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PROPAGATION OF WAVES IN MASONRY-LIKE SOLIDS

MARIA GIRARDI, CRISTINA PADOVANI AND DANIELE PELLEGRINI

This paper deals with the propagation of progressive elastic waves in masonry-like solids. The constitu-
tive equation of masonry-like materials models the mechanical behavior of materials (such as masonry,
rocks and stones) that do not withstand tensile stresses. The stress function T delivering the Cauchy
stress T corresponding to an infinitesimal strain tensor E is nonlinear and differentiable on an open
subset W of the set of all strains. We consider the propagation of small amplitude elastic waves in
a masonry-like body subjected to a given homogenous strain field E belonging to W. We obtain the
propagation condition, which involves the acoustic tensor A (E , n), which depends on both E and the
direction of propagation n, and prove that, due to the presence of cracks, the wave propagation velocities
in masonry are lower than in a linear elastic material.

Introduction

The study of elastic waves finds its main applications in addressing earthquakes and seismological prob-
lems [Ewing et al. 1957], in the evaluation of cracks in elastic media [Crampin 1981], as well as in the
acoustic determination of third-order elastic constants and residual stresses [Winkler and Liu 1996; Pao
et al. 1984; Ogden and Singh 2011]. A further application is in assessing the mechanical behavior of
constructions in response to earthquakes