bar velocity. Equation (1-1) is obtained by deleting all terms O(h6), and we get the equation
of the gradient elasticity

∂2u(x, t)
∂t2 = c2 ∂

2u(x, t)
∂x2 +

h2c2

12
∂4u(x, t)
∂x4 . (1-5)

It is easy to see that continualization (homogenization) by Taylor series cannot give the equation of the
gradient elasticity exactly. Therefore, the discrete equation (1-1) cannot be considered as an exact analog
to (1-2) of the gradient elasticity.

The third approach for obtaining the gradient elasticity equations has been suggested in [Tarasov
2014a; 2015b]. This approach is based on the models of lattices with the nearest-neighbor and next-
nearest-neighbor interactions, instead of the case (1-2) that corresponds to the lattice with the nearest-
neighbor interactions only. It was proved that two classes of the gradient models (with positive and
negative signs in front of the gradient term) can have a general lattice model as a microstructural basis.
To obtain the gradient elasticity equations, we consider a lattice model with the nearest-neighbor and next-
nearest-neighbor interactions with two different coupling constants. A generalization of this approach to
lattice models with long-range interactions has been suggested in recent papers [Tarasov 2013; 2014b;
2014c; 2016b] to describe the fractional nonlocal elastic materials. Note that the models of lattices with
the nearest-neighbor and next-nearest-neighbor interactions also cannot be considered as exact discrete
models of gradient elasticity.

In this paper, we do not plan to discuss these approaches of obtaining the gradient elasticity equations
in detail. Some aspects of this question have been discussed in the cited articles and in [Tarasov 2006a;
2006b; 2014d; 2015a]. We will solve an inverse problem. Considering these continuum equations as
already specified, we would like to get an exact discrete analog to the equations. In this paper, we get
discrete (lattice) equations that correspond exactly to the continuum gradient elasticity equation (1-1).
Physically, these discrete equations describe lattice models with long-range interactions [Tarasov 2006a;
2006b]. Mathematically, unique difference equations correspond exactly to the continuum gradient
elasticity equations. Note that exact correspondence means also that the difference equations have the
same general solutions as the associated differential equations. In the beginning, we will consider one-
dimensional gradient elasticity equations for simplification. Then we suggest a generalization for the
three-dimensional case by using an approach proposed in [Tarasov 2014d; 2015a].

2. Transformation of a discrete equation into a continuum gradient elasticity equation

Let us describe in details a transform of a discrete equation into a continuum gradient elasticity equation
to fix notation for further consideration.

Usually a discrete analog to the gradient elasticity equation (1-1) is considered in the form of the
equation with finite difference of second order

d2un(t)
dt2 =

c2

h2 (un+1(t)− 2un(t)+ un−1(t)). (2-1)

Another discrete analog to the gradient elasticity equation (1-1) is considered in the form of the equation
with finite difference of second and fourth orders [Tarasov 2014a; 2015b]. As we shortly describe in
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Section 1, the discrete equation (2-1) cannot be an exact analog to the gradient elasticity equation (1-1).
Let us give some details to explain a connection between (1-1) and (2-1). The Fourier series trans-
form Fh,1, which is defined by

û(k, t)=
+∞∑

n=−∞

un(t)e−iknh
= Fh,1{un(t)}, (2-2)

maps the difference equation (2-1) to

∂2û(k, t)
∂t2 =−

2c2

h2

∞∑
m=1

(−1)m

(2m)!
(kh)2m û(k, t). (2-3)

The inverse Fourier integral transform F−1, which is defined by

u(x, t)=
1

2π

∫
+∞

−∞

dk û(k, t)eikx
= F−1

{û(k, t)}, (2-4)

gives
∂2u(x, t)
∂t2 =

2c2

h2

∞∑
m=1

h2m

(2m)!
∂2mu(x, t)
∂x2m . (2-5)

Equation (2-5) also can be obtained (for details, see Section 8 of [Maslov 1976]) by using the well-known
relation

exp
(

h
∂

∂x

)
f (x)= f (x + h).

It is easy to see that (1-1) can be obtained only in approximation of (2-5) by deleting all O(h6) terms. It
is important to note that the limit h→ 0 of (2-5) gives only the wave equation since

lim
h→0

2
h2

∞∑
m=1

h2m

(2m)!
∂2mu(x, t)
∂x2m =

∂2u(x, t)
∂x2 . (2-6)

It is important to emphasize that the gradient elasticity equation (1-1) cannot be obtained by the limit
h→ 0 [Tarasov 2014a]. Equation (2-5) gives (1-1) only by deleting all O(h6) terms. Therefore, (2-1)
cannot be considered as an exact discretization of (1-1) or its microstructural basis to derive equations
of gradient elasticity.

It should be noted that approaches based on models of lattices with the nearest-neighbor and next-
nearest-neighbor interactions [Tarasov 2014a; 2015b] can give (1-1) in the limit h→ 0 in contrast to
approaches based on lattice equation (2-1) with the nearest-neighbor interactions. At the same time,
the lattice equations with nearest-neighbor and next-nearest-neighbor interactions have infinite series of
even-order derivatives similar to (2-5) before taking the limit.

3. Exact difference analogs of derivatives

To have an exact discrete analog to the gradient elasticity equations, we should consider a problem of
discretization of these equations. Let us consider a problem of derivation of an exact discrete analog to
the gradient elasticity equation (1-1). To solve this problem, we should find new types of differences,
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which will be denoted by T12n , that correspond exactly to the derivatives ∂2n/∂x2n with n = 1 and n = 2.
In order for the difference T12n of even orders 2n (n ∈ N) to not correspond to the derivatives ∂2n/∂x2n

approximately, these differences should satisfy the condition

1
h2n F−1(Fh,1(

T12nun(t)))=
∂2nu(x, t)
∂x2n (3-1)

in contrast to the usual finite differences that are represented by infinite series of derivatives (see (2-5)).
Condition (3-1) can be realized if the difference T12n has the Fourier series transform in the form

Fh,1{
T12num(t)} :=

+∞∑
m=−∞

e−ikm T12num(t)= (−1)n(kh)2n û(k, t). (3-2)

In order to get (3-2), the differences T12n should be represented by the convolution

T12num(t) :=
+∞∑

j=−∞

K2n( j)um− j (t), (3-3)

where
F1,1{K2n( j)} = (−1)nk2n (3-4)

and K2n(−m)= K2n(m) hold for all m ∈ N and n ∈ N.
In order to apply F1,1 to the differences (3-3), we assume that um and K2n(m) are the real-valued

functions of discrete variable m ∈ Z such that um ∈ l2 and K2n(m) ∈ l1.
Using K2n(−m)= K2n(m), the kernels K2n(m) can be defined by

K2n(m)= F−1
1,1{(−1)nk2n

} = (−1)n
1
π

∫ π

0
k2n cos(km) dk. (3-5)

For m = 2 and m = 4, we get

K2(n)=−
2(−1)n

n2 (n 6= 0), K2(0)=−
π2

3
, (3-6)

K4(n)=+
4π2(−1)n

n2 −
24(−1)n

n4 (n 6= 0, n ∈ Z), K4(0)=+
π4

5
. (3-7)

As a result, the differences (3-3) of second and fourth orders are defined by

T12un := −

+∞∑
m=−∞

m 6=0

2(−1)m

m2 un−m −
π2

3
un, (3-8)

T14un :=

+∞∑
m=−∞

m 6=0

(
4π2(−1)m

m2 −
24(−1)m

m4

)
un−m +

π4

5
un. (3-9)

In the general case, we can use Equation 2.5.3.5 of [Prudnikov et al. 1986], which gives

K2n(m)=
n−1∑
k=0

(−1)m+k+n(2n)!π2n−2k−2

(2n− 2k− 1)!
1

m2k+2 (m ∈ Z, m 6= 0). (3-10)
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For m = 0, we have

K2n(0)=
(−1)nπ2n

2n+ 1
. (3-11)

These kernels define the differences T12n of even orders 2n for all n ∈ N by (3-3).

4. Transformation of a gradient elasticity equation into a discrete equation

In Section 2, we demonstrate that discrete equation (2-1) cannot be considered as an exact discrete analog
to (1-1).

Using the differences (3-8) and (3-9), we can consider an inverse problem. We will start with the
equation of gradient elasticity and then try to get an exact discrete analog to this continuum equation
without approximation by deleting terms. We would like to answer the questions: what do the gradient
elasticity equations describe exactly at discrete (lattice) level and what is an exact analog to the gradient
elasticity equations?

Let us consider the Fourier integral transform F , which is defined by

û(k, t)=
∫
+∞

−∞

dx u(x, t)e−ikx
= F{u(x, t)}. (4-1)

Applying this Fourier transform F to (1-1), we get

d2û(k, t)
dt2 =−c2k2û(k, t)+ l2k4û(k, t). (4-2)

Using the inverse Fourier series transform F−1
h,1 such that

un(t)=
h

2π

∫
+π/h

−π/h
dk û(k, t)eikhn

= F−1
h,1{û(k, t)}, (4-3)

(4-2) gives
d2un(t)

dt2 =
c2

h2
T12un(t)+

l2

h4
T14un(t), (4-4)

where T12 and T14 are the differences that are defined by (3-8) and (3-9). Substitution of (3-8) and (3-9)
into (4-4) gives

d2un(t)
dt2 =

+∞∑
m=−∞

m 6=0

(
4π2l2

−2c2h2

h4

(−1)m

m2 −
24l2

h4

(−1)m

m4

)
un−m(t)+

(
π4l2

5h4 −
π2c2

3h2

)
un(t) (n∈Z). (4-5)

These equations are an exact discrete analog to the equation of gradient elasticity (1-1).
Let us give some mathematical remarks about suggested difference equations. To use the Fourier

series transform, we assume that the function un(t) belongs to the Hilbert space l2 of square-summable
sequences, where the norm on the l p-space is defined by

‖u‖p :=

( +∞∑
n=−∞

|un|
p
)1/p

.
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It is easy to see that the differences (3-8) and (3-9) are defined by convolutions of um ∈ l2 and the
functions

a2n(m)=
(−1)m

m2n (m 6= 0, m ∈ Z)

that belong to the space l1. Using the Young’s inequality for convolutions [Young 1912a; 1912b; Hardy
et al. 1952, Theorem 276] in the form

‖
T12nu‖r = ‖a2n ∗ u‖r ≤ ‖a2n‖p‖u‖q , (4-6)

where
1
r
+ 1=

1
p
+

1
q
, (4-7)

we get that the result of the action of operators T12n also belongs to the Hilbert space l2 of square-
summable sequences, i.e.,

gm :=
T12num ∈ l2 (4-8)

since condition (4-7) holds.
As a result, the T -differences are the operators T12n

: l2
→ l2.

Note that, using Equation 5.1.2.3 of [Prudnikov et al. 1986], we can get
∞∑

m=1

K2n(m)=
∞∑

m=1

(−1)m

m2n = (2
1−2n
− 1)ζ(2n)=−

1
0(2n)

∫
∞

0

x2n−1

ex + 1
dx = T2n, (4-9)

where ζ(z) is the Riemann zeta function, 0(z) is the gamma function, and

T2 =−
π2

12
, T4 =−

7π4

720
.

As a result, the T -differences acting on um = 1 converge.
The main property of the suggested differences (3-8) and (3-9) are that the Fourier series transform

Fh,1 of these differences is represented by

Fh,1(
T12num(t))= (ikh)2n û(k, t). (4-10)

This equation leads us to the corresponding equality

1
h2n F−1(Fh,1(

T12num(t)))=
1

h2n F−1((ikh)2n û(k, t))=
∂2nu(x, t)
∂x2n , (4-11)

which means that this difference of order 2n gives the derivative ∂2n/∂x2n exactly. The T -differences of
orders 2n are connected with the derivatives ∂2n/∂x2n not only asymptotically by the limit h→ 0. It’s
obvious that the limit h→ 0 also gives this derivatives

lim
h→0

F−1(Fh,1(
T12n))

h2n =
∂2n

∂x2n . (4-12)

As a result, the suggested equations (4-5) with T -difference can be considered not only as approxi-
mations of the gradient elasticity equations. The suggested discrete equations (4-5) are exact discrete
analogs to the continuum gradient elasticity equation (1-1).



336 VASILY E. TARASOV

5. Exact difference equations for three-dimensional gradient elasticity

In this section, we propose discrete equations of three-dimensional gradient elasticity by using the ap-
proach suggested in [Tarasov 2014d; 2015a].

The Mindlin equations [1964; 1965; 1968] of three-dimensional gradient elasticity have the form

ρ
∂2ui (r, t)
∂t2 − ρl2

1

3∑
j=1

∂4ui (r, t)
∂x2

j ∂t2
= (λ+µ)

3∑
j=1

∂2u j (r, t)
∂xi ∂x j

+µ

3∑
j=1

∂2ui (r, t)
∂x2

j

− (λ+µ)l2
2

3∑
k=1

3∑
j=1

∂4u j (r, t)
∂x2

k ∂xi ∂x j
−µl2

3

3∑
k=1

3∑
j=1

∂4ui (r, t)
∂x2

k ∂x2
j
+ fi (r, t), (5-1)

where the ui (r, t) are components of the displacement field for the continuum, fi (r, t) are the compo-
nents of the body force, λ and µ are the Lame constants, li (i = 1, 2, 3) are the Mindlin scale parameters,
ρ is the mass density, r =

∑3
j=1 x j e j , and e j ( j = 1, 2, 3) are the basis vectors of the Cartesian coordinate

system of R3.
Using the Fourier transforms F−1

h,1 ◦ F , the equations with T -differences for (5-1) have the form

ρ
∂2ui [n, t]
∂t2 −

ρl2
1

h2

3∑
j=1

T12
j
∂2ui [n, t]
∂t2 =

λ+µ

h2

3∑
j=1

T11
i

T11
j u j [n, t] +

µ

h2

3∑
j=1

T12
j ui [n, t]

−
(λ+µ)l2

2

h4

3∑
k=1

3∑
j=1

T12
k

T11
i

T11
j u j [n, t] −

µl2
3

h4

3∑
k=1

3∑
j=1

T12
k

T12
j ui [n, t] + fi [n, t], (5-2)

where we assume h1 = h2 = h3 = h and u j [n, t] := F−1
h,1 ◦ Fu j (r, t) are discrete fields such that

u j [n, t] = hu j (hn, t). In (5-2), we use T11
j and T12

j , which are the partial T -differences of first and
second orders. The partial T -difference of first order is defined by

T11
j ui [n, t] :=

+∞∑
m j=−∞

m j 6=0

(−1)m j

m j
ui [n−m j e j , t]. (5-3)

The partial T -difference of second order has the form

T12
j ui [n, t] :=

+∞∑
m j=−∞

m j 6=0

2(−1)m j+1

m2
j

ui [n−m j e j , t] −
π2

3
ui [n, t]. (5-4)

Here e j ( j = 1, 2, 3) are the basis vectors of the Cartesian coordinate system of R3, and n=
∑3

j=1 n j e j ,
where n j ∈ Z.

Note that it is easy to generalize these difference equation to the case of various h j ( j = 1, 2, 3). For
example, in this case, we should use u j [n, t] = h j u j (x(n), t), where x(n)=

∑3
i=1 h j n j e j .

For the three-dimensional case, the simplified continuum equations of gradient elasticity have the form

ρ
∂2ui (r, t)
∂t2 =

3∑
j,k,l=1

Ci jkl
∂2

∂x j ∂xl

(
1+ l2

3∑
m=1

∂2

∂x2
m

)
uk(r, t)+ fi (r, t), (5-5)
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where ui (r, t) are components of the displacement field for the continuum, fi (r, t) are the components
of the body force, and Ci jkl is the fourth-order elastic stiffness tensor. For isotropic materials, Ci jkl are
expressed in terms of the Lame constants λ and µ by

Ci jkl = λδi jδkl +µ(δikδ jl + δilδ jk), (5-6)

where λ and µ are the usual Lame constants.
The equations with T -differences for (5-5) of the three-dimensional gradient elasticity have the form

ρ
∂2ui [n, t]
∂t2 =

1
h2

3∑
j,k,l=1

Ci jkl
T11

j
T11

l

(
1+

l2

h2

3∑
m=1

T12
m

)
uk[n, t] + fi [n, t]. (5-7)

If we consider the case with ux(r, t) = u(x, t) and fx(r, t) = f (x, t), where the other components,
u y , uz , fy , and fz , are equal to zero, then we get the considered one-dimensional gradient elasticity
equations.

Equations (5-2) and (5-7) are equations of exact discretization of the three-dimensional gradient elas-
ticity equations. These equations with T -differences are connected with the partial differential equation
of gradient elasticity without approximations.

To solve linear partial differential and difference equations of the gradient elasticity, we can use the
method of separation of variables. For simplification, we will consider (1-1) and (4-4). For these equa-
tions, the fields u(x, t) and un(t) are represented in the forms

u(x, t)= u(x)T (t), un(t)= u[n]T (t). (5-8)

Substitution of (5-8) into (1-1) and (4-4) gives equations of u(x) and u[n] that can be represented as

l2 ∂
4u(x)
∂x4 + c2 ∂

2u(x)
∂x2 +ω

2u(x)= 0, (5-9)

l2

h4
T14u[n] +

c2

h2
T12u[n] +ω2u[n] = 0, (5-10)

where T1m is the T -difference of order m with respect to n. The equations for T (t) are the same for
(1-1) and (4-4).

To solve (5-10), we assume that the solution of (5-10) is proportional to exp(λn) for some constant λ.
Substitute u[n] = exp(λn) into difference equation (5-10), and use the relation

T11 exp(λn)= λ exp(λn), (5-11)

which is proved by the Poisson–Abel technique in [Tarasov 2016a]. Then we get a general solution of
difference equation (5-10) in the form

u[n] = C1eλ+·hn
+C2e−λ+·hn

+C3eλ−·hn
+C4e−λ−·hn, (5-12)

where

λ± :=

√
±

1
2l2

√
c4− 4l2ω2−

c2

2l2 . (5-13)



338 VASILY E. TARASOV

Differential equation (5-9) has the general solution

u(x)= c1eλ+·x + c2e−λ+·x + c3eλ−vx
+ c4e−λ−·x . (5-14)

It is easy to see that solutions (5-12) and (5-14) are connected by the relation u[n] = hu(hn) for all n ∈ Z

and h > 0, where Ck = hck (k = 1, 2, 3, 4).
Equation (5-10) can be considered as an exact discretization of differential equation (5-9). The exact

discretization means that the difference equation has the same general solution as the associated differ-
ential equation. The criterion of exact discretization of differential equations can be formulated in the
following form [Potts 1982; Mickens 2000; Tarasov 2016a].

An exact discretization is a map from a differential equation to a discrete (difference) equation, for
which the solution u[n] of the discrete equation and the solution u(x) of the associated differential equa-
tion are the same, i.e., if and only if the discrete function u[n] is exactly equal to the function u(x)
for x = hn, i.e., u[n] = hu(hn) (n ∈ Z) for arbitrary values of h > 0.

It should be noted that discretization of an equation by standard finite differences (5-9) cannot be
considered as an exact discretization since f11 exp(λn) 6= λ exp(λn) and (5-12) is not the solution of the
corresponding finite difference equation.

In elasticity theory, the boundary conditions play an important role. The boundary conditions for
T -difference equations have a form that is similar to the boundary conditions of the corresponding
differential equations. In these boundary conditions, the function ui [n] should be used instead of the
function ui (x) and the T -differences T1m

j instead of the partial derivatives ∂m/∂xm
j of order m ∈ N. For

a simple example, the exact discrete analog to the boundary conditions(
∂mu(x)
∂xm

)
x=0
= 0,

(
∂mu(x)
∂xm

)
x=L
= 0, (5-15)

for some values m ∈ {0, 1, 2, 3}, where ∂0u(x)/∂x0
:= u(x), have the form

T1mu[0] = 0, T1mu[N ] = 0, (5-16)

where hN = L , N ∈ N, u[n] = hu(hn), and T10u[n] = u[n]. For example, the discrete analog to the
periodic boundary condition u(x + L)= u(x) takes the form u[n+ N ] = u[n]. The boundary conditions
for the difference equations define the constants of the corresponding general solution.

As a result, we can see that discrete (lattice) equations with T -differences can be solved analytically.
Thus, obtained solutions of these discrete equations are the same as those of the associated differential
equations of continuum models.

6. Physical interpretation of the difference equations

In this section, we describe a direct connection between the proposed T -differences and lattice models
with long-range interactions. We prove that the discrete (lattice) equations with T -differences, which are
suggested for the gradient elasticity models, correspond to lattice models with long-range interactions of
power-law type.

From a mathematical point of view, the previous discrete (lattice) models of the gradient elasticity are
based on the standard (forward, backward, and central) finite differences. These models assume that we
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consider nearest-neighbor and next-nearest-neighbor interactions only, which do not correspond exactly
to real physical properties of interactions of particles. The characteristic properties of the underlying
physical interactions, which are electromagnetic interactions, are of a long-range nature. The models will
more adequately describe elastic materials and media, if these models take into account the long-range
character of interatomic forces. One of the most widely used long-range interactions is the interaction of
the type 1/|n|α , or equivalently 1/|n−m|α . The integer values of α correspond to the well-known physical
cases that correspond to the Coulomb potential for α = 1 and the dipole-dipole interaction for α = 3.
Moreover, in various cases, these interactions are crucial. For example, the excitation transfer in molecu-
lar crystals and the vibron energy transport in polymers are due to the transition dipole-dipole interaction
of the type 1/|n|3. Polyatomic molecules contain charged groups with a long-range Coulomb interaction
1/|n|1 between them. For excitons and phonons in semiconductors and molecular crystals, the dispersion
curves of two elementary excitations intersect or are close, which leads to an effective long-range transfer.

It should be noted that classical and quantum descriptions of media with long-range interactions are
the subject of continued interest in physics. The long-range interactions have been studied in discrete
systems as well as in their continuous analogs. For example, discrete and lattice models with long-range
interactions have been studied in the references below. An infinite one-dimensional model with long-
range interactions is described in [Dyson 1969a; 1969b; 1971]. Two-dimensional and three-dimensional
classical models with long-range interactions are considered in [Joyce 1969], and their quantum general-
ization has been suggested in [Nakano and Takahashi 1994a; 1994b; 1995; Sousa 2005]. Kinks, solitons,
breathers, dynamical chaos, and synchronization in lattice models with long-range particle interactions
are studied in different papers (for example, see [Gaididei et al. 1995; Mingaleev et al. 1998; Rasmussen
et al. 1998; Gorbach and Flach 2005; Korabel and Zaslavsky 2007; Korabel et al. 2007; Zaslavsky et al.
2007] and references therein).

It should be noted that the kernels (3-10), (3-8), (5-3), and (5-4) of the suggested T -differences can
be considered linear combinations of kernels of the type 1/|n|α , with integer α ∈N. We can assume that
the suggested T -differences (3-8) of second and fourth orders in gradient elasticity equations correspond
to the well-known underlying interatomic and intermolecular forces such as the Coulomb force of the
type 1/|n|2 and the dipole-dipole force of the type 1/|n|4. From a mathematical point of view, these linear
combinations are selected from the set of other combinations by the fact that they exactly correspond to
the continuum models, which are described by differential equations of integer orders. The suggested
type of long-range interactions, which are described by the kernels of the suggested T -differences, is
distinguished from other interactions by exact correspondence to continuum differential equations and
by preservation of the main characteristic properties of differential equations and corresponding solutions.

7. Conclusion

In this paper, we focused our consideration on gradient elasticity models that were suggested by Mindlin
[1964; 1965; 1968; Eringen 1983]. It should be noted that the proposed approach can also be applied
to the gradient elasticity models suggested by Aifantis [1994; 1992; 2011; Metrikine and Askes 2002;
Askes and Aifantis 2011]. The standard approach has certain disadvantages compared to the proposed
approach of obtaining exact discrete (lattice) analogs of continuum equations. Let us explain this point
in more detail. From a mathematical point of view, the standard discrete (lattice) models of the gradient
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elasticity are based on a mathematical approach that uses the forward, backward, and central finite differ-
ences. From the physical point of view, these models assume nearest-neighbor and next-nearest-neighbor
interactions in the media [Tarasov 2014a; 2015b; Askes and Aifantis 2011]. These models are not quite
adequate for the following reasons. From a mathematical point of view, it is well-known that the finite
differences of cannot be considered an exact discretization of the derivatives: solutions of equations with
standard finite differences do not coincide with solutions of the corresponding differential equations, and
the standard finite differences do not satisfy the same algebraic relations as the operators of differenti-
ation. The correspondence between the discrete (lattice) theory and the continuum theory lies not so
much in the limiting condition of the steps (or primitive lattice vectors) as in the fact that mathematical
operations on these theories should obey the same laws in many cases. From a physical point of view,
the standard discrete (lattice) models, which are based on an assumption of nearest-neighbor and next-
nearest-neighbor interactions only, do not fully reflect the physical reality. The characteristic properties
of the underlying physical interactions, which are electromagnetic interactions, are of a long-range nature.
The models will more adequately describe elastic materials and media, when these models will take into
account the long-range character of interatomic forces that can be characterized as 1/|n|α. The integer
values of α correspond to the well-known physical cases that correspond to the Coulomb force for α = 1
and the dipole-dipole force for α = 4. Moreover, in various cases, these interactions are crucial.

In this paper, we propose discrete (lattice) equations that correspond exactly to the gradient elasticity
equations. From a mathematical point of view, these discrete equations are uniquely equations with differ-
ences that correspond exactly to the continuum equations. From a physical point of view, these equations
describe microstructural models of lattices with long-range interactions of the type 1/|n|α with integer α.

The main advantage of the suggested discrete (lattice) equations is the connection with continuum
equations without any approximation. Moreover, these discrete (difference) equations have the same
general solutions as the associated differential equations. The exact discretization means that the differ-
ence equation has the same general solution as the associated differential equation. It should also be
emphasized that these discrete equations allow us to obtain analytical solutions. This is based on the fact
that the proposed T -differences satisfy the same algebraic relations as the operators of differentiation.

The computer simulations of discrete systems with long-range interactions of the form 1/|n|α are
actively used for integer and noninteger values of α (for example, see [Gaididei et al. 1995; Mingaleev
et al. 1998; Rasmussen et al. 1998; Gorbach and Flach 2005; Korabel and Zaslavsky 2007; Korabel et al.
2007; Zaslavsky et al. 2007]). The suggested T -differences can be considered linear combinations of
interactions of the type 1/|n|α with integer α. Therefore, we assume that computer simulations of the
suggested T -difference (lattice) equations, which are exact discretizations of corresponding differential
equations of continua, can be successfully realized.

We assume that the suggested equations with T -differences can be important in application since they
allow us to reflect characteristic properties of complex elastic materials and media at the microscale
and nanoscale, where long-range interactions play a crucial role in determining the properties of these
materials and media (see [Ostoja-Starzewski 2002; Tarasov 2010] and references therein).
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A REFINED 1D BEAM THEORY BUILT ON 3D SAINT-VENANT’S SOLUTION TO
COMPUTE HOMOGENEOUS AND COMPOSITE BEAMS

RACHED EL FATMI

This paper proposes a refined 1D beam theory (RBT) built on the 3D Saint-Venant (SV) solution estab-
lished for arbitrary composite cross-section. In this theory (RBT/SV), the displacement model introduces
sectional out-of-plane warpings, Poisson’s effects and distortions. For a given cross-section, the sectional
displacement modes are extracted from the computation of the correspondent 3D SV’s solution. These
sectional modes, which reflect the mechanical behavior of the cross-section, lead to a beam theory that
really fits the section nature (shape and material(s)). As a result, RBT/SV allows to recover a more
realistic spatial behavior for the beam, to catch a significant part of the edge effects, and hence to com-
pute a relatively short beam. In order to apply RBT/SV, a package (named CSB) of two complementary
numerical Matlab tools have been developed: CSection and CBeam. CSection computes by 2D-FEM
the deformation modes of the cross-section, and CBeam uses these sectional modes to generate the corre-
spondent beam theory and compute by 1D-FEM the beam. A significant set of homogeneous/composite
beams have been computed and, to show the efficiency of such a theory, 3D RBT/SV results have been
systematically compared with those provided by full 3D-FEM computations.

1. Introduction

Nowadays, the design of homogeneous beams is well understood and the calculation methods available
for engineers are sufficient to meet the requirements of current mechanical engineering, even if walled
profiles are not completely under control (especially when thin/thick and open/closed multicellular sec-
tions are involved).

In contrast, composite beams are not so easy to design. Their mechanical behavior is much more diffi-
cult to understand and to predict. Laminated composite beams are known to exhibit complex phenomena
such as coupled deformations arising from the anisotropic nature of the layers and from the stacking
sequences. And the situation is more complex when, to reduce cost and weight, thin-walled open/closed
composite sections are involved. Detailed structural models are then essential in order to fully exploit
such specific effects in the design phase. In addition to the structural level, detailed 3D stress analysis is
of practical relevance for laminated composites and especially the interlaminar stresses which may result
in delamination and failure of the laminates.

Today, using composite beams is a real trend in many engineering applications but the use of 3D
finite element (3D-FEM) analysis to facilitate design is costly. This trend calls for the development of a
realistic general beam theory and efficient numerical tools, suitable for the analysis of beams exhibiting
3D effects, for which the classical beam theory (CBT) assumptions are no longer valid. In CBT, a beam

Keywords: refined beam theory, Saint-Venant’s solution, composite section, out-of-plane warpings, Poisson’s effects,
distortions, end-effects.
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is practically reduced to a 1D body; nowadays, a beam must be considered as a 3D slim body whose
cross-section can warp in and out-of its plane. Furthermore, a general beam theory has to account for
the shape of the cross-section, the spatial arrangement of the materials and their anisotropy and must, at
least, lead to an acceptable approximation of the 3D stress state in each material, which is fundamental
for a composite beam.

This is the objective of the present beam theory which refers to the extended 3D SV’s solution es-
tablished by Iesan [1976] for an arbitrary composite cross-section. This theory is the result of a work
initiated more than 10 years ago. It started offering low cost numerical methods [El Fatmi and Zenzri
2002; 2004] to compute the extended 3D SV’s solution as expressed by Ladevèze and Simmonds [1998]
in the framework of the exact beam theory. More recently a first formulation of a composite beam theory
based on SV’s results have been proposed [El Fatmi and Ghazouani 2011a; 2011b] but it was limited
to symmetric section and particular orthotropic materials. The present work, which could be seen as a
large extension of this first formulation, deals with an arbitrary homogeneous/composite cross-section.
It is worth noting that this beam theory is free from all the classical assumptions and no homogenization
step is needed for the composite case.

The accuracy of a beam model depends on its aptitude to capture the behavior associated with the
two small dimensions eliminated in the final 1D beam analysis. From the literature surrounding the
development of (1D) beam theories, three important approaches can be identified:

• beam theories based on kinematic (and static) assumptions using some engineering experience or
intuition;

• beam theories based on the asymptotic expansion of the 3D solution, using small parameter(s)
inherent to the beam features;

• the so-called one-dimensional beam-like theory which derives from the 3D Saint-Venant (SV) solu-
tion of SV’s problem.

These different approaches have been discussed in [El Fatmi and Ghazouani 2011a] and we will not
take the same (one can also see the interesting review on classical and advanced beam theories of [Carrera
et al. 2011]). However, the beam theory proposed here being completely based on 3D SV’s solution, this
approach deserves some attention again.

Established first for homogeneous and isotropic section, SV’s solution have been extended by Iesan
[1976] to any composite section wherein each material is anisotropic and where the beam is also subjected
to any uniform lateral loading. 3D SV’s solution has always been a reference for the development of beam
theories, and now even more since its extension to any composite sections [Giavotto et al. 1983; Ladevèze
and Simmonds 1998; Dong et al. 2001; El Fatmi and Ghazouani 2011a; Yu et al. 2012; Genoese et al.
2014a]. This is due to the status and the asymptotic nature of SV’s solution, as well as to the sectional
mechanical characteristics it provides [Ladevèze and Simmonds 1998; El Fatmi and Zenzri 2002; Yu et al.
2012; Blasques 2012; El Fatmi 2012; Genoese et al. 2014a]. SV’s solution, SV’s principle, and SV’s
end-effects are redundant key-words in the literature around SV’s problem for which the main results
need here to be recalled.

Because it describes the exact 3D solution in the interior area of the beam, 3D SV’s solution (also
called central solution) reflects the real mechanical behavior of the section that results from its shape
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and its materials. It is worth noting that an important set of sectional quantities can be extracted from
the computation of 3D SV’s solution [El Fatmi and Ghazouani 2011a; 2011b; Yu et al. 2012; Blasques
2012; El Fatmi 2012]; these quantities are:

• the canonical sectional stress fields σ i
sv, that correspond to each one of the six cross-sectional stresses

(the shear forces, the axial force, the torsional moment, the bending moments);

• the sectional out-of plane warping W i
sv, and the sectional Poisson’s effects 5i

sv related to each one
the 6 cross-sectional stresses;

• the structural sectional stiffness 6× 6 matrix 0sv wherein the off-diagonal terms reflect the coupling
effects (between bending, torsion and tension) that can occur for an arbitrary composite section.

The existence of the sectional properties are mainly due to two important mathematical properties of
SV’s solution; this one is polynomial with respect to the beam axis and is a linear function of the (six)
cross-sectional stresses. Using these properties, Berdichevsky [1979] has shown that 3D SV’s solution
can be split1 into a set of 2D problems on the cross-section and a set of 1D equations that defines a beam-
like theory (denoted here by SVBT). This splitting has been later used in several works to compute SV’s
solution using a 2D finite element technique, where only the section has to be discretized [Giavotto
et al. 1983; El Fatmi and Zenzri 2002; 2004; Alpdogan et al. 2010; Blasques 2012; El Fatmi 2012;
Genoese et al. 2014b]. Recently, using different numerical methods, software has even been developed
as variational asymptotic beam section analysis (VABS) [Yu et al. 2012], beam cross-section analysis
software (BECAS) [Blasques 2012], or composite section and beam analysis (CSection, a part of CSB)
[El Fatmi 2012] to provide, for any section defined by its 2D geometry and its material(s), all its sectional
characteristics (σ i

sv, W i
sv, 5i

sv, 0sv).
Besides, concerning the end-effects, SV’s Principle is usually taken to mean that these effects vanish

closely to the loaded ends. In many cases, this is not true; see [Toupin 1965] for counter examples,
and also the end-effects analysis of [Horgan and Simmonds 1991; 1994] and [Volovoi et al. 1999] when
strongly anisotropic materials and/or thin-walled open profiles are involved. For such beams, end-effects
can persist over distances comparable to the beam length, and even dominate the structural beam behavior;
in that case SV’s solution may no longer be valid to describe the elastic solution in the interior part of
the beam.

The most famous case deals with the torsion of a cantilever open thin-walled profile (Figure 1(a)) for
which the built-in effects (characterized here by a distance d) can reach the loaded end. In that case,
SV’s solution is no longer valid to describe the solution in the interior part of the beam. This leads to a
structural mechanical behavior for the beam significantly different from that predicted by (1D) SVBT’s
torsion; in that case one has to resort to the nonuniform torsion of [Vlasov 1959] which accounts for the
restrained warping right to the built-in section.

Let’s use this example to also show that, unlike conventional beam theories that distinguish compact
and walled (and even thin or thick, open or closed) sections, no distinction should be done for a composite
section. Indeed, consider the rectangular compact composite section shown in (Figure 1(c)), where both
materials are isotropic but with different elastic Young’s moduli E1 and E2. When E1 = E2, the section

1One could find a link with the proper generalized decomposition (PGD) method [Polit et al. 2015], but it is worth noting
that this decomposition is here an exact mathematical property of 3D SV’s solution.
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Figure 1. Built-in effects for cantilever beams subjected to tip torsion.

becomes a compact homogeneous section, and one can show that the built-in effect (d) remains close
to the built-in section (Figure 1(b)), SV’s solution is valid in the interior area of the beam and SVBT’s
torsion correctly describes the structural behavior of the beam. In contrast, when E1� E2, the beam
behavior becomes similar to that of an open profile. It is here clear that the built-in effect, for this
composite section, may spread over a distance d that depends on the material contrast E1/E2 which may
significantly influence the structural behavior of the beam.

What to learn from this example? Moving away from the end sections, the 3D solution tends asymp-
totically towards SV’s solution. The end-effects depend on the whole nature of the cross-section and the
boundary conditions, and are not necessary confined close to the end sections but can significantly spread
in the interior area of the beam. In particular, for open profile or/and strongly anisotropic composite
section, such end-effects may dominate the global elastic behavior of the beam. For such beams, it is
then important to refine classical beam theories (and even SVBT) by incorporating, at least, the most
influential end-effects. Thus, for a really general beam theory, no distinction about the kind of section
has to be done. The behavior of a section is due to its whole nature: shape and material(s).

To improve the prediction of the classical beam theories which assume a rigid body motion of the
cross-section, the so-called higher order beam theories are built on displacement models that allow
some deformation of the section. In literature, some refined beam theories are based on a mathematical
modeling of the displacement field and others, more physical, are based on a modeling that account for
the cross-section nature.

