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INTERFACE STRESS OF ORTHOTROPIC MATERIALS WITH A NANODEFECT
UNDER ANTIPLANE SHEAR LOADING

JUNHUA XIAO, CHUANFU SHI, YAOLING XU AND FUCHENG ZHANG

A theoretical study is conducted on an orthotropic solid with a nanodefect (e.g., inclusion, hole, or crack)
under far-field antiplane shear loading. A rigorous analytical solution of the stress fields is presented
using the Gurtin–Murdoch surface/interface model and a conformal mapping technique. Several new
and existing solutions are considered for the special and degenerated cases. The major results of the
study are as follows:

(1) Interface stresses are greatly dependent on size when the size of a defect is at the nanometer scale,
and the interface stresses approach the classical elasticity results when a defect has large character-
istic dimensions.

(2) The interface effect of a nanodefect decreases with an increase in defect section aspect ratio.
(3) When the modulus of the defect (inclusion) increases, the interface effect decreases, i.e., the inter-

face effect can be neglected when the inclusion is sufficiently hard.

1. Introduction

Several composite materials can be regarded as orthotropic solids in engineering applications. The
general properties, as well as the fracture and damage properties, of orthotropic solids have received
considerable attention with respect to elastic-plastic and fracture damage theories. When the size of
defects (e.g., inclusion, hole, or crack) in an orthotropic solid is at the nanometer scale, the interface
effect of nanodefects plays an important role in micromechanical properties because of the high surface-
to-volume ratios of this solid material [Nan and Wang 2013; Grekov and Yazovskaya 2014].

In recent years, significant progress has been made in addressing the fracture characteristics of or-
thotropic solids with holes or cracks from a fundamental perspective by applying classical elastoplastic
theory. Tang and Hwang [1991] discussed the near-tip field solution for a plane stress mode I stationary
crack in an elastic-perfectly orthotropic plastic material based on phenomenological plasticity theory.
Gao and Tong [1995] used the Cauchy integral method to study the fundamental solutions for the complex
stress functions and the stress intensity factors of an equal-parameter orthotropic plate with an elliptical
hole or crack. Ozturk and Erdogan [1997] formulated the mode I crack problem for an inhomogeneous
orthotropic plane and obtained a solution for various loading conditions and material parameters. Kim,
Lee, and Joo [1999] presented a numerical solution by applying the Fourier integral transform method on
the problem of a three-layered orthotropic material with a center crack that was subjected to an arbitrary
antiplane shear loading. Berbinau and Soutis [2001] presented a new analytical method for solving
mixed boundary value problems along holes in orthotropic plates. Kwon and Meguid [2002] proposed
a general solution for the field intensity factors and the energy release rate of a Griffith crack normal to
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the interface between a rectangular piezoelectric ceramic and two of the same rectangular orthotropic
materials with finite lengths under combined in-plane electrical and antiplane mechanical loadings. Lee,
Kwon, Lee, and Kwon [2002] provided the dynamic field intensity factors for the problem of an inter-
facial crack moving along the interface between a piezoelectric material and two orthotropic materials
under electromechanical longitudinal shear loading. Li [2003] analytically determined the stress intensity
factors for the problem of an orthotropic strip with two collinear cracks normal to the strip boundaries
under remote uniform antiplane shear loading. Faal and Fariborz [2007] derived the stress fields in an
orthotropic infinite plane with Volterra-type climb and glide edge dislocations. Chalivendra [2008] de-
veloped quasistatic stress fields for a crack oriented along one of the principal axes of an inhomogeneous
orthotropic medium by conducting asymptotic analysis coupled with the Westergaard stress function
approach. Zhang and Deng [2008] derived elastic stress fields near the cohesive zone of a crack aligned
with the principal axes of a degenerated orthotropic material using complex variable and eigenfunction
expansion methods. Xiao and Jiang [2009] obtained a closed-form solution for orthotropic materials
weakened by a doubly periodic array of cracks under far-field antiplane shear loading by applying ellipti-
cal function and analytical function theories on the boundary value problems. Moharrami and Ayatollahi
[2011] conducted stress analysis on an orthotropic plane with a Volterra-type dislocation. The distributed
dislocation technique was adopted to obtain the integral equations for an orthotropic plane weakened by
cracks under time-harmonic antiplane traction. Goldstein and Shifrin [2012] investigated a crack that
was initially located on a symmetry axis of an orthotropic plane and subjected to biaxial loading. Liu
and Zhou [2014] presented a solution for a plane rectangular crack in a 3D infinite orthotropic elastic
material by applying a generalization of Almansi’s theorem and the Schmidt method. Liu, Zhou, Wu,
and Wu [2015] investigated a nonlocal theory solution for a rectangular crack in a 3D infinite orthotropic
elastic medium using a generalization of Almansi’s theorem and the Schmidt method. Peng, Li, and
Feng [2015] investigated the interaction between a mode I crack and a symmetrical shape inclusion in
an orthotropic medium subjected to remote stress by using transformation toughening theory and the
Eshelby inclusion method.