As mathematical modeling, a significant contribution is the Carrera unified formulation (CUF) pro-
posed in [Carrera and Giunta 2010]. In CUF, different N -order beam models can be developed using the
same unified displacement field expression. Let (x, y) and z be the coordinates of the cross-section and
the beam axis, respectively. The displacement model is written as an expansion of generic functions, Fτ ,

u(x, y, z)=
M∑
τ=1

Fτ (x, y)uτ (z), (1)

where M is the number of terms of the expansion, Fτ the base functions that model the kinematic of
the cross-section and uτ the displacement vector. A common choice is the use of a Taylor-like x i y j -
polynomial expansion (where i and j are integer such as 0≤ (i + j)≤ N ); in that case, one can show
that the total number of displacement variables (or degrees of freedom) is given by [3(N + 1)(N + 2)/2]
for an N -order beam theory. CUF, allows, a priori, to deal with an arbitrary cross-section. However, this
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approach remains N -dependent and, in practice, the choice of N is not so evident because it depends
on the cross-section complexity and the beam problem to solve. One can find a CUF presentation and
several applications in [Carrera et al. 2015] and also a software using CUF, named MUL2, on the website
mul2.com.

In the other modeling way, more physical, the displacement field is written as

ξ(u,ω, {η})=

rigid motion of the section︷ ︸︸ ︷
u(z)+ω(z)∧ X +

enrichment︷ ︸︸ ︷
n∑

k=1

ηk(z)Mk(x, y), (2)

where (u,ω) are the cross-sectional displacement (translation and rotation), X the in-section vector
position, and {η} a set of ηk control parameters of the sectional displacement modes Mk which are
supposed to be known. The objective of such models is to allow and control some sectional displacement
modes to better satisfy the boundary conditions, which could capture some end-effects. This approach
requires, as a first step, a cross-section analysis to determine the set {Mk

} of sectional modes to be used
in the enrichment part of the displacement model. However, this way leads to a beam theory that really
fit the cross-section, and hence the beam problem, if the set {Mk

} is sufficiently representative of the
cross-section mechanics.

The pioneers of such theories are Benscoter [1954] and Vlasov [1959], who deal with the torsion of
thin-walled profiles using as sectional mode an approximation of the SV-torsional out-of plane warping of
the section. Later, both theories have been extended (or generalized) to different shapes of homogeneous
sections and also adapted to some composite sections [Loughlan and Ata 1998; Kim and White 1997;
Roberts and Al-Ubaidi 2001; Ferrero et al. 2001; Lee and Lee 2004; Yu et al. 2005; Kim et al. 2006;
Pluzsik and Kollar 2006; Jung et al. 2007; Sapountzakis and Mokos 2007].

A significant contribution, even if limited to thin open/closed profiles, is given by the generalized
beam theory (GBT) initiated by Schardt [1994] and currently developed by Camotim, Silvestre and their
colleagues [Camotim et al. 2006; Silvestre et al. 2011; Bebiano et al. 2015]. GBT is a beam theory
including, as sectional modes, out-of plane warpings and distortions. In GBT cross-section analysis
step, the section is reduced to a piecewise description of its contour from which the computation of the
sectional modes is done; one can find a description of this procedure in [Camotim et al. 2007] or in the
manual of the software GBTUL (http://www.civil.ist.utl.pt/gbt/) based on GBT computations.

Another solution, available for an arbitrary cross-section, is to refer to the extended 3D SV’s solution.
Indeed, the set of sectional modes {W i

sv,5
i
sv} introduced above and that can be extracted from the compu-

tation of the correspondent SV’s solution is particularly indicated2 to reflect the cross-section mechanics,
taking into account its shape and material(s). Using this way that refers to 3D SV’s solution I proposed in
[El Fatmi 2007a; 2007b; 2007c] for homogeneous beams a general nonuniform warping theory including
as sectional modes the three SV out-of plane warpings {W k

sv, i = 1, . . . , 3)} related to the two shear forces
and the torsional moment; its enrichment displacement part is written

∑3
k=1ηk(z)W k

sv(x, y). Later this
work has been extended in [El Fatmi and Ghazouani 2011a] to composite beams, including also, as in

2Vlasov and Benscoter models constitute examples that refer to SV’s solution, using as its unique sectional mode an approx-
imation of the SV-torsional out-of plane warping.

www.mul2.com
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plane deformation, the SV sectional Poisson’s effects leading to the following displacement model

ξ(u,ω, {α}, {β})= u(z)+ω(z)∧ X +
3∑

i=1

αi (z)5i
sv(x, y)+

3∑
j=1

β j (z)W j
sv(x, y), (3)

where 5i
sv are the sectional Poisson’s effects related to the axial force and the two bending moments.

However, the correspondent beam theory was limited to x-y-symmetric sections made of orthotropic
materials for which the principal material coordinates coincide with those of the beam (this kind of cross-
section will be denoted by so-CS). Except the limitation3 to so-CS, the displacement model (Equation (3))
has the advantage to lead to a refined beam theory (RBT) adapted to the section nature. This RBT built on
SV’s solution has been applied [El Fatmi and Ghazouani 2011b] to analyze the built-in effects influence
on the structural behavior of end-loaded cantilever beams. The results, obtained for a representative set
of so-CS, showed that the beam theory is able to describe the built-in effects, and hence their influence
on the structural behavior of the beam. Moreover, moving away from the built-in section, the results
(3D displacements and stresses) tend towards 3D SV’s solution in the interior part of the beam, which is
expected for a beam model built on 3D SV’s solution.

In contrast with this beam model (Equation (3)) where the unknowns are only the kinematic parameters
ηk (or αk and βk), an alternative way has been proposed by [Genoese et al. 2014a; 2014b] where the
beam theory is obtained on the basis of a mixed Hellinger–Reissner principle by defining the static and
the kinematics on the basis of stresses and displacements that refers to SV’s solution: the kinematic
description uses the six SV’s sectional modes (as in (3)) and the stress field is evaluated as the sum of
the contribution due to the central solution (or SV’s solution) and to the six sectional modes.

The present refined beam theory (denoted RBT/SV) is a large extension of the RBT proposed in
[El Fatmi and Ghazouani 2011a], also built on SV’s solution, but valid for an arbitrary cross-section:
compact or walled, mono or multicellular, thin or thick, symmetric or not, homogeneous or composite and
each material may be fully anisotropic and free oriented. For that aim, the enrichment of the displacement
model will not be limited to the (SV) sectional out-of plane warpings and the (SV) sectional Poisson’s
effects but introduces also some sectional distortion modes (denoted by D j , j = (1, . . . , p)); these latter
are fundamental to help describe the mechanical behavior of thin/thick-walled profiles (Figure 2), but also
some strongly contrasted composite beams (see the example of Figure 1(c)). There are different ways
to choose the sectional distortions [Silvestre et al. 2011; Basaglia et al. 2011; Genoese et al. 2014b]; in
the present RBT/SV, D j are also be derived from SV’s solution. RBT/SV displacement model is then
defined by (2) where all the sectional modes Mk that express the enrichment part are extracted from
SV’s solution: Mk

= {5i
sv,W i

sv, D j
sv; i = (1, . . . , 6) and j = (1, . . . , p)}.

To solve a beam problem using RBT/SV, two steps are needed. The first step (the cross-section anal-
ysis) has to determine the sectional modes; this is achieved using an upgraded version of the numerical

3It is shown in [El Fatmi and Zenzri 2002], for this particular case of cross section, that the Poisson’s effects are only due
to the axial force and the bending moments, the out-of-plane warpings are only due to the torsional moment and the shear
forces, and no elastic coupling is present in the structural behavior of the correspondent beam. For arbitrary composite beam,
several elastic couplings between extensional, flexural and torsional deformations may occur [Chandra et al. 1990; Chandra and
Chopra 1991; Rand 1998; 2000; Rappel and Rand 2000; Volovoi et al. 2001; El Fatmi and Zenzri 2002; 2004] and one can
show that each one of the six cross-sectional stresses may lead to a Poisson’s effect and an out-of plane warping (see the case
the laminated section in Figure 12). Therefore, the choice of so-CS makes it possible to avoid the elastic couplings.
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Figure 2. Left side: examples of a Poisson’s effect, an out-of-plane warping and a
distortion for an I-section. Right side: an arbitrary distortion.

Matlab tool, named CSection, I recently developed [El Fatmi 2012]. The second step uses these sectional
modes to generate the correspondent beam theory and to solve the beam problem; for this step a second
numerical Matlab tool, named CBeam, has been developed.

In the present paper, the first section recalls the main properties of 3D SV’s solution needed for the
development of the beam theory. The second section describes how the (SV) sectional modes can be
extracted from SV’s solution. Then, in the third section, starting from the displacement model, the
corresponding beam theory is established and discussed. The numerical implementation of RBT/SV and
the numerical tools CSection and CBeam are presented in the fourth section. Finally, using RBT/SV, the
last section is devoted to the computations of a significant set of homogeneous and composite beams.
To clearly show the accuracy of the beam model and the numerical tools4 CSection and CBeam that
come with it, the 1D/3D results focus on the critical points as the shear force effect in the 1D structural
behavior of the beam and the 3D stress fields in the interior area of the beam and close to the ends.
1D/3D RBT/SV results are compared to 1D/3D SV’s solution and to the those provided by full 3D-FEM
computations, using the finite element code Abaqus.

2. The extended Saint-Venant’s problem and solution

One can find in [El Fatmi and Zenzri 2002; 2004; El Fatmi and Ghazouani 2011a; El Fatmi 2012] details
about the 3D SV’s solution and its properties; in this section we just recall the reference problem and the
general expression of the correspondent 3D SV’s solution5 and some important properties. Indeed, this
solution is here fundamental to extract the sectional displacement modes that will be used to formulate
the beam theory.

2A. The reference beam problem. SV’s problem is a 3D equilibrium elastic problem Figure 3. The
composite beam is along the z axis and occupies a prismatic domain � of cross-section S independent of
z and length L . Slat is the lateral surface, S0 and SL are the end sections. A point of the beam is marked
P = zz+ X where X belongs to S. The materials constituting the beam are linear elastic, anisotropic
and perfectly bonded together; the elastic tensor field denoted by K is z-constant (vectors and tensors
are noted in boldface characters).

4CSection and CBeam can be used as Matlab tools. An evaluation version of CSection and CBeam can be obtained from
the author upon email.

5Here, the SV problem is not the original one established for homogeneous and isotropic section and due to Saint-Venant,
but that of [Iesan 1976] extended to composite section and a lateral uniform loading.
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Figure 3. The extended Saint-Venant’s problem.

The beam is in equilibrium under a body force density f on �, and surface force densities F, H0

and H L on Slat, S0 and SL , respectively; the densities f and F are supposed z-constant. The equations
of the linearized equilibrium are

divσ + f = 0 in �,

ε(ξ)= 1
2(∇

tξ +∇ξ) in �,

σ = K : ε(ξ) in �,

σ · n= F on Slat,

(4)

σ · (−z)= H0 on S0,

σ · z = H L on SL ,
(5)

where ε(ξ) is the strain tensor associated to the displacement field ξ ; ∇, ( · )t and ( : ) denote the gradient,
the transpose and the double contraction operators, respectively; σ is the stress tensor and n is the unit
vector that is normal and external to Slat.

2B. 3D SV’s solution. 3D SV’s solution is the unique (z-polynomial) solution that exactly satisfies (4)
and satisfies the boundary conditions (5) only in term of resultant (force and moment). To express
hereafter SV’s solution, we introduce the forces and moments related to H0 and H L :

[F0,C0] =

∫
S0

[H0, X ∧ H0] d S, [FL ,C L ] =

∫
SL

[H L , X ∧ H L ] d S, (6)

and the classical cross-sectional stresses [R, M] defined by

R =
∫

S
(σ · z) d S =

Tx

Ty

N

 , M =
∫

S
(X ∧ σ · z) d S =

Mx

My

Mt

 , (7)

where the six components are the 6 classical internal forces [Tx , Ty, N ,Mx ,My,Mt ]: the shear forces,
the axial force, the bending moments and the torsional moment, respectively.
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2B1. Case without a lateral loading. In this case, the loading is reduced to [H0, H L ] and 3D SV’s
solution is given by

ξ sv(x, y, z)= u(z)+ω(z)∧ X +
6∑

i=1

Fi (z)U i
sv(x, y), (8)

σ sv(x, y, z)=
6∑

i=1

Fi (z)σ i
sv(x, y), (9)

where Fi is one of the six internal forces {Tx , Ty, N ,Mx ,My,Mt }. In these expressions, the cross-
sectional displacement [u,ω] and the cross-sectional stresses [R, M] are solution of the following set6

of 1D equations:
R′ = 0,

M ′+ z∧ R = 0,[
γ

χ

]
=

[
u′+ z∧ω

ω′

]
=3sv

[
R
M

]
,

[R, M]z=0 = [−F0,−C0],

[R, M]z=L = [FL ,C L ],

(10)

where ( · )′ denotes the derivative with respect to z. Besides, the 6× 6 compliance matrix 3sv, which
defines the structural 1D behavior of the beam, is related to the elasticity tensor K by

3sv = [λi j ], λi j =

∫
S
σ i

sv(x, y) : K−1(x, y) : σ j
sv(x, y) d S. (11)

Remark 2.1. In 3D SV’s solution, U i
sv, σ i

sv and 3sv don’t depend on the beam problem, but only on
the section nature (shape and materials). For a given cross-section defined by its 2D geometry and its
material(s), these (SV) sectional quantities can be determined once and for all. In that case, for a given
beam problem, they can be used to easily obtain the correspondent 3D SV solution; for that aim, two
steps are needed:

(i) 3sv is used to solve the 1D problem (10) to obtain the correspondent 1D solution [u, ω, R, M];

(ii) then, [U i
sv, σ i

sv] are used to immediately express the 3D SV’s solution according to (8) and (9).

2B2. Case with a lateral loading. If a z-uniform lateral loading [ f , F] is added to [H0, H L ], the ex-
pression of SV’s changes7 and, in particular, the expression of the displacement becomes

ξ sv(x, y, z)= u(z)+ω(z)∧ X +
6∑

i=1

Fi (z)U i
sv(x, y)+ Dsv(x, y), (12)

6These 1D equations define the SV beam-like theory (SVBT).
7For more details, see [Ladevèze and Simmonds 1998; El Fatmi and Zenzri 2002; 2004].
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Distortion of the profile
(simple distortional mode)

Figure 4. The sectional distortion Dsv related to the uniform lateral load.

where the vector Dsv, which is proportional to [ f , F], depends only on the section nature (shape and
materials) and the kind of [ f , F] loading. Therefore, for a given uniform lateral loading [ f , F], Dsv

can be determined once and for all [El Fatmi 2012].

3. The sectional displacement modes

Three kinds of sectional modes are extracted from the SV displacement expressions (8) and (12): the
Poisson’s effects and the out of plane warpings related to each one of the six internal forces and several
sectional distortions. An example of each kind of mode is given left side of Figure 2. For a given section
(shape and materials), all these SV sectional modes will be provided by the numerical tool CSection
[El Fatmi 2012] which has been upgraded for the present work (a quick presentation of CSection is done
in section-5A).

3A. Sectional Poisson’s effects and out-of plane warpings. The expression of the 3D SV displacement
(Equation (8)) may be seen as the contribution of two parts:

• [u(z)+ω(z)∧ X], which reflects the rigid motion of the section,

•

[∑6
i=1 Fi (z)U i

sv(x, y)
]
, which reflects the contribution of each internal forces to the deformation of

the section.

Because U i
sv depend only on the section nature (shape and materials), they are viewed as sectional

deformation modes. Moreover, each U i
sv can be split into two parts:

• W i
sv = (U

i
sv · z) z, the out of plane warping,

• 5i
sv = U i

sv−W i
sv, the in plane warping that can be related to the Poisson’s effect.

The set of {5i
sv,W i

sv; i = 1, . . . , 6} define a first set of deformation modes for the section.

Remark 3.1. For homogeneous and isotropic sections and even for so-CS introduced above, Poisson’s
effects are only due to the axial force and the bending moments, and the out-of plane warpings are only
due to the shear forces and the torsional moment. However, for an arbitrary composite section each
one of the six internal forces may contribute8 to the Poisson’s effects and to the out-of-plane warpings;
Figure 12 shows these sectional modes for a laminated section (symmetric or antisymmetric) using
anisotropic layers.

8This is intimately associated to the elastic couplings between extensional, flexural and torsional deformations that can occur
for an arbitrary cross-section.
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Figure 5. Example of uniform lateral loads for the I-section.

Figure 6. Different load cases (5 and 11) for the I-section.

3B. Sectional distortions. An arbitrary sectional distortion (right side of Figure 2) may be approximated
by the combination of p simple distortional modes. The way used to identify a simple distortional mode
is the following (Figure 4): we consider a SV problem with a particular uniform and lateral load F and
we extract from the corresponding displacement SV solution (Equation (12)), the vector Dsv. The later
which contributes to the displacement and which is due to the presence (and the location) of the lateral
load is viewed as a distortional mode; for instance, see the result obtained for Dsv in the right-side of
Figure 4. To obtain p simple distortional modes, one has to consider (separately) p cases of lateral loads.
For example, five uniform lateral loads9 may be considered to compute (separately) five simple distortion
modes for the I-section (Figure 5), each case is related to a uniform lateral load. These five cases can
be summarized on the cross-section (left side of Figure 6). However, one could choose a larger number
of cases, for example the 11 cases presented in the right side of Figure 6. Figure 7 shows the 11 simple
sectional distortion modes (computed by CSection) that correspond to the 11 load cases. This procedure
is not automatic and need a little experience: dealing with a thin-walled section, each case of load is
chosen to cause the local bending of a branch, or a part of the section contour easy to deform.

Remark 3.2. Other sectional modes are being investigated:

• The procedure to generate the distortions is not automatic and requires some experience. An alter-
native solution (more systematic) is to choose the first natural in-plane modes of vibration of the
section.

9For this particular section, thanks to the symmetries, these loads can of course be theoretically reduced to one vertical load
and the horizontal one. However this example is here given only to show how the loads can be chosen.
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Figure 7. The 11 sectional distortions of the I-section.

Figure 8. Cantilever composite beam subjected to a body force and a tip traction.

• Concerning the out of plane warpings, they are here limited to those extracted from SV’s solution
and they might be considered as the most important ones. However, for the case which cannot be
described with SV’s modes, an enrichment may also be done using the first out-of plane natural
vibrations of the section.

To allow these investigations, the software CBeam presented in Section 5B has been designed to run
regardless of the number of sectional modes provided for the section.

4. The refined beam theory built on SV’s solution

To derive the equations that govern the beam theory (RBT/SV), we consider just for convenience, the
cantilever composite beam (Figure 8) subjected to a body loading f and a traction H acting on SL .

4A. Kinematical modeling. The RBT/SV displacement model is given by

ξRBT/SV(x, y, z)= ξ(u,ω, {η})= u(z)+ω(z)∧ X + ηk(z)Mk(x, y), (13)
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where (ηk(z)Mk(x, y)) is here a sum using the repeated indices convention with k ∈ {1, . . . , n}. In
RBT/SV model, the sectional modes Mk are the own modes of the section that derive from the corre-
spondent 3D SV’s solution. The set of sectional modes Mk is given by all the available sectional modes
for the cross-section:

• W i
sv, the sectional out of plane warping (i ∈ {1, . . . , 6}),

• 5i
sv, the sectional Poisson’s effects (i ∈ {1, . . . , 6}),

• D j
sv, a set of sectional distortion modes ( j ∈ {1, . . . , p}).

The beam theory associated with this displacement model, parametrized by (u,ω, {η}), is derived
below thanks to the virtual work principle; however, this way being classical, only the main equations
are specified and commented (for more details see, for example, [El Fatmi and Ghazouani 2011a]).

Using the matrix notation, the strain tensor components corresponding to this displacement model are

[ε] =



εxx

εyy

2εxy

2εxz

2εyz

εzz


=



0
0
0

γx − yχz

γy + xχz

γz + yχx − xχy


+



ηk Mk
x,x

ηk Mk
y,y

ηk(Mk
x,y +Mk

y,x)

ηk Mk
z,x + η

′

k Mk
x

ηk Mk
z,y + η

′

k Mk
y

η′k Mk
z


, (14)

where γ = u′+ z∧ω, χ =ω′, and ( · ),x or ( · ),y denote the derivative with respect to x or y, respectively;
z is the unit vector along the beam axis, as already mentioned.

4B. Internal forces, external forces and equilibrium equations. Let us denote by ξ̂ = ξ(û, ω̂, {η̂}) a
virtual displacement that satisfies the boundary conditions (û, ω̂, {η̂})= (0, 0, {0}) at z = 0 and ε̂ = ε(ξ̂)
the corresponding virtual strain tensor. The internal virtual work is

Wi =−

∫
L

∫
S
σ : ε̂ d S dz. (15)

Using (14), Wi takes the form

Wi =−

∫
L
(R · γ̂ +M · ω̂+ Ak η̂k

′
+ Ak

s η̂k) dz

=

∫
L
[R′ · û+ (M ′+ x ∧ R) · ω̂+ (Ak ′

− Ak
s )η̂k] dz− [R · û+M · ω̂+ Ak η̂k]L ,

(16)

where (R, M), the classical cross sectional stresses, and the new (or additional) ones (Ak, Ak
s ) are related

to the stress tensor by

R =
∫

S
σ .z d S, (17)

M =
∫

S
(X ∧ σ .z) d S, (18)
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Ak
=

∫
S
(τxz Mk

x + τyz Mk
y + σzz Mk

z ) d S, (19)

Ak
s =

∫
S
(σxx Mk

x,x + σyy Mk
y,y + τxy(Mk

x,y +M i
y,x)+ τxz Mk

z,x + τyz Mk
z,y) d S, (20)

where
[σxx , σyy, τxy, τxz, τyz, σzz]

are the components of the stress tensor. The external virtual work is

We =

∫
L

∫
S

f · ξ̂ d S dz+
∫

SL

H · ξ̂ d S. (21)

Using the expression of ξ̂ , We takes the form

We =

∫
L
( p · û+µ · ω̂+ κk η̂k) dz+ P · ûL +C · ω̂L + Qk η̂k

L , (22)

where the (1D) generalized external forces ( p,µ, κk, P,C, Qk) are defined by

p=
∫

S
f d S, P =

∫
SL

H d S,

µ=

∫
S

X ∧ f d S, C =
∫

SL

X ∧ H d S,

κk
=

∫
S

f ·Mk, Qk
=

∫
SL

H ·Mk d S,

(23)

where ( p,µ, P,C) are classical and (κk, Qk) are new (or additional) generalized external forces related
to the sectional deformation modes Mk . Thanks to the principle of virtual work, Equations (16) and (22)
are used to provide the equilibrium equations

R′+ p= 0,

M ′+ x ∧ R+µ= 0,

Ak ′
− Ak

s + κ
k
= 0 (for all k),

(24)

and the boundary conditions

x = L , (R, M)= (P,C) and Ak
= Qk (for all k). (25)

4C. Structural behavior. Using matrix notation, the strain tensor can be written D:

[ε](x, y, z)= B(x, y)D(z), (26)
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with

B=



0 0 0 0 0 0 . . . Mk
x,x 0 . . .

0 0 0 0 0 0 . . . Mk
y,y 0 . . .

0 0 0 0 0 0 . . . Mk
x,y +Mk

y,x 0 . . .

1 0 0 0 0 −y . . . Mk
z,x Mk

x . . .

0 1 0 0 0 x . . . Mk
z,y Mk

y . . .

0 0 1 y −x 0 . . . 0 Mk
z . . .


, D=



γx

γy

γz

χx

χy

χz
...

ηk

η′k
...



, (27)

where D represents the generalized 1D strain vector. If T denotes the corresponding generalized cross-
sectional stress vector, the 1D elastic constitutive relation can be written T= 0 D where 0 defines the
1D structural rigidity operator 

R
M
...

Ak
s

Ak
...


= 0



γ

χ
...

ηk

η′k
...


. (28)

The operator 0 may be derived from the identification∫
S
([ε I ]

t
[ K][ε J ]) d S = [DI ]

t0[DJ ], (29)

where (ε I ,DI ) and (ε J ,DJ ) are any virtual strains. Introducing the expression of the deformations
(Equation (26)), we obtain the following results for 0:

0 =

∫
S

Bt(x, y)[K](x, y)B(x, y) d S. (30)

4D. The RBT/SV equations. To summarize, the displacement model ξ(u,ω, {η}) has led to a beam
theory governed by the set of 1D equations

R′+ p= 0,

M ′+ x ∧ R+µ= 0,

Ak ′
− Ak

s + κ
k
= 0 (for all k),

T= 0 D,

(31)

and, for the cantilever reference problem (Figure 8), the 1D boundary conditions are

x = 0, (u,ω, {η})= (O, O, {O}),

x = L(R, M)= (P,C), Ak
= Qk (for all k).

(32)



360 RACHED EL FATMI

4E. The correspondent 3D solution. Let ue,ωe, {ηe
} be the 1D equilibrium solution of a beam problem

using RBT/SV. Conforming to the displacement model, the correspondent 3D solution is given by the
3D displacement field

ξ e
RBT/SV(x, y, z)= ξ(ue,ωe, {η}e)= ue(z)+ωe(z)∧ X + ηe

k(z)M
k(x, y), (33)

which leads to the 3D stress tensor field

σ e
RBT/SV(x, y, z)= K (x, y) : ε(ξ e(x, y, z))= [K ](x, y)B(x, y)De(z). (34)

The 3D stress field may also be given with respect to the internal forces:

σ e
RBT/SV = [K ](x, y)B(x, y)0−1Te(z). (35)

4F. Comments. RBT/SV displacement model (Equation (13)), which is built on 3D SV’s solution, may
be seen as a model which starts from the exact 3D SV displacement form (Equation (8)), where the
sectional stresses Fi are relaxed in favor of independent in-and-out warping parameters (ηk). These
new kinematical parameters (ηk) lead, by duality, to enrich the static ones (the internal and external
generalized forces) which could better satisfy the boundary conditions. Therefore, if the beam length is
sufficiently large, it is expected that 3D RBT/SV solution coincide with 3D SV’s solution in the interior
area of the beam, and better describes the end effects (see the examples presented in Section 6C).

5. Numerical implementation and numerical tools

To solve a beam problem using RBT/SV, two steps are needed; each one of them is associated to a
numerical tool: CSection and CBeam. CSection computes by 2D-FEM the sectional modes of the cross-
section; then, CBeam, uses these sectional modes to generate systematically the correspondent beam
theory (RBT/SV) and to compute by 1D-FEM the beam problem. Developed on Matlab platform as any
Matlab-tool, CSection and CBeam are complementary and constitute a package named CSB (composite
section and beam analysis). These numerical tools are quickly presented hereafter.

5A. CSection to compute the sectional characteristics. CSection [El Fatmi 2012] is a numerical tool
devoted to the computation of all the sectional characteristics of an arbitrary cross-section

{0sv, σ
i
sv,5

i
sv,W i

sv(i = 1 · · · 6), D j
sv( j = 1 · · · p)}.

CSection is developed conforming to the numerical method proposed by El Fatmi and Zenzri [2002]. This
method consists in solving, by 2D finite elements, a set of elastic problems on the section from which
all the above sectional characteristics are deduced. In the first version, the sectional modes provided
by CSection were limited to the Poisson’s effects and the out-of-plane warpings. For the present work,
CSection has been upgraded in order to provide also a set of sectional distortions. For a given cross-
section, n = 6+ p linear 2D problems are solved and the numerical cost is low considering that the n
problems use the same rigidity matrix. The time needed to compute a section with 1000 elements (six-
node triangles) is about a few seconds on a common PC; however, for a composite section as a laminated
one, the discretization can be more important and need a little more time (for instance, the laminated
cross-section presented in Section 6B has 5230 elements and its computation is about 20 seconds).
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Remark 5.1. It is worth noting that all the characteristics provided for a section constitute a relevant set
of information about the section Mechanics that can help section design and even predict the mechanical
behavior of the beam that will result.

5B. CBeam to compute the beam. CBeam computes the equilibrium of a straight beam subjected to any
loading and boundary conditions. CBeam solves by 1D-FEM the beam problem according to RBT/SV
equations regardless of the number10 of sectional modes available for the cross-section.

RBT/SV displacement model (13) uses a set of kinematical parameters {u,ω, {η}} which represent
m= 6+n independent degrees of freedom (DOF) for the displacement field: three translations [ux , u y, uz],
three rotations [ωx , ωy, ωz] and the ηk associated to the sectional modes available for the cross-section.
In CBeam, RBT/SV equations are solved by 1D-FEM using cubic (Hermite type) interpolation (shape)
functions for each one of the m DOF.

In CBeam, the loading has to be introduced in a 3D way, as it is applied and localized on the beam.
The computation of the 1D sectional forces (or generalized external forces) needed by the 1D-FEM
computation (as κk or Qk in (23)) are ensured automatically by CBeam.

The displacement boundary conditions may act on each sectional parameter of the displacement model
(or each DOF). For instance, for a built-in section, one has to block not only the cross-sectional displace-
ment (u, ω) but also {η} to restrain the deformation right to the built-in section. Another interesting use
is the simulation of a diaphragm placed inside a closed thin-walled profile: one may block just the in
plane deformation right to the cross-section where the diaphragm is located.

In CBeam, just for comparison, two solvers are proposed: RBT/SV solver and SVBT solver. RBT/SV
solver solves the beam problem using RBT/SV and SVBT solver solves the beam problem to get the
correspondent 3D SV’s solution11 according to (8)–(10) (see Remark 2.1). Using RBT/SV solver or
SVBT solver, the resolution being by 1D-FEM, the time required to solve any beam problem is really
insignificant (less of one second on a common PC).

6. Numerical applications and results

To illustrate the efficiency of RBT/SV and the numerical tools CSection and CBeam that come with, a
significant set of homogeneous and composite beams are computed, using different loads and displace-
ment conditions. The panel of the different cross-sections and beam problems to be analyzed have been
chosen to clearly show that RBT/SV is able to describe the different kinds of 3D effects related to the
section nature (shape and materials), to take for account a significant part of the end effects (as those
related to the restrained warpings) and to provide a good description of the structural beam behavior,
even if the beam slenderness is relatively small.

The most important 1D/3D results are presented focusing on the 3D stress fields, in the interior area
of the beam and close to the ends. RBT/SV results are compared to 3D SV’s solution (also computed by

10For the present work, the sectional modes are those deriving from 3D SV’s solution, but (in CBeam) the user is free to
introduce any additional sectional mode he wants to consider, as an analytic closed form function of the section coordinates x
and y. Each additional mode is associated systematically to an additional parameter (η) which is viewed as a new degree of
freedom for the section deformation. In CBeam, the independence of the sectional modes is systematically checked and the
current solver uses a simple diagonal preconditioning to avoid the singularities of the operators.

11Of course, for SVBT solver the displacement boundary conditions act (as in classical beam theory) only on u and ω.
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Mats Es = 200 GPa ν = 0.25

Matc Ec = {200, 100, 10, 4, 1}GPa ν = 0.25

Mat33 EZ = 148.00 GPa EX = 8.37 GPa EY = 8.37 GPa
G X Z = 4.40 GPa GY Z = 4.40 GPa G XY = 2.72 GPa
νX Z = 0.33 νY Z = 0.33 νXY = 0.54

Table 1. The materials.

CBeam but using SVBT-solver) and to those provided by a full 3D-FEM computation, using the finite
element code Abaqus.

6A. The materials, the sections and the beam problems.

6A1. The materials. The materials are given in Table 1 where E , G and ν denote the Young modulus,
the shear modulus and the Poisson’s ratio, respectively. Mats (s as skin) and Matc (c as core) are two
contrasted isotropic materials for which Es/Ec can reach 200; Mat33 is an orthotropic12 material used
in [El Fatmi and Ghazouani 2011b] and chosen because its ratio E/G ≈33 is important which can
significantly influence the amount of the restrained warping effect in case of torsion, even if the beam is
not an open-walled profile.

6A2. The sections. Three homogeneous sections (H1, H2 and H3) and three composite sections (C1,
C2 and C3) are considered; their dimensions are specified in Figure 9:

Figure 9. The different cross-sections and their dimensions.

12 Mat33 is in fact a transversely isotropic material.
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• H1 is a thick isotropic (Mats) I-section;

• H2 is a compact rectangular orthotropic (Mat33) section;

• H3 is a thin orthotropic (Mat33) box section;

• C1 is a sandwich section where the materials are isotropic (Mats, Matc) and strongly contrasted
Es/Ec = 200;

• C2 is a nonsymmetric open-walled and sandwich section where the materials (Mats, Matc) are
isotropic with Es/Ec = 50;

• C3 is a symmetric (C3s) or antisymmetric (C3a) laminated section using the same layers (Mat33)
with [0,+30,+30, 0] and [0,−30,+30, 0] orientations, respectively.

6A3. The beam problems. Using the above sections, six equilibrium beam problems (Figure 10) are
analyzed:

• P1: the bending-torsion of a cantilever H1-beam of length L = 10h; the end loads are applied as
indicated in Figure 10 where the magnitude of the force is F = 1000 N;

• P2: the torsion of a cantilever H2-beam of length L = 10h; the end loads are applied as indicated
in Figure 10 where the magnitude of the force is F = 1000 N;

• P3: the bending of a clamped-clamped H3-beam of length L = 10h; the upper face of the beam is
subjected to a pressure q = 10000 Nm−2;

• P4: the bending of a clamped-clamped composite C1-beam of length L = 20h; the beam is subjected
to the body force f = ρg with g = 10 ms−2, ρs = 7500 kgm−3, ρc = 250 kgm−3;

• P5: the bending-torsion of a short (L/h = 7) cantilever composite C2-beam subjected to a lateral
traction q = 10000 Nm−2;

• P6: a cantilever laminated C3-beam of length L = 10h (symmetric or antisymmetric) subjected to
a tension q = 10000 Nm−2.

6B. Cross-section analyses.

6B1. Sectional constants. Tables 2 and 3 provide, for each section, the (nonzero) components of the
6× 6 rigidity matrix 0sv related to the structural 1D behavior. Note that, as expected: no elastic coupling
is present for the sections H1, H2, H3 and C1; for C2, the only off-diagonal term (016) is due to the
nonsymmetry13 of the section; however the laminated composite sections C3a and C3s exhibit 2 and 3
off-diagonal terms, respectively, which reflect different elastic couplings (between extensional, flexural
and torsional deformation) arising from the anisotropic nature of the layers and their stacking sequences.

Remark 6.1. For the sandwich section C1, one can deduce from 0sv (computed for different ratios
r = Es/Ec) the values of the shear coefficients ky with respect to r . The reults, given in Table 4,
clearly show how much ky can be affected when the sandwich is strongly contrasted. In such a case, it
is expected to get an important shear force effect for an x-flexure of the correspondent beam (see the
solution to problem P4).

13For C2, the position of the shear center C , given by CSection, is yC = GC, y =−9.37 mm.
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Figure 10. The equilibrium beam problems.

Sect. H1 H2 H3 C1

011 2.8788 ·108 2.7500 ·107 2.1254 ·108 1.6117 ·108

022 1.3211 ·108 2.7460 ·107 3.8106 ·107 2.4131 ·106

033 1.0400 ·109 1.1100 ·109 7.2000 ·108 5.0250 ·108

044 1.3787 ·106 2.3125 ·105 2.5400 ·105 7.2969 ·105

055 6.7467 ·105 2.0813 ·106 1.7140 ·106 1.0469 ·105

066 5.7766 ·104 2.1724 ·104 2.9900 ·105 3.0352 ·104

Table 2. The nonzero components of the (6×6) rigidity matrix for the sections H1, H2,
H3 and C1.

6B2. Sectional modes. For the sections H1, H2, H3, C1 and C2, Figure 11 presents the Poisson’s effects
(associated to the axial force and the bending moments) and the out of plane warpings (associated to the
shear forces and the torsional moment). However, these sectional modes are given by Figure 12 for the
laminated sections C3s and C3a; note that for these sections, each one of the six internal forces contribute
to a Poisson’s effect and an out-of plane warping. Besides, some additional sectional distortions are
considered for the walled sections H3 and C2 and presented in Figure 13.

6C. Beam problems: 1D/3D results. Each beam problem has been computed using the numerical tool
CBeam to get the 1D/3D RBT/SV solution and the correspondent 1D/3D SV solution. The 3D results
are compared with a full 3D-FEM computation using Abaqus.
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Sect. C2 C3s C3a

011 1.0070 ·108 2.5017 ·106 3.7185 ·106

022 1.0252 ·108 7.1272 ·105 8.2449 ·105

033 9.8980 ·108 1.6309 ·107 1.6515 ·107

044 1.4007 ·106 134.1989 139.7267
055 5.1182 ·106 946.9796 1.1268 ·103

066 3.9179 ·104 40.2305 40.0723

013 3.0162 ·106

014 −7.1338 ·103

016 9.4318 ·106

025 −40.9738
036 8.4477 ·103

046 −20.3360

Table 3. The nonzero components of the (6×6) rigidity matrix for the sections C2
and C3.

r 1 10 50 100 200

ky 0.8330 0.2087 0.0469 0.0238 0.0120

Table 4. The shear coefficient ky with respect to the ratios r = Es/Ec for the sandwich
section C1.

Starting with the same [x, y]-discretization for the section (used in CSection), the beam is obtained
in Abaqus by extrusion (with respect to the beam axis) and the z-discretization along the span is chosen
in line with the [x, y]-discretization (i.e., in terms of size elements). As finite element, the computations
are achieved with the C3D15 nodes quadratic triangular prism.

The comparison between RBT/SV, SV and 3D-FEM results are systematically done for the most
important components of the stresses: the axial stresses σzz and the shear τ =

√
τ 2

xz + τ
2
yz , at the midspan

(z = L/2) of the beam and very close to the built-in section (0< z < h/20) simply denoted by z0 which
should read z/L ≈ 0.

6D. P1: Bending-torsion of a cantilever thick-walled beam. Figure 14 presents the sectional stress
fields for σzz and τ at the midspan and very close to the built-in section. On can note that RBT/SV and
3D-FEM results are in agreement and coincide with those of SV at midspan. Besides, Figure 15 shows
the z-variation of the axial stress σzz along the span for two point A and B belonging to the extremities
of the upper flange of the section. Note that, as expected SV results are the same for both points (for
which the axial stresses are due only to the bending), but RBT/SV and 3D-FEM results, which are quite
comparable in the major interior area of the beam, show how much the restrained warping (due to the
torsion) affects the axial stresses. One can deduce from Figure 15 that the built-in effect spreads over a
distance of about d ≈ 5h = L/2.
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Figure 11. Sectional deformations: Poisson’s effects and out-of plane warpings.

6E. P2: Torsion of a cantilever orthotropic beam. It is known that the restrained warping effect is
important for a walled open section subjected to torsion. However this effect can also be important for a
compact section when the ratio E /G is large [El Fatmi and Ghazouani 2011b]. This ratio is about 2.5 for
an isotropic material and its value for the present (Mat33) material is about 33. In Figure 16 the stresses
provided by RBT/SV and 3D-FEM results are in agreement (in the major part of the beam). Moreover,
Figure 17 depicts the z-variations of the axial stress σzz for a point A close to a section corner, and the
z-variation of the shear τ for the point14 B in the middle of the big side of the section. Note that, moving
from the free end, the shear τ vanishes in favor of the axial stress σzz . RBT/SV and 3D-FEM results are
really comparable and show that the built-in effect (related to the restrained torsional warping) spreads
over a distance d ≈ L for this compact section; in this case SV’s solution is no longer valid to represent
the central solution.

6F. P3: Bending of a thin orthotropic box beam. Figure 18 depicts the 3D deformed shapes obtained
by RBT/SV and the 3D-FEM computations. Note the (local) bending of the upper face of the beam due
to the loading. To achieve this result, which reflects the location of the load, 8 distortional modes (see

14This point B is chosen because it is the point where the shear is maximum for SV’s torsion.
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Figure 12. Sectional deformations: Poisson’s effects and warpings for the laminated sections.

Figure 13. Sectional deformations: distortions for the walled sections H3 and C2.

the left side of Figure 13) have been added to the sectional Poisson’s effects and out-of plane warping
modes to be used in RBT/SV.

Figure 19 shows that RBT/SV and 3D-FEM results are mainly in agreement for the axial stress σzz

and the shear τ in the midspan and close to the built-in section. Instead of the shear, which is nil in the
midspan, the bottom of the right side of Figure 19 compares, the σxx -field due to the local bending of the
upper face of the beam: the results are qualitatively comparable but the magnitude of RBT/SV results
are about 50% less than 3D-FEM ones. Thus, using some distortional modes, RBT/SV seems able to
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Figure 14. σzz and τ fields at z0 and midspan. Comparison of SV, RBT/SV and 3D-
FEM results.

Figure 15. σzz-variations along the span for two points A and B belonging to the upper
flange. Comparison of SV, RBT/SV and 3D-FEM results.

account for the location of the loading, which leads in this case to the bending of the upper face of the
beam, but the σxx stress level is underestimated.
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Figure 16. σzz and τ fields at z0 and midspan. Comparison of SV, RBT/SV and 3D-
FEM results.

Figure 17. σzz- and τ -variation along the span for the points A and B. Comparison of
SV, RBT/SV and 3D-FEM results.

6G. P4: Bending of a sandwich beam strongly contrasted. The 1D deflection due to the present x-
bending is given by u y(z). Figure 20 compares SV, RBT/SV and 3D-FEM results.15 The shear force
effect is here important and taken into account by TPSV. However, for TPSV, the out-of plane warpings
due to the shear force are free at the ends which leads to a more flexible beam behavior. In fact these
warpings are restrained right the built-in sections and the deflection appears notably less pronounced
as depicted by RBT/SV and 3D-FEM results. It is clear for this example, that these end effects are

15For the 3D-FEM results, right to a cross-section at a z abscissa, uy(z) is taken as the average of the 3D displacement with
respect to y axis.
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Figure 18. 3D deformed shape of the box beam.

Figure 19. σzz , τ and σxx fields at z0 and midspan. Comparison of SV, RBT/SV and
3D-FEM results.

important and dominate the structural behavior of this (strongly contrasted) sandwich beam. For the
stresses, Figure 21 shows that RBT/SV and 3D-FEM results are in agreement for the axial stress σzz , but
this is not so true for the shear τ even if it is qualitatively acceptable.
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Figure 20. Deflection u y along the span: SV, RBT/SV and 3D-FEM results.

Figure 21. σzz and τ fields at z0 and midspan. Comparison of SV, RBT/SV and 3D-
FEM results.

6H. P5: Bending and torsion of a short unsymmetric open-walled sandwich profile. For this unsym-
metrical section, it is expected that the lateral loading leads to the bending and torsion of the beam as
it is shown by the 3D deformed shape given by RBT/SV and 3D-FEM results in Figure 22: note, at
the free end, that the out-of plane warping of the section and its shape are relatively well described by
RBT/SV result. To obtain this result nine distortional modes (see the right side of Figure 13 have been
computed by CSection to be used in RBT/SV. Figure 23 shows that RBT/SV and 3D-FEM results are
also in agreement for the axial stress σzz and the shear τ in the midspan and close to the built-in section
even if the beam slenderness is here relatively small (L/h = 7). For more details, Figure 24 depicts the



372 RACHED EL FATMI

Figure 22. 3D deformed shape for the sandwich profile: RBT/SV and 3D-FEM results.

Figure 23. σzz and τ fields at z0 and midspan. Comparison of SV, RBT/SV and 3D-
FEM results.

σzz-variations along the span for two points A and B belonging to the skin and the core, respectively;
RBT/SV and 3D-FEM results are relatively in agreement and clearly different from that of SV. This is
due to the built-in effect (or the restrained warping) which spreads over a distance comparable to the
beam length, and dominates the structural beam behavior.
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Figure 24. σzz-variations along the span for two points A and B belonging to the skin
and the core, respectively. RBT/SV and 3D-FEM results.

Figure 25. 3D deformed shape for the symmetric and antisymmetric laminated beam:
RBT/SV and 3D-FEM results.

6I. P6: Tension of a symmetric/antisymmetric laminated beam. As expected for these laminate beams
the tension leads to a lateral y-bending for the symmetric case and a torsion for the antisymmetric one, as
it is shown by the 3D deformed shapes obtained by both RBT/SV and 3D-FEM computations. In terms
of stresses, Figures 26 and 27 show that RBT/SV results are in agreement with the 3D-FEM ones, for
both cases, symmetric and unsymmetric. For these cases, the end effects are not important and remain
confined close to the ends and SV results appear valid to describe the solution in the major interior area
of the beam; thus SV’s solution (and hence TPSV) may be used to solve these beam problems, at least
for this loading.

7. Conclusion

The present refined (1D) beam theory (RBT/SV) is free from all the classical beam assumptions and
valid for an arbitrary cross-section. For a composite section, it is worth noting that no homogenization
step is needed, and RBT/SV is able to predict the 3D local stresses (the six components of the stress
tensor) in each material, which is fundamental for a composite beam.
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Figure 26. σzz and τ fields at z0 and midspan. Comparison of SV, RBT/SV and 3D-
FEM results.

Figure 27. σzz and τ fields at z0 and midspan. Comparison of SV, RBT/SV and 3D-
FEM results.
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The enrichment of the displacement model uses the main deformation modes of the section (Poisson’s
effects, out-of plane warpings and distortions). For a given section, these sectional modes being extracted
from the correspondent 3D SV’s solution, they lead to a beam theory that really fits the section nature
(shape and materials).

From the significant set of cross-sections and beam problems presented in this paper, it is clear that
RBT/SV is able to describe not only the elastic structural behavior of the beam but also the 3D solution
in terms of displacements and stresses in the major interior area of the beam, even if the slenderness
is relatively small. Different kinds of 3D effects have been described; these are related to the shape of
the section (thin/thick, walled/compact, symmetric/unsymmetric), to its composite nature (anisotropies
of the materials, even strongly contrasted) and to the edge effects,16 especially those due to a built-in
section. Theoretically, any boundary condition may be treated, but for the particular case of cantilever
or clamped beam, the edge effects appear to be very well described; for other cases, the results on edge
effect description will depend on the boundary condition prescribed.

The present refined beam theory may be considered as a general (1D) beam theory not only because
valid for an arbitrary cross-section (shape and material(s)) but also because it could also be seen as a
refinement of SV’s approach and hence the correspondent TPSV. Indeed, far from the ends, 3D-RBT/SV
results (as 3D-FEM ones) tend toward those of 3D SV’s solution when the beam length is sufficiently
large (or the ends effects sufficiently small or confined). This result is here expected because RBT/SV is
built on SV results: the enrichment in RBT/SV displacement model ξRBT/SV, using the sectional modes
extracted from 3D SV’s solution, contains the shape of 3D SV displacement ξ sv (Equation (8)).

From a practical standpoint, the application of RBT/SV, which deals with detailed results for arbitrary
cross-sections, has to be obviously (or inevitably) performed through a numerical way. For that purpose,
a package (CSB) of two complementary numerical tools has been developed to accompany RBT/SV:
CSection & CBeam. CSection computes by 2D-FEM the sectional characteristics of the cross-section
and CBeam uses these characteristics to solve by 1D-FEM the beam problem according to RBT/SV
(regardless of the number of the sectional modes available for the cross-section). Thanks to these two
steps which combine 2D and 1D computations for the beam, it is possible to recover an important part
of the 3D beam behavior, exhibiting detailed 3D effects in terms of displacements and stresses. These
numerical tools, which are easy to use, can really help section and beam design and prevent (at least as
a first step) the use of costly 3D-FEM computations, especially when working with strongly anisotropic
materials and/or thin-walled open/closed profiles. The present work is currently limited to a constant
cross-section along the beam axis; its extension to the case of a variable cross-section is under study and
will be proposed in a very near future.
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A UNIFIED THEORY FOR CONSTITUTIVE MODELING OF COMPOSITES

WENBIN YU

A unified theory for multiscale constitutive modeling of composites is developed using the concept of
structure genomes. Generalized from the concept of the representative volume element, a structure
genome is defined as the smallest mathematical building block of a structure. Structure genome mechan-
ics governs the necessary information to bridge the microstructure length scale of composites and the
macroscopic length scale of structural analysis and provides a unified theory to construct constitutive
models for structures including three-dimensional structures, beams, plates, and shells over multiple
length scales. For illustration, this paper is restricted to construct the Euler–Bernoulli beam model, the
Kirchhoff–Love plate/shell model, and the Cauchy continuum model for structures made of linear elastic
materials. Geometrical nonlinearity is systematically captured for beams, plates/shells, and Cauchy
continuum using a unified formulation. A general-purpose computer code called SwiftComp (accessible
at https://cdmhub.org/resources/scstandard) implements this unified theory and is used in a few example
cases to demonstrate its application.

1. Introduction

Structural analyses are often carried out using finite element analysis (FEA) in terms of three-dimensional
(3D) solid elements, two-dimensional (2D) plate or shell elements or one-dimensional (1D) beam ele-
ments (see Figure 1). Here, the notation of 1D, 2D, or 3D refers to the number of coordinates needed
to describe the analysis domain. It is not related with the dimensionality of the behavior. For example,
a beam element can have three-dimensional behavior as it can deform in three directions. A constitu-
tive relation is needed for the corresponding structural element. For isotropic homogeneous structures,
material properties such as Young’s modulus and Poisson’s ratio are direct inputs for structural analysis
using solid elements; these properties, combined with the geometry of the structure, can be used for
plate/shell/beam elements. However, such straightforwardness does not exist for composite structures
featuring anisotropy and/or heterogeneity. Consider a typical composite rotor blade of length 8.6 m and
chord 0.72 m, with a main D-spar composed of 60 graphite/epoxy plies each with a ply thickness of
125µm. To directly use the properties of graphite/epoxy composite plies in the blade analysis, at least
one 3D solid element through the ply thickness should be used. Sometimes several layers are commonly
lumped together into a single element with “smeared properties”, however, this will result in approximate
solutions that would negate the supposed accuracy advantage gained by the use of 3D solid elements.
Suppose one uses 20-noded brick elements with a 1:10 thickness-length ratio: it is estimated that around
ten billion degrees of freedom are needed for the blade analysis. Such a huge FEA model is too costly
for effective blade design and analysis. An alternative is to model rotor blades as beams [Yu et al. 2012]

Keywords: Mechanics of Structure Genome, Structural Mechanics, Micromechanics, Composites Mechanics,
Homogenization.
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Figure 1. Typical structural elements: a) 3D solid elements; b) 2D shell elements; c)
1D beam elements; d) 2D plate elements.

with models to bridge the material properties of composite plies and the beam properties, and compute
the stress fields within each layer for failure and safety predictions.

Sometimes, it is desirable to start the modeling process of composite structures from the fiber (usually
the size of a few microns) and the matrix. A multiscale modeling approach is needed to link microme-
chanics [Li and Wang 2008; Nemat-Nasser and Hori 1998; Aboudi et al. 2012; Fish 2013] and structural
mechanics [Reddy 2004; Kollár and Springer 2009; Carrera et al. 2014]. Many micromechanics models
have been introduced to provide either rigorous bounds, such as the rules of mixtures [Hill 1952], Hashin–
Shtrikman bounds [Hashin and Shtrikman 1962], third-order bounds [Milton 2002], and higher-order
bounds [Torquato 2002]; or approximate predictions such as Mori–Tanaka method [Mori and Tanaka
1973], the method of cells [Aboudi 1982; 1989] and its variants [Paley and Aboudi 1992; Aboudi et al.
2001; 2012; Williams 2005], mathematical homogenization theories [Bensoussan et al. 1978; Murakami
and Toledano 1990; Guedes and Kikuchi 1990; Michel et al. 1999; Fish 2013; Zhang and Oskay 2016],
finite element approaches using conventional stress analysis of representative volume elements (RVEs)
[Sun and Vaidya 1996; Berger et al. 2006], Voronoi cell finite element method [Ghosh 2011], and varia-
tional asymptotic method for unit cell homogenization [Yu and Tang 2007; Zhang and Yu 2014]. Even
more structural models have been developed for composite structures which are usually based on a set of
a priori assumptions. For composite laminates, the displacement field is usually assumed to be expressed
in terms of 2D functions with known distributions through the thickness [Reddy 2004; Khandan et al.
2012]. For example, the classical laminated plate theory (CLPT) was derived based on the assumption
that the transverse normal remains normal to the reference surface and is rigid. The first-order shear-
deformation theory was derived based on the assumption that the transverse normal remains straight and
rigid, but does not necessarily remain normal. Many assumptions have been proposed in the literature
including equivalent single-layer assumptions [Reddy 1984; Mantari et al. 2012], layerwise assumptions
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Figure 2. Traditional multiscale modeling approach illustrated for composite laminates.

[Plagianakos and Saravanos 2009; Icardi and Ferrero 2010], and zigzag assumptions [Carrera 2003; Xi-
aohui et al. 2011]. Recently, Carrera [2012] developed a unified formulation to systematically construct
all these models based on a priori assumptions [Demasi and Yu 2012]. To avoid these assumptions,
asymptotic models were developed [Maugin and Attou 1990; Cheng and Batra 2000; Kalamkarov and
Kolpakov 2001; Reddy and Cheng 2001; Kalamkarov et al. 2009; Kim 2009; Skoptsov and Sheshenin
2011] with the field variables expressed using a formal asymptotic series.

Common multiscale modeling approaches usually apply a two-step approach (TSA), which carry out
a micromechanical analysis followed by a structural analysis. For example, for composite laminates, a
micromechanics model is first used to compute the lamina constants in terms of the microstructure —
commonly called the RVE or unit cell (UC) — of the composite ply, then a lamination theory is used to
construct a structural model for the macroscopic analysis (see Figure 2). There are three possible issues
with this approach. First, the microstructural scale is implicitly assumed to be much smaller than the
structural scale which might cause significant error for structures where one of the dimensions is similar
in size to the microstructure, such as thin laminates or sandwich structures with a thick core. Second,
as shown in Figure 3, TSA creates artificial discontinuities at the layer interfaces because the original
heterogeneous panel (Figure 3a) is effectively replaced with an imaginary panel made of homogeneous
layers (Figure 3b). The real discontinuities happen at the interfaces between the fiber and matrix if perfect
bonding is assumed between layers, which is normally done in lamination theories. Third, composite
damage might initiate and propagate in such a way that the separation of microscale and laminate scale
in TSA is not valid any more. These issues have been noticed by Pagano and Rybicki [1974]. The focus
of this paper is to potentially resolve these issues by developing a unified theory to link the lowest scale
of interest to the structural scale.
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Figure 3. Artificial discontinuity created by the lamination theory.
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Figure 4. Analysis of 3D heterogeneous structures approximated by a constitutive mod-
eling over SG and a corresponding 3D macroscopic structural analysis.

2. Structure Genome (SG)

A genome serves as a blueprint for an organism’s growth and development. We can extrapolate this
word into nonbiological contexts to connote a fundamental building block of a system. A new concept
called the Structure Genome (SG) is defined as the smallest mathematical building block of the structure,
to emphasize the fact that it contains all the constitutive information needed for a structure in the same
fashion that the genome contains all the genetic information for an organism’s growth and development.
It is noted that this work uses the continuum hypothesis, and scales below the continuum scale (such as
the atomic scale) are not considered here.

2.1. SG for 3D structures. As shown in Figure 4, analyses of 3D heterogeneous structures can be approx-
imated by a 3D macroscopic structural analysis with the material properties provided by a constitutive
modeling of a SG. For 3D structures, the SG serves a similar role as the RVE in micromechanics. How-
ever, they are significantly different, so the new term (SG) is used to avoid confusion. For example, for a
structure made of composites featuring 1D heterogeneity (e.g. binary composites made of two alternating
layers, Figure 4a), the SG will be a straight line with two segments denoting corresponding phases. One
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Figure 5. Analysis of beam-like structures approximated by a constitutive modeling
over SG and a corresponding 1D beam analysis.

can mathematically repeat this line in-plane to build the two layers of the binary composite, and then
repeat the binary composite out of plane to build the entire structure. Another possible application is to
model a laminate as an equivalent homogeneous solid. The transverse normal line is the 1D SG for the
laminate. The constitutive modeling over the 1D SG can compute the complete set of 3D properties and
local fields. Such applications of the SG are not equivalent to the RVE. For a structure made of composites
featuring 2D heterogeneity (e.g. continuous unidirectional fiber reinforced composites, Figure 4b), the
SG will be 2D. Although 2D RVEs are also used in micromechanics, only in-plane properties and local
fields can be obtained from common RVE-based models. If the complete set of properties are needed
for a 3D structural analysis, a 3D RVE is usually required [Sun and Vaidya 1996; Fish 2013], while
a 2D domain is sufficient if it is modeled using SG-based models (Figure 4b) or some semianalytical
models such as GMC/HFGMC [Aboudi et al. 2012]. For a structure made of composites featuring 3D
heterogeneity (e.g. particle reinforced composites, Figure 4c), the SG will be a 3D volume. Although a
3D SG for 3D structures represents the most similar case to a RVE, indispensable boundary conditions
in terms of displacements and tractions in RVE-based models are not needed for SG-based models.

2.2. SG for beams/plates/shells. SG allows the connection of microstructure studies with beam/plate/shell
analyses. For example, the structural analysis of slender (beam-like) structures can use beam elements
(Figure 5). If the beam has uniform cross-sections which could be made of homogeneous materials
or composites (Figure 5a), its SG is the 2D cross-sectional domain because the cross-section can be
projected along the beam reference line to form the beam-like structure. This inspires a new perspective
toward beam modeling [Yu et al. 2012], a traditional branch of structural mechanics. If the beam refer-
ence line is considered as a 1D continuum, every material point of this continuum has a cross-section
as its microstructure. In other words, constitutive modeling for beams can be effectively viewed as an
application of micromechanics. If the beam is also heterogeneous in the spanwise direction (Figure 5b), a
3D SG is needed to describe the microstructure of the 1D continuum, the behavior of which is governed
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Figure 6. Analysis of plate-like structures approximated by a constitutive modeling over
SG and a corresponding 2D plate analysis.

by the 1D beam analysis. Note that SG is different from the traditional notion of obtaining apparent
material properties for a structure. For example, the flexural stiffness of an I-beam could be given
by E∗ I , such that an I-beam could be represented by a rectangular beam but with an apparent Young’s
modulus E∗ so that E∗ I = E∗×bd3/12 with b as the width and d as the height. Instead, using SG we can
obtain the bending stiffness directly for the I-beam without referring to a geometry factor (reinterpreting
it as a rectangular beam). No intermediate step such as E∗ is needed. The concept of SG provides a
unified treatment of structural modeling and micromechanics modeling and enables us to collapse the
cross-section or a 3D beam segment into a material point for a beam analysis over the reference line with
a possible, fully populated 4× 4 stiffness matrix simultaneously accounting for extension, torsion, and
bending in two directions.

If the structural analysis uses plate/shell elements, a SG can also be chosen properly. For illustrative
purposes, typical SGs of plate-like structures are sketched in Figure 6. If the plate-like structures feature
no in-plane heterogeneities (Figure 6a), the SG is the transverse normal line with each segment denoting
the corresponding layer. For a sandwich panel with a core corrugated in one direction (Figure 6b), the SG
is 2D. If the panel is heterogeneous in both in-plane directions (Figure 6c), such as a stiffened panel with
stiffeners running in both directions, the SG is 3D. Despite the different dimensionalities of the SGs, the
constitutive modeling should output structural properties for the corresponding structural analysis (such
as the A, B, and D matrices for the Kirchhoff–Love plate model) and relations to express the original
3D fields in terms of the global behavior (e.g., moments, curvatures, etc.) obtained from the plate/shell
analysis. It is known that theories of plates/shells traditionally belong to structural mechanics, but the
constitutive modeling of these structures can be treated as special micromechanics applications using the
SG concept. For a plate/shell-like structure, if the reference surface is considered as a 2D continuum,
every material point of this continuum has an associated SG as its microstructure.

It is easy to identify SGs for periodic structures as shown in Figures 4, 5, and 6. For structures which
are not globally periodic, we usually assume that the structure is at least periodic in the neighborhood of
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a material point in the macroscopic structural analysis, the so-called local periodicity assumption implicit
in all multiscale modeling approaches [Fish 2013]. For nonlinear behavior, it is also possible that the
smallest mathematical building block of the structure is not sufficient as the characteristic length scale
of the nonlinear behavior may cover several building blocks. For this case, SG should be interpreted as
the smallest mathematical building block necessary to represent the nonlinear behavior.

SG serves as the link between the original structure with microscopic details and the macroscopic
structural analysis. Here, the terms “microstructure” and “microscopic details” are used in a general
sense: any details explicitly existing in a SG but not in the macroscopic structural analysis are termed
microscopic details in this paper. Here and later in the paper, the real structure with microscopic details
is termed as the original structure and the structure used in the macroscopic structural analysis is termed
as the macroscopic structural model. It is also interesting to point out the relation between the SG
concept and the idea of substructuring or superelement, which is commonly used in sizing software such
as HyperSizer [Collier et al. 2002]. A line element in the global analysis could correspond to a box
beam made of four laminated walls, and a surface element could correspond to a sandwich panel with
laminated face sheets and a corrugated core. For these cases, SG and its companion mechanics presented
below provide a rigorous and systematic approach based on micromechanics to compute the constitutive
models for the line and surface elements and the local fields within the original structures.

3. Mechanics of structure genome (MSG)

SG serves as the fundamental building block of a structure; whether it is a 3D structure or a beam,
plate, or shell. For SG to not merely remain as a concept, it must be governed by a physics-based
theory, namely mechanics of structure genome (MSG), so that there is a two-way communication between
microstructural details and structural analysis: microstructural information can be rigorously passed to
structural analysis to predict structural performance, and structural performance can be passed back to
predict the local fields within the microstructure for failure prediction and other detailed analyses.

A structural model contains kinematics, kinetics, and constitutive relations. On the one hand, kinemat-
ics deals with strain-displacement relations and compatibility equations, while on the other hand, kinetics
deals with stress and equations of motion. Constitutive relations relate stress and strain. Both kinematics
and kinetics can be formulated exactly within the framework of continuum mechanics and remain the
same for the same structural model independent of the composition of the structure. Constitutive relations
are where the difference comes from and are ultimately approximate because a hypothetical continuum
is used to model the underlying atomic structure. Some criteria is needed for us to minimize the loss of
information between the original model describing the microscopic details and the model used for the
macroscopic structural analysis. For elastic materials, this can be achieved by minimizing the difference
between the strain energy of the materials stored in SG and that stored in the macroscopic structural
model.

3.1. Kinematics. The first step in formulating MSG is to express the kinematics, including the displace-
ment field and the strain field, of the original structures in terms of those in the macroscopic structural
model. Although the SG concept is applicable to original structures made of materials admitting general
continuum descriptions such as the Cosserat continuum [Cosserat and Cosserat 1909], this work focuses
on materials admitting the Cauchy continuum description.
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Figure 7. Macrocoordinates (x1, x2, x3) and eliminated coordinates (x2, x3) of a beam.

3.1.1. Coordinate systems. Let us use xi , called macrocoordinates here, to denote the coordinates de-
scribing the original structure. The coordinates could be general curvilinear coordinates. However,
without loss of generality, we choose an orthogonal system of arc-length coordinates. If the structure
is dimensionally reducible, some of the macrocoordinates xα, called eliminated coordinates here, corre-
spond to the dimensions eliminated in the macroscopic structural model. Here and throughout the paper,
Greek indices assume values corresponding to the eliminated macrocoordinates, Latin indices k, l,m
assume values corresponding to the macrocoordinates remaining in the macroscopic structural model,
and other Latin indices assume 1, 2, 3. Repeated indices are summed over their range except where
explicitly indicated.

For beam-like structures, only x1, describing the beam reference line, will remain in the final beam
model, while x2, x3, the cross-sectional coordinates, will be eliminated (see Figure 7); for plate/shell-
like structures, x1 and x2, describing the plate/shell reference surface, will remain in the final plate/shell
model, while x3, the thickness coordinate, will be eliminated. For this reason, the beam model is called
a 1D continuum model because all the unknown fields are functions of x1 only. Similarly, the plate/shell
model is called a 2D continuum model because all the unknown fields are functions of x1 and x2 only.

Since the size of a SG is much smaller than the wavelength of the macroscopic deformation, we
introduce microcoordinates yi = xi/ε to describe the SG, with ε being a small parameter. This basically
enables a zoom-in view of the SG at a size similar to the macroscopic structure. If the SG is 1D, only
y3 is needed; if the SG is 2D, y2 and y3 are needed; if the SG is 3D, all three coordinates y1, y2, y3

are needed. In multiscale structural modeling, a field function of the original structure can be generally
written as a function of the macrocoordinates xk which remain in the macroscopic structural model and
the microcoordinates y j . Following [Bensoussan et al. 1978], the partial derivative of a function f (xk, y j )

can be expressed as

∂ f (xk, y j )

∂xi
=
∂ f (xk, y j )

∂xi

∣∣∣
y j=const

+
1
ε

∂ f (xk, y j )

∂ yi

∣∣∣
xk=const

≡ f,i +
1
ε

f|i . (1)

3.1.2. Undeformed and deformed configurations. Let bk denote the unit vector tangent to xk for the
undeformed configuration. Note bi chosen this way are functions of xk only. For example, for beam-like
structures, we choose b1 to be tangent to the beam reference line x1, and b2, b3 as unit vectors tangent to
the cross-sectional coordinates xα. As shown in Figure 8, we can describe the position of any material
point of the original structure by its position vector r relative to a point O fixed in an inertial frame such
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Figure 8. Deformation of a typical beam structure.

that
r(xk, yα)= ro(xk)+ εyαbα(xk), (2)

where ro is the position vector from O to a material point of the macroscopic structural model. Note here
xk denotes only those coordinates remaining in the macroscopic structural model, and yα corresponds to
eliminated coordinates xα. Because xk is an arc-length coordinate, we have bk = ∂ ro/∂xk .

When the original structure deforms, the particle that had position vector r in the undeformed config-
uration now has position vector R in the deformed configuration, such that

R(xk, y j )= Ro(xk)+ εyαBα(xk)+ εwi (xk, y j )Bi (xk), (3)

where Ro denotes the position vector of the deformed structural model, Bi forms a new orthonormal
triad for the deformed configuration, and εwi are fluctuating functions introduced to accommodate all
possible deformations other than those described by Ro and Bi . Bi can be related with bi through a
direction cosine matrix, Ci j = Bi · b j , subject to the requirement that these two triads are the same in
the undeformed configuration. R is expressed in terms of Ro, Bi , and wi in (3), resulting in six times
redundancy. Six constraints are needed to ensure a unique mapping. These constraints can be directly
related with how we define Ro and Bi in terms of R. For example, it is natural for us to define

Ro = 〈〈R〉〉− 〈〈εyα〉〉Bα(xk), (4)

where 〈〈·〉〉 indicates averaging over the SG. If yα is chosen such that 〈〈εyα〉〉 = 0, Ro is defined as the
average of the position vector of the original structure. Then (3) implies the following constraint on the
fluctuating functions:

〈〈wi 〉〉 = 0. (5)

Note that for 3D structures yα disappears and no requirement for 〈〈εyα〉〉 = 0 is needed but the constraint
in (5) remains.
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The other three constraints can be used to specify Bi . For plate/shell-like structures, we can select B3

in such a way that
B3 · Ro,1 = 0, B3 · Ro,2 = 0, (6)

which provides two constraints implying that we choose B3 normal to the reference surface of the de-
formed plate/shell. It should be noted that this choice has nothing to do with the well-known Kirchhoff
hypothesis. In the Kirchhoff assumption, the transverse normal can only rotate rigidly without any local
deformation. However, in the present formulation, we allow all possible deformations, classifying all
deformations other than those described by Ro and Bi in terms of the fluctuating function wi Bi . The
last constraint can be specified by the rotation of Bα around B3 such that

B1 · Ro,2 = B2 · Ro,1. (7)

This constraint symmetrizes the macrostrains for a plate/shell model as defined in (19) later.
For beam-like structures, we can select Bα in such a way that

B2 · Ro,1 = 0, B3 · Ro,1 = 0, (8)

which provides two constraints implying that we choose B1 to be tangent to the reference line of the
deformed beam. Note that this choice is not the well-known Euler–Bernoulli assumption as the present
formulation can describe all deformations of the cross-section. We can also prescribe the rotation of Bα
around B1 such that

B3 ·
∂R
∂x2
− B2 ·

∂R
∂x3
= 0, (9)

which implies the following constraint on the fluctuating functions:

〈〈w2|3−w3|2〉〉 = 0. (10)

This constraint actually defines the twist angle of the macroscopic beam model in terms of the original
position vector as pointed out in [Yu et al. 2012].

Thus the fluctuating functions are constrained according to (5). For beam structures, they are addi-
tionally constrained according to (10). Other constraints for the fluctuating functions can be introduced
naturally into the formulation. For example, for periodic structures, fluctuating functions should be equal
on periodic boundaries.

3.1.3. Strain field. If the local rotation (the rotation of a material point of the original structure subtract-
ing the rotation needed for bringing bi to Bi ) is small, it is convenient to use the Jauman–Biot–Cauchy
strain according to the decomposition of the rotation tensor [Danielson and Hodges 1987]

0i j = 1/2(Fi j + F j i )− δi j , (11)

where δi j is the Kronecker symbol and Fi j is the mixed-basis component of the deformation gradient
tensor defined as

Fi j = Bi · Ga ga
· b j = Bi · (Gk gk

+Gα gα) · b j . (12)

Here ga are the 3D contravariant base vectors of the undeformed configuration and Ga are the 3D
covariant basis vectors of the deformed configuration.
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The contravariant base vector ga is defined as

ga
=

1
2
√

g
eai j gi × g j , (13)

with eai j as the 3D permutation symbol and gi as the covariant base vector of undeformed configuration
and g = det(gi · g j ).

From the undeformed configuration in (2), corresponding to the remaining macrocoordinate xk , we
obtain the covariant base vector as

gk =
∂ r
∂xk
= bk + εyα

∂bα
∂xk
= bk + εyαkk × bα = bk + eiα jεyαkki b j . (14)

Here kk = kki bi is the initial curvature vector corresponding to the remaining macrocoordinate xk . This
definition is consistent with k2D

kl for initial curvatures of shells in [Yu and Hodges 2004a], if we let

k2D
kl = αlmkkm, k2D

k3 = kk3, (15)

with αlm as the 2D permutation symbol: α11 = α22 = 0, α12 =−α21 = 1.
From the undeformed configuration in (2), corresponding to the eliminated macrocoordinate xα, we

obtain the covariant base vector as

gα =
∂ r
xα
=
∂εyα

xα
bα = bα. (16)

From the deformed configuration in (3), corresponding to the remaining macrocoordinate xk , we obtain
the covariant base vector Gk as

Gk =
∂R
∂xk
=
∂Ro

∂xk
+ εyα

∂Bα
∂xk
+ ε

∂wi

∂xk
Bi + εwi

∂Bi

∂xk
. (17)

From the deformed configuration in (3), corresponding to the eliminated macrocoordinate xα, we
obtain the covariant base vector as

Gα =
∂R
∂xα
=
∂(εyβ)
∂xα

Bβ + ε
∂wi

∂xα
Bi = Bα +

∂wi

∂ yα
Bi . (18)

A proper definition of the generalized strain measures for the macroscopic structural model is needed
for the purpose of formulating the macroscopic structural analysis in a geometrically exact fashion. Fol-
lowing [Yu et al. 2012; Yu and Hodges 2004a; Pietraszkiewicz and Eremeyev 2009b], we introduce the
following definitions:

εkl = Bl ·
∂Ro

∂xk
− δkl,

κki = (1/2)eia j B j ·
∂Ba

∂xk
− kki ,

(19)

where εkl is the Lagrangian stretch tensor and κki is the Lagrangian curvature strain tensor (or the so-
called wryness tensor). This definition corresponds to the kinematics of a nonlinear Cosserat continuum
[Cosserat and Cosserat 1909] which allows six degrees of freedom (three translations and three rotations)
for each material point no matter whether the macroscopic structural model is 1D, 2D, or 3D. For beam-
like structures, this definition reproduces the 1D generalized strain measures of the Timoshenko beam
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model defined in [Hodges 2006]. If we restrict B1 to be tangent to Ro, (8), this definition reproduces
the 1D generalized strain measures of the Euler–Bernoulli beam model defined in the previous work.
For plate/shell-like structures, if we use (7), we will have the symmetry ε12 = ε21 as a constraint for the
kinematics of the final plate/shell model. This definition reproduces the 2D generalized strain measures
of the Reissner–Mindlin model defined in [Yu and Hodges 2004a]. If we further restrain B3 to be
normal to the reference surface, (6), this definition reproduces the 2D generalized strain measures of the
Kirchhoff–Love plate/shell model defined in [Yu et al. 2002]. For 3D structures, this definition corre-
sponds to the natural strain measures defined in [Pietraszkiewicz and Eremeyev 2009b] for a nonlinear
Cosserat continuum. Although the SG kinematics formulated this way has the potential to construct a
Cosserat continuum model for the 3D macroscopic structural model even if the material of the original
heterogeneous structure is described using a Cauchy continuum, we will restrict ourselves to the Cauchy
continuum model for the 3D macroscopic structural model in this paper. In other words, we are seek-
ing a symmetric Lagrangian stretch tensor εkl and negligible curvature strain tensor κki . This can be
achieved by constraining the global rotation needed for bringing bi to Bi in a specific way, which can be
illustrated more clearly using an invariant form of the definitions in (19). According to [Pietraszkiewicz
and Eremeyev 2009a; 2009b], these definitions can be rewritten as

ε = CT
· F− I,

κT
=−(1/2)e :

(
CT
·
∂C
∂xk

bk

)
,

(20)

where ε is the Lagrangian stretch tensor, κ the Lagrangian curvature strain tensor, C = Bi bi is the global
rotation tensor bringing bi to Bi , F is the deformation gradient tensor, I = bi bi is the second-order
identity tensor, and e = −I × I is the third-order skew Ricci tensor. If the global rotation tensor C is
constrained to be decomposed from F according to the polar decomposition theorem,

F = C ·U, (21)

where U is a second-order positive symmetric tensor, then the definitions in (20) become

ε = CT
· (C ·U)− I = U − I,

κT
=−(1/2)e :

(
CT
·
∂C
∂xk

bk

)
.