Extensive investigations have also been conducted on the effective properties of orthotropic composite
solids. Zhao and Yu [2000] presented a model for orthotropic damage on materials by combining the
macroscopic mechanical properties with the microstructure parameters of a material based on Eshelby’s
equivalence principle. Bouyge, Jasiuk, Boccara, and Ostoja-Starzewski [2002] determined the couple-
stress moduli and characteristic lengths of a 2D matrix-inclusion composite with the inclusions arranged
in a periodic square array and both linear elastic constituents being of Cauchy type. Yang and Becker
[2004] studied the effective properties and microscopic deformation of anisotropic plates with periodic
holes via direct mathematical homogenization. Ieşan and Scalia [2007] investigated linear theory of
inhomogeneous and orthotropic elastic materials with voids. Nie, Chan, Shin, and Roy [2008] presented
analytic solutions for elastic fields induced by normal and shear eigenstrains in an elliptical region embed-
ded into orthotropic composite materials by applying conformal transformation and the complex function
method. Monchiet, Gruescu, Cazacu, and Kondo [2012] achieved effective compliance of an orthotropic
medium with arbitrarily oriented cracks by using newly derived expressions of the Eshelby tensor.

The present work constitutes research on the interface stresses of an orthotropic solid with a nanodefect.
A closed-form solution for the problem of orthotropic materials with a nanosized elliptical defect is
presented under antiplane shear loading by applying the Gurtin–Murdoch surface/interface model and a
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conformal mapping technique. The influences of defect size, matrix material moduli ratio, defect shape
ratio, and defect elastic property on stress fields are discussed.

2. Computational model and basic equations

A schematic diagram of an orthotropic solid with an isotropic nanodefect (i.e., nanoelliptical inclusion)
that considers the interface effect is presented in Figure 1. Regions �I and �M denote the elliptical
defect and the matrix, respectively. The Gurtin–Murdoch surface/interface model [Gurtin and Murdoch
1975; 1978; Gurtin et al. 1998] indicates that interface L can be regarded as a layer without thickness and
with different material properties from the defect and the matrix. The semimajor and semiminor axes of
the elliptical defect are denoted as a and b, respectively. I, 0, and M denote the defect, interface, and
matrix, respectively. GI denotes the antiplane shear modulus of the defect (inclusion). C44 and C55 are
the principal shear moduli of the orthotropic solid, which are located along the y- and x-axes in Figure 1,
respectively. The Oz-axis is perpendicular to the section in the Cartesian coordinate system. The matrix
is subjected to far-field antiplane shear stress τ∞yz .

The governing equation and the constitutive equation of the matrix can be given as [Li 2003]

∂τxz

∂x
+
∂τyz

∂y
= 0, (1){

τxz

τyz

}
=

[
C55 0
0 C44

]{
∂w/∂x
∂w/∂y

}
, (2)

where w is the antiplane displacement.