(22)

Clearly, the Lagrangian stretch tensor ε becomes symmetric and is the definition of Jauman–Biot–Cauchy
strain tensor. The Lagrangian curvature strain tensor κ corresponds to higher-order terms (gradient of the
deformation gradient) which are commonly neglected in the Cauchy continuum model. This derivation
is significant because it provides a geometrically exact description for the 3D solid and has demonstrated
that the Cauchy continuum description can be actually reduced from the Cosserat continuum description.
It is noted that restraining the global rotation tensor according to (21) is equivalent to introducing three
constraints for Bi needed for 3D structures. With this derivation, the nonlinear kinematics of beams,
plates/shells, and 3D structures can be described using a single, unified formulation.
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To facilitate the derivation of the covariant vectors Gi , we can rewrite the definitions in (19) as

∂Ro

∂xk
= Bk + εkl Bl,

∂Bi

∂xk
= (κk j + kk j )B j × Bi .

(23)

Note ε13 = ε23 = 0 for plate/shell-like structures due to (6) and ε12 = ε13 = 0 for beam-like structures
due to (8).

Substituting (23) into (17), we can obtain more detailed expressions for the covariant base vectors of
the deformed configuration Gk as follows:

Gk = Bk + εkl Bl + εyα
∂Bα
∂xk
+ ε

∂wl

∂xk
Bl + ε

∂wα

∂xk
Bα + εwl

∂Bl

∂xk
+ εwα

∂Bα
∂xk

=

(
δkl + εkl + ε

∂wl

∂xk

)
Bl + ε(yα +wα)

∂Bα
∂xk
+ ε

∂wα

∂xk
Bα + εwl

∂Bl

∂xk

=

(
δkl + εkl + ε

∂wl

∂xk

)
Bl + ε

[
ei jα(yα +wα)(κk j + kk j )+

∂wα

∂xk
δαi + ei jlwl(κk j + kk j )

]
Bi .

(24)

Using the expressions for ga and Ga , and dropping nonlinear terms due to the product of the curvature
strains and the fluctuating functions, the 3D strain field defined in (11) can be written in the following
matrix form:

0 = 0hw+0ε ε̄+ ε0lw+ ε0Rw, (25)

where 0 = b011 022 033 2023 2013 2012c
T denotes the strain field of the original structure, w =

bw1 w2 w3c
T the fluctuating functions, and ε̄ is a column matrix containing the generalized strain

measures for the macroscopic structural model. For example, if the macroscopic structural model is
a beam model, we have ε̄ = bε11 κ11 κ12 κ13c

T with ε11 denoting the extensional strain, κ11 the twist,
and κ12 and κ13 the bending curvatures. If the macroscopic structural model is a plate/shell model,
we have ε̄ = bε11 ε22 2ε12 κ

2D
11 κ2D

22 κ2D
12 + κ

2D
21 c

T with εαβ denoting the in-plane strains and κ2D
αβ de-

noting the curvature strains. If the macroscopic structural model is a 3D continuum model, we have
ε̄ = bε11 ε22 ε33 2ε23 2ε13 2ε12c

T with εi j denoting the Biot strain measures in a Cauchy continuum.
0h is an operator matrix which depends on the dimensionality of the SG. 0ε and 0l are two operator
matrices, the form of which depends on the macroscopic structural model. 0R is an operator matrix
existing only for those original structures featuring initial curvatures. The explicit expressions for these
operators are given in the appendix for completeness.

3.2. Variational statement for SG. Although the SG concept can be used to analyze structures made of
various types of materials, in this paper, we illustrate its use by focusing on structures made of elastic
materials. These structures are governed by the variational statement

δU = δW , (26)

where δ is the usual Lagrangean variation, U is the strain energy, and δW is the virtual work of the
applied loads. The over bar indicates that the virtual work needs not be the variation of a functional. For
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a linear elastic material characterized using a 6× 6 stiffness matrix D, the strain energy can be written
as

U = 1
2

∫
1
ω
〈0T D0〉d�, (27)

where � is the volume of the domain spanned by xk remaining in the macroscopic structural model.
The notation 〈•〉 =

∫
•
√

gdω is used to denote a weighted integration over the domain of the SG and
ω denotes the volume of the domain spanned by yk corresponding to the coordinates xk remaining in
the macroscopic structural model. If none of yk is needed in the SG, then ω = 1. For example, if
a heterogeneous beam-like structure features a 3D SG, ω is the length of the SG in the y1 direction,
corresponding to x1 remaining in the macroscopic beam model. If the heterogeneous beam-like structure
features a 2D SG (uniform cross-section), y1 is not needed for the SG and ω = 1. ω for plate/shell-like
structures or 3D structures can be obtained similarly.

For a Cauchy continuum, there may exist applied loads from tractions and body forces. The virtual
work done by these applied loads can be calculated as

δW =
∫

1
ω

(
〈 p〉 · δR+

∫
s

Q · δR
√

c ds
)

d�, (28)

where s denotes the boundary surfaces of the SG with applied traction force per unit area Q = Qi Bi

and applied body force per unit volume p= pi Bi .
√

c is equal to 1 except for some degenerated cases
where s is only a boundary curve of the SG and one of coordinates xk is required to form the physical
surfaces on which the load is applied. In this case, the differential area of the physical surface is equal
to
√

c dsdxk with ds as the differential arc length along the boundary curve of SG. For example, for
beam-like structures featuring a 2D SG, the SG boundary is the curve encircling the cross-section and
√

c =
√

g+ (y2(dy2/ds)+ y3(dy3/ds))2k2
11.

Here δR is the Lagrangian variation of the displacement field in (3), such that

δR = δq i Bi + εyαδBα + εδwi Bi + εwiδBi . (29)

We may safely ignore products of the fluctuating functions and virtual rotations in δR, because the
fluctuating functions are small. The last term of the above equation is then dropped so that

δR = δq i Bi + εyαδBα + εδwi Bi . (30)

The virtual displacements and rotations of the macroscopic structural model are defined as

δq i = δRo · Bi , δBα = δψ j B j × Bα, (31)

where δq i and δψ i contain the components of the virtual displacement and rotation in the Bi system,
respectively. They are functions of xk only. Note δψ j are restrained to be derivable from δq i and are
higher-order terms that are neglected in a 3D structure described using the Cauchy continuum.

Then we can rewrite (30) as

δR =
(
δq i + εe jαi yαδψ j + εδwi

)
Bi . (32)

Finally, we express the virtual work due to applied loads as

δW = δW H + ε δW
∗
, (33)
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where δW H is the virtual work not related to the fluctuating functions wi and δW
∗

is the virtual work
related to the fluctuating functions. Specifically,

δW H =

∫ (
fiδq i +miδψ i

)
d�, δW

∗
=

∫
1
ω

(
〈piδwi 〉+

∮
Qiδwi

√
c ds

)
d�, (34)

with the generalized forces fi and moments mi defined as

fi =
1
ω

(
〈pi 〉+

∫
Qi
√

c ds
)
, mi =

eiα j

ω

(
〈εyα p j 〉+

∫
εyαQ j

√
c ds

)
. (35)

If we assume that pi and Qi are independent of the fluctuating functions, then we can rewrite δW
∗

as

δW
∗
= δ

∫
1
ω

(
〈piwi 〉+

∫
Qiwi
√

c ds
)

d�. (36)

In view of the strain energy in (27) and virtual work in (33) along with (34), the variational statement
in (26) can be rewritten as∫

1
ω
δ

[
1
2
〈0T D0〉− ε

(
〈piwi 〉+

∫
Qiwi
√

c ds
)]
−
(

fiδq i +miδψ i
)

d�= 0. (37)

If we attempt to solve this variational statement directly, we will encounter the same difficulty as in a
direct analysis of the original structure. The main complexity comes from the fluctuating functions wi ,
which are unknown functions of both micro- and macrocoordinates. To reduce the original continuum
model to a macroscopic structural model, the common practice in structural modeling is to assume the
fluctuating functions, a priori, in terms of some unknown functions (displacements, rotations, and/or
strains) of xk and some known functions of yk . However, for arbitrary structures made with general
composites, use of such a priori assumptions may introduce significant errors. Fortunately, the variational
asymptotic method (VAM) [Berdichevsky 2009] provides a useful technique to obtain the fluctuating
functions through an asymptotical analysis of the variational statement in (37). It does so in terms of
the small parameter ε which is inherent in the composite structure to construct asymptotically correct
macroscopic structural models. As the last two terms in (37) are not functions of wi , we can conclude
that the fluctuating function is governed by the following variational statement instead:

δ

[
1
2
〈0T D0〉− ε

(
〈piwi 〉+

∫
Qiwi
√

c ds
)]
= 0, (38)

which can be considered as a variational statement for the SG as it is posed over the SG domain only.
According to VAM, we can neglect the terms in the order of ε to construct the first approximation of the
variational statement in (38) as

δ(1/2)〈(0hw+0ε ε̄)
T D(0hw+0ε ε̄)〉 = 0. (39)

It is noted here that only small geometry parameters are considered in this work. For structures made of
materials featuring significantly different properties, small material parameters should also be introduced
for the asymptotic analysis using VAM. It is also pointed out that VAM is used to discard energetically
small terms which might cause difficulty in capturing some higher order local stresses. However, such
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loss of information is mainly governed by the macroscopic structural model. In this work, only the
classical structural models including the Euler–Bernoulli beam model, Kirchhoff–Love plate/shell model,
and the Cauchy continuum model are constructed using MSG. It is our future plan to derive refined mod-
els such as the Reissner–Mindlin plate/shell model, Timoshenko beam model, and Cosserat continuum
model using the unified MSG framework.

For very simple cases such as isotropic beams [Yu and Hodges 2004b], laminated plates [Yu 2005],
and binary composites [Yu 2012], the variational statement in (39) can be solved exactly and analytically,
while for general cases we need to turn to numerical techniques such as the finite element method for
solutions. To this end, we need to express w using shape functions defined over SG as

w(xk, y j )= S(y j )V (xk). (40)

Equation (40) is a standard way to solve (39) using the finite element method. Equation (39) is a varia-
tional statement used to solve for w given ε̄ with V as a function of xk because of ε̄. Such a separation
of variables is inherent in multiscale modeling and structural modeling approaches. S are the standard
shape functions depending on the type of elements one uses, and can be found in typical finite element
textbooks. V is what we need to solve for as the nodal values for the influence function based on the
discretization.

Substituting (40) into (39), we obtain the following discretized version of the strain energy functional:

U = (1/2)(V T EV + 2V T Dhε ε̄+ ε̄
T Dεε ε̄), (41)

where
E = 〈(0h S)T D(0h S)〉, Dhε = 〈(0h S)T D0ε〉, Dεε = 〈0

T
ε D0ε〉. (42)

Minimizing U in (41), subject to the constraints, gives us the linear system

EV =−Dhε ε̄. (43)

It is clear that V linearly depends on ε̄, and the solution can be symbolically written as

V = V0ε̄. (44)

Substituting (44) back into (41), we can calculate the strain energy stored in the SG as the first approxi-
mation as

U = (1/2)ε̄T (V T
0 Dhε + Dεε)ε̄ ≡ (ω/2)ε̄T D̄ε̄, (45)

where D̄ is the effective stiffness to be used in the macroscopic structural model. For the Euler–Bernoulli
beam model, D̄ could be a fully populated 4×4 stiffness matrix; for the Kirchhoff–Love plate/shell model
and Cauchy continuum model, D̄ could be a fully populated 6× 6 stiffness matrix.

Substituting the solved strain energy stored in the SG into (37), we can rewrite the variational statement
governing the original structure as∫ [

δ(1/2)ε̄T D̄ε̄− fiδq i −miδψ i
]

d�= 0. (46)

This variational statement governs the macroscopic structural model as it involves only fields which are
unknown functions of the macrocoordinates xk . The first term is the variation of the strain energy of
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the macroscopic structural model and the rest of the terms are the virtual work done by generalized
forces and moments. This variational statement governs the linear elastic behavior of structural elements
(3D solid elements, 2D plate/shell elements, 1D beam elements) implemented in most commercial FEA
software packages.

Often, we are also interested in computing the local fields within the original structure. With ε̄ obtained
from the macroscopic structural analysis, the fluctuating function can be obtained as

w = SV0ε̄. (47)

The local displacement field can be obtained as

ui = ūi + xα(Cαi − δαi )+ εw j C j i , (48)

where ui is the local displacement and ūi is the macroscopic displacement. For SGs having coordinates
yk with corresponding xk existing in the macroscopic structural model, ūi should be interpreted as

ūi = ūi (xk0)+ xk ūi,k, (49)

where xk0 is the center of the SG and ūi,k is the gradient along xk evaluated at xk0 .
The local strain field can be obtained as

0 = (0h SV0+0ε)ε̄. (50)

The local stress field can be obtained directly using the Hooke’s law as

σ = D0. (51)

4. An analytical example: deriving the Kirchhoff–Love model for composite laminates

MSG presented above is very general so that it can handle a geometrically exact analysis for all types
of structures with arbitrary heterogeneity. For the sake of simplicity, the above formulation will be
specialized to derive the linear elastic Kirchhoff–Love model for composite laminates.

If we assume that the composite laminate is made of anisotropic homogeneous layers, the linear elastic
behavior is governed by 3D elasticity in terms of 3D displacements ui , strains εi j , and stresses σi j . To
construct a plate model, we need to first express the 3D displacements in terms of 2D plate displacements:

u1(x1, x2, y3)= ū1(x1, x2)− y3ū3,1+w1(x1, x2, y3)

u2(x1, x2, y3)= ū2(x1, x2)− y3ū3,2+w2(x1, x2, y3)

u3(x1, x2, y3)= ū3(x1, x2)+w3(x1, x2, y3)

(52)

Here ui (x1, x2, y3) are 3D displacements, while ūi (x1, x2) are plate displacements which are functions
of x1, x2 only. We also introduce 3D unknown fluctuating functions wi (x1, x2, y3) to describe the infor-
mation of 3D displacements which cannot be described by the simpler Kirchhoff–Love plate kinematics.
Note that the displacement expressions in (52) have nothing to do with the celebrated Kirchhoff–Love
assumptions. It can be considered as a change of variables to express the 3D displacements in terms of
the displacement variables of the Kirchhoff–Love plate model and fluctuating functions. The Kirchhoff–
Love assumptions are equivalent to assuming wi = 0. Since we consider that the original 3D model is
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our true model, we construct the plate model as an approximation to the true model. To this end, we
need to define the plate displacements in terms of 3D displacements. A natural choice is

hū3(x1, x2)= 〈u3〉, hūα(x1, x2)= 〈uα(x1, x2, y3)〉+ 〈y3〉ū3,α, (53)

which implies the following constraint on the fluctuating functions:

〈wi 〉 = 0. (54)

Note if the origin of the thickness coordinate is at the middle of the plate thickness, (53) actually defines
the plate displacements to be the average of the 3D displacements.

Then the 3D strain field can be obtained as

011 = ε11+ x3κ11+w1,1,

2012 = 2ε12+ 2x3κ12+w1,2+w2,1,

022 = ε22+ x3κ22+w2,2,

2013 = w1,3+w3,1,

2023 = w2,3+w3,2,

033 = w3,3,

with the linear plate strains defined as

εαβ(x1, x2)=
1
2(ūα,β + ūβ,α), κ2D

αβ (x1, x2)=−ū3,αβ . (55)

Here α, β denote subscript 1 or 2.
The 3D strain field can also be written in the following matrix form:

εe = ε+ x3κ + Iαw‖,α, 2εs = w‖
′
+ eαw3,α, εt = w3

′, (56)
with

εe = b011 022 2012c
T ,

2εs = b2013 2023c
T ,

εt = 033,

ε = bε11 ε22 2ε12c
T ,

κ = bκ2D
11 κ2D

22 κ2D
12 + κ

2D
21 c

T ,

and

I1 =

1 0
0 1
0 0

 , I2 =

0 0
1 0
0 1

 , e1 =

{
1
0

}
, e2 =

{
0
1

}
. (57)

The strain energy can be used as a natural measure for information governing the linear elastic behavior.
Twice of the strain energy can be written as

2U =

〈
εe

2εs

εt


TCe Ces Cet

CT
es Cs Cst

CT
et CT

st Ct


εe

2εs

εt


〉
. (58)
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The explicit expression after dropping smaller energy contributions due to wi,α according to VAM is

2U0 = 〈(ε+ x3κ)
TCe(ε+ x3κ)+w

′T
‖

Csw
′

‖
+w′T3 Ctw

′

3

+ 2(ε+ x3κ)
TCesw

′

‖
+ 2(ε+ x3κ)

TCetw
′

3+ 2w′T
‖

Cstw
′

3〉. (59)

Minimizing this energy with respect to the fluctuating function wi along with the constraints in (54), we
reach the following Euler–Lagrange equations:

((ε+ x3κ)
TCes +w‖

′TCs +w3
′CT

st)
′
= λ‖, (60)

((ε+ x3κ)
TCet +w‖

′TCst +w3
′Ct)

′
= λ3, (61)

where λ‖ = bλ1λ2c
T and λ3 denote the Lagrange multipliers enforcing the constraints in (54). The

boundary conditions on the top and bottom surfaces are

(ε+ x3κ)
TCes +w‖

′TCs +w3
′CT

st = 0, (62)

(ε+ x3κ)
TCet +w‖

′TCst +w3
′Ct = 0. (63)

We can conclude that the above two equations should be satisfied at every point through the thickness
and solve for w‖′T and w3

′ as

w‖
′T
=−(ε+ x3κ)C∗esC−1

s , (64)

w3
′
=−(ε+ x3κ)C∗etC

∗−1
t , (65)

with
C∗t = Ct −CT

stC
−1
s Cst , C∗et = Cet −CesC−1

s Cst , C∗es = Ces −C∗etC
T
st/C∗t . (66)

wi can be solved by simply integrating through the thickness along with the interlaminar continuity.
Substituting the solved fluctuating functions into (59), we have

2U0 = 〈(ε+ x3κ)
TC∗e (ε+ x3κ)〉 =

{
ε

κ

}T [
A B
B D

]{
ε

κ

}
, (67)

with
C∗e = Ce−C∗esC−1

s CT
es −C∗etC

T
et/C∗t , A = 〈C∗e 〉, B = 〈x3C∗e 〉, D = 〈x2

3C∗e 〉. (68)

This strain energy along with the work done by applied loads can be used to solve the 2D plate problem
to obtain ūi , ε, κ . 3D displacements can be obtained after we have solved for wi :

u1(x1, x2, x3)= ū1(x1, x2)− x3ū3,1+w1(x1, x2, y3),

u2(x1, x2, x3)= ū2(x1, x2)− x3ū3,2+w2(x1, x2, y3),

u3(x1, x2, x3)= ū3(x1, x2)+w3(x1, x2, y3).

(69)

It is clear that the transverse normal does not remain rigid and normal according to Kirchhoff–Love
assumptions in CLPT. Instead, the transverse normal can be deformed according to wi .

3D strains can be obtained after neglecting the higher order terms wi,α , which are not contributing to
the approximation of the plate energy. That is,

εe = ε+ x3κ, 2εs =−(ε+ x3κ)C∗esC−1
s , ε33 =−(ε+ x3κ)C∗etC

∗−1
t . (70)
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Clearly, the strain field is not in-plane as what is traditionally assumed using Kirchhoff–Love assumptions
in CLPT. Instead, transverse shear and normal strains both could exist.

By directly using the above strain field along with the Hooke’s law in the original 3D elasticity theory,
3D stresses can be obtained as

σe = C∗e (ε+ x3κ, ) σs = 0, σ33 = 0 (71)

It can be observed that the Kirchhoff–Love model derived using MSG satisfies the plane-stress assump-
tion invoked in CLPT. However, this is not assumed a priori but derived by using MSG.

5. Numerical examples

The MSG developed in this paper was implemented into a computer code called SwiftComp. A few
examples are used here to demonstrate the application and validity of MSG and its companion code
SwiftComp. It can be theoretically shown that one can specialize MSG to reproduce the well estab-
lished theory of composite beams known as Variational Asymptotic Beam Sectional analysis (VABS)
[Cesnik and Hodges 1997; Yu et al. 2012], the theory of composite plates/shells known as Variational
Asymptotic Plate And Shell analysis (VAPAS) [Yu 2005] and the micromechanics theories known as
Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH) [Yu and Tang 2007] and
theories of heterogeneous plates and beams [Lee and Yu 2011a; 2011b]. We have verified that the
current version of SwiftComp can reproduce all the results of VAMUCH, and the classical models of
VABS and VAPAS. Particularly, an extensively benchmark study for micromechanics theories and codes
has been recently carried out by cdmHUB (Composites Design and Manufacturing HUB) and the results
have shown that MSG and SwiftComp can achieve the versatility and accuracy of 3D FEA with much less
computational time, which clearly demonstrates the advantage of MSG in micromechanics. Interested
readers are directed to the report and database of the Micromechanics Simulation Challenge available at
https://cdmhub.org/projects/mmsimulationchalleng. Here, a few examples which cannot be handled by
current versions of VAMUCH, VABS, and VAPAS are used to demonstrate the application of MSG and
SwiftComp.

5.1. A cross-ply laminate. First, we will use a simple cross-ply laminate example to demonstrate the
application of MSG. As shown in Figure 9, a four-layer cross-ply [90◦/0◦/90◦/0◦] laminate with length

x3

x2

83 mm

18 mm

40%

x1
F = 10 N

1 mm
1 mm
1 mm
1 mm

Figure 9. Sketch of the four-layer cross-ply laminate.

https://cdmhub.org/projects/mmsimulationchalleng
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Figure 10. 3D finite element mesh of the four-layer cross-ply laminate.

83 mm, width 18 mm, and height 4 mm is clamped at one end and loaded at the other end with a 10 N
tensile force at the center of the cross-section. The composite prepreg is assumed to have square packing
with 40% fiber volume fraction. The fiber and matrix are assumed to be isotropic, with a Young’s modulus
of 276 GPa and a Poisson’s ratio of 0.28 for the fiber and a Young’s modulus of 4.76 GPa and a Poisson’s
ratio of 0.37 for the matrix.

It is noted here that this example is not representative of a typical fiber reinforced composite laminate,
as usually each layer could contain many more fibers instead of one fiber per layer thickness as assumed
here for simplicity. The purpose of this example is not to question CLPT’s modeling capability for
conventional laminates, which could be the subject of a future publication. Instead, this example is used
to demonstrate the accuracy and efficiency of alternative analysis options provided by MSG. There are
two common approaches to analyze this type of structure: 3D FEA using solid elements to mesh all
of the microstructural details (see Figure 10) and lamination theory with lamina constants computed
by a micromechanics approach (see Figure 2). Using 3D FEA, the laminate is meshed with 2,294,784
C3D20R elements with a total of 9,319,562 nodes in ABAQUS to achieve a fair convergence of stress
predictions. Using MSG, we can also analyze the structure as a plate with the constitutive relations
provided through an analysis of the corresponding SG as shown in Figure 11, where the SG is meshed
in ABAQUS using 1,536 20-noded brick elements with 7,585 total nodes, and the reference surface is
meshed with 2,988 STRI3 elements containing 1,596 nodes. Because the length is much larger than both
the height and width, the structure can also be analyzed as a beam with the constitutive relations provided

Figure 11. SwiftComp-based plate analysis.
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Figure 12. SwiftComp-based beam analysis.

through an analysis of the corresponding SG as shown in Figure 12. The SG is meshed with 27,648 20-
noded brick elements with 124,409 nodes total, and the reference line is meshed with 83 two-noded line
elements with 84 nodes total.

Different analysis approaches require different computing resources and time. Using 3D FEA, we
used a computer with 48 cores and it took ABAQUS 7 days 11 hours and 37 minutes to finish the
analysis. For the lamination theory, we used the composite layup analysis in ABAQUS with the same
surface mesh as shown in Figure 11. To compute the lamina constants, SwiftComp only requires a 2D
SG which is much more efficient than other computational homogenization approaches which usually
require a 3D domain to obtain the complete set of properties [Fish 2013]. The micromechanics analysis
and the laminate analysis are finished within 30 seconds. For SwiftComp-based plate analysis, homoge-
nization of the SG to compute the plate stiffness takes 6 seconds, the surface analysis takes 28 seconds,
and dehomogenization to obtain 3D local fields takes 6 seconds. For SwiftComp-based beam analysis,
homogenization of SG to compute the beam stiffness takes 3 minutes and 14 seconds, the beam analysis
takes 0.02 second, and dehomogenization to obtain 3D local fields takes 1 minute 21 seconds. Except
for the 3D FEA, all the other analyses were done in the same computer using only 1 core. The other
analyses are several orders of magnitude more efficient than 3D FEA. SwiftComp adds small overhead
for the constitutive modeling including both the homogenization and dehomogenization processes in
comparison to the traditional lamination theory for this simple static analysis. However, constitutive
modeling is usually done once, while many global structural analyses using beam elements or plate
elements are needed in the real design and analysis of composite structures. In other words, the small
overhead added by SwiftComp could be negligible for most cases.

Different analysis approaches result in different predictions. The displacements at the center of the
loaded tip are shown in Table 1. SwiftComp-based plate and beam analyses achieve excellent agreement

Analysis methods Deflection (mm) Extension (mm)

3D FEA 2.7124·10−3 2.0849·10−4

SwiftComp beam analysis 2.7146·10−3 2.0873·10−4

SwiftComp plate analysis 2.7084·10−3 2.0832·10−4

ABAQUS Composite layup 2.5264·10−3 2.0804·10−4

Table 1. Displacements predicted by different analyses.
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with 3D FEA. Lamination theory using ABAQUS layup analysis provides an excellent prediction for the
minor displacement (extension), but introduces about 7% error for the major displacement (deflection)
in comparison to 3D FEA. The prediction of the detailed stress distribution within composites is also
very important, as these quantities could be directly related with the failure of the structure. Consider
the stress distribution through the thickness at x1 = 41.5 mm, x2 = 0.5 mm. Note at this point x3 is
passing through the diameter of one of the fibers. As shown in Figures 13, 14, and 15, both SwiftComp-
based plate analysis and beam analysis achieve excellent agreement with 3D FEA for all the nontrivial
stress components while the ABAQUS composite layup analysis shows significant discrepancies from 3D
FEA. It is clear that the composite layup analysis predicts stress discontinuities happening at the wrong
locations and the maximum stresses predicted by the composite layup analysis are also very different
from 3D FEA. The composite layup analysis cannot predict the transverse normal stress (σ33) due to its
inherent plane-stress assumption, while SwiftComp-based plate and beam analyses still remain in very
good agreement with 3D FEA, although the magnitude is small compared to the other two in-plane stress
components. It can be observed that for this problem, SwiftComp can achieve similar accuracy as 3D
FEA but with orders of magnitude savings in computing time and resources. Regarding the relatively
larger discrepancy between SwiftComp and 3D FEA for σ33, it is mainly because we could not further
refine the 3D FEA model due to the limitation of the workstation we can access (56 CPUs with 256 GB
RAM). We have verified that for simpler cases such as a two-layer plate of the same example, we can
get a perfect match with 3D FEA. We have done mesh convergence studies for many problems and MSG
consistently converges faster than 3D FEA due to the semianalytical nature of MSG.

5.2. Sandwich beam with periodically varying cross-sections. The next example is used to demonstrate
the application of MSG to analyze beams with spanwise heterogeneities which can be commonly found
in civil engineering applications. It is a sandwich beam with periodically variable cross-section studied

σ
11

(k
Pa

)

x3 (mm)

3D FEA
SwiftComp Plate
SwiftComp Beam
Composite Layup

Figure 13. σ11 distribution through the thickness (x1 = 41.5 mm, x2 = 0.5 mm).
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σ
22

(k
Pa

)

x3 (mm)

3D FEA
SwiftComp Plate
SwiftComp Beam
Composite Layup

Figure 14. σ22 distribution through the thickness (x1 = 41.5 mm, x2 = 0.5 mm).

in [Dai and Zhang 2008]. The geometric parameters for each configuration are given in Figure 16. Note
that although all the SGs in Figure 16 are uniform along y2, the SG must be 3D because they are used to
form a beam structure and y2 is one of the cross-sectional coordinates (Figure 17). All sandwich beams
in the above cases have the same core material properties (material indicated by blue color in the figure)
of Ec = 3.5 GPa, νc = 0.34 and face sheet material properties (indicated by purple color in the figure)
of E f = 70 GPa, νc = 0.34. Also note that although these beams are studied in [Dai and Zhang 2008],

σ
33

(k
Pa

)

x3 (mm)

3D FEA
SwiftComp Plate
SwiftComp Beam
Composite Layup

Figure 15. σ33 distribution through the thickness (x1 = 41.5 mm, x2 = 0.5 mm).
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e e
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Figure 16. The structure genome for sandwich beams with different cross-sections: a)
square holes (b = d = 1.5 m, t = 0.1 m, a = 1 m); b) circular holes (b = d = 1.5 m,
t = 0.1 m, r = 0.5614 m); c) cross-shaped holes (b= d = 1.5 m, t = 0.1 m, e= 0.7071 m);
d) hexagonal holes (b = 1.23745 m, d = 2b, t = 0.1 m, a = 0.7887 m, e = 0.6431 m).

[Dai and Zhang 2008] SwiftComp NIAH

square holes 5.669 5.576 5.576
circular holes 5.176 5.537 5.554

cross-shaped holes 5.486 5.805 5.891
hexagonal holes 2.875 2.888 2.886

Table 2. Effective beam bending stiffness of sandwich beams predicted by different
methods (all units are 1010 N·m2).

only bending stiffnesses are given. In fact, the effective stiffness for the classical beam model in general
should be represented by a fully populated 4× 4 matrix. This example is also studied in [Yi et al. 2015]
using a novel finite implementation of the asymptotic homogenization theory applied to beams. The
effective bending stiffnesses predicted by the analytical formulas in [Dai and Zhang 2008], those of [Yi
et al. 2015] denoted as NIAH standing for Novel Implementation of Asymptotic Homogenization, and
SwiftComp are listed in Table 2. The details of these approaches can be found in the cited references.

As can be observed, SwiftComp predictions have an excellent agreement with NIAH and are slightly
different from those in [Dai and Zhang 2008]. However, the present approach is more versatile than that
in the previous work because that paper only provides analytic formulas for the bending stiffness of beams
made of materials characterized only by one material constant, the Young’s modulus, while SwiftComp
can estimate all the engineering beam constants represented by a 4× 4 stiffness matrix (possibly fully
populated) for the most general anisotropic materials by factorizing the coefficient matrix in the linear
system (Equation (43)) only once. NIAH results are obtained using multiple runs of a commercial finite
element code, which requires much more computing time than SwiftComp.

5.3. Sandwich panel with a corrugated core. The last example is to demonstrate the application of
MSG to model plates with in-plane heterogeneities. It is a corrugated-core sandwich panel, a concept
used for Integrated Thermal Protection Systems (ITPS) studied in [Sharma et al. 2010]. The ITPS panel
along with the details of the SG is sketched in Figure 18. Both materials are isotropic with E1 = 109.36
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Figure 17. A sandwich beam with hexagonal holes.

GPa, ν1 = 0.3 for material 1, and E2 = 209.482 GPa, ν2 = 0.063 for material 2. Although 3D unit cells
are needed for the study in the previous reference, only a 2D SG is necessary for SwiftComp as it is
uniform along one of the in-plane directions. The effective stiffness for the Kirchhoff–Love plate model
can be represented using the A, B and D matrices known in CLPT. Results obtained in the previous
reference are compared with SwiftComp in Tables 3, 4 and 5. SwiftComp predictions agree very well
when compared to those results with the biggest difference (around 1%) appearing for the extension-
bending coupling stiffness (B11). However, the present approach is much more efficient because using
the approach in [Sharma et al. 2010] one needs to carry out six analyses of a 3D unit cell under six
different sets of boundary conditions and load conditions and postprocess the 3D stresses to compute the

A11 A12 A22 A33

[Sharma et al. 2010] 2.83 0.18 2.33 1.07
SwiftComp 2.80 0.18 2.33 1.08

Table 3. Effective extension stiffness of ITPS (all units in 109 N/m).

D11 D12 D22 D33

[Sharma et al. 2010] 3.06 0.22 2.85 1.32
SwiftComp 3.03 0.22 2.87 1.32

Table 4. Effective bending stiffness of ITPS (all units in 106 N·m).

B11 B13 B22 B33

[Sharma et al. 2010] −71.45 −3.36 −34.05 −71.45
SwiftComp −70.67 −3.31 −34.06 −71.42

Table 5. Effective coupling stiffness of ITPS (all units in 106 N).
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Figure 18. Sketch of the ITPS panel (left) and its SG (tT = 1.2 mm, tB = 7.49 mm,
tW = 1.63 mm, p = 25 mm, d = 70 mm, and θ = 85◦).

plate stress resultants. Using the present approach, one only needs to carry out one analysis of a 2D SG
without applying carefully crafted boundary conditions and postprocessing.

6. Conclusion

This paper developed a unified theory for multiscale constitutive modeling of composites based on the
concept of SG. The SG facilitates a mathematical decoupling of the original complex analysis of compos-
ite structures into a constitutive modeling over the SG and a macroscopic structural analysis. The MSG
presented in this paper enables a multiscale constitutive modeling approach with the following unique
features:

• Use of SG to connect microstructures and macroscopic structural analyses. Intellectually, SG en-
ables us to view constitutive modeling for structures as applications of micromechanics. Technically,
SG empowers us to systematically model complex build-up structures with heterogeneities.

• Use of VAM to avoid a priori assumptions commonly invoked in other approaches, providing the
rigor needed to construct mathematical models with excellent tradeoffs between efficiency and ac-
curacy.

• Decouple the original problem into two sets of analyses: a constitutive modeling and a structural
analysis. This allows the structural analysis to be formulated exactly as a general (1D, 2D, or 3D)
continuum, the analysis of which is readily available in commercial FEA software packages. This
also confines all approximations to the constitutive modeling, the accuracy of which is guaranteed
to be the best by the VAM.

A general-purpose computer code, called SwiftComp, was developed to implement MSG along with
several examples to demonstrate its application. This code can be used as a plug-in for commercial FEA
software packages to accurately model structures made of anisotropic heterogeneous materials using
traditional structural elements.

Although only theoretical details and implementation have been worked out for linear elastic behavior
of periodic structures for which a SG can be easily identified, the basic framework is also applicable to
nonlinear behavior of aperiodic heterogeneous structures, which are topics for future work.
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Appendix

0h is an operator matrix which depends on the dimensionality of the SG. If the SG is 3D, we have

0h =



1/
√

g1(∂/∂y1) 0 0
0 1/

√
g2(∂/∂y2) 0

0 0 (∂/∂y3)

0 (∂/∂y3) 1/
√

g2(∂/∂y2)

(∂/∂y3) 0 1/
√

g1(∂/∂y1)

1/
√

g2(∂/∂y2) 1/
√

g1(∂/∂y1) 0


, (72)

where
√

g1 =
√

g2 = 1 for plate-like structures or 3D structures;
√

g1 = 1− εy2k13+ εy3k12,
√

g2 = 1
for beam-like structures; and

√
g1 = 1+ εy3k12,

√
g2 = 1− εy3k21 for shell-like structures.