τ∞yz

y

xy

L

A x

B
ρb
θ

a
nanodefect

defect interfacematrix

�I�M O

Figure 1. Schematic diagram of an orthotropic solid with an nanodefect (nanoelliptic
inclusion) considering interface effect (z-plane, z = x + iy).
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Nonclassical boundary conditions on nanodefect interface L can be written as [Luo and Wang 2009;
Sharma et al. 2003]

wP(t)= wM(t) t = ρeiθ , (3)

τP
r z(t)− τ

M
r z (t)=

2µS

ρ

∂ε0
θ z

∂θ
t = ρeiθ , (4)

where (ρ, θ) denotes the polar coordinates on the interface L; τ 0
θ z and ε0

θ z denote the stress and strain
components on the interface, respectively; µS

= C S
44|sin θ | + C S

55|cos θ |; and C S
44 and C S

55 denote the
interface elastic constants along the y- and x-axes in Figure 1, respectively. The unit for interface elastic
constants C S

44 and C S
55 is N/m. The expression of µS in terms of θ is merely an assumption made by the

authors.
The interfacial strain for a coherent interface is equal to the associated tangential strain in the abutting

materials, i.e.,

ε0
θ z = ε

P
θ z = ε

M
θ z. (5)

3. Analysis and solution

By substituting (2) into (1), a second-order linear homogeneous partial differential equation with constant
coefficients on w is obtained as

C55
∂2w

∂x2 +C44
∂2w

∂y2 = 0. (6)

The solution for (6) can be expressed as

w = ReF(zm), (7)

where f (zm) is an analytical function with respect to zm , zm = x + imy, and m =
√

C55/C44.
By substituting (7) into (2), the expressions obtained are

τxz = C55
∂Re f (zm)

∂x
= C55Re f ′(zm),

τyz = mC44
∂Re f (zm)

∂(my)
=−mC44Im f ′(zm),

(8)

where f ′(zm) denotes the derivative with respect to zm . Then, (8) can be rewritten as

τxz

C55
− i

τyz
√

C44C55
= Re f ′(zm)+ iIm f ′(zm)= f ′(zm). (9)

The zm-plane (Figure 2) is generated by the map of zm = x + imy from the z-plane (Figure 1), where
O1 and O2 denote the foci of the elliptical inclusion.

To solve the problem in Figure 2, a new variable ζ is introduced as

ζ = ξ + iη = leiφ, (10)
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τ∞yz
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Figure 2. zm-plane corresponding to the plane z (zm = x + imy).

η

ξ

L0

Ol0

�′O�′P�′M

Figure 3. Conformal mapping in the ζ -plane (ζ = ξ + iη).

where (l, φ) denotes the polar coordinates in the ζ -plane. The zm-plane is mapped onto the ζ -plane via
conformal transformation,

zm =�(ζ)= ζ +
n
ζ
, (11)

where n = (a2
−m2b2)/4. Region �I in the zm-plane is mapped onto circular region �′O, with radius l0,

and circular region �′P, with radius L0, shown in Figure 3, respectively.
From the transformation relationship between Figures 2 and 3, the equations obtained are

x = ξ + nξ
ξ 2+η2 , my = η− nη

ξ 2+η2 . (12)
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From (12), the following expressions are derived:

l0 =
√

n, (13)

L0 =
a+mb

2
. (14)

In an annular region, an analytical function F(ζ ) can be expanded into a Laurent series [Muskhelishvili
1953]:

F(ζ )= a∗ ln ζ +
∞∑

k=−∞

akζ
k, (15)

where a∗ and ak are complex constants to be determined. The exact solution can be obtained by taking
the following finite terms of the series:

FI(ζ )= A1

(
ζ + n/ζ

)
= A1

(
leiφ
+

ne−iφ

l

)
in �′I, (16)

FM(ζ )= B1ζ + B−1
1
ζ
= B1leiφ

+
B−1

l
e−iφ in �′M, (17)

where A1, B1, and B−1 are complex constants.
By applying far-field conditions, coefficient B1 can be obtained from (9) and (17) as

B1 =−i
τ∞yz

√
C44C55

. (18)

The boundary conditions on L0 in Figure 3 can be summarized as

wI(z)= wM(z), (19)

τ I
r z(z)− τ

M
r z (z)=

2µS

L0

∂ε
L0
θ z

∂θ
, (20)

where µS
= C S

44|sin θ | +C S
55|cos θ |, and C S

44 and C S
55 denote the interface elastic constants along the y-

and x-axes in Figure 1, respectively.
From boundary conditions (19) and (20), the expressions obtained are(

1+ n
L2

0

)
A1 = B1−

B−1

L2
0
, (21)[

GI

(
1− n

L2
0

)
+
µS

L0

(
1+ n

L2
0

)]
A1 = C44

(
B1+

B−1

L2
0

)
. (22)