If the SG is a lower-dimensional one, one just needs to vanish the corresponding term corresponding
to the microcoordinates which are not used in describing the SG. For example, if the SG is 2D, we have

0h =



0 0 0
0 1/

√
g2(∂/∂y2) 0

0 0 (∂/∂y3)

0 (∂/∂y3) 1/
√

g2(∂/∂y2)

(∂/∂y3) 0 0
1/
√

g2(∂/∂y2) 0 0


. (73)

If the SG is 1D, we have

0h =



0 0 0
0 0 0
0 0 (∂/∂y3)

0 (∂/∂y3) 0
(∂/∂y3) 0 0

0 0 0


. (74)

0ε is an operator matrix, the form of which depends on the macroscopic structural model. If the
macroscopic structural model is the 3D Cauchy continuum model, 0ε is the 6× 6 identity matrix. If the
macroscopic structural model is a beam model, we have

0ε =
1
√

g1



1 0 εy3 −εy2

0 0 0 0
0 0 0 0
0 0 0 0
0 εy2 0 0
0 −εy3 0 0


. (75)
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If the macroscopic structural model is a plate/shell model, we have

0ε =



1/
√

g1 0 0 εy3/
√

g1 0 0
0 1/

√
g2 0 0 εy3/

√
g2 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 1/2
(

1
√

g1
+

1
√

g2

)
0 0 1/2

(
εy3
√

g1
+
εy3
√

g2

)


. (76)

Note the above expression is obtained with the understanding that the difference between κ12 and κ21 is
of higher order and negligible if we are not seeking a higher-order approximation of the initial curvatures.
0l is an operator matrix, the form of which depends on the macroscopic structural model. If the

macroscopic structural model is 3D, 0l has the same form as 0h in (72) with ∂/∂yk replaced with ∂/∂xk ,
that is

0l =



1/
√

g1(∂/∂x1) 0 0
0 1/

√
g2(∂/∂x2) 0

0 0 (∂/∂x3)

0 (∂/∂x3) 1/
√

g2(∂/∂x2)

(∂/∂x3) 0 1/
√

g1(∂/∂x1)

1/
√

g2(∂/∂x2) 1/
√

g1(∂/∂x1) 0


. (77)

Of course for 3D structures, we have
√

g1 =
√

g2 = 1.
If the macroscopic structural model is a lower-dimensional one, one just needs to vanish the corre-

sponding term corresponding to the macrocoordinates which are not used in describing the macroscopic
structural model. For example, if the macroscopic structural model is a 2D plate/shell model, we have

0l =



1/
√

g1(∂/∂x1) 0 0
0 1/

√
g2(∂/∂x2) 0

0 0 0
0 0 1/

√
g2(∂/∂x2)

0 0 1/
√

g1(∂/∂x1)

1/
√

g2(∂/∂x2) 1/
√

g1(∂/∂x1) 0


. (78)

If the macroscopic structural model is the 1D beam model, we have

0l =



1/
√

g1(∂/∂x1) 0 0
0 0 0
0 0 0
0 0 0
0 0 1/

√
g1(∂/∂x1)

0 1/
√

g1(∂/∂x1) 0


. (79)

0R is an operator matrix existing only for those heterogeneous structures featuring initial curvatures.
For prismatic beams, plates or 3D structures, 0R vanishes. For those structures having initial curvatures
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such as initially twisted/curved beams or shells, the form of 0R depends on the macroscopic structural
model. If the macroscopic structural model is a 1D beam model,

0R =
1
√

g1



k11

(
y3
∂

∂y2
− y2

∂

∂y3

)
−k13 k12

0 0 0
0 0 0
0 0 0

−k12 k11 k11

(
y3
∂

∂y2
− y2

∂

∂y3

)
k13 k11

(
y3
∂

∂y2
− y2

∂

∂y3

)
−k11


. (80)

If the macroscopic structural model is a 2D shell model,

0R =



0 −k13/
√

g1 k12/
√

g1

k23/
√

g2 0 −k21/
√

g2

0 0 0
0 k21/

√
g2 0

−k12/
√

g1 0 0
k13/
√

g1 −k23/
√

g2 0


. (81)
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MODELING AND EXPERIMENTATION OF A VISCOELASTIC
MICROVIBRATION DAMPER BASED ON A CHAIN NETWORK MODEL

CHAO XU, ZHAO-DONG XU, TENG GE AND YA-XIN LIAO

Viscoelastic (VE) dampers are widely used to attenuate structural vibration. Studies have mainly focused
on the employment of VE dampers for reducing structural vibration in normal conditions, and only a
few studies have considered the microvibration condition. In this paper, theoretical and experimental
studies on the VE microvibration damper are conducted. First, the damping mechanism of the VE
microvibration damper is analyzed from microperspectives and a mathematical model based on the chain
network model is proposed. The contributions of cross-link and free-chain network chains to the damping
characteristics of VE material are considered in this model. Second, an experimental study of the VE
microvibration damper is conducted to verify the proposed model and to reveal the dynamic properties of
the VE microvibration damper. The experimental results show that the dynamic properties of VE material
are influenced by excitation frequency and insignificantly affected by displacement amplitude, and the
VE material has good energy dissipation capacity. The proposed model is verified by comparing the
experimental data and the numerical results. The results indicate that the proposed model can accurately
describe the dynamic properties of the VE microvibration damper at different frequencies.

1. Introduction

Viscoelastic (VE) dampers are among the earliest types of passive control devices that have been suc-
cessfully utilized to reduce the structural dynamic responses induced by types of vibration excitations,
including earthquakes, wind, mechanical vibrations, human activity, etc. Owing to their advantages of
simple construction, easy manufacturing process, low cost and excellent energy dissipation capacity,
VE dampers have been widely used as vibration control devices in the fields of civil buildings, bridges,
spacecraft and machinery by researchers and engineers in recent decades [Soong and Spencer 2002;
Webster and Semke 2005; Rao 2003; Marko et al. 2006; Rashid and Nicolescu 2008].

Extensive theoretical and experimental investigations have been conducted to study the properties of
VE dampers and the effects of VE dampers on structural dynamic responses. Bergman and Hanson
[1993] tested the dynamic properties of VE dampers with different VE materials at real earthquake
excitations. Min et al. [2004] experimentally investigated the mechanical properties of VE dampers and
dynamic characteristics of a full-scale model structure with VE dampers. Xu et al. [2014] fabricated and
experimentally studied a new multidimensional high-damping earthquake isolation device with a VE
core bearing and several VE dampers. All investigations have shown that VE dampers have high energy
dissipation capacity and their dynamic properties are influenced by excitation frequency, displacement
and temperature. Thus, how to describe the dynamic properties of VE dampers at different frequencies,

Keywords: viscoelastic microvibration damper, high energy dissipation, material microstructure, chain structure model,
performance test.
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temperatures and amplitudes is an important issue. Papoulia and Kelly [1997] employed the fractional
method and additive stress decomposition to describe viscoelastic response of damping rubber materials.
Park [2001] investigated the standard mathematical model and determined that it can be efficiently used.
Lewandowski and Pawlak [2011] employed the fractional Kelvin model and the fractional Maxwell
model to describe the behavior of a VE damping structure. Xu et al. [2011] proposed the equivalent
standard solid model, which can reflect the effects of ambient temperature and excitation frequency on
VE dampers simultaneously. The mathematical models of VE dampers presented in the previous studies
can describe the dynamic behavior of VE dampers in normal conditions. Tan and Ko [2004] designed a
beam-column connection incorporated with VE dampers to suppress the vertical vibrations of long-span
beam structures induced by human activity or machinery and developed an analytical method to predict
structural behavior with the designed VE device. Moliner et al. [2012] adopted VE dampers to reduce the
resonant vibrations of simply supported high-speed railway bridges and analyzed the reduction effect of
VE dampers numerically. Saidi et al. [2011] proposed an innovative VE damper to reduce floor vibrations
caused by human activity. Previous studies have indicated that VE dampers can effectively reduce the
structural responses in normal conditions.

However, it can be found from the previous studies that the VE dampers are mainly used and inves-
tigated in the normal vibration conditions excited by earthquakes, human activity, etc. The vibration
amplitudes in these cases are larger than the microvibration displacements that will be studied in this
paper. Studies on the dynamic properties and damping effects of VE dampers under microvibration
conditions are rare and have not been reported. Microvibration is defined as the low-level mechanical
vibration created by working machinery, environmental change, etc. [Wacker et al. 2005; Zhang et al.
2011]. Microvibration downgrades the precision and lifespan of equipment and the quality of prod-
ucts. Therefore, suppressing microvibration of high-technology instruments and manufacturing facilities
with severe environmental performance requirements has drawn increasing interest from scientists and
engineers since the rapid development of technologies such as the production of semiconductors, op-
tical microscopes and laser research systems. Several devices and methods including passive control,
active control, active-passive hybrid control and semiactive control systems are improved to protect high-
precision payloads from the effects of microvibration [Liu et al. 2014; 2015]. However, how to control
structural microvibration remains a crucial issue and needs to be further investigated. Owing to the
excellent performance of VE dampers in normal conditions, employing the VE microvibration damper
to reduce structural microvibration is a good prospective application.

In order to promote application of VE microvibration dampers, the damping mechanism, mathematical
model and mechanical properties of the VE microvibration damper, which may be different from those
under normal vibration amplitude, should be investigated. The micro-macro approach to investigate
or model material properties is currently a hot topic. Li et al. [2012] proposed a predictive multiscale
computational framework to study the viscoelastic properties of polymeric materials. In their study, the
scale from nano to meso was bridged by a coarse-grained model, whereas the scale from micro to macro
was bridged by a developed continuum constitutive law. Tang et al. [2012] presented a two-scale theory
for the nonlinear viscoelasticity of elastomeric materials and used this theory to describe the physical
phenomena of materials from microperspectives. Tomita et al. [2006] developed a computational model
to represent the behavior of carbon-black-filled rubber by using the homogenization method, which can
consider the changes of the chain entanglement. Miehe and Göktepe [2005] proposed a new constitutive
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framework of finite viscoelasticity for rubber-like materials by introducing two key microkinematics
associated with the free-chain motion and its network constraints. The aforementioned studies considered
the effects of material microstructures on the mechanical properties of VE materials and implied that
the macromechanical properties of VE materials depend on the material microstructures. Nevertheless,
the aforementioned investigations mainly focused on the material static mechanical properties and are
complex for engineers to understand and use. Thus, investigating the connection of the macroscopic
dynamic properties of materials with material microstructures is important.

Consequently, in this study, the damping mechanism of VE microvibration dampers is analyzed from
microperspectives. A mathematical model based on the chain network model of VE material is proposed
to describe the dynamic properties of VE microvibration dampers under microvibration excitations. This
model can reflect the effects of cross-link and free-chain network chains on the dynamic behavior of VE
material, and the model parameters have clear physical meaning. Tests on VE microvibration dampers
are carried out under different excitation amplitudes and frequencies to reveal the dynamic behavior of
VE microvibration dampers and to verify the proposed model. The experimental results show that the VE
microvibration damper has good energy dissipation capacity and the dynamic properties of VE micro-
vibration dampers are significantly influenced by excitation frequency under microvibration conditions.
Comparison between the experimental data and the numerical results indicates that the proposed model
can accurately describe the dynamic properties of VE microvibration damper.

2. Damping mechanism and mathematical model of the VE microvibration damper

An accurate mathematical model is always essential to describe the dynamic characteristics of the VE
microvibration damper and to analyze the structural dynamic responses of structures with VE micro-
vibration dampers. In this section, the damping mechanism of the VE damper is first analyzed from
microperspectives and a mathematical model based on the chain network model of VE material is then
proposed.

2.1. Damping mechanism of the VE microvibration damper. The macroscopic mechanical behavior of
materials mainly depends on the material microstructure characteristics, including the quantity, properties
and spatial distribution of the microstructures [Ward and Hadley 1993; Gabriel and Münstedt 2002]. For
VE material, the elastic properties, viscoelastic properties and other properties are dependent on the
properties of the molecular chain structures within the VE material. The present work focuses on the
dynamic viscoelastic properties of VE material and their relationship with material microstructures.

The deformations of elastomeric materials can be decomposed into two parts, namely, the deforma-
tions of cross-link network chains and the deformations of free-chain network chains, when static vis-
coelastic properties of VE solids are investigated [Tang et al. 2012; Miehe and Göktepe 2005]. Analogous
to this method, VE material microstructure can be abstracted as molecular chain structure, as shown in
Figure 1. Two different molecular chain structures can be observed: one is the chain network caused by
the cross-linking effect, and the other is the superimposed free chains that exist in VE material. The for-
mer is mainly considered to contribute to the elastic properties of the VE material, which can transmit the
stress induced by material deformation. The latter contributes to the viscous properties that will dissipate
energy. The molecular chain structures of polymer materials are complex, and the real structure of the
materials is difficult to describe by using an accurate mathematical model. The hyperelastic properties of
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Figure 1. Microstructure and the model of VE material. Top left: microstructure. Top
right: eight-chain network model. Bottom left: chain structure model. Bottom right:
three-chain network model.

rubber-like materials have been investigated in the past decades, and several mathematical models based
on molecular chain structures have been proposed. Among these mathematical models are the Gaussian
chain network model and the non-Gaussian chain network model based on the statistical properties of
molecular chains [Marckmann and Verron 2006]. The properties of the two molecular chain structures
are detailed and analyzed below.

Chain network structure of VE material. Molecular chains can form a chain network by entanglement or
cross-linking effects [Svaneborg et al. 2004]. This part of molecular chains can transmit stress under an
external load and can restore to the original state by thermal motion when the external excitations unload.
The VE material will present elastic properties and restores its original shape in the macroscopic view.
Additionally, the main chain motions can also be impeded by the adjacent molecular chains and molecular
chain segments. In other words, this part of molecular chains of VE material can also exhibit viscous prop-
erties. Thus, molecular chains of this part contribute not only to the elastic property but also the viscous
property of VE material. However, the contribution to the viscous property is far less than the contribution
to the elastic property. Hence, the elastic property of the chain network is mainly considered in this part.

The eight-chain network model is employed to study the chain network structure, as shown in Figure 1,
top right. The eight molecular chains link at the cube center and extend to the eight corners. The
structure has a strong symmetry, and the cross-linking point is always at the center location during
deformation. Hence, each molecular chain has the same elongation ratio during deformation. The eight-
chain network model can better depict the superelastic properties of VE materials in several deformation
patterns. Therefore, the eight-chain network model is employed in this part.

As mentioned previously, a single molecular chain of the chain network represents strong elastic
properties and weak viscous properties. In short, it exhibits viscoelastic properties. At present, the
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models that can describe the viscoelastic properties mainly including the Maxwell model, Kelvin model,
standard linear solid model, etc. The linear viscoelastic solid model is employed to characterize the
mechanical properties of a single molecular chain in the eight-chain network model, as shown in Figure 1,
top right. This model can represent the asymptotic and transient elastic responses of the material, which
is in accordance with the performance of the molecular chains studied in the eight-chain network model.

According to the standard linear solid model shown in Figure 1, top right, the force-displacement
relationship of a single molecular chain in the model can be directly written as

Fs1 =
k1
(
k2+ c2

d
dt

)
(k1+ k2)+ c2

d
dt

1x . (1)

We can assume that the deformation is a periodic dynamic variable to simplify the formula and compare
it with test data that are in frequency domain. Then let d

dt = jω and substitute it into (1), which results in

Fs1 =
k1(k2+ jωc2)

(k1+ k2)+ jωc2
1x = Es11x, (2)

where k1, k2 and c2 are the elastic and viscous coefficients of the chain and are determined by the test
data, 1x is the deformation of the single chain, Fs1 is the force of the single chain corresponding to the
deformation and ω is the angular frequency of the alternating stress (or strain) applied on VE material.

According to the polymer thermodynamic theory, the conformations of molecular chain structure are
in random spatial distribution due to the thermal motion of polymer chains. In other words, the length dis-
tributions and end-to-end distances of the chains cannot be accurately represented. Therefore, Gaussian
chains and non-Gaussian chains are proposed based on the statistical properties of the molecular chain
when analyzing the hyperelastic properties of rubber-like materials. In this study, the end-to-end distance
of the molecular chain is considered as a parameter fitted by the test data to simply the formula derivation.

By introducing the concept of end-to-end distance of a molecular chain, the force-displacement rela-
tionship of a single molecular chain can be rewritten as

Fs1 =
k1(k2+ jωc2)

(k1+ k2)+ jωc2
(r − r0s)= Es1(r − r0s), (3)

where r and r0s denote the end-to-end distances of the molecule chain after and before the deformation,
respectively. Thus, the strain energy of a single chain during deformation can be determined by

ϕs1 = Fs1(r − r0s)=
1
2 Es1(r − r0s)

2. (4)

For the eight-chain network model, the cube volume before and after the deformation can be consid-
ered the same in the microvibration condition. Accordingly, the cube volume shown in Figure 1, top right,
can be written as V = 8

9

√
3r3

0s and the mechanical energy of a single chain per volume can be written as

φs1 =
ϕs1

V
=

3
√

3
2r3

0s

·
1
8 Es1 · (r − r0s)

2. (5)

Free chain structure of VE material. In addition to the chain network structure, there is a part of chains
of VE material that do not involve the formation of the network structure. This part of chains is called
the free chain, which includes the superimposed free chains and the side chains of the main molecular
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chains. This portion of the molecule chains represents viscous properties with weak elastic properties
since these chains lack constraint from the other chains.

The three-chain network model is employed to describe the effect of this part of molecular chains on
characteristics of VE material. The three-chain network model is also based on statistical properties of
molecular chains. The three chains linked at one corner of the cube extend to three mutually orthogo-
nal edges, and affine deformation occurs during the deformation of VE material. This model can also
represent the superelastic properties of VE material at certain deformation patterns. Moreover, we adopt
the three-chain network model since it is convenient to connect with the above-mentioned eight-chain
network model to establish the final mathematical model of the VE microvibration damper, as shown in
Figure 1, bottom left.

The Maxwell model is adopted to represent the mechanical properties of a single molecular chain of
the three-chain network model. The Maxwell model can capture well the rheological properties of the
material, which is in accordance with the properties of the molecular chains in the three-chain network
model, as shown in Figure 1, bottom right. The force-displacement relationship of a single molecular
chain can be directly written as

Fc1 =
k3 · jωc3

k3+ jωc3
(r − r0c)= Ec1(r − r0c), (6)

where k3 and c3 are the elastic and viscous coefficients, respectively, of the chain and are determined
by the test data, ω is the angular frequency of the alternating stress (or strain) and r and r0c denote the
end-to-end distances of chains after and before the deformation, respectively. Hence, the strain energy
of a single chain during deformation can be determined by

ϕc1 = Fc1(r − r0c)=
1
2 Ec1(r − r0c)

2. (7)

For this three-chain network model, the cube volume, as shown in Figure 1, bottom right, is V = r3
0c,

the deformation of the three chains of the model is not the same and the average mechanical energy of
a single chain of the model is ϕc1 =

1
2 ·

1
3

∑3
i=1 Ec1 · (ri − r0c)

2; therefore, the mechanical energy of a
single chain per volume can be written as

φc1 =
ϕc1

V
=

1
2r3

0c

·
1
3

3∑
i=1

Ec1 · (ri − r0c)
2. (8)

2.2. Chain structure model of the VE microvibration damper. The preceding discussion indicated that
the mechanical properties of VE material or dampers are determined by the two types of microscopic
chain structures, namely, the network chains and the free chains. Based on the mechanical properties
of the microscopic chain structure and the multiscale analysis method, a mathematical model based
on the material chain network model is proposed to describe the dynamic characteristics of the VE
microvibration damper.

The total energy of the VE material per volume can be considered the sum of the energy of the two
parts of chain structures and can be expressed as

φ = ns1φs1+ nc1φc1, (9)



MODELING AND EXPERIMENTATION OF A VISCOELASTIC MICROVIBRATION DAMPER 419

where ns1 and nc1 are the numbers of the network chains and free chains per volume, respectively. Then
the true stress can be expressed as

σi = λi
∂φ

∂λi
(i = 1, 2, 3), (10)

where λi is the stretch ratio of the material in the i-th direction (i = 1, 2, 3), as shown in Figure 1,
bottom left.

The deformations of the molecular chains of the material are assumed to comply with the law of affine
deformation. Therefore, the macroscopic deformations of material and the deformations of molecular
chain conformations can be connected by

r = F · r0, (11)

where F is the deformation gradient corresponding to the deformation pattern. In this study, the simple
deformation pattern, uniaxial deformation, is considered. For the uniaxial deformation (in the 1-axis),
the deformation gradient can be expressed as

F = λ1e1⊗ e1+ λ
−1/2
1 e2⊗ e2+ λ

−1/2
1 e3⊗ e3. (12)

So the following expression can be derived with the combination of (11) and (12):

|r − r0|
2
= [(λ1− 1)2+ (λ2− 1)2+ (λ3− 1)2]r2

0 . (13)

Therefore, the true stress-strain formula can be gained from (10) as

σi = λi
ns13
√

3
8r0s

Es1(λi − 1)+ λi
nc1

3r0c
Ec1(λi − 1) (i = 1, 2, 3). (14)

Assuming that the alternating strain ε1 = ε0 sin(ωt) is along the 1-axis, (14) can be rewritten as

σ1 = λ1
ns13
√

3
8r0s

Es1(λ1− 1)+ λ1
nc1

3r0c
Ec1(λ1− 1)

= ε1
ns13
√

3
8r0s

Es1(ε1+ 1)+ ε1
nc1

3r0c
Ec1(ε1+ 1)

= ε2
1

(
ns13
√

3
8r0s

Es1+
nc1

3r0c
Ec1

)
+ ε1

(
ns13
√

3
8r0s

Es1+
nc1

3r0c
Ec1

)
. (15)

In this study, the dynamic properties of VE microvibration dampers are only considered in the micro-
vibration condition, and the strain amplitude is small during the deformation. Hence, the square of the
strain ε2

1 is small and can be ignored without affecting the accuracy of the formula. Equation (15) can
be transformed into

σ1 = ε1

(
ns13
√

3
8r0s

Es1+
nc1

3r0c
Ec1

)
= Eε1. (16)

The VE material always undergoes shear deformation when the VE damper works under external
vibration excitation. The relationship between shear stress and shear strain is expressed as

τ = Gγ, (17)
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where G is the shear modulus of the VE material, τ is the shear stress and γ is the shear strain. The
relationship between shear modulus G and elasticity modulus E can be expressed as G = E/2(1+µ),
where µ is the Poisson ratio of the VE material and is approximately 0.5 for the incompressible materials,
such as rubber-like materials. Hence, the shear modulus can be gained from elasticity modulus E . The
shear modulus G has a complex form and can be decomposed into two parts: imaginary part Im G and
real part Re G. The real part denotes the storage modulus of VE material, and the ratio of the imaginary
part and real part is defined as the loss factor of VE material. The complex modulus G can be written as

G = 1
3 E =

1
3

(
ns13
√

3
8r0s

Es1+
nc1

3r0c
Ec1

)
=

ns1
√

3
8r0s

(
k2

1k2+ k1k2
2 + k1ω

2c2
2

(k1+ k2)2+ω2c2
2
+ j

k2
1ωc2

(k1+ k2)2+ω2c2
2

)
+

nc1

9r0c

(
k3ω

2c2
3

k2
3 +ω

2
3c2

3
+ j

k2
3ωc3

k2
3 +ω

2c2
3

)
. (18)

Hence, the storage modulus and loss factor can be expressed as
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k2
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)
,

η =
G2

G1
.

(19)

Equation (19) is the proposed model, which can describe the storage modulus and loss factor of the
VE microvibration damper. The parameters of this model have been interpreted in the previous parts.
The proposed model can describe the dynamic properties of VE microvibration dampers from micro-
perspectives, and the model parameters have clearly physical meanings, which are related to the material
microstructures. Additionally, the effect of displacement amplitude on properties of VE microvibration
dampers is not considered under microvibration from the model-establishing process.

3. Experimental study and model verification of the VE microvibration damper

In order to verify the proposed model and investigate the dynamic properties of VE microvibration
dampers, tests on VE microvibration dampers are carried out at different excitation frequencies and dis-
placement amplitudes. The test results are analyzed and compared with the numerical results calculated
by the proposed model in this section.

3.1. Test procedure. The VE microvibration damper tested in this paper is a kind of double-sandwich
damper, as shown in Figure 2, which is manufactured by vulcanization bonding of two VE layers among
three parallel steel plates. The VE layers undergo nearly pure shear deformation while the middle steel
plate and the two lateral steel plates move in the opposite direction during the tests. Then, the VE material
can dissipate the vibration energy by converting the energy into heat and dispersing it into air. The key
dimension information of the tested VE microvibration damper is provided in Figure 2.
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Figure 2. VE microvibration damper. Left: configuration schematic (mm units). Right:
specimen photo.

The performance tests on the VE microvibration damper have been conducted in a 10 kN servo-
hydraulic testing machine in the Center of Mechanics Experiment, Nanjing University of Science and
Technology, as shown in Figure 3. The test machine is manufactured by the Walter+Bai Testing Ma-
chines Corporation and is sufficiently accurate to test the VE microvibration damper at microvibration
amplitudes. During the tests, the machine is controlled through the displacement control mode. The tests
are conducted under the ambient temperature of 12 ◦C.

In each condition, the test on the VE damper is carried out with serial cycles of sinusoidal excitation
with fixed displacement amplitude and excitation frequency. The displacement excitation and loading
data are recorded by the computer and the control system. The cycle number of the excitation is selected
to obtain steady hysteresis curves and would vary at different conditions. The excitation displacements
and frequencies are selected with comprehensive consideration of the equipment capacity and the work-
ing conditions of the VE microvibration damper. The loading conditions are given in the first two columns
of Table 1. Enough cycles were used to gain the stable single force-displacement hysteresis curve data.

computer

Servo system

Viscoelastic 

damper

controller

thermometer

Figure 3. Performance tests on the VE microvibration damper.
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Displacement Storage Loss Equivalent Equivalent Energy
Frequency amplitude modulus factor stiffness damping dissipation

(Hz) (µm) G1 (MPa) η Ke (KN/m) Ce (N·s/m) Ed (N·m)

100 1.0000 0.2667 600.00 254647.91 0.0050
150 0.9778 0.2727 586.67 254647.91 0.0113

0.1 200 0.9417 0.2655 565.00 238732.42 0.0188
250 0.8733 0.2672 524.00 222816.92 0.0275
300 0.8667 0.2692 520.00 222816.92 0.0396

100 1.1833 0.3099 710.00 70028.18 0.0069
150 1.1889 0.2897 713.33 65784.04 0.0146

0.5 200 1.2333 0.2973 740.00 70028.18 0.0276
250 1.0733 0.3478 644.00 71301.42 0.0440
300 1.1167 0.3383 670.00 72150.24 0.0641

100 1.3500 0.3333 810.00 42971.84 0.0085
150 1.4222 0.3281 853.33 44563.38 0.0198

1.0 200 1.3750 0.3636 825.00 47746.48 0.0377
250 1.2600 0.3915 756.00 47109.86 0.0581
300 1.2556 0.3938 753.33 47215.97 0.0839

100 1.5667 0.4149 940.00 31035.21 0.0123
150 1.5333 0.4420 920.00 32361.51 0.0287

2.0 200 1.5333 0.4457 920.00 32626.76 0.0515
250 1.4200 0.4695 852.00 31830.99 0.0785
300 1.4222 0.4609 853.33 31300.47 0.1112

100 1.8667 0.6071 1120.00 21645.07 0.0214
150 1.8667 0.5952 1120.00 21220.66 0.0471

5.0 200 1.8167 0.6055 1090.00 21008.45 0.0829
250 1.7200 0.6008 1032.00 19735.21 0.1217
300 1.7556 0.5981 1053.33 20053.52 0.1781

100 2.0833 0.6880 1250.00 17109.16 0.0270
150 2.1667 0.6462 1300.00 16711.27 0.0594

8.0 200 1.9833 0.7101 1190.00 16810.74 0.1062
250 1.9733 0.6858 1184.00 16154.23 0.1594
300 1.9333 0.6954 1160.00 16048.12 0.2281

100 2.1333 0.7422 1280.00 15119.72 0.0298
150 2.1667 0.7333 1300.00 15172.77 0.0674

10.0 200 2.0917 0.7570 1255.00 15119.72 0.1194
250 2.0800 0.7244 1248.00 14387.61 0.1775
300 2.0667 0.7339 1240.00 14483.10 0.2573

100 2.6833 0.9068 1610.00 11618.31 0.0459
150 2.6444 0.9034 1586.67 11406.10 0.1013

20.0 200 2.5917 0.8778 1555.00 10862.33 0.1715
250 2.5267 0.8760 1516.00 10567.89 0.2608
300 2.4389 0.9066 1463.33 10557.28 0.3751

100 2.9333 0.9125 1760.00 8063.85 0.0478
150 2.9222 0.9137 1753.33 7568.70 0.1008

30.0 200 2.8983 0.9185 1680.00 7055.87 0.1671
250 2.9012 0.9235 1579.00 7108.92 0.2631
300 2.9120 0.9320 1530.67 7427.23 0.3958

Table 1. Characteristic parameters of the VE microvibration damper.
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Figure 4. The hysteresis curves at the same frequency with different displacement am-
plitudes for f = 0.1 Hz (top left), 1.0 Hz (top right), 10.0 Hz (bottom left) and 30.0 Hz
(bottom right).

3.2. Experimental results and analysis. Force-displacement hysteresis curves of the VE microvibration
damper can be plotted with the data recorded at different excitation frequencies and amplitudes. A sin-
gle steady cycle force-displacement hysteresis curve is selected from raw force-displacement hysteresis
curves for each case, as shown in Figures 4 and 5, to distinguish force-displacement hysteresis curves
clearly and to determine the VE microvibration damper characteristics at different conditions. It can be
seen from Figures 4 and 5 that the VE microvibration damper has good energy dissipation capacity, and
the energy dissipation capacity is influenced by the excitation conditions.

Figure 4 shows the force-displacement hysteresis curves under different excitation amplitudes at the
excitation frequencies of 0.1 Hz, 1.0 Hz, 10.0 Hz and 30.0 Hz, and Figure 5 shows the force-displacement
hysteresis curves under different excitation frequencies at the excitation amplitudes of 100µm, 150µm,
200µm and 300µm. It can be clearly seen from Figures 4 and 5 that the slope and width of the
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Figure 5. The hysteresis curves at the same displacement amplitude with different fre-
quencies for d = 100µm (top), 200µm (middle) and 300µm (bottom).

hysteresis curves increase obviously with increasing excitation frequency, whereas they slightly vary
with the excitation amplitude. The area of the hysteresis curves increases with increasing frequency and
amplitude. The slope, the width and the area of the hysteresis curves are considered to be correlated with
the stiffness and the energy dissipation capacity of the VE microvibration damper, which are affected by
excitation frequency and amplitude. The effects of excitation conditions on VE microvibration damper
characteristics will be discussed in detail in the following.
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Figure 6. Force-displacement hysteresis curve.

The dynamic characteristics of the VE microvibration damper, including the storage modulus G1, the
loss factor η, the equivalent stiffness Ke, the equivalent damping Ce and the energy dissipation Ed , can
be determined by force-displacement hysteresis curves. Figures 4 and 5 show that the force-displacement
hysteresis curves are elliptical. This phenomenon can be illustrated by the following procedure, and the
dynamic characteristics of the VE microvibration damper are obtained from the test data.

In the tests, the input displacement signal is sinusoidal excitation displacement ud = u0 sinωt (u0 and ω
are the amplitude and circular frequency of excitations, respectively). The relationship between the force
and displacement of the VE damper under sinusoidal excitation can be expressed as(

Fd − Kdud

ηKd1u0

)2

+

(
ud

u0

)2

= 1, (20)

where Fd and ud are the force and displacement of the VE damper, respectively, as shown in Figure 6.
Fm and u0 are the maximum force and maximum displacement of the damper, respectively. F1 is the
corresponding force at the maximum displacement u0, and F2 is the corresponding force at zero displace-
ment and F2 = ηKd1u0. Kd1 is the storage stiffness, and Kd1 = F1/u0. In accordance with vibration
mitigation theory of VE devices [Xu et al. 2011], the storage modulus G1, the loss factor η and the
energy dissipation Ed can be obtained by

G1 =
F1hv

nvAvu0
, (21)

η =
F2

F1
, (22)

Ed =
πnvηG1 Avu2

0

hv
, (23)

where F1 and F2 can be gained from the force-displacement hysteresis curves, nv is the number of VE
layers and Av and hv are the shear area and thickness of each VE layer, respectively. Av , hv and nv can
be determined from the construction of the VE damper, as shown in Figure 2. Further, the equivalent
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stiffness Ke and the equivalent damping Ce of the VE damper can be calculated by

Ke =
nvG1 Av

hv
=

F1

u0
, (24)

Ce =
nvηG1 Av
ωhv

=
F2

ωu0
. (25)

Then the storage modulus G1, the loss factor η, the energy dissipation Ed , the equivalent stiffness Ke

and the equivalent damping Ce of the VE damper in each test can be obtained through expressions (21)–
(25). The detailed results are listed in Table 1, which indicates that the dynamic characteristics of the
VE damper vary with excitation frequency and displacement amplitude. Therefore, these characteristics
are affected by excitation frequency and displacement amplitude. The details are provided below.

Effect of excitation frequency. In order to vividly analyze the effect of excitation frequency on the dy-
namic characteristics of the VE microvibration damper, the storage modulus G1, the loss factor η, the
equivalent stiffness Ke, the equivalent damping Ce and the energy dissipation Ed of the VE micro-
vibration damper under different frequencies at the fixed displacement are plotted in Figure 7.

With increasing frequency, the storage modulus G1 and the loss factor η, which are the most important
dynamic properties of the VE microvibration damper, rise as shown in Figure 7, top. The properties
increase dramatically at low frequency range while slowly at high frequency range. Take the displace-
ment amplitude of 250µm for example; at the low frequency range, the storage modulus G1 increases
from 0.8733 MPa to 1.0733 MPa by 22.90% and 1.0733 MPa to 1.2600 MPa by 17.39% when the fre-
quency increases from 0.1 Hz to 0.5 Hz and 0.5 Hz to 1.0 Hz, respectively. While at the high frequency
range, the storage modulus G1 increases from 2.0800 MPa to 2.5267 MPa by 21.48% and 2.5267 MPa to
2.9012 MPa by 14.82% when the frequency increases from 10 Hz to 20 Hz and 20 Hz to 30 Hz. The same
phenomena can be observed for the loss factor η; at the low frequency range, it increases from 0.2672 to
0.3478 by 30.16% and 0.3478 to 0.3915 by 12.56% when the frequency increases from 0.1 Hz to 0.5 Hz
and 0.5 Hz to 1.0 Hz. While at the high frequency range, it increases from 0.7244 to 0.8760 by 20.93%
and 0.8760 to 0.9235 by 5.42% when the frequency increases from 10 Hz to 20 Hz and 20 Hz to 30 Hz.

The equivalent stiffness Ke and the equivalent damping Ce are also important properties of the VE
microvibration damper and are directly utilized in the dynamic response analysis of VE damping struc-
tures. It can be clearly seen from Figure 7, middle, that the equivalent stiffness Ke and the equivalent
damping Ce are significantly affected by excitation frequency, especially for the equivalent damping
Ce, which sharply varies with excitation frequency. As shown in Figure 7, middle left, the equivalent
stiffness Ke increases with the increase of frequency at the fixed displacement amplitude. The variation
of the equivalent stiffness Ke is almost the same as that of the storage modulus G1. Similarly, take
the displacement amplitude of 250µm for example; the equivalent stiffness Ke increases by 22.91%,
17.38%, 21.48% and 14.72% when the frequency increases from 0.1 Hz to 0.5 Hz, from 0.5 Hz to 1.0 Hz,
from 10 Hz to 20 Hz and from 20 Hz to 30 Hz, respectively. Obviously, it can be seen that the change per-
centages are nearly the same as those of the storage modulus G1. This similarity can be easily illustrated
by using (24), which indicates that the equivalent stiffness is proportional to the storage modulus while
other parameters are constant for a given VE damper. However, the equivalent damping Ce sharply
decreases with increasing frequency, as shown in Figure 7, middle right. These variation laws of the
equivalent damping with frequency can be explained by using (25). From (25), the equivalent damping
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Figure 7. Dynamic parameters vary with frequency.

is proportional to ω−1 (ω = 2π f ), which means that the equivalent damping will decrease exponentially
with increasing frequency.

The energy dissipation Ed , which is referred to as the energy dissipated by the VE microvibration
damper at a single cycle during the test, is the direct index that represents the energy dissipation capacity
of the VE microvibration damper. Figure 7, bottom, shows that the energy dissipation Ed rises with
increasing frequency similar to the storage modulus G1and the loss factor η. At the low frequency range,
the energy dissipation Ed increases rapidly, whereas it increases gently at the high frequency range.
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Figure 8. Dynamic parameters vary with displacement amplitude.

Effect of displacement amplitude. Similarly, the effects of excitation displacement amplitude on the dy-
namic characteristics of the VE microvibration damper are also vividly analyzed by depicting the storage
modulus G1, the loss factor η, the equivalent stiffness Ke, the equivalent damping Ce and the energy
dissipation Ed under different excitation amplitudes in Figure 8.

The characteristics of the VE microvibration damper, except for the energy dissipation Ed , slightly
change with increasing excitation displacement amplitude. Figure 8, top left, shows that the storage
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Frequency (Hz) Experimental value Model calculation Errors
G1 (MPa) η G1 (MPa) η G1 η

0.1 0.9417 0.2655 0.8603 0.2032 8.64% 23.45%
0.5 1.2333 0.2973 1.0550 0.2565 14.46% 13.70%
1.0 1.375 0.3636 1.1839 0.4112 13.90% 13.10%
2.0 1.5333 0.4457 1.3916 0.5256 10.11% 16.95%
5.0 1.8167 0.6055 1.9774 0.6597 8.85% 8.97%
8.0 1.9833 0.7101 2.1768 0.6747 9.76% 4.98%

10.0 2.0917 0.757 2.4172 0.6800 15.56% 10.16%
20.0 2.5917 0.8778 2.5203 0.8251 2.75% 6.00%
30.0 2.8983 0.9185 2.6226 1.0845 9.51% 18.08%

Table 2. Comparison between experimental and numerical results.

modulus G1 slightly reduces with increasing displacement amplitude within the test frequency ranges
while the loss factor η almost keeps constant with the increasing displacement amplitude, as shown
in Figure 8, top right. The experimental data of frequency of 8 Hz are employed for the following
analyses. The maximum changes are approximately 8.46% and 6.08% for the storage modulus and the
loss factor when the displacement amplitude increases from 150µm to 200µm, respectively. In addition,
the equivalent stiffness Ke and the equivalent damping Ce gently change with the increasing displacement
amplitude, as shown in Figure 8, middle. The maximum changes of the equivalent stiffness and the
equivalent damping are 8.46% and 4.08%, respectively. However, the energy dissipation Ed obviously
increases with the increase of amplitude, as shown in Figure 8, bottom. This phenomenon can easily
be explained by (23), which demonstrates that the energy dissipation is proportional to the square of
displacement. Hence, the displacement amplitude has a significant effect on the energy dissipation. It
can be concluded from the analyses that the displacement amplitude has an insignificant effect on the
properties of the VE microvibration damper except for the energy dissipation.

The above analyses indicate that the storage modulus G1 and the loss factor η are the basic charac-
teristics of the VE microvibration damper and the other characteristics depend on these characteristics.
The excitation frequency has a significant effect on the characteristics of the VE microvibration damper
while the excitation displacement amplitude does not have such an effect. Overall, the analysis results
are in accordance with the results shown in force-displacement hysteresis curves.

3.3. Model verification. The experimental data of the VE microvibration damper are compared with
the numerical results to verify the accuracy of the model proposed in the previous section. Firstly, the
parameters of the mathematical model are determined by using part of the experimental data. And then
the storage modulus G1 and the loss factor η of the VE microvibration damper are calculated by the
model with determined parameters and compared with the experimental data. The conclusion that the
displacement amplitude has only a slight effect on the dynamic properties of VE material has been
gained from the test results and the derivation of the mathematical model. Hence, the experimental data
at the displacement of 200µm are used in this section. The nonlinear least squares method is used to
determine the parameters. By optimizing min F(x) in (26) with the storage modulus G1 and the loss
factor η at five different frequencies (randomly selected), the parameters of the mathematical model are
determined as k1 = 2.82×10−4, k2 = 1.35×10−5, c2 = 5.71×10−9, k3 = 3.31×10−8, c3 = 1.25×10−4,
ns1 = 2.53×1014, nc1 = 1.76×109 and r0s = r0c = 1.71×10−4. The experimental and numerical results
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Figure 9. Experimental and numerical results comparison under different frequencies.

are listed in Table 2. Additionally, the absolute errors of the experimental and numerical results are also
calculated and listed in Table 2. Here

F(ω)= [α((G1(ω)−G0
1(ω))/G1(ω))

2
+β((η(ω)− η0(ω))/η(ω))2], (26)

where α and β are the weighting factors, α + β = 1, G1(ω) and η(ω) are the experimental storage
modulus and loss factor, respectively and G0

1(ω) and η0(ω) are the numerical results.
To clearly analyze the availability of the proposed model, the storage modulus G1 and the loss factor η

of the experimental data and the numerical results of the VE microvibration damper at different frequen-
cies are shown in Figure 9. The proposed model can describe the characteristics of VE microvibration
dampers well. Figure 9, left, shows that the numerical results are in good agreement with the experimental
results for the storage modulus and the error is less than 15.56%. As for the loss factor, the numerical
results are in agreement with experimental results and the maximum error is less than 20% as shown in
Figure 9, right. The microstructures of VE material are complex, and the chain network models are sim-
plified models to describe the molecular chain structure of VE material. In this study, the mathematical
model is proposed based on the chain network model and cannot exactly capture the effect of the real
microstructure of VE material on mechanical behavior. For instance, the molecular chains interaction is
not considered in this model. The effects of other constituents on VE material are also not considered. In
addition, the servo-hydraulic testing machine used in the test may not be precise enough and the effects
of other factors, such as environmental vibration, during the test are not considered. However, the errors
between the numerical results and the test data are within the acceptable region. Therefore, this model
is precise enough to describe the dynamic properties of the VE microvibration damper within the test
frequency ranges.

4. Conclusions

In the present paper, the damping mechanism of VE microvibration dampers is analyzed from micro-
perspectives and a mathematical model based on the chain network model is proposed to describe the
dynamic behavior of the VE microvibration damper. The dynamic properties of the VE microvibration
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damper are tested and analyzed. Comparison between experimental data and model numerical results is
carried out to verify the proposed model. Several conclusions can be obtained through the investigation:

• The mathematical model proposed in this paper can describe the dynamic properties of VE micro-
vibration damper well. Additionally, the model parameters have clear physical meaning and are
related to the material microstructures.

• The force-displacement hysteretic loops of the VE microvibration damper are fully elliptical, and it
demonstrates that the VE microvibration damper has good energy dissipation capabilities.

• The excitation frequency has a significant effect on the dynamic properties of the VE microvibration
damper, whereas the displacement amplitude has only a slight influence. The storage modulus G1,
the loss factor η, the equivalent stiffness Ke and the energy dissipation Ed increase with increasing
frequency while the equivalent damping Ce decreases.
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AN ANISOTROPIC PIEZOELECTRIC HALF-PLANE CONTAINING AN
ELLIPTICAL HOLE OR CRACK SUBJECTED TO UNIFORM IN-PLANE

ELECTROMECHANICAL LOADING

MING DAI, PETER SCHIAVONE AND CUN-FA GAO

We derive a series solution for the electro-elastic field inside an anisotropic piezoelectric half-plane
containing an elliptical hole or a crack when the half-plane is subjected to in-plane mechanical and
electric loadings. Our solution is based on a specific type of conformal map which allows for the mapping
of a complete half-plane (without a hole) onto the interior of the unit circle in the imaginary plane.
We illustrate our solution with several examples. We show that with decreasing distance between the
hole and the edge of the half-plane, the maximum hoop stress around the hole increases rapidly under
mechanical loading but slowly in the presence of electric loading. In particular, for a crack with particular
orientation in a piezoelectric half-plane subjected to pure shear, we find that the mode-II stress intensity
factor at the crack tip farthest from the edge of the half-plane may decrease as the crack approaches
the edge. Moreover, if the distance between the crack or the elliptical hole and the edge of the half-
plane exceeds four times the size of the hole or semi-length of the crack, the half-plane can be treated
essentially as a whole plane without inducing significant errors in the stress concentration around the
hole or in the stress and electric displacement intensity factors at the crack tips.

1. Introduction

Piezoelectric materials have been used widely in electronic and mechatronic devices due to their pro-
nounced electromechanical coupling properties. However, since various defects (e.g. pores, micro-cracks
or inclusions) often arise in the manufacture of piezoelectric materials, high stress and/or electric field
concentrations may be induced near defects when the material is subjected to mechanical and/or elec-
tric loading. This, in turn, may cause crack initialization/growth, dielectric breakdown, fracture and
ultimately failure [Zhang and Gao 2004]. In an effort to predict the reliability of piezoelectric devices,
problems involving the prediction of electro-elastic fields (including stress and electric field concen-
trations) in piezoelectric materials containing holes or inclusions have attracted tremendous attention
in the literature. In the context of two-dimensional deformations, researchers have examined problems
involving the anti-plane shear of an isotropic plane of the piezoelectric material subjected to out-of-plane
shear loading and in-plane electric loading as well as plane strain or plane stress problems corresponding
to an anisotropic plane of the piezoelectric material subjected to both in-plane mechanical and electric
loading. In the case of anti-plane shear, analytical results have been obtained not only for the case of
an elliptical hole/inclusion [Pak 2010; Guo et al. 2010] but also for an arbitrarily-shaped hole/inclusion
[Shen et al. 2010; Wang and Zhou 2013; Wang et al. 2015]. Problems involving plane strain or plane
stress are rather more challenging with analytical methods available only when the hole/inclusion is

Keywords: elliptical hole, crack, piezoelectric material, half-plane.
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elliptical [Sosa 1991; Sosa and Khutoryansky 1996; Chung and Ting 1996; Qin 1998; Gao and Fan 1999;
Wang and Gao 2012] (see, in particular, the explanation in [Ting 2000]) with most studies resorting to
approximate methods to deal with cases of non-elliptical holes/inclusions [Dai and Gao 2014].

In many piezoelectric systems (structures or composites), it is common for holes or inclusions to
appear near an edge. This suggests that the system could be adequately modelled as a half-plane (rather
than a whole plane) containing holes or inclusions. In this context, Ru [2000] and Pan [2004] have
obtained exact solutions for a piezoelectric half-plane containing an arbitrarily-shaped inclusion and a
polygonal inclusion with uniform eigenstrains, respectively. However, in both of [Ru 2000; Pan 2004],
the solutions require that the inclusion has the same material constants as those of its surrounding piezo-
electric matrix (this essentially prevents the inclusion from degenerating into a hole). Kaloerov and
Glushchenko [2001] derived an approximate solution for a piezoelectric half-plane with holes or cracks
using a collocation method to deal with the boundary conditions on the holes/cracks. It is well-known,
however, that collocation methods often produce unsatisfactory and imprecise results with convergence
often becoming unstable with an increasing number of collocation points resulting in the possibility that
the corresponding boundary conditions are not well-satisfied. Based on the fundamental solution for a
dislocation in a piezoelectric half-plane, Yang et al. [2007] obtained a general solution for a crack in a
piezoelectric half-plane with a traction-induction free surface by modeling the crack using continuously
distributed dislocations. However, it is extremely difficult to extend the method in [Yang et al. 2007] to
deal with the equally significant case of a hole in a half-plane. In particular, we mention that, despite
the fact that an internal electric field inside the hole or crack may induce a significant impact on the
surrounding electro-elastic field and subsequently on the fracture behavior of the corresponding materials
(see [Sosa and Khutoryansky 1996; Gao and Fan 1999]), the contribution of any internal electric field
remains absent from both aforementioned papers [Kaloerov and Glushchenko 2001; Yang et al. 2007].
In this paper, recognizing the above-mentioned deficiencies in the methods used previously, we develop
a new efficient method, completely distinct from those used in [Kaloerov and Glushchenko 2001; Yang
et al. 2007] to address the problem of plane strain deformations of a piezoelectric half-plane containing
an elliptical hole or crack. In particular, we incorporate the contribution of electromechanical loadings
applied on surface of the half-plane and assume that the elliptical hole is permeable to an electric field.
This further requires that we take into consideration the electric field inside the hole: an issue hitherto
absent in the problem of a general anisotropic half-plane containing an elliptical hole.

The paper is organized as follows. Basic formula and boundary conditions of the problem are presented
in Section 2. The details of a novel solution procedure are given in Section 3. In Section 4, we calculate
the stress concentration around the elliptical hole and the electro-elastic intensity factors at the crack tips.
Finally, the main results are summarized in Section 5.

2. Basic formula and boundary conditions

We refer to the standard Cartesian xy-coordinate system and consider the plane strain deformation of a
piezoelectric lower half-plane containing an elliptical hole (see Figure 1 which includes the geometrical
parameters of the hole) whose poling direction is along the positive y-axis. The elliptical hole degenerates
into a crack when the minor axis of the elliptical hole tends towards zero. It is assumed that uniform
mechanical loadings (σ∞xx , σ

∞
yy , σ

∞
xy ) and uniform electric displacement loadings (D∞x , D∞y ) are applied
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Figure 1. A piezoelectric half-plane with an elliptical hole.

both at infinity and on the edge L ′ of the half-plane and that the elliptical hole has a traction-free bound-
ary and is filled with a homogeneous gas or liquid with dielectric constant ε0. The stress components
(σxx , σyy, σxy), the electric displacement components (Dx , Dy) and the electric potential φ of the piezo-
electric half-plane can be described in terms of three complex functions ϕi (zi ) (zi = x +µi y, i = 1, 2, 3)
as [Sosa 1991]

〈σxx , σyy, σxy〉 = 2Re
{ 3∑

i=1

〈µ2
i , 1,−µi 〉ϕ

′

i (zi )

}
, (1)

〈Dx , Dy〉 = 2Re
{ 3∑

i=1

λi 〈µi ,−1〉ϕ′i (zi )

}
, (2)

φ =−2Re
{ 3∑

i=1

κiϕ
′

i (zi )

}
(3)

where the angled brackets represent vectors and the related constants (µi , λi , κi ) are determined by the
elastic constants ai j , piezoelectric constants bi j and dielectric constants ci j of the piezoelectric material
occupying the half-plane, as [Sosa 1991]

a11c11µ
6
i + (a11c22+ 2a12c11+ a33c11+ b2

21+ b2
13+ 2b21b13)µ

4
i+

(a22c11+ 2a12c22+ a33c22+ 2b21b22+ 2b13b22)µ
2
i + a22c22+ b2

22 = 0,
(4)

λi =−
(b21+ b13)µ

2
i + b22

c11µ
2
i + c22

, κi = (b13+ c11λi )µi . (5)

Here, µi (i = 1, 2, 3) are three distinct complex roots with positive imaginary parts each determined from
Equation (4). Figure 2 shows the domains of definition of the functions ϕi (zi ) (i = 1, 2, 3), respectively,
in which the curves L i in the zi -planes (i = 1, 2, 3) correspond to the hole’s boundary L in the xy-plane
while the edges L ′i in the zi -planes (i = 1, 2, 3) correspond to the edge L ′ in the xy-plane.
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Figure 2. Domain of definition of the complex functions ϕi (zi ) (i = 1, 2, 3).

The electric displacement components (D(0)
x , D(0)

y ) and electric potential φ(0) of the medium inside
the elliptical hole can be expressed in terms of a holomorphic function f (z) (z = x + I y with I denoting
the imaginary unit) by

φ(0) = Re[ f (z)], (6)

D(0)
x − I D(0)

y =−ε0 f ′(z). (7)

Using the functions ϕi (zi ) (i = 1, 2, 3) and f (z), the electro-elastic conditions on the hole’s boundary L
and on the edge L ′ of the half-plane are then described as [Sosa 1991; Sosa and Khutoryansky 1996]

2Re
{ 3∑

i=1

ϕi (zi )

}
= B

2Re
{ 3∑

i=1

µiϕi (zi )

}
= C

2Re
{ 3∑

i=1

λiϕi (zi )

}
= D− ε0Im[ f (z)]

−2Re
{ 3∑

i=1

κiϕi (zi )

}
= E +Re[ f (z)]



(zi ∈ L i , z ∈ L), (8)

2Re
{ 3∑

i=1

ϕi (zi )

}
= B ′+ σ∞yy x

2Re
{ 3∑

i=1

µiϕi (zi )

}
= C ′− σ∞xy x

2Re
{ 3∑

i=1

λiϕi (zi )

}
= D′− D∞y x


(zi ∈ L ′i , x ∈ L ′) (9)

where B, C , D, E , B ′, C ′ and D′ are real constants to be determined (although they do not influence the
final electro-elastic field of the half-plane). In what follows, we determine the four complex functions
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ϕi (zi ) (i = 1, 2, 3) and f (z) in their respective domains of definition from the boundary conditions (8)
and (9).

3. Solution process

3.1. Series representations of the complex functions. Noting that uniform electro-elastic loadings are
imposed at infinity and on the edge of the half-plane, the complex functions ϕi (zi ) (i = 1, 2, 3) can take
the form

ϕi (zi )= Ai zi +ϕi0(zi ), i = 1, 2, 3; (10)

where ϕi0(zi ) (i = 1, 2, 3) are holomorphic in the regions Si (i = 1, 2, 3; see Figure 2), respectively, while
the complex constants Ai (i = 1, 2, 3) are specified by the imposed electro-elastic loadings (according
to Equations (1) and (2)) as

〈σ∞xx , σ
∞

yy , σ
∞

xy 〉 = 2Re
{ 3∑

i=1

〈µ2
i , 1,−µi 〉Ai

}
,

〈D∞x , D∞y 〉 = 2Re
{ 3∑

i=1

λi 〈µi ,−1〉Ai

}
.

(11)

Here, since Equation (11) is insufficient to determine all three complex constants Ai (i = 1, 2, 3), we
can prescribe, for example, Im(A1) = 0. Note that the domain of definition Si (i = 1, 2, 3) of each
complex function ϕi0(zi ) (i = 1, 2, 3) can be interpreted as the intersection of an infinite region outside
the hole bounded by L i (i = 1, 2, 3) in the entire zi -plane (i = 1, 2, 3) and a complete lower zi -half-plane
(i = 1, 2, 3) (without a hole), so that based on the principle of superposition [Dai and Gao 2014; Dai
and Sun 2013], ϕi0(zi ) (i = 1, 2, 3) can be expressed as

ϕi0(zi )=

+∞∑
j=1

ai, jξ
− j
i +

+∞∑
j=1

bi, jη
j
i , i = 1, 2, 3; (12)

where ai, j and bi, j are some constant coefficients to be determined. We note that the ξi -plane and ηi -
plane (i = 1, 2, 3) are associated with the zi -plane (i = 1, 2, 3) by the following conformal mappings
[Lekhnitskii 1950; Copson 1935],

zi = ωi (ξi )= µi y0+
a0− Iµi b0

2
ξi +

ā0+ Iµi b̄0

2
ξ−1

i , |ξi | ≥ 1,

a0 = a cosα+ I b sinα, b0 = b cosα+ I a sinα, i = 1, 2, 3;

(13)

zi = ρ(ηi )=−I y0
ηi + 1
ηi − 1

, |ηi | ≤ 1, i = 1, 2, 3. (14)

Note that (13) maps the infinite region outside the curve L i (i = 1, 2, 3) in the entire zi -plane (i = 1, 2, 3)
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onto the exterior of the unit circle in the ξi -plane (i = 1, 2, 3), respectively, while (14) maps the complete
lower zi -half-plane (i = 1, 2, 3) onto the interior of the unit circle in the ηi -plane (i = 1, 2, 3), respectively.
In particular, when point (x, y) is located on the hole’s boundary L or on the edge L ′ in the physical
xy-plane, the arguments zi , ξi and ηi (i = 1, 2, 3) in their respective planes take the values

zi =

{
ωi (σ ), (zi ∈ L i )

ρ(σ ′)= x, (x ∈ L , zi ∈ L ′i )
, i = 1, 2, 3; (15)

ξi =

{
σ, (zi ∈ L i )

ω−1
i (ρ(σ ′)), (|ω−1

i (ρ(σ ′))|> 1, zi ∈ L ′i )
, i = 1, 2, 3; (16)

ηi =

{
ρ−1(ωi (σ )), (zi ∈ L i )

σ ′, (zi ∈ L ′i )
, i = 1, 2, 3; (17)

with
σ = eIθ , 0≤ θ ≤ 2π,

σ ′ = eIθ ′, 0≤ θ ′ ≤ 2π.
(18)

Consequently on the curves L i (i = 1, 2, 3) and L ′i (i = 1, 2, 3) in the zi -plane (i = 1, 2, 3), the com-
plex functions ϕi (zi ) (i = 1, 2, 3) can be expressed completely with respect to the arguments σ and σ ′,
respectively, as

ϕi (zi )= Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j , zi ∈ L i , i = 1, 2, 3; (19)

ϕi (zi )= Aiρ(σ
′)+

+∞∑
j=1

ai, j [ω
−1
i (ρ(σ ′))]− j

+

+∞∑
j=1

bi, j (σ
′) j , zi ∈ L ′i , i = 1, 2, 3. (20)

On the other hand, since the function f (z) is defined in the region occupied by the elliptical hole in
the physical xy-plane, it can be expanded into a Faber series such as [Dai and Sun 2013]

f (z)=
+∞∑
j=1

c j (a+ b)− j
[(

P +
√

P2− a2+ b2
) j
+

(
P −

√
P2− a2+ b2

) j
]
,

P = (z− I y0)e−Iα,

(21)

where the c j are constant coefficients to be determined. Specifically, the boundary value of f (z) on the
curve L in the xy-plane turns out to be

f (z)=
+∞∑
j=1

c j

[
σ j
+

(
a− b
a+ b

) j

σ− j
]
, σ = eIθ , z ∈ L (22)

where σ is given in Equation (18).
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3.2. Fourier expansion method. Substituting (19), (20) and (22) into the boundary conditions (8) and
(9) we obtain

2Re
{ 3∑

i=1

[
Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j
]}
= B,

2Re
{ 3∑

i=1

µi

[
Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j
]}
= C,

2Re
{ 3∑

i=1

λi

[
Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j
]}

= D− ε0Im
{ +∞∑

j=1

c j

[
σ j
+

(
a− b
a+ b

) j

σ− j
]}
,

−2Re
{ 3∑

i=1

κi

[
Aiωi (σ )+

+∞∑
j=1

ai, jσ
− j
+

+∞∑
j=1

bi, j [ρ
−1(ωi (σ ))]

j
]}

= E +Re
{ +∞∑

j=1

c j

[
σ j
+

(
a− b
a+ b

) j

σ− j
]}
,

(23)

and

2Re
{ 3∑

i=1

[ +∞∑
j=1

ai, j [ω
−1
i (ρ(σ ′))]− j

+

+∞∑
j=1

bi, j (σ
′) j
]}
= B ′,

2Re
{ 3∑

i=1

µi

[ +∞∑
j=1

ai, j [ω
−1
i (ρ(σ ′))]− j

+

+∞∑
j=1

bi, j (σ
′) j
]}
= C ′,

2Re
{ 3∑

i=1

λi

[ +∞∑
j=1

ai, j [ω
−1
i (ρ(σ ′))]− j

+

+∞∑
j=1

bi, j (σ
′) j
]}
= D′.

(24)

Note that both sides of Equations (23) and (24) can be expanded into Fourier series in σ , and σ ′, re-
spectively. Consequently, if we truncate the series in Equations (12) and (21) so that we seek only the
unknown coefficients ai, j (i = 1, 2, 3; j = 1 . . . N ), bi, j (i = 1, 2, 3; j = 1 . . .M) and c j ( j = 1 . . . N ),
equating the coefficients of σ k (k = 1 . . . N ) and (σ ′)k (k = 1 . . .M) on both sides of Equations (23)
and (24), respectively, we obtain a system of linear equations with respect to the unknown coefficients
ai, j (i = 1, 2, 3; j = 1 . . . N ), c j ( j = 1 . . . N ) and bi, j (i = 1, 2, 3; j = 1 . . .M), namely
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3∑
i=1

[
Ai C

(2)
i,k + Āi C̄

(2)
i,−k +

M∑
j=1

bi, j C
(1)
i, j,k +

M∑
j=1

b̄i, j C̄
(1)
i, j,−k + āi,k

]
= 0,

3∑
i=1

µi

[
Ai C

(2)
i,k + Āi C̄

(2)
i,−k +

M∑
j=1

bi, j C
(1)
i, j,k +

M∑
j=1

b̄i, j C̄
(1)
i, j,−k + āi,k

]
= 0,

3∑
i=1

λi

[
Ai C

(2)
i,k + Āi C̄

(2)
i,−k +

M∑
j=1

bi, j C
(1)
i, j,k +

M∑
j=1

b̄i, j C̄
(1)
i, j,−k + āi,k

]

= 0.5Iε0

[
ck −

(
a− b
a+ b

)k

c̄k

]
,

−

3∑
i=1

κi

[
Ai C

(2)
i,k + Āi C̄

(2)
i,−k +

M∑
j=1

bi, j C
(1)
i, j,k +

M∑
j=1

b̄i, j C̄
(1)
i, j,−k + āi,k

]

= 0.5
[

ck +

(
a− b
a+ b

)k

c̄k

]
,



(k = 1 . . . N ), (25)

3∑
i=1

[ M∑
j=1

ai, j C
(3)
i, j,k +

M∑
j=1

āi, j C̄
(3)
i, j,−k + bi,k

]
= 0

3∑
i=1

µi

[ M∑
j=1

ai, j C
(3)
i, j,k +

M∑
j=1

āi, j C̄
(3)
i, j,−k + bi,k

]
= 0

3∑
i=1

λi

[ M∑
j=1

ai, j C
(3)
i, j,k +

M∑
j=1

āi, j C̄
(3)
i, j,−k + bi,k

]
= 0


(k = 1 . . .M), (26)

where

C (1)
i, j,k =

1
2π

∫ 2π

0
[ρ−1(ωi (σ ))]

jσ−k dθ, i = 1, 2, 3; j = 1 . . .M, k =±1 · · · ± N , (27)

C (2)
i,k =


(a0− Iµi b0)/2, k = 1,

(ā0+ Iµi b̄0)/2, k =−1,

0, k =±2,±3, . . . ,±N ,

i = 1, 2, 3; (28)

C (3)
i, j,k =

1
2π

∫ 2π

0
[ω−1

i (ρ(σ ′))]− j (σ ′)−k dθ ′, i = 1, 2, 3; j = 1 . . . N , k =±1 · · · ±M. (29)

Here, the definite integrals in Equations (27) and (29) can be evaluated numerically, for example, by
Gaussian quadrature. Finally, the (4N+3M) unknown coefficients ai, j (i = 1, 2, 3; j = 1 . . . N ), c j ( j =
1 . . . N ) and bi, j (i = 1, 2, 3; j = 1 . . .M) are determined from Equations (25) and (26), following which
we can obtain the electro-elastic field in the piezoelectric half-plane and the electric field inside the
elliptical hole.
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4. Numerical examples

In the following examples, the material constants of the piezoelectric half-plane are taken as those of
PZT-4 ceramic [Berlincourt et al. 1964],

a11 = 8.205× 10−12, a12 =−3.144× 10−12, a22 = 7.495× 10−12, a33 = 19.3× 10−12(Pa−1);

b13 = 39.4× 10−3, b21 =−16.62× 10−3, b22 = 23.96× 10−3(m2/C);

c11 = 7.66× 107, c22 = 9.82× 107(m/F);
(30)

and the related complex parameters µi , λi and κi (i = 1, 2, 3) in Equations (4) and (5) are calculated as

µ1 = 1.218I, −µ̄2 = µ3 = 0.201+ 1.070I ;

λ1 =−6.351× 10−10, λ2 = λ̄3 = (−2.411+ 1.362I )× 10−10(m ·F/C);

κ1 =−0.0113I, −κ̄2 = κ3 = 0.0154+ 0.0203I (m2/C);

(31)

while the medium inside the elliptical hole is assumed to be homogeneous air with an approximate
dielectric constant ε0 = 8.85× 10−12 F/m. The convergence of the present solution is verified by the fact
that the relative error between the calculated electro-elastic field corresponding to two adjacent values
of N and M is less than 10−4.

4.1. Verification of the method. Our solution for a piezoelectric half-plane degenerates quite simply
into that for an elastic half-plane without piezoelectricity when all of the piezoelectric constants bi j in
Equations (4) and (5) tend towards zero. Comparisons between our present solutions and known results
[Dejoie et al. 2006; Kushch et al. 2006] for stress distributions in an isotropic half-plane with circular or
elliptical hole are presented in Figures 3 and 4 which indicated good agreement between the two.
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Figure 3. Hoop stress around a circular hole in an isotropic half-plane under uniform
uniaxial tensile loading parallel to the edge of the half-plane.
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Figure 4. Stress concentration along the edge of an isotropic half-plane with an elliptical
hole under uniform uniaxial tensile loading perpendicular to the edge.

4.2. An elliptical hole in a piezoelectric half-plane. Figures 5 and 6 show the hoop stresses around an
elliptical hole in a piezoelectric half-plane under mechanical and electric loadings, respectively, with
increasing distance between the hole and the edge of the half-plane.

In Figures 5 and 6 we see that, as the distance between the hole and the edge of the half-plane
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(a)d=infinity [Gao and Fan 1999]
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Figure 5. Hoop stress around an elliptical hole in a piezoelectric half-plane under me-
chanical loadings.
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Figure 6. Hoop stress around an elliptical hole in a piezoelectric half-plane under elec-
tric loadings.

decreases, the maximum hoop stress around the hole increases rapidly under the influence of mechanical
loadings but much slower when subjected to electric loading. On the other hand, for an arbitrarily-
oriented elliptical hole in a piezoelectric half-plane under either mechanical or electric loading, when the
distance between the hole and the edge exceeds, for example, four times the size of the hole, the effect of
the edge on the stress concentration around the hole is negligible so that the half-plane can be modeled
approximately as a whole plane.

4.3. A crack in a piezoelectric half-plane. Since the crack face is permeable to an electric field, electric
loading alone does not induce stress or electric field concentrations at the crack tips. As a result, here
we consider only mechanical loading. Stress and electric displacement intensity factors at the crack tips
in a piezoelectric half-plane subjected to mechanical loading are given in Figures 7–12.

It is shown in Figures 7–12 that both stress and electric displacement intensity factors at the crack
tip closest to the edge of the half-plane always increase with decreasing distance between the crack and
the edge. However, as shown in Figure 11(b), for a crack with particular orientation in a piezoelectric
half-plane under pure shear loading, the mode-II stress intensity factor at the crack tip farthest from the
edge of the half-plane, may decrease with decreasing distance between the crack and the edge. Moreover,
as shown in Figures 7–12, for a crack with an arbitrary orientation in a piezoelectric half-plane under
mechanical loading, if the distance between the crack and the edge of the half-plane is larger than, for
example, twice the length of the crack, the influence of the edge on the stress and electric displacement
intensity factors at the crack tips is negligible so that the half-plane can again be treated approximately
as a whole plane.
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Figure 7. Intensity factors of stress and electric displacement at the tips of a crack
perpendicular to the edge of the piezoelectric half-plane under uniaxial tensile loading
parallel to the edge.
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Figure 8. Intensity factors of stress and electric displacement at the tips of a crack
inclined from the edge of the piezoelectric half-plane under uniaxial tensile loading
parallel to the edge.
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Figure 9. Intensity factors of stress and electric displacement at the tips of a crack paral-
lel to the edge of the piezoelectric half-plane under uniaxial tensile loading perpendicular
to the edge.
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Figure 10. Intensity factors of stress and electric displacement at the tips of a crack
inclined from the edge of the piezoelectric half-plane under uniaxial tensile loading
perpendicular to the edge.



446 MING DAI, PETER SCHIAVONE AND CUN-FA GAO

0.1 1.5 3.0
0.8

0.866

1.5

2.2

0.1 1.5 3.0
0.20

0.5

0.75

1.30

0.1 1.5 3.0
0.20

0.35

0.50

1
P

2a

�
∞

d

2
P

�
∞

�
∞

�
∞

6�

 P
1

 P
2

(b)

I
K

a� �
∞

 

d a

 

(a)

 P
1

 P
2

II
K

a� �
∞

  

d a

 

1

I II 1
1

0.866,  ,  0.2027
2

( ,  [Gao and Fan 1999])

D
K K K

a a a

d a

�

� � � � � �

−

∞ ∞ ∞

= = =

= ∞

 P
1

 P
2

(c)

1

1 D
K

a

�

� �

−

∞

 

d a

 

Figure 11. Intensity factors of stress and electric displacement at the tips of a crack
inclined from the edge of the piezoelectric half-plane under pure shear loading.
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Figure 12. Intensity factors of stress and electric displacement at the tips of a crack
perpendicular to the edge of the piezoelectric half-plane under pure shear loading.
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5. Conclusions

The electro-elastic field in a piezoelectric half-plane containing an elliptical hole or a crack under in-
plane electromechanical loadings is obtained using conformal mapping and Fourier expansion techniques.
Numerical results are given to verify the feasibility of the present solution and to demonstrate the effect of
the edge of the half-plane on the stress concentration around the hole and on the electro-elastic intensity
factors at the crack tips. For an elliptical hole or a crack in a piezoelectric half-plane with an edge
perpendicular to the poling direction of the half-plane with mechanical or electric loading imposed on
the edge and remotely, our main conclusions are as follows:

(1) The maximum hoop stress around the elliptical hole increases with decreasing distance between the
hole and the edge of the half-plane under either mechanical or electric loading. However, the hoop
stress around the hole is much more sensitive to the distance between the hole and the edge of the
half-plane when subjected to mechanical as opposed to electric loading.

(2) In general, all stress and electric displacement intensity factors at the two crack tips increase with
decreasing distance between the crack and the edge of the half-plane. However, for a crack with par-
ticular orientations in a piezoelectric half-plane subjected to pure shear loading, the mode-II stress
intensity factor at one of the crack tips (that farthest from the edge) may decrease with decreasing
distance between the crack and the edge.

(3) When the distance between the elliptical hole or the crack and the edge of the half-plane is more
than four times the size of the hole or the semi-length of the crack, the half-plane can be treated
approximately as a whole plane.
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ON THE CAUSALITY OF THE RAYLEIGH WAVE

BARIŞ ERBAŞ AND ONUR ŞAHIN

An explicit hyperbolic-elliptic formulation for surface Rayleigh waves is analysed with an emphasis on
the causality of obtained results. As an example, a 3D moving load problem for a distributed vertical
load is considered. A simple approximate solution is derived for a near-resonant regime, and the related
point load solution is recast as a limiting case. It is shown that causality is characteristic only for the
longitudinal wave potential along the surface, where it is governed by a hyperbolic equation modelling
the small dilatation disturbances propagating at the Rayleigh wave speed.

1. Introduction

Propagation of surface waves has been investigated in numerous papers since the original contribution
of Rayleigh [1885]. In his well-known work, Chadwick [1976] presented a general formulation of the
Rayleigh wave field in terms of a single harmonic function. His results have been recently generalised
to 3D by Kiselev and Parker [2010]. Parker [2012] later generalised their results for evanescent Schölte
waves with an arbitrary profile. Surface waves in layered structures [Kiselev and Rogerson 2009; Kiselev
et al. 2007] have also attracted considerable attention. Among other contributions, we note the approach
of Rousseau and Maugin [2011] associating the quasiparticles with the Rayleigh wave, along with pa-
pers developing the mathematical theory of surface waves in anisotropic media, e.g., [Achenbach 1998;
Prikazchikov 2013; Parker 2013].

The issue of causality of the Rayleigh wave does not usually arise in linear elasticity governed by
hyperbolic equations with the characteristics corresponding to longitudinal and transverse wave speeds;
see, e.g., [Achenbach 1973; Poruchikov 1993]. This is only a feature of the specialised hyperbolic-elliptic
model oriented to the Rayleigh wave and neglecting bulk waves [Kaplunov et al. 2006; Erbaş et al. 2013;
Kaplunov and Prikazchikov 2013]. The advantages of this model are illustrated by investigation of the
near-resonant regimes of moving loads on an elastic half-space [Kaplunov et al. 2010; 2013; Erbaş et al.
2014].

In the case of a vertical load, the implementation of the aforementioned model begins with solving a
scalar hyperbolic equation for the longitudinal wave potential on the surface. The characteristics of this
equation are associated with the Rayleigh wave speed. Then the variation of the longitudinal potential
over the interior is found from a Dirichlet problem for a pseudostatic elliptic equation with the boundary
condition coming from the solution of the wave equation on the surface. Finally, the transverse wave
potential is determined. In particular, in the plane-strain setup, it is recovered as the harmonic conjugate
of the longitudinal wave potential; see also [Chadwick 1976].

It is obvious that we may only expect causality of the longitudinal wave potential along the surface,
where it is governed by a hyperbolic equation. The causality concept is not applicable to the transverse

Keywords: moving load, causality, Rayleigh wave, hyperbolic-elliptic model.
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Figure 1. Distributed load moving along the x1 axis.

wave potential and the longitudinal wave potential over the interior, where both of them satisfy elliptic
equations. Fortunately, this only means that the considered surface wave formulation is valid only behind
bulk wave fronts. However, the presence of bulk waves ignored within this formulation may also hypo-
thetically result in formally noncausal solutions of the wave equation on the surface; see the discussion
of the Mach cones associated with a super-Rayleigh moving load in [Erbaş et al. 2014].

In this paper, we revisit the 3D steady-state moving load problem for an elastic half-space studied
earlier in [Kaplunov et al. 2013], with a special focus on the causality of the Rayleigh wave, including
analysis of the associated Mach cones. In contrast to [Erbaş et al. 2014] dealing with a point force,
we are mainly concerned with the case a distributed load, which is seemingly more relevant to modern
engineering applications, motivated by modelling of high-speed trains; see, e.g., [Cao et al. 2012; Galvín
and Domínguez 2007; El Kacimi et al. 2013; Gupta et al. 2010; Agostinacchio et al. 2013; Dieterman
and Metrikine 1997; Celebi 2006].

The paper is organised as follows. In Section 2, we formulate the problem in terms of the aforemen-
tioned hyperbolic-elliptic model. In Section 3, the super-Rayleigh solution on the surface is analysed,
with the causality concept embedded. Then the solution over the interior is constructed via the Poisson
formula, and the components of the transverse wave potentials are determined with the help of the relevant
differential relations on the surface. In Section 4, the steady-state solution for a distributed load over
the interior of the half-space is obtained. Finally, in Section 5, comparisons of solutions for point and
distributed forces are illustrated numerically.