By integrating (21) and (22) into (18), the expressions

A1 = S1 B1, B−1 = S−1 B1, (23)
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are derived, where

S1 =
2C44

GI(1− n/L2
0)+ (µ

S/L0)(1+ n/L2
0)+C44(1+ n/L2

0)
,

S−1 =
GI(1− n/L2

0)+ (µ
S/L0)(1+ n/L2

0)−C44(1+ n/L2
0)

GI(1− n/L2
0)+ (µ

S/L0)(1+ n/L2
0)+C44(1+ n/L2

0)
L2

0.

(24)

From (9), (16), (17), (18), and (23), the overall stress fields in the composites can be expressed as

τyz + iτxz = GIS1
τ∞yz

√
C44C55

in the inclusion, (25)

τyz
√

C44C55
+ i

τxz

C55
=
ζ 2
−S−1
ζ 2−n

τ∞yz
√

C44C55
in the matrix, (26)

where ζ = ξ + iη = (zm +
√

z2
m − 4n)/2, zm = x + imy.

4. Special cases

(1) Orthotropic solid with a rigid nanoelliptical inclusion:
Let GI→∞ in (25) and (26). The stress fields degenerate into

τyz + iτxz =
2C44

1− n/L2
0

τ∞yz
√

C44C55
in the inclusion, (27)

τyz
√

C44C55
+ i

τxz

C55
=
ζ 2
− L2

0

ζ 2− n

τ∞yz
√

C44C55
in the matrix. (28)

(2) Orthotropic solid with a nanoelliptical hole:
Let GI = 0. Equation (26) degenerates into

τyz
√

C44C55
+ i

τxz

C55
=
ζ 2
− (µS/L0−C44)/(µ

S/L0+C44)L2
0

ζ 2− n

τ∞yz
√

C44C55
. (29)

Equation (29) agrees with the existing results [Xiao et al. 2014, Equation (23)].

(3) Nanocrack in an orthotropic solid:
Take b = 0 in (29). The crack tip stress field can be obtained as

τyz
√

C44C55
+ i

τxz

C55
=

4ζ 2
− (2µS/a−C44)/(2µS/a+C44)a2

4ζ 2− a2

τ∞yz
√

C44C55
. (30)

The III-type stress intensity factor at tip A in Figure 1 can be defined as

K A
III = lim

y=0
z→a

τyz
√

2π(z− a)= τ∞yz
√
πa

C44

C44+ 2µs/a
= K ∗Aτ

∞

yz
√
πa, (31)

where K ∗A = K A
III/(τ

∞
yz
√
πa) denotes the dimensionless stress intensity factor at tip A. When ignor-

ing the interface effect of inclusion, i.e., µs
= 0, (31) degenerates into the existing solution presented

by Hwu [1991], i.e.,
K A

III = τ
∞

yz
√
πa. (32)
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5. Results and discussion

The interface elastic constant can be obtained through atomistic simulations. Studies on orthotropic
solids remain lacking; thus, we consider C S

44/C S
55 = C44/C55 in this work. We assume that the ratio

of the elastic constant C S
44 of the interface to that of the matrix along the y-axis is a real constant α,

i.e., α = C S
44/C44, where α varies from −2 ·10−10 m to 2 ·10−10 m [Luo and Wang 2009]. Then, µS =

C S
44|sin θ | +C S

55|cos θ | = C S
44(|sin θ | +C55/C44|cos θ |). We then define the section aspect ratio of the

elliptical inclusion as γ = b/a, β = GI/C44.

Example 1. A comparison of the present solution for α = 0 (classical elasticity theory) with the finite
element results is plotted in Figure 4, where a = 5 nm, γ = b/a = 0.5, β = GI/C44 = 0, C55 = 12 GPa,
and C44 = 5.7 GPa. The finite element results agree with the present solution when α = 0. With the
increase in angle θ from 0◦ to 90◦, the interface stress concentration factors decrease monotonously when
α = 2 ·10−10 m and α = 0, whereas the interface stress concentration factors initially decrease and then
increase when α =−2 ·10−10 m.