2. Statement of the problem

We consider the dynamic response of a 3D elastic isotropic half-space (−∞< x1, x2 <∞, 0≤ x3 <∞)
under the influence of a vertical load of magnitude P distributed along the x1 axis and moving along its
positive direction on the surface x3 = 0 of the half-space at a constant speed c; see Figure 1.

In this paper, we employ a hyperbolic-elliptic approximate model for the surface wave field [Kaplunov
et al. 2006; Erbaş et al. 2013]. Within the framework of this model, the Lamé potentials ϕ and ψi , i = 1, 2,
satisfy the pseudostatic elliptic equations over the interior

∂2ϕ

∂x2
3
+ k2

112ϕ = 0,
∂2ψi

∂x2
3
+ k2

212ψi = 0, i = 1, 2, (2-1)

where 12 = ∂
2/∂x2

1 + ∂
2/∂x2

2 is a 2D Laplacian, k2
i = 1− c2

R/c
2
i , i = 1, 2, and c1, c2 and cR are the

longitudinal, transverse and Rayleigh wave speeds, respectively. The components of the displacement
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vector may be written in terms of the Lamé potentials as

u1 =
∂ϕ

∂x1
−
∂ψ1

∂x3
, u2 =

∂ϕ

∂x2
−
∂ψ2

∂x3
, u3 =

∂ϕ

∂x3
+
∂ψ1

∂x1
+
∂ψ2

∂x2
; (2-2)

for more details, see [Kaplunov and Prikazchikov 2013]. The boundary conditions on the surface x3 = 0
include the hyperbolic equation

12ϕ−
1

c2
R

∂2ϕ

∂t2 = AP
a

π [(x1− ct)2+ a2]
δ(x2), (2-3)

together with the relations between the potentials

∂ϕ

∂xi
=

2
1+ k2

2

∂ψi

∂x3
, i = 1, 2. (2-4)

In (2-3), A is a constant depending on the material properties of a half-space given by

A =
k1k2(1+ k2

2)

2µ[k2(1− k2
1)+ k1(1− k2

2)− k1k2(1− k4
2)]
. (2-5)

Throughout the paper, we are mainly concerned with the steady-state regime in the moving frame
related to the coordinate λ= x1− ct . Rewriting (2-3) in the new coordinates, we get for the sub-Rayleigh
(c < cR) and super-Rayleigh (c > cR) cases, respectively,

∂2ϕ

∂x2
2
+ ε2 ∂

2ϕ

∂λ2 = AP
a

π [λ2+ a2]
δ(x2), (2-6)

∂2ϕ

∂x2
2
− ε2 ∂

2ϕ

∂λ2 = AP
a

π [λ2+ a2]
δ(x2), (2-7)

where

ε =

∣∣∣∣1− c2

c2
R

∣∣∣∣1/2. (2-8)

The adopted approximate formulation is valid when the load speed is close to the Rayleigh wave speed,
i.e., when ε� 1, which enables investigation of the near-resonant response dominated by the Rayleigh
wave contribution [Kaplunov et al. 2010; 2013]. Introducing the scaled variables

ξ1 =
λ

ε
, ξ2 = x2, ξ3 =

x3

ε
, (2-9)

the elliptic equations (2-1) become

∂2ϕ

∂ξ 2
3
+ k2

1
∂2ϕ

∂ξ 2
1
+ ε2k2

1
∂2ϕ

∂ξ 2
2
= 0,

∂2ψi

∂ξ 2
3
+ k2

2
∂2ψi

∂ξ 2
1
+ ε2k2

2
∂2ψi

∂ξ 2
2
= 0, i = 1, 2,

(2-10)
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along with boundary conditions (2-6) and (2-7) on the surface ξ3 = 0 rewritten as

∂2ϕ

∂ξ 2
2
+
∂2ϕ

∂ξ 2
1
= AP

a
π [ε2ξ 2

1 + a2]
δ(ξ2), (2-11)

∂2ϕ

∂ξ 2
2
−
∂2ϕ

∂ξ 2
1
= AP

a
π [ε2ξ 2

1 + a2]
δ(ξ2). (2-12)

The relations (2-4) for the potentials ϕ, ψ1 and ψ2 now take the form

∂ϕ

∂ξ1
=

2
1+ k2

2

∂ψ1

∂ξ3
,

∂ϕ

∂ξ2
=

2
ε(1+ k2

2)

∂ψ2

∂ξ3
. (2-13)

3. Revisit of the moving point force problem

Before considering the problem (2-10)–(2-13) for a distributed load, let us discuss the solution for a point
force for the super-Rayleigh regime (c> cR) earlier treated in [Kaplunov et al. 2013]. In the limit a→ 0,
the hyperbolic equation on the surface (2-3) becomes

12ϕ−
1
c2

R

∂2ϕ

∂t2 = APδ(x1− ct)δ(x2). (3-1)

The fundamental solution of the 2D wave equation is given by

F(x1, x2, t)=−
cR H

(
cR t −

√
x2

1 + x2
2

)
2π
√

c2
R
t2
− x2

1 − x2
2

(3-2)

[Zauderer 2006], where H(x) is the Heaviside function. As might be expected, it is causal in the variables
x1, x2 and t . Then the solution of (3-1) may be expressed as a convolution, i.e.,

ϕ(x1, x2, 0, t)=
∫ t

0
F(x1− ct, x2, t − τ) dτ

=−
APcR

2π

∫ t

0

H
(
cR (t − τ)−

√
(x1− cτ)2+ x2

2

)√
c2

R
(t − τ)2− (x1− cτ)2− x2

2

dτ, (3-3)

or in the form

ϕ(λ, x2, 0)=−
APcR

2π

∫ t

0

H
(
cR s−

√
(λ+ cs)2+ x2

2

)√
(c2

R
− c2)s2

− 2scλ− λ2
− x2

2

ds, (3-4)

where s = t− τ . The argument of the Heaviside function in the numerator of (3-4) is positive when λ < 0
in the considered super-Rayleigh case and s1 ≤ s ≤ s2, where

s1 = n+
√

n2−m, s2 = n−
√

n2−m, (3-5)

with

n =−
λc

c2− c2
R
, m =

λ2
+ x2

2

(c2− c2
R)

2
. (3-6)
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Figure 2. Mach cone.

As t→∞,

ϕ(λ, x2, 0)=−
APcR

2π

∫ s2

s1

1√
(c2

R
− c2)s2

− 2scλ− λ2
− x2

2

ds =−
AP
2ε
. (3-7)

We note that the roots s1 and s2 are real, provided that n2
−m ≥ 0; hence, ε2x2

2 − λ
2
≤ 0. Therefore,

since λ < 0,

ϕ(λ, x2, 0)=
AP
2ε

[
H
(

x2−
λ

ε

)
− H

(
x2+

λ

ε

)]
H(−λ). (3-8)

The obtained solution (3-8) does not violate the causality concept and predicts the Mach cone shown in
Figure 2. At the same time, we could immediately arrive at the same result by introducing the moving
coordinate λ into (3-1) to get

∂2ϕ

∂x2
2
− ε2 ∂

2ϕ

∂λ2 = Aδ(λ)δ(x2). (3-9)

It is interesting that making use of the conventional fundamental noncausal solution in the variables λ
and x2 in (3-9) results in (3-8) without the factor H(−λ) enabling the causality [Kaplunov et al. 2013].
Similar to [Kaplunov et al. 2013], the potential ϕ may now be recovered over the interior, x3 > 0, through
the Poisson formula [Courant and Hilbert 1962], resulting in

ϕ(λ, x2, x3)=
AP
2πε

k1η3

∫ 0

−∞

H(x2− η/ε)− H(x2+ η/ε)

(η− λ)2+ k1x2
3

dη =
AP
2πε

cot−1
(
λ+ ε|x2|

k1x3

)
. (3-10)

It is now a simple matter to get the potentials ψ1 and ψ2 using the relations (2-4). The result is

ψ1(λ, x2, x3)=−
APk1(1+ k2

2)

8πεk2
2

ln(k2
2 x2

3 + (λ+ ε|x2|)
2), (3-11)

ψ2(λ, x2, x3)=−
APk1(1+ k2

2) sgn(x2)

8πk2
2

ln(k2
2 x2

3 + (λ+ ε|x2|)
2). (3-12)

In what follows, we illustrate the behaviour of potentials for different values of the depth x3 — specif-
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Figure 3. Potential ϕ versus λ at x2 = 0.

ically, in Figure 3 we consider x3 = 0, 0.1, 0.2 and 0.5. It is seen that on the surface x3 = 0 the causality
principle holds true, that is, there is no contribution of the longitudinal wave potential ϕ appearing in
front of the load. However, as the depth increases (x3 > 0), it is observed that in the interior of the
half-space there appear some disturbances in front of the moving load. Figure 4 illustrates variation of
the potentials ψ1 and ψ2 for different depths. It is clear from Figure 4 and also from (3-11) and (3-12)
that the causality principle is not applicable to potentials ψ1 and ψ2, i.e., they may be treated as nonwave
potentials.

Thus, within the framework of the approximate formulation of the Rayleigh wave, the causality prin-
ciple is only valid on the surface and only for the longitudinal wave potential ϕ.
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Figure 4. Potentials ψ1 and ψ2 versus λ at x2 = 0 and x2 = 1, respectively.
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4. Solution for distributed force

We may now derive the steady-state solution of (2-10)–(2-13) employing the adopted hyperbolic-elliptic
model. Consider first the super-Rayleigh regime. At leading order, elliptic equations (2-10) give

∂2ϕ

∂ξ 2
3
+ k2

1
∂2ϕ

∂ξ 2
1
= 0,

∂2ψi

∂ξ 2
3
+ k2

2
∂2ψi

∂ξ 2
1
= 0, i = 1, 2, (4-1)

which should be solved together with the hyperbolic equation (2-7) and relations (2-4). Using the funda-
mental solution of the wave operator

F(ξ1, ξ2)=
1
2 [H(ξ2− ξ1)− H(ξ2+ ξ1)], (4-2)

for ξ1 < 0, from the causality, the longitudinal wave potential on the surface may easily be obtained in
the form

ϕ(ξ1, ξ2, 0)=
AP
2πε

[
π

2
− tan−1(α(ξ1+ |ξ2|))

]
, (4-3)

where the notation α = ε/a is introduced. The sought-after solution for the Dirichlet problem for elliptic
equation (4-1) may be written using the 2D Poisson integral formula giving

ϕ(ξ1, ξ2, ξ3)=
AP

2π2ε
k1ξ3

{
π

2

∫
∞

−∞

1
(η− ξ1)2+ k2

1ξ
2
3

dη−
∫
∞

−∞

tan−1(α(η+ |ξ2|))

(η− ξ1)2+ k2
1ξ

2
3

dη
}

=
AP
2πε

cot−1
(
α(ξ1+ |ξ2|)

1+αk1ξ3

)
. (4-4)

In order to obtain the transverse wave potentials ψ1 and ψ2, we employ relations (2-13). Differentiation
of (4-4) gives

∂ϕ(ξ1, ξ2, ξ3)

∂ξ1
=−

AP
2πa

1+αk1ξ3

(1+αk1ξ3)2+α2(ξ1+ |ξ2|)2
. (4-5)

Taking into account (4-1)2 and (2-13)1, we get

∂ψ1(ξ1, ξ2, ξ3)

∂ξ3
=−

AP(1+ k2
2)

4πa
1+αk2ξ3

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2
; (4-6)

hence,

ψ1(ξ1, ξ2, ξ3)=−
AP(1+ k2

2)

8πεk2
ln((1+αk2ξ3)

2
+α2(ξ1+ |ξ2|)

2). (4-7)

Using (2-13)2 and following the same procedure as above, we obtain

ψ2(ξ1, ξ2, ξ3)=−
AP sgn(ξ2)(1+ k2

2)

8πk2
ln((1+αk2ξ3)

2
+α2(ξ1+ |ξ2|)

2). (4-8)
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Figure 5. Derivatives of super-Rayleigh full and approximate solutions, for ν = 0.25,
a = 0.1, ε = 0.1, ξ1 =−1 and ξ3 = 1.

Rewriting (2-2) in terms of scaled variables (2-9) and using the results (4-4), (4-7) and (4-8), we get for
the displacement components

u1 =
α

ε2

AP
2π

[
1+ k2

2

2
1+αk2ξ3

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2
−

1+αk1ξ3

(1+αk1ξ3)2+α2(ξ1+ |ξ2|)2

]
, (4-9)

u2 =
APα sgn(ξ2)

2πε

[
1+ k2

2

2
1+αk2ξ3

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2
−−

1+αk1ξ3

(1+αk1ξ3)2+α2(ξ1+ |ξ2|)2

]
, (4-10)

u3 =−
APα2(1+ k2

2)

4πk2

ξ1+ |ξ2|

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2

−
APα2

2πε2

[
(1+ k2

2)

2k2

ξ1+ |ξ2|

(1+αk2ξ3)2+α2(ξ1+ |ξ2|)2
− k1

ξ1+ |ξ2|

(1+αk1ξ3)2+α2(ξ1+ |ξ2|)2

]
. (4-11)

We remark that keeping the O(ε2) terms in the elliptic equations (4-1), the full solution for the potential
ϕ may be obtained via Poisson’s formula for a half-space, giving

ϕ(ξ1, ξ2, ξ3)=
APξ3

4π2ε

∫
∞

−∞

∫
∞

−∞

cot−1(αk1(η1+ ε|η2|))

[(η1− ξ1/k1)2+ (η2− ξ2/(εk1))2+ ξ
2
3 ]

3/2
dη1 dη2. (4-12)

We may now compare the approximate solution (4-4) with its full counterpart (4-12) for the longitudinal
wave potential ϕ. We compare the normalised derivative 8= (2π/AP)∂ϕ/∂ξ2 in Figure 5.

Let us now present the results for the sub-Rayleigh regime (c < cR). The solution of (2-11) on the
surface x3 = 0 may be written as

ϕ(ξ1, ξ2, 0)=
AP
4πε

ln(ξ 2
1 + (α

−1
+ |ξ2|)

2). (4-13)

The approximate solution over the interior follows, again, from the 2D Poisson formula giving

ϕ(ξ1, ξ2, ξ3)=
AP
4πε

ln(ξ 2
1 + (|ξ2| + k1ξ3+α

−1)2). (4-14)



ON THE CAUSALITY OF THE RAYLEIGH WAVE 457

�0:5

0

0:5

�1 �0:5 0 0:5 1

ˆ

�2

Full Solution

Approximate Solution

Figure 6. Derivatives of sub-Rayleigh full and approximate solutions for a = 0.1,
ε = 0.1, ξ1 =−1 and ξ3 = 1.

The full solution of the sub-Rayleigh case may be expressed in an integral form as

ϕ(ξ1, ξ2, ξ3)=
APξ3

8π2ε

∫
∞

−∞

∫
∞

−∞

ln((η1/ε)
2
+ ((εαk1)

−1
+ |η2|)

2)

[(η1− ξ1/k1)2+ (η2− ξ2/(εk1))2+ ξ
2
3 ]

3/2
dη1 dη2. (4-15)

The numerical comparison of the normalised derivative of the full and approximate solutions, 8 =
(4πε/AP)∂ϕ/∂ξ2, is presented in Figure 6.

Following the procedure presented in detail for the super-Rayleigh case, potentials ψ1 and ψ2 are
found to be

ψ1(ξ1, ξ2, ξ3)=
AP(1+ k2

2)

4πεk2
tan−1

(
|ξ2| + k2ξ3+α

−1

ξ1

)
, (4-16)

ψ2(ξ1, ξ2, ξ3)=
AP sgn(ξ2)(1+ k2

2)

8πk2
ln(ξ 2

1 + (|ξ2| + k2ξ3+α
−1)2). (4-17)

The resulting displacement components are

u1 =
1
ε2

AP
2π

[
ξ1

ξ 2
1 + (|ξ2| + k1ξ3+α−1)2

−
1+ k2

2

2
ξ1

ξ 2
1 + (|ξ2| + k2ξ3+α−1)2

]
, (4-18)

u2 =
1
ε

AP sgn(ξ2)

2π

[
|ξ2| + k1ξ3+α

−1

ξ 2
1 + (|ξ2| + k1ξ3+α−1)2

−
1+ k2

2

2
|ξ2| + k2ξ3+α

−1

ξ 2
1 + (|ξ2| + k2ξ3+α−1)2

]
, (4-19)

u3 =
AP(1+ k2

2)

4πk2

|ξ2| + k2ξ3+α
−1

ξ 2
1 + (|ξ2| + k2ξ3+α−1)2

+
1
ε2

AP
2π

[
k1

|ξ2| + k1ξ3+α
−1

ξ 2
1 + (|ξ2| + k1ξ3+α−1)2

−
1+ k2

2

2k2

|ξ2| + k2ξ3+α
−1

ξ 2
1 + (|ξ2| + k2ξ3+α−1)2

]
. (4-20)
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Figure 7. Super-Rayleigh vertical displacement versus ξ1 for a = 0.005, a = 0.002 and
the point load (a = 0).

5. Numerical comparison of solutions for point and distributed forces

In this section, we illustrate numerically the comparisons of the results for distributed load against those
for point load discussed in [Kaplunov et al. 2013]. To this end, we set Poisson’s ratio to ν = 0.25
corresponding to the value cR = 0.9194c2. In the present problem, the load exhibits a gaussian-like
profile, and as the parameter a approaches zero, the profile becomes a delta function moving along the
x1 axis. It is reasonable to expect, as a gets smaller, a considerable agreement between the displacements
of both problems. We employ the same normalisation for the displacements presented in Section 5 of
[Kaplunov et al. 2013], namely

Ui (ξ1, ξ2, ξ3)=
2π
AP

ui (ξ1, ξ2, ξ3).
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Figure 8. Super-Rayleigh vertical displacement versus ξ2 for a = 0.005, a = 0.002 and
the point load (a = 0).
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Figure 9. Super-Rayleigh horizontal displacement versus ξ1 for a = 0.005, a = 0.002
and the point load (a = 0).

We first consider the super-Rayleigh case for which the load speed is taken as c = 0.924c2 corresponding
to ε = 0.1. Figure 7 displays comparisons of vertical displacements U3 plotted against the moving
coordinate ξ1, with the depth being ξ3 = 0.1. As expected, the singular behaviour under the point load
corresponding to the coordinate ξ1 =−1 is smoothed out by the distributed load, and it is clear that in the
limit as a→ 0 we recover the solution for the point load problem. Figure 8 demonstrates the variation
of the vertical displacement U3 against the other horizontal variable ξ2. Here, we take ξ1 =−1 at depth
ξ3 = 0.1. A similar surface discontinuity is also evident here, which is again flattened for large values of
a. Figure 9 presents a cross-section of displacement U1. We observe that the delta-like profile near the
singularity for the point load has been smoothed by the inclusion of the parameter a. Finally, numerical
illustration for the sub-Rayleigh case is presented in Figure 10, which shows variation of the vertical
displacement U3 along the horizontal variable ξ2. In the sub-Rayleigh case, the speed of the load is taken
as c = 0.9148c2, corresponding again to ε = 0.1.

�3

�2

�1

0

�4 �3 �2 �1 0 1 2 3 4 5

U3

�2

Point Load

a D 0:05

a D 0:01

Figure 10. Sub-Rayleigh vertical displacement versus ξ2 for a = 0.05, a = 0.01 and the
point load (a = 0).
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6. Concluding remarks

In this paper, a 3D problem for a distributional load of a gaussian-like profile moving along the surface of
an elastic half-space is investigated. The hyperbolic-elliptic model in [Kaplunov and Prikazchikov 2013;
Kaplunov et al. 2013] is specialised to tackle near-resonant behaviour ignoring the effect of longitudinal
and transverse bulk waves. The presence of a small parameter expressing the proximity of the load speed
to the Rayleigh wave speed enables us to reduce the 3D elliptic problems for the interior to 2D ones for
the vertical cross-section along the load trajectory.

Various aspects of the Rayleigh wave causality are addressed. In contrast to the consideration in
[Kaplunov et al. 2013], the steady-state location of the Mach cones, characteristic of the super-Rayleigh
regime, is evaluated at a large time limit of the associated transient solution. Noncausality of the trans-
verse wave potential, as well as the longitudinal wave potential over the interior, is due to the approximate
nature of the adopted mathematical model.

The transition from the distributed load solution to the point load one is analysed numerically. As
might be expected (see Figure 8), a distributed load smooths the singularities typical for a point load,
e.g., those at Mach cones. We also mention that the effect of a distributed load is similar, in a sense, to
that of an elastic coating [Erbaş et al. 2014].

A similar approach considered in this work may be readily extended to interfacial waves, e.g., Stoneley,
Schölte, etc., and also to the media where the effects of prestress, layered structure and anisotropy are
rather essential.
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ON THE MODELING OF DISSIPATIVE MECHANISMS IN A
DUCTILE SOFTENING BAR

JACINTO ULLOA, PATRICIO RODRÍGUEZ AND ESTEBAN SAMANIEGO

The computational modeling of softening materials is still a challenging subject. An interesting way
to deal with this problem is to adopt a variational framework. However, there are appealing features
in using a classical approach. We explore the possibilities of both frameworks to include dissipative
mechanisms. We start with a one-dimensional variational plastic-damage model rewritten in a classical
framework, where regularization through viscoplasticity is applied. We highlight the appearance of
an implicit internal length in the plastic strain field during the damage phase, allowing plasticity to
evolve over a region before concentrating. Then, a consistent variational approach is adopted. A plastic
strain gradient term is added to the global energy functional, with variable internal length coupled to
the damage level. This model is further enriched by the addition of a hardening variable to the plastic
evolution. A comparative analysis of the computational implementation of the different alternatives is
performed.

1. Introduction

Classical fracture mechanics models are noteworthy for the description of existing cracks; however,
the precursory state of the material is not provided by these theories [Lemaitre and Lippmann 1996].
Hence, the introduction of damage mechanics plays a major role in the representation of the evolution
previous to the eventual macroscopic crack. According to Krajcinovic [1989], the deterioration of a
material can be described in at least three levels of scale. The treatment of the first, corresponding to
the atomic level, requires noncontinuum mechanics. The second level is related to the formation of
microcracks and microvoids and is treated via continuum damage mechanics. On the other hand, the
third scale corresponds to the macroscopic level and is treated by classical fracture models. In this work,
the second level of scale is considered, and the softening mechanism of damage is coupled to plasticity
to capture ductile failure. Furthermore, the thermodynamics of internal variables is applied to build the
model in a physically consistent manner, which stems out from [Maugin 1992; Maugin and Muschik
1994]. Representing ductile behavior in a softening regime is a challenging task that has not been widely
explored in past efforts in a variational setting [Ambati et al. 2015]. For a comprehensive account of
material failure, the reader is referred to [Bigoni 2012].

The capacity to simulate the strain localization phenomenon and hence, the appearance of discon-
tinuities in the displacement field that characterizes fracture, is an attractive feature of local softening
models [Oliver et al. 2002]. However, its use has been known to result in ill-posed problems, returning
mesh-dependent solutions and spurious localization, which are meaningless material responses [De Borst
and Mühlhaus 1992]. This problem has been widely treated and several methods have been employed.

Keywords: material modeling, dissipative materials, plasticity, damage, classical approach, variational formulation.
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Relying on the introduction of discontinuous functions in the description of the displacement field, several
techniques have shown fruitful results. The strong discontinuity approach and the extended finite element
method discussed in [Oliver et al. 2002; 2003; Moës et al. 1999] have been applied to the modeling of
fracture and strain concentration in [Oliver et al. 2004; Chen et al. 2011; Samaniego and Belytschko
2005]. Another interesting treatment can be seen in the multiple scale analytical approach found in
[Garikipati and Hughes 1998]. The concept is applied in an adaptive-mesh strategy for a local plastic-
damage model in [Venini and Morana 2001].

In other approaches, modifications to the constitutive equations are made to include nonlocal effects,
ranging from rate-dependent viscoplastic regularization (see [Needleman 1988]) to gradient-enhanced
models, where nonlocal treatments furnish fruitful results (see [Bažant and Jirásek 2002] for nonlocal
formulations). All of these are, to some degree, based on the introduction of an internal length scale as
a material’s characteristic property [Borst et al. 1993].

The application of regularization to simulate fracture is of great interest and has been treated in several
works. The introduction of a gradient term was first proposed in [Triantafyllidis and Aifantis 1986], and
has been widely applied to nonlocal energy functionals. The derivation of a gradient regularization for
a phase-field fracture model can be seen in [Miehe et al. 2010]. A phase-field model for ductile fracture
is proposed in [Ambati et al. 2015]. Softening gradient-dependent plasticity models are analyzed in
[Jirásek and Rolshoven 2009a; 2009b], and with verification of experimental results in [Lancioni 2015].
Both gradient-dependent plasticity and gradient-dependent damage models are analyzed in [de Borst
et al. 1999]. Furthermore, gradient-dependent variational models are proven to converge to the Griffith
fracture model in [Bourdin et al. 2008] through 0 convergence. Thus, regularization via the internal
length represents the transition between discontinuous fracture models and regularized models [Ambati
et al. 2015]. On the other hand, a viscoplastic regularization of local damage can be seen in [Niazi et al.
2013] and a study of a model that includes rate-dependent perturbations and gradient terms is carried out
in [Dal Corso and Willis 2011].

This work picks up from the variational gradient damage model coupled to perfect plasticity proposed
by Alessi [2013; 2014], which was initially developed in [Pham and Marigo 2010a; 2010b] for brittle
fracture. The variational approach follows the regularization of [Bourdin et al. 2008] for the energy
minimization approach of the Griffith model that was proposed in [Francfort and Marigo 1998]. The
energetic formulation that is applied comes from [Mainik and Mielke 2005; Mielke 2006] for rate-
independent systems. As pointed out in [de Borst et al. 1999], the coupling of plasticity to damage
is physically appealing due to the capability of representing a wide range of materials that deteriorate
with a combination of void nucleation and plastic strains. The model in [Alessi 2013; Alessi et al. 2014]
is capable of capturing different behaviors, from where we highlight the following evolution:

(1) An initial elastic phase.

(2) A homogeneous perfect plasticity phase.

(3) A plasticity and damage coupled phase with a strain localization region, where a jump in the dis-
placement field appears with nonvanishing stress. Then, a cohesive crack forms at the center of the
localization zone.

The variational formulation furnishes a natural numerical implementation that results in an alternate
minimization algorithm, which is applied to minimize a global energy functional [Mumford and Shah
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1989]. However, the use of global energy functionals could lead to nonphysical results [Bourdin et al.
2008]. For instance, a homogeneous damage evolution, which is possible in this context, would be
a clearly nonphysical response for a deteriorating material. Despite this, several advantages of this
treatment are observed in this work. For example, plasticity is able to evolve uniformly during the perfect
plasticity phase, without a regularization method [Alessi 2013]. Contrary to the classical approach, the
variational model conserves the local constitutive equations without the necessity of introducing nonlocal
effects in this stage.

In this work, this model is rewritten in a classical framework, where the evolution of the system
is defined using the algorithm discussed in [Simo and Hughes 1998]. Here, the balance of the linear
momentum equation is solved to determine the displacement field over the body. In this approach, it
becomes evident that the perfect plasticity model lacks uniqueness and requires local regularization. In
order to conserve the structure of the algorithm in [Simo and Hughes 1998] and to maintain a local
definition of the plastic variables (see [Borja 2013] and [Runesson 2006] for local plasticity and damage
formulations), the viscoplasticity model, also discussed in [Simo and Hughes 1998], is adopted instead of
the perfect plasticity model. Although rate-dependence is introduced in the evolution of the system with
this regularization, it is shown numerically that as the loading rate tends to zero, the response converges
to the variational model in [Alessi 2013]. One feature observed in the simulations of the viscoplastic
regularized evolution is worth highlighting: the appearance of an implicit internal length scale in the
plastic strain field that varies with the loading rate. As we will see in Section 4, this allows plasticity to
evolve over a determined region during the plasticity-damage phase.

To develop this feature in a more consistent manner, and taking advantage of the capacity of the
variational approach to incorporate new characteristics in the model by (eventually) adding new terms to
the global energy functional, the following original contributions are incorporated in this work:

(1) The addition of a hardening variable coupled to damage to capture additional material responses
and the analysis of the resulting local evolution.

(2) The addition of a plastic strain gradient term to the global model.

(3) The application of a variable plastic strain internal length depending on the damage variable. A
threshold damage level is introduced to control when the plastic internal length drops to zero.

(4) The numeric solution of the complete gradient-dependent damage and gradient-dependent hardening
plasticity model.

The first new feature enables the model to capture material behaviors with a hardening plastic phase,
which is common in metals. Then, the incorporation of the plastic strain gradient term allows plasticity
to evolve in a controlled region via the internal length. If Neumann boundary conditions are imposed
on the plastic strain field, plasticity will first evolve homogeneously, and Dirichlet boundary conditions
are necessary on the damage field to trigger a nonhomogeneous evolution. As pointed out in [Bigoni
2012], several material evolutions initially present a homogeneous deformation, until bifurcation and
instabilities appear. Then, only after extreme loading, strain localizations take place. In this case, these
are due to plasticity and damage and a localized response is not induced until softening occurs in the
damage phase. In the case of Neumann bounded plasticity, the distribution of plastic strains remains
homogeneous until softening. Similar results have been obtained in [Dal Corso and Willis 2011] for
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an approach involving perturbations, where plastic strains begin to localize in the defects during the
softening regime. Then, the plastic strain internal length is allowed to vary as a decreasing function of
the damage level, simulating the necking phenomenon of a deteriorating material with strain localization.
Moreover, the damage threshold value deactivates the effect of the plastic internal length when desired,
changing the jump in the displacement field from a relatively smooth behavior to an abrupt evolution and
localizing the plastic strains at the center of the bar. It is worth mentioning that the plastic strain gradient
does not replace the damage gradient and both terms are used. This is because a local damage evolution
will cause an abrupt localization of damage and an instantaneous rupture as soon as the damage phase
begins.

The main novelty of this work lies in the fact that the mechanisms described above have been carefully
added within a thermodynamically consistent variational framework, enriching the model presented in
[Alessi 2013], which only considers local perfect plasticity and gradient damage. A similar effort can
be found in [Ambati et al. 2015], which builds over [Duda et al. 2015]. There, gradient damage is
coupled to hardening plasticity by heuristically modifying the original energy functional. By contrast,
in our contribution, new coupling terms and a new gradient term (gradient plasticity with a variable
internal length) are consistently added within the same rigorous framework used to build the model in
[Alessi 2013]. Additionally, the problem has been treated in a classical setting with viscoplasticity, and
the numerical solution for both frameworks is presented. The results of the time-dependent model are
qualitatively compared to the variational model with gradient-enhanced plasticity.

The first section of this work consists of the classical formulation of the elastic-plastic-damage prob-
lem. The standard local models for perfect plasticity and viscoplasticity, as well as the numeric imple-
mentation of the global response are briefly explored. Then, the gradient-dependent damage model is
coupled to the elastic-plastic evolution, and the computational implementation is presented, where the
finite element method is used with linear approximations on the displacement and damage fields. The
next section is devoted to the explicit enrichment of the variational model. First, the hardening variable
is added to the local evolution and the resulting response is analyzed. Then, the plastic strain gradient
term is added to the nonlocal functional. The resulting formulation is solved through the finite element
method with quadratic approximations on the displacement field, and the computational implementation
is presented. For both approaches, the model is implemented in a one-dimensional fashion for a bar with
Dirichlet boundary conditions: one end is constrained and displacements are imposed on the other. For
simplicity and without losing generality, an initially virgin material is considered and only monotonic
loading is applied. The small strain theory is applied, and the decomposition of the total strain,

ε = εe+ εp,

is considered, where εe and εp are the elastic and plastic strains, respectively.

2. Classical approach

This section is devoted to the classical formulation of the plastic-damage model in [Alessi 2013]. Al-
though mathematically equivalent to the energetic formulation for the plastic-damage response, the clas-
sical approach leads to a different numerical model. While the damage field is still given by the nonlocal
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gradient criterion, both the displacement field and the plastic strain field are found simultaneously by the
standard Newton–Raphson method, which can be found in [Simo and Hughes 1998; Borja 2013].

As mentioned, the problem of perfect plasticity in a classical approach requires regularization. The
Newton–Raphson method distributes the displacements along the bar by obtaining the plastic strain field
locally via a standard return mapping algorithm and verifying equilibrium. Thus, once the yield stress is
reached, there is an infinite number of admissible solutions. Specifically, strains localize in the element
where the displacement is imposed. Because of this, a viscoplastic model is used as a regularization to
approximate the perfect plasticity phase.

2.1. Perfect plasticity model and viscoplastic regularization.

2.1.1. Governing equations. The perfect plasticity and viscoplastic models that are briefly explored can
be seen in [Simo and Hughes 1998; Runesson 2006], and the numeric implementation is developed in
[Simo and Hughes 1998]. The free energy is defined locally as

9(ε, εp)=
1
2

E(ε− εp)
2, (2-1)

with E as the elastic modulus, from where the constitutive equations

σ =
∂9

∂ε
= E(ε− εp), σp =−

∂9

∂εp
= E(ε− εp)≡ σ,

are obtained. The quasistatic yield criterion is defined as

f (ε, εp)= f (σ )= |σ | − σp, (2-2)

where σp is the initial yield stress. In the case of rate-independent plasticity, one has f (ε, εp)≤ 0. Hence,
after defining the plastic multiplier λ= |ε̇p|, the Kuhn–Tucker conditions

λ≥ 0, f (σ )≤ 0, λ f (σ )= 0, (2-3)

follow. The actual value of the plastic multiplier λ is found via the consistency conditions and the plastic
flow rule, which reads as

ε̇p = λ
∂

∂σ
f (σ )= λ sign σ. (2-4)

The consistency conditions are a function of ḟ (σ ), where one has

ḟ (σ )≤ 0, λ≥ 0, ḟ (σ )λ= 0. (2-5)

The plastic response is then given by equations (2-3), (2-4) and (2-5).
On the other hand, the yield criterion defined in (2-2) is allowed to exceed the yield surface for the

viscoplastic model, where |σ |> σp. The additional stress is accounted for by the overstress, defined as

σex = (|σ | − σp) sign(σ )= f (σ ) sign(σ ).

Defining the viscous relationship σex = υε̇p, where υ is the viscosity constant, the evolution of the plastic
strain is given by

ε̇p = (σ − σp)/(Eτ),
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where τ =υ/E is the relaxation time, which can be interpreted as a factor that determines the rate at which
the overstress tends to zero and the stress tends to the yield stress, recovering the plastic rate-independent
response.

These models are solved computationally in a discrete fashion, where the state of the system is given
at time n by the set of variables (σn, εpn ), and the goal is to determine the updated variables (σn+1, εpn+1)

at time n+ 1 via standard return mapping algorithms. The steps are summarized in the local algorithms
found in [Simo and Hughes 1998].

2.1.2. Energy dissipation. From the Clausius–Duhem inequality, one has

σ ε̇− 9̇ ≥ 0

which, for the viscoplastic model, leads to

8= |ε̇p|(σp+ σex)= |ε̇p|σp(1+ υ|ε̇p|/σp)≥ 0.

Again, note that as υ tends to zero, the dissipation potential tends to the rate-independent plastic
potential, which reads as

8= |ε̇p|σp.

2.1.3. Global iterative solution. Once the local evolution is defined, the global response is obtained
through the finite element method in a Newton–Raphson iterative procedure.

Consider a one-dimensional body occupying a space �= [0, L]. The initial boundary-value problem
is defined by the boundary conditions, which are only imposed in the displacement field:

u(0, t)= 0, u(L , t)= ū(t)∀ t ∈ [0, T ],

where ū(t) is the imposed displacement and t ∈ [0, T ] is an arbitrary time in the interval where displace-
ments are imposed.

The initial boundary-value problem stems out from the balance of linear momentum, and reads as

ρ
∂v

∂t
− bf−

∂σ

∂x
= 0.

The first term is eliminated once the dynamic effects have been neglected and the second term equals
zero once the absence of external loads has been considered. Then, after introducing the test function w,
with w

∣∣L
0= 0, the weak form is ∫ L

0
σ
∂w

∂x
dx = 0. (2-6)

The approximation functions wh(x)=
∑n

i=1wi Ni (x) and σ h(x, t) are considered, with shape functions
contained in vectors N and B = dN/dx . Then, from (2-6), the matrix form of the problem is∫ L

0
wTσ h BT dx = wT

∫ L

0
σ h BT dx = wT

[Fint
] = 0
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which, because of the boundary conditions in w, results in

R =

 F int
2
...

F int
n−1

= 0. (2-7)

In the case of a linear elastic response, the stress field is simply given by σ = Eε. On the other hand,
a nonlinear behavior is given by nonlinear local models, such as the constitutive models explored in the
previous section. The global response is then obtained through the iterative Newton–Raphson procedure,
which can be found in [Simo and Hughes 1998; Borja 2013]. Essentially, a displacement vector is found
that results in a convergence vector given by (2-7) and meets a certain tolerance.