Example 2. The variation in the stress concentration factors at points A and B (Figure 1) with the
semimajor axis of the inclusion is plotted in Figure 5, where γ = b/a = 0.2, β = GI/C44 = 2, and
C55/C44 = 2. Stress τ A

yz is calculated using (26) when ρ = a and θ = 0◦ (Figure 1). Then, stress τ A
yz is

the bulk stress, and stress concentration factor τ A
yz/τ

∞
yz is dimensionless.

Figure 5 shows that stress concentration factors are dramatically dependent on size when the size of an
elliptical inclusion is at the nanometer scale. The present solution approaches classical elasticity theory
when the inclusion has large characteristic dimensions.

Example 3. The material moduli ratio C55/C44 can be regarded as a parameter in studying the influence
of material orthotropy on stress concentration factors. The variation in the stress concentration factors

α = 0 (classical elasticity theory)
FEM (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
yz
/
τ
∞ yz

θ (°)

Figure 4. Distribution of the interface stress concentration factors on the interface of
the elliptic hole.
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α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
A yz
/
τ
∞ yz

a (nm)

α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
B yz
/
τ
∞ yz

a (nm)

Figure 5. Variation of the stress concentration factors at points A (top) and B (bottom)
with the size of the elliptic inclusion.

at points A and B with lg(C55/C44) is plotted in Figure 6, where a = 5 nm, γ = b/a = 0.2, and
β = GI/C44 = 2.

When the ratio of the elastic main direction lg(C55/C44) increases, the increase in C55/C44 shields
the stress concentration factor at point A but amplifies said factor at point B.

Example 4. Figure 7 shows the variation in the stress concentration factors at points A and B with the
inclusion section aspect ratio γ = b/a, where a = 5 nm, β = GI/C44 = 2, and C55/C44 = 2.

When the inclusion section aspect ratio γ increases gradually from 0 to 1, the stress concentration
factor at point A decreases monotonically, whereas at point B it increases monotonically. The interface
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α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
A yz
/
τ
∞ yz

lg(C55/C44)

α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
B yz
/
τ
∞ yz

lg(C55/C44)

Figure 6. Variation of the stress concentration factors at points A (top) and B (bottom)
with the ratio of the elastic main direction C55/C44.

effect of the nanoinclusion decreases with the increase in the inclusion section aspect ratio γ .

Example 5. The variation in the stress concentration factors at points A and B with the dimensionless
logarithmic inclusion shear modulus lg(GI/G44) is plotted in Figure 8, where a = 5 nm, γ = b/a = 0.2,
and C55/C44 = 2.

Figure 8 illustrates an interesting phenomenon in which the interface effect can be neglected when
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α = 0 m (classical elasticity theory)

α = 2 ·10−10 m

α =−2 ·10−10 m

τ
A yz
/
τ
∞ yz

γ

α = 0 m (classical elasticity theory)

α = 2 ·10−10 m
α =−2 ·10−10 m

τ
B yz
/
τ
∞ yz

γ

Figure 7. Variation of the stress concentration factors at points A (top) and B (bottom)
with the elliptic inclusion shape ratio γ = b/a.

the inclusion is sufficiently hard. The influence of the interface effect depends on the modulus of the
inclusion, i.e., the interface effect decreases with the increase in the modulus of the inclusion.

6. Conclusions

The problem of an orthotropic solid with a nanodefect under far-field antiplane shear loading was in-
vestigated using the Gurtin–Murdoch surface/interface model and a conformal mapping technique. An
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α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
A yz
/
τ
∞ yz

lg(CI/C44)

(a) Stress concentration factor at point A.

α = 0 m (classical elasticity theory)
α = 2 ·10−10 m
α =−2 ·10−10 m

τ
B yz
/
τ
∞ yz

lg(CI/C44)

(b) Stress concentration factor at point B.

Figure 8. Variation of the stress concentration factors at points A and B with the elliptic
cavity shape ratio γ = b/a.

analytical solution for the overall stress field in the nanoinhomogeneous material was obtained. The
proposed solution is generalized, such that several new and existing solutions can be regarded as special
or degenerate cases. The effects of defect size, matrix material moduli ratio, defect shape ratio, and
inclusion elastic property on the interface stresses were discussed.
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