2.2. Damage coupling. In this section, the damage criterion is presented in a classical framework, where
the evolution of the damage variable α ∈ [0, 1) is coupled to the plastic evolution. The damage criterion
can be expressed as

fd = a(σ̂ )− g(α, p, α′′)≤ 0,

where a is the dissipative force of the damage variable, σ̂ is the effective stress, which stems out from
the equivalent strain principle, and p =

∫ t
0 |ε̇p(x, τ )|dτ is the accumulated plastic strain. The criterion is

expressed as
fd = a(σ̂ )−w′(α)+ pm(α)+ η2

dα
′′
≤ 0, (2-8)

where w(α) is related to the damage dissipation and ηd corresponds to the internal length. The term m(α)
allows the coupling between damage and plasticity, where m(α)> 0∀α ∈ [0, 1) is defined. Equation (2-8)
has been adopted from [Alessi 2013] and represents the nonlocal damage criterion that is solved through
the finite element method. As in [Alessi 2013], the constitutive functions

E(α)= E0(1−α)2, w(α)= w0α, m(α)=−σ ′p0
(α), σp(α)= σp0(1−α)

2, (2-9)

are applied, where E0 is the initial elastic modulus and σp0 is the initial plastic yield stress. Replacing
in (2-8),

fd = Eo(ε− εp)
2(1−α)−wo+ 2σyo(1−α)p+ η

2
dα
′′
≤ 0.

The first term in the previous expression corresponds to the dissipative force a(σ̂ ). It is the result of taking
the derivative of the free energy with respect to the damage variable once the damage effect (1−α)2 has
been multiplied by the elastic modulus in (2-1). The effective stress takes the form σ̂ = σ/(1−α)2. In
order to break the homogeneity of the bar, the Dirichlet boundary conditions

α(0, t)= α(L , t)= 0

are applied. Additionally, a response capable of recovering stiffness is not considered; hence, the irre-
versibility condition

α(ti )≤ α(t j )∀ i ≤ j (2-10)

is applied. The weak form of the damage criterion reads as∫ L

0
Eo(1−α)(ε− εp)

2w dx −
∫ L

0
wow dx +

∫ L

0
2σyo(1−α)pw dx +

∫ L

0
η2

d
∂2α

∂x2w dx = 0,
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which leads to the following matrix form:

wT
∫ L

0
NT Eo(ε− εp)

2 dx −wT
∫ L

0
NT Eo(ε− εp)

2 N dxα−wT
∫ L

0
NTwo dx

+wT
∫ L

0
2σyo pNT dx −wT

∫ L

0
2σyo pNT N dxα−wT

∫ L

0
BTη2

d Bα dx = 0.

The following vectors and matrices are obtained:

Ed =

∫ L

0
NT Eo(ε− εp)

2 dx, Ld =

∫ L

0
NT Eo(ε− εp)

2 N dx,

Wd =

∫ L

0
NTwo dx, Sd =

∫ L

0
2σyo pNT dx,

Md =

∫ L

0
2σyo pNT N dx, Jd =

∫ L

0
BTη2

d Bα dx,

from where the nodal values of α are obtained as

α = [−Jd− Ld−Md]
−1
[Wd− Sd− Ed]. (2-11)

2.3. Computational implementation. The elastic-plastic response in Section 2.1.3. is coupled to the
damage evolution, where the plastic yield surface is now

fp = |σ | − σp(α)≤ 0,

and the stress is σ = E(α)(ε − εp). The global elastic-plastic-damage response is obtained with the
following considerations:

• The displacements are imposed gradually, where ndesp is the number of imposed displacements.

• Two convergence criteria are applied: the sum of the internal forces with tolerance tolp for the
elastic-plastic problem and L∞ norm with tolerance told for the damage problem.

The procedure is presented in Algorithm 1, which resembles the procedure used in [Almansba et al.
2010].

3. Variational approach

This section is devoted to the enrichment of the variational plastic-damage model in [Alessi 2013]. First,
the hardening variable is added to the local coupled model and the resulting formulation is investigated,
where the conditions for the different possible responses are explored. Because of the local treatment,
no variational tools are required in this subsection. In the next subsection, as well as in the numeric
implementation that follows, the variational approach is illustrated with the nonlocal gradient model that
is developed with the addition of the plastic strain gradient term.

The complete material response consists of the following stages:

(1) An initial elastic phase.

(2) A homogeneous hardening plastic phase with zero Neumann boundary conditions, or a smooth
distribution of plastic strains with zero Dirichlet boundary conditions.
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1: for n = 1 to ndesp do
2: Initialize

k = 0;
3: while ||αk

n −α
k−1
n ||∞ > told and k ≤ itmax do

4: Initialize
j = 0, 1d j

n = 0;
5: while ||R j

n ||1 > tolp and k ≤ itmax do
6: Initialize the stiffness matrix and the internal force vector

K j
n = 0, Fint j

n = 0;
7: for e = 1 to nel do
8: Obtain the average damage per element ᾱ
9: Obtain {σ, ε, εp, p} via one of the local models, as well as the corresponding tangential

modulus introducing E(ᾱ) and σy(ᾱ)

10: Update Fint j

n and K j
n

11: end for
12: if ||R j

n ||1 > tolp then
13: Obtain the incremental nodal displacements for the next iteration

1d j
n =1d j

n − [K
j

n ]
−1
[R j

n ];
14: j = j + 1
15: end if
16: end while
17: Obtain the nodal damage values α via (2-11)
18: if ||αk

n −α
k−1
n ||∞ > told then

19: k = k+ 1
20: end if
21: end while
22: end for

Algorithm 1. Classical approach elastic-plastic-damage algorithm.

(3) A coupled plastic-damage phase, with a nonhomogenous distribution of both fields. If Neumann
boundary conditions are imposed in the plastic phase, Dirichlet boundary conditions are necessary
in the damage field to break the homogeneity of the bar. Each variable will distribute according
to its own internal length with a maximum at the center of the bar, with the plastic internal length
decreasing as a function of the damage level.

(4) A localization of the plastic strain evolution at the center of the bar as soon as a threshold level of
damage has been reached in the bar.

3.1. Local model with hardening plasticity. In this subsection, the analytical governing equations are
presented for the local coupled model. The work carried out is adopted from [Alessi 2013] and the
hardening variable is incorporated in the procedure.
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3.1.1. General model. The free energy is defined locally as

9 =
1
2

E(α)(ε− εp)
2
+

1
2

H(α)p2, (3-1)

where the hardening component has been added to the free energy given by (2-1) for perfect plasticity.
A plastic hardening variable κ = |εp| = p is considered with a plastic modulus H(α).
Then, the stress-strain relation becomes

σ(εp, α)= E(α)(ε− εp). (3-2)

The plasticity yield criterion fp and the damage criterion fd read as

fp(σ, p, α)= |σ | − [σp(α)+ H(α)p] ≤ 0, (3-3)

fd(σ, p, α)=−1
2

E ′(α)(ε− εp)
2
−

1
2

H ′(α)p2
− σ ′p(α)p−w0 ≤ 0, (3-4)

where the following properties are defined for each term:

E(α) > 0, E ′(α)< 0∀α ∈ [0, 1),

H(α) > 0, H ′(α)< 0∀α ∈ [0, 1),

σp(α) > 0, σ ′p(α) < 0∀α ∈ [0, 1).

The local evolution is given by the Kuhn–Tucker conditions and the consistency conditions for each yield
surface. Moreover, from (3-3) and (3-4), the yield stresses are

σyp(p, α)= σp(α)+ H(α)p, (3-5)

σyd =

√
w0+ σ ′p(α)p+ 1/2H ′(α)p2

−1/2E ′(α)E(α)−2 . (3-6)

Then, the evaluation of the consistency conditions is required. For this, one uses

ḟp(σ, p, α)= E(α)(ε̇− ε̇p) sign(σ )+
(
E ′(α)(ε− εp)− σ ′p(α)− H ′(α)p

)
α̇− H(α) ṗ, (3-7)

ḟd(σ, p, α)= E(α)(ε̇− ε̇p)− (σ
′

p(α)+ H ′(α)p) ṗ

−

(
1
2

E ′′(α)(ε− εp)
2
+

1
2

H ′′(α)p2
+ σ ′′p (α)p

)
α̇. (3-8)

The material response consists of three stages: an elastic phase, a first dissipation phase and a second
dissipation phase. These are analyzed next considering increasing monotonic loading.

Elastic phase. An elastic phase is defined by σ < min(σyp(0, 0), σyd(0, 0)). The next phase, which
begins at a certain stress level, can consist of one of two possible evolutions:

• E-P-*: σ = σyp(0, 0) < σyd(0, 0). From the stress-strain relation (3-2), the strain at which the plastic
phase begins is

ε = εyp = σp(0)/E(0).
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• E-D-*: σ = σyd(0, 0) < σyp(0, 0). The damage phase begins at the strain level

ε = εyd =
√
w0/−E ′(0).

First dissipation. It begins with σ =min(σyp(0, 0), σyd(0, 0)). The two possible evolutions are analyzed:

• E-P-*: (εyp ≤ ε < εyd). Therefore, one has

σ = σyp(0, 0) < σyd(0, 0),

fp(σ, 0, 0)= 0,

fd(σ, 0, 0) < 0.

For a loading condition, the evolution is obtained through the consistency conditions from (3-7),
where

ḟp(σ, p, 0)= E(0)(ε̇− ε̇p)− H(0) ṗ = 0.

The second dissipation phase begins at the strain level

ε = εyd =

√
w0+ σ ′p(0)p+ 1/2H ′(0)p2

−1/2E ′(0)
+ εp.

• E-D-*: (εyd ≤ ε < εyp). Therefore, one has

σ = σyd(0, 0) < σyp(0, 0),

fp(σ, 0, 0) < 0,

fd(σ, 0, 0)= 0,

and the consistency conditions are investigated through (3-8), which yields

ḟd(σ, 0, α)=−E ′(α)εε̇− 1
2

E ′′(α)ε2α̇ = 0,

which is admissible given E ′′(α) > 0. The second dissipation phase begins at the strain level

ε = εyp = σp(α)/E(α).

Notice that if σyd(0, α)<σyp(0, α) for the entire evolution, this strain level is never reached, resulting
in a brittle E-D response.

Second dissipation. Different evolutions can arise, regardless of the first dissipation phase. They are
investigated as follows:

• E-*-P: It is required that

ḟp(σ, p, α)= E(α)(ε̇− ε̇p)− H(α) ṗ = 0,

ḟd(σ, p, α)= E ′(α)(ε− εp)ε̇

(
E(α)

E(α)+ H(α)
− 1

)
+ (−σ ′p(α)− H ′(α)) ṗ < 0, (3-9)

which is inadmissible because, given H(α) > 0 and H ′(α) < 0, both the first and second terms
are always positive. Therefore, it is impossible for plasticity to evolve by itself once damage has
been triggered. It is worth noting that this no longer holds for softening plasticity, where H(α) < 0
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and H ′(α) > 0, because the terms in the inequality can eventually become negative. In this work,
however, only hardening plasticity is considered.

• E-*-D: It is required that

ḟp(σ, p, α)=
(
E ′(α)(ε− εp)− σ

′

p(α)− H ′(α)p
)
α̇+ E(α)ε̇ < 0,

ḟd(σ, p, α)=−E ′(α)(ε− εp)−

(
1
2

E ′′(α)(εεp)
2
+

1
2

H ′′(α)p2
+ σ ′′p (α)p

)
α̇ = 0,

which results in
A <−E ′(α)(ε− εp)/E(α)B, (3-10)

where
A = 1

2
E ′′(α)(ε− εp)

2
+

1
2

H ′′(α)p2
+ σ ′′p (α)p > 0,

B =−E ′(α)(ε− εp)+ σ
′

p(α)+ H ′(α)p > 0.

Equation (3-10) defines the necessary condition for the evolution of damage without plasticity as
the second dissipation phase.

• E-*-PD: It is required that

ḟp(σ, p, α)= E(α)(ε̇− ε̇p)+
(
E ′(α)(ε− εp)− σ

′

p(α)− H ′(α)p
)
α̇− H(α) ṗ = 0,

ḟd(σ, p, α)=−E ′(α)(ε− εp)− (σ
′

p(α)+ H ′(α)p) ṗ

−

(
1
2

E ′′(α)(εεp)
2
+

1
2

H ′′(α)p2
+ σ ′′p (α)p

)
α̇ = 0,

which results in
−E ′(α)(ε− εp)/E(α)B < A, (3-11)

defining the necessary condition for the coupled plastic-damage second dissipation phase.

3.1.2. Specific model. We focus on the E-P-PD evolution. Recalling (2-9) from the classical approach,
the constitutive functions

E(α)= E0(1−α)2, H(α)= H0(1−α)2, σp(α)= σp0(1−α)
2, (3-12)

are used. where the constitutive function of the plastic modulus has been added, with H0 as the initial
plastic modulus. Then, the yield stresses become

σyp(p, α)= (1−α)2(σp0 + H0 p), (3-13)

σyd(p, α)=
√
(w0− (2σp0 p+ H0 p2)(1−α))E0(1−α)3. (3-14)

Both dissipation phases are analyzed:

• First dissipation: From (3-13) and (3-14), the yield stresses become

σyp(0, 0)= σp0,

σyd(0, 0)=
√
w0 E0.
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Therefore, if σp0 <
√
w0 E0 holds, a plasticity phase is ensured as the first dissipation.

• Second dissipation: With nonsoftening plasticity as the first dissipation phase, a second dissipation
is phase is guaranteed. Recalling that for monotonic loading p = εp, the yield strain is

εyd =

√
w0− 2σp0 pyd− H0 p2

yd

E0
+ pyd, (3-15)

where pyd is the accumulated plastic strain corresponding to εyd. A coupled response needs to be
assured, for which σyd(pyd, α) > σyp(p, α) needs to be verified during the evolution. Using the
stress-strain relation (3-2), (3-15) and (3-13) one has√

w0− 2σp0 pyd− H0 p2
yd

E0
−
σp0 + H0 pyd

E0
= 0,

which results in

(H 2
0 /E0+ H0)p2

yd+ (σp0 H0/E0+ 2σp0)pyd+ (σ
2
p0
/E0−w0)= 0.

With this, the value p = pyd is given and from equations (3-13) and (3-14), σyd(pyd, α) > σyp(p, α)
must hold for a coupled evolution.

Finally, the complete evolution is explicitly given by:

• Elastic phase: ε ∈ [0, εyp).

p(t)= 0, α(t)= 0, σ (t)= E0ε.

• Plastic phase: ε ∈ [εyp, εyd).

p(t)= (εE0− σp0)/(E0+ H0), α(t)= 0, σ (t)= σp0 + H0 p.

• Plastic-damage phase: ε ∈ [εyd,∞).

p(t)=
εE0− σp0

E0+ H0
, α(t)= 1−

w0

E0(ε− p)2+ H0 p2+ 2σp0 p
, σ (t)=

(
σp0 + H0 p

)
(1−α)2.

Energy dissipation. From the Clausius–Duhem inequality, one has

σ ε̇− 9̇ ≥ 0,

from where (
−

1
2

E ′(α)(ε− εp)
2
−

1
2

H ′(α)p2
)
α̇+ σ ε̇p− H(α)p ṗ ≥ 0.

The plastic dissipation reads as
8p = σ ε̇p− H(α)p ṗ

= ṗ [|σ | − H(α)p]

=
(
σp(α)

)
ṗ ≥ 0, (3-16)
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whereas the damage dissipation is

8d =

(
−

1
2

E ′(α)(ε− εp)
2
−

1
2

H ′(α)p2
)
α̇

= (σ ′p(α)+w0)α̇ ≥ 0. (3-17)

3.2. Global gradient model.

3.2.1. Energy functional. The nonlocal model is developed with a variational treatment. First, the energy
potentials have to be defined. The stored elastic energy E=

∫ L
0 9dx is given by

E(u, εp, p, α)=
∫ L

0

1
2

E(α)(u′− εp)
2
+

1
2

H(α)p2 dx, (3-18)

where the hardening term is considered. From (3-16) and (3-17), the total dissipation potential is defined
as

8(p, α, p′, α′, ṗ, α̇, ṗ′, α̇′)=8p+ ∂t

(
1
2
ηp(α)

2 p′2
)
+8d+ ∂t

(
1
2
η2

dα
′2
)

= (σp(α)) ṗ+ ∂t

(
1
2
ηp(α)

2 p′2
)
+w0α̇+ σ

′

p(α)α̇+ ∂t

(
1
2
η2

dα
′2
)
, (3-19)

where the terms corresponding to the plastic strain gradient and the damage gradient have been added,
with ηp(α) as a variable internal length scale. The damage gradient term is kept to avoid an abrupt damage
localization and an instantaneous rupture as soon as damage is triggered. With (3-19), the dissipated work
D is defined as

D(u, εp, p, α)=
∫ L

0

1
2

E(α)(u′− εp)
2
+

1
2

H(α)p2 dx

+

∫ L

0
σy(α)p+

1
2
ηp(α)

2 p′2 dx +
∫ L

0
w0α+

1
2
η2

dα
′2 dx . (3-20)

The energy functional is defined with (3-20) and (3-18) as

W(u, p, α)= E(u, p, α)+D(u, p, α)

=

∫ L

0

1
2

E(α)(u′− εp)
2
+

1
2

H(α)p2 dx

+

∫ L

0
σp(α)p+

1
2
ηp(α)

2 p′2 dx +
∫ L

0
w0α+

1
2
η2

dα
′2 dx . (3-21)

3.2.2. Energetic formulation. The building blocks of the variational energetic formulation are the fol-
lowing conditions:

(1) Stability condition.

(2) Energy balance.

(3) Irreversibility condition.
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The irreversibility condition is imposed on the damage variable and is given by (2-10). This condition is
applied numerically by simply considering the damage value corresponding to the previous load step as
the minimum level of damage for each corresponding node as

αi
n =

{
αi

n, if αi
n ≥ α

i
n−1

αi
n−1, if αi

n < α
i
n−1

, (3-22)

where αi
n is the damage value for the n-th load step and the i-th node. The other two conditions are

explored in this section. From now on, only monotonic loading is considered, for which εp = p.

Stability condition. By differentiating potentials (3-18) and (3-20), the first order stability condition
yields

W(u, p, α)(ũ, p̃, α̃)

= E′(u, p, α)+D′(u, p, α)

=

∫ L

0
E(α)(u′− p)ũ′+

(
−E(α)(u′− p)+ σp(α)+ H(α)p

)
p̃+ ηp(α)

2 p′ p̃′

+

(
1
2

E ′(α)(u′− p)2+ 1
2

H ′(α)p2
+ σ ′p(α)p+w0+ ηp(α)η

′

p(α)p
′2
)
α̃+ η2

dα
′α̃′ dx ≥ 0,

from where the following cases are analyzed:

• For p̃ = α̃ = 0, ∫ L

0
E(α)(u′− p)ũ′ dx = 0, (3-23)

which is the weak form of the equilibrium equation in the absence of external loads.

• For ũ = α̃ = 0,∫ L

0

((
−E(α)(u′− p)+ σp(α)+ H(α)p

)
p̃+ ηp(α)

2 p′ p̃′
)

dx ≥ 0, (3-24)

which is the weak form of the plasticity yield criterion. After integrating the last term by parts, the
gradient-dependent yield criterion is recovered in the local form

fp(u, p, α)= σ − [σp(α)+ H(α)p] + ηp(α)
2 p′′ ≤ 0. (3-25)

• For ũ = p̃ = 0,∫ L

0

(
1
2

E ′(α)(u′− p)2+ σ ′p(α)p+
1
2

H ′(α)p2
+w0+ ηp(α)η

′

p(α)p
′2
)
α̃+ η2

dα
′α̃′ dx ≥ 0, (3-26)

obtaining the weak form of the damage criterion. Again, the last term is integrated by parts and the
gradient-dependent yield criterion is recovered in the local form

fd(u, p, α)=−1
2

E ′(α)(u′− p)2− σ ′p(α)p−
1
2

H ′(α)p2
−w0− ηp(α)η

′

p(α)p
′2
+ η2

dα
′′
≤ 0, (3-27)
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where the damage gradient term is observed. Also, the plastic gradient term is present due to the
possible coupling of the plastic internal length to the damage variable. This problem will be treated
once the constitutive functions are introduced.

Energy balance. A procedure analogous to the treatment of the stability condition is carried out. The
energy balance leads to∫ L

0
−E(α)(u′− p)u̇′+

(
E(α)(u′− p)− σp(α)− H(α)+ ηp(α)p′′

)
ṗ

+

(
−

1
2

E ′(α)(u′− p)2− 1
2

H ′(α)p2
− σ ′p(α)p−w0− ηp(α)η

′

p(α)p
′2
+ ηdα

′′

)
α̇ dx = 0. (3-28)

The following cases are analyzed:

• For u̇ = α̇ = 0, using (3-25), the plasticity consistency conditions are obtained as

fp(u, p, α) ṗ = 0.

• For u̇ = ṗ = 0, using (3-27), the damage consistency conditions are obtained as

fd(u, p, α)α̇ = 0.

3.2.3. Alternate minimization. The finite element resolution that is applied in this work is shown in this
subsection. All the integrals, when necessary, are solved through Gaussian quadrature. To gain precision
and a more accurate response, no average values are taken, and the state variables are approximated as
follows:

• The displacement field is approximated with quadratic shape functions and three-node elements.

• Both the plastic strain field and the damage field are approximated with linear shape functions and
two-node elements.

The same constitutive functions (Equation (3-12))

E(α)= E0(1−α)2, H(α)= H0(1−α)2, σp(α)= σp0(1−α)
2,

are applied. Additionally, the plastic internal length is taken as

ηp(α)=

{
ηp0(β −max(α)), if max(α)≤ β

0, if max(α) > β
,

where ηp0 is the initial internal length, β ∈ [0, 1] is a threshold level of damage and max(α) is the
maximum value of damage, which will be located at the center of the bar. This choice of function for
the plastic internal length avoids the dependence of the damage variable on the plastic strain gradient
because the term ηp(α)η

′
p(α)p

′2 disappears from the damage criterion.
The alternate minimization follows:

• Minimization with respect to the displacement field W(u, εp, α)(ũ, 0, 0)=0,

d
dh

W(u+ hũ, εp, α)

∣∣∣
h=0
= (3-23).
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Introducing the constitutive functions, approximation functions and shape functions, the matrix form
is obtained as∫ L

0
E0(1− Nαe)

2 M ′T M ′ dxu−
∫ L

0
E0(1− Nα)2 M ′Te N dx p= 0, (3-29)

where M and N are the shape functions of three-node elements and two-node elements, respectively.

• Minimization with respect to the plastic strain W′(u, εp, α)(0, ε̃p, 0)= 0,

d
dh

W(u, εp+ hε̃p, α)

∣∣∣
h=0
= (3-24).

Along with the constitutive functions, the matrix form is∫ L

0
−E0(1− Nα)2 NT M ′ dxu+

∫ L

0
E0(1− Nα)2 NT N dx p

+

∫ L

0
σp0(1− Nα)2 NT dx +

∫
�

H0(1− Nα)2 NT N dx p

+

∫ L

0
H(β −max(α))η2

p0
(β −max(α))2 N ′T N ′ dx p= 0, (3-30)

where H is the Heaviside step function.

• Minimization with respect to the damage field W′(u, εp, α)(0, 0, α̃)= 0,

d
dh

W(u, εp, α+ hα̃)
∣∣∣
h=0
= (3-26).

Again, the corresponding matrix form is obtained as∫ L

0
(w0− R)NT dx +

∫
�

RNT N dxα+
∫
�

η2
d N ′T N ′ dxα, (3-31)

where
R = E0(M ′u− N p)2+ 2σp0 N p+ H0 N pN p. (3-32)

The local vector forms are solved and the global vectors are found for each variable alternatively.

3.3. Computational implementation. The numeric implementation leads to the alternate minimization
algorithm. The main characteristics are:
• The displacements are imposed gradually.

• The trial elastic state is given to all the elements by verifying equilibrium and finding the elastic
displacement distribution.

• The plastic state is recovered by finding the global plastic strain vector.

• The plastic-damage field is finally obtained by finding the global damage vector.

• Three convergence criteria are applied: L2 norms for the displacement field and the plastic strain
field, with tolerances tolu and tolp, respectively, and L∞ norm for the damage field with tolerance
told.

The computational process is summarized in Algorithm 2.
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1: for n = 1 to ndesp do
2: Initialize

k = 0;
3: while

(
||uk

n − uk−1
n ||2 > tolu or ||εp

k
n − εp

k−1
n ||2 > tolp or ||αk

n − α
k−1
n ||∞ > told

)
and k ≤ itmax

do
4: k = k+ 1;
5: Obtain uk

n = argminuW(u, εp
k−1
n , pk−1

n , αk−1
n ) from the solution of (3-29)

6: Obtain εp
k
n, pk

n = argminεp
W(uk

n, εp, p, αk−1
n ) from the solution of (3-30)

7: Obtain αk
n = argminαW(uk

n, εp
k
n, pk

n, α) from the solution of (3-31) and apply the irreversibility
condition with (3-22)

8: end while
9: end for

Algorithm 2. Energetic formulation of the alternate minimization algorithm.

4. Numerical simulations

The results of the numerical simulations are explored in this section. First, the classical approach is
analyzed. The evolution of the state variables for the viscoplastic model is first illustrated. Then, the
tendency of the model towards the perfect plasticity variational model as the loading rate tends to zero
is shown. The variational approach follows. The evolution of the local hardening plasticity and gradient
damage model is first analyzed, and the results are, on some level, compared to the viscoplastic model.
Then, the evolution of the state variables for the gradient plasticity and gradient damage model is shown
and the main characteristics are described.

4.1. Classical model. As mentioned, the local classical approach provides a response where the strains
localize in the plastic phase in the element where the displacements are imposed. This problem is solved
by introducing rate-dependence in the plastic phase, by means of the viscoplastic model. Although this
model is used to represent the response of materials that exhibit rate-dependence, it can be demonstrated
that as the ratio 1t/ν→∞, the viscoplastic response tends towards the rate-independent plastic model
[Simo and Hughes 1998]. For the definition of the numerical model, the loading rate v = 1u/1t is
introduced as the parameter used to control the rate-dependence effect that viscosity introduces in the
model, given that 1t/ν→∞ and v→ 0 are equivalent conditions. The constitutive parameters used
in the simulations are in Table 1 and the results of the viscoplastic evolution are illustrated in Figures
1 and 2. In Figure 1 (left), the stress-displacement curve is shown. Two main phases in the material
response can be observed, corresponding to the perfect plasticity phase and the plasticity-damage phase.
The displacement profile shown in Figure 1 (right) shows an initially smooth evolution, leading to a jump
in the displacement field as damage evolves. In Figure 2 (left) the plastic deformation profiles are shown.
During the plasticity phase, the plastic deformations evolve uniformly over the bar, but after damage
is triggered, the region in which plasticity evolves reduces continuously, until it concentrates in one or
two elements in the middle of the bar. The size of this region is controlled by the value of the loading
rate, as seen in Figure 4 (left). This behavior has been observed before in [Niazi et al. 2013; Needleman
1988], and has been attributed to an implicit internal length included in the viscoplastic regularization.
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E0 σy0 H0 ηd ηp ν w0 β

(MPa) (MPa) (MPa) (MPa1/2
·m) (MPa1/2

·m) (MPa · s) (MPa)

classical 71300 345 – 0.55 − 25 30 −viscoplasticity

local hardening 71300 345 5000 0.80 − − 30 −plasticity

grad. dependent 71300 345 250 0.55 10 − 30 0.85plasticity

Table 1. Constitutive parameters used in the simulations.
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Figure 1. Stress-displacement curve (left) and displacement profiles (right) for the evolu-
tion of the classical viscoplastic and gradient damage model with 100 elements.

The damage profile observed in Figure 2 (right) shows an initially smooth distribution. As damage
evolves, the spatial distribution tends to an abrupt jump in the spatial derivative of damage in the center
of the bar. Another interesting result of the model is length in which the damage and plastic deformation
profiles evolve during the loading process. Material damage continuously diffuses along the bar during
the evolution, allowing the model to represent void coalescence during material failure. On the other
hand, the size of the zone in which the plastic deformations evolve is gradually reduced, allowing the
concentration of deformations at the center of the bar. This, along with the jump in the displacement
field, represents the formation of a cohesive crack.

The viscoplastic model is shown to converge to the variational model in [Alessi 2013] as the loading
rate tends to zero. This can be observed in Figures 3 and 4 for different loading rates v = 1u/1t . In
Figure 3 (left), it can be observed how the stress in the bar increases as the loading rate increases, as
expected because of the hardening effect of viscoplasticity.

Additionally, a numerical disadvantage of the classical model is observed in the capacity of the al-
gorithm to converge. For a determined loading rate, the steps at which the displacements are imposed
can be too large, causing nonconvergence. Specifically, the total energy never reaches a minimum and
oscillates between iterations. This effect is shown for a nonconvergence simulation in Figure 5.
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Figure 2. Plastic strain (left) and damage profiles (right) for the evolution of the classical
viscoplastic and gradient damage model with 100 elements.
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Figure 3. Stress-displacement curves (left) and displacement profiles (right) for the clas-
sical viscoplastic model using different loading rates and compared to the variational with
100 elements.
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Figure 4. Plastic strain (left) and damage profiles (right) for the classical viscoplastic
model using different loading rates and compared to the variational model with 100 ele-
ments.
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Figure 5. Nonconvergence of the classical approach.

4.2. Variational model.

4.2.1. Hardening plasticity and gradient damage. The results of the simulations of local hardening plas-
ticity and gradient damage are illustrated. The constitutive parameters that were used are shown in
Table 1.

The main feature of the local plasticity model can be appreciated in the evolution of the plastic strains
shown in Figure 6. There is an initial implicit internal length caused by the hardening variable, and the
evolution eventually narrows and concentrates at the center of the bar.

In Figure 7 (left), the displacement profile shows a relatively smooth evolution as the plastic modulus
increases. This result is similar to the effect of increasing the loading rate in the viscoplastic model
because in both cases, the material becomes stiffer. Also, the plastic strain profile shown in Figure 7
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Figure 6. Plastic strain profile for the variational hardening plasticity and gradient damage
model with 100 elements.
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Figure 7. Displacement (left) and plastic strain profiles (right) for the variational harden-
ing plasticity and gradient damage model, varying the hardening modulus with 100 ele-
ments.
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Figure 8. Stress-displacement curves (left) and damage profiles (right) for the variational
hardening plasticity and gradient damage model, varying the hardening modulus with 100
elements.

(right) shows that the plastic strains concentrate more and are higher as the plastic modulus decreases.
Clearly, H = 0 results in the central concentration, recovering the perfect plasticity model in [Alessi
2013]. This result also resembles the plastic strain distribution of the viscoplastic model as the loading
rates decrease.

The increase of stress in the plastic phase results in an earlier activation of damage when compared to
both the perfect plasticity model and the viscoplastic model, where the damage is triggered at the same
strain level. This result is shown in the damage yield points of Figure 8 (left). Clearly, the damage yield
stress is reached early for higher values of H . Additionally, Figure 8 (right) shows that the damage re-
sponse is significantly sensitive with respect to the hardening variable. Because of this coupled evolution,
the stress drops to zero at a higher rate as the plastic modulus increases, as shown in the damage phase
of Figure 8 (left). Physically, this result can be interpreted as the simulation of a material behavior where
hardening also implicates less ductility and a higher loss of stiffness in the softening regime.
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Figure 9. Unloading paths for the gradient plasticity and gradient damage model with 101 elements.

4.2.2. Complete gradient model. The results of the simulations of the complete gradient model are pre-
sented. The constant values that were used are shown in Table 1. Because of the nodal distribution of the
plastic strains, three nodal elements are considered with quadratic approximations on the displacement
field.

Figure 9 shows the unloading paths, where the loss of stiffness can be observed in the damage phase.
In Figure 10 (left), the stress-displacement curve is shown in relation to the evolution of the state variables.
The results are almost identical to the local hardening model with the exception of the damage phase,
where initially the stress drops at a slightly slower rate. Once the damage level has reached the threshold
value, the local plasticity tendency is recovered. Both the displacement profile of Figure 10 (right) and
the damage profile of Figure 11 (right) also show similar results, presenting initially smooth spatial
distributions. The response can be compared to the results of viscoplastic model for relatively high
loading rates. On the other hand, the plastic strain profile shown in Figure 11 (left) highlights the main
features of the variable plastic strain gradient term. The evolution begins with a wider localization zone
then the local plasticity model for the same plastic modulus due to the effect of the gradient term. Then,
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Figure 10. Stress-displacement curve (left) and displacement profile (right) for the evolu-
tion of the variational gradient plasticity and gradient damage model with 101 elements.
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Figure 11. Plastic strain (left) and damage profiles (right) for the evolution of the varia-
tional gradient plasticity and gradient damage model with 101 elements.

the damage threshold value is reached and the evolution concentrates in the center of the bar, thereby
representing the cohesive crack. Clearly, one of the advantages of this model is that the initial localization
region can be controlled without changing the plastic modulus or introducing rate-dependence, which
are constant properties of the material.

The energy contributions for the evolution are shown in Figure 12. It is evident that as the stored
elastic energy (composed of elastic energy and plastic energy) tends to zero, the total energy becomes a
sum of the different contributions of dissipative energies. The total dissipative energy of the bar evolves
in the localization zone.

Figures 13 and 14 show the mesh-dependence of the model. Even for a very coarse mesh (11 elements),
the tendency is well represented. Clearly, there is low sensitivity to the mesh size, and the plastic strain

0 0.02 0.04 0.06 0.08 0.1 0.12

0

5

10

15

20

25

E
ne

rg
y

(M
J/

m
2 )

Displacement (m)

Total Energy
Free Energy
Elastic Energy
Plastic Energy
Dissipated Energy
Plastic Dissipation
Damage Dissipation

Figure 12. Energy contributions for the variational gradient plasticity and gradient damage model.
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Figure 13. Stress-displacement curve (left) and displacement profiles (right) for the vari-
ational gradient plasticity and gradient damage model for different mesh sizes.
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Figure 14. Plastic strain (left) and damage profiles (right) for the variational gradient
plasticity and gradient damage model for different mesh sizes.

profiles show that as the mesh size decreases, the concentration of the plastic strains eventually tend to
the Dirac delta, as described in [Alessi 2013].

5. Conclusions and perspectives

In this work, the behavior of nonlocal regularized plastic-damage models, in both classical and variational
settings has been explored. In the classical approach, the local viscoplastic regularization was used,
resulting in the introduction of an implicit internal length in the model, where the size of the localization
zone is reduced during the loading process. This is triggered in the plasticity-damage phase and can
be controlled through the loading rate. This feature allowed the model to represent a very interesting
behavior of the plastic strain spatial distribution and evolution during the final stage of damage and
beginning of fracture.

On the other hand, the variational approach in [Alessi 2013] was enriched to include hardening as
well as an explicit internal length to control the size of the plastic strain localization zone. The local
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evolution was investigated via the consistency conditions, and the addition of the hardening variable
furnishes an interesting result, namely (3-9). Clearly, a negative value of the plastic modulus can result
in softening behavior without loss of stiffness, even if damage was triggered before. Thus, condition (3-9)
should be met for a physically appropriate response. In the numerical simulations, only hardening was
considered. As we saw, the hardening variable introduced an implicit internal length that decreases with
further loading in the plastic deformation profile, where the initial size of the localization is controlled by
the plastic modulus. Similar to the viscoplastic model, the implicit internal length distributes the plastic
strains in a certain region; however, the spatial distribution eventually narrows, appropriately representing
a jump in the displacement field. Building over this, an explicit internal length was introduced by means
of the plastic strain gradient. Taking advantage of the one-dimensional framework, a decreasing function
of the maximum level of damage over the bar was used for the internal length, providing better control of
the strains in the localization zone. In fact, the effect of the plastic strain gradient may eventually vanish
and the local plasticity and gradient damage model in [Alessi 2013] is recovered, with concentration in
the center of the bar and the eventual crack. All of this is obtained with a controllable precursory state.

The results of the viscoplastic regularization are consistent with the results obtained in [Niazi et al.
2013]. In the case of the variational model with nongradient hardening plasticity and gradient damage,
the results can be qualitatively compared to [Ambati et al. 2015], where hardening plasticity is also
coupled to gradient damage in a different formulation. On the other hand, the effect of the plastic
strain gradient shows the same tendency observed in [Dal Corso and Willis 2011]. However, in our
model, strains localize and the rest of the bar experiences unloading without introducing perturbations.
In addition, the evolution can be prolonged to extreme loading with numerical stability and the narrowing
of the localization zone is automatic due to the variable internal length. We think of this behavior as a
representation of the necking phenomenon, where the strain localization zone eventually narrows to the
fracture point (in our case, the central element of a fine mesh) with a concentration of plastic strains,
successfully representing ductile failure.
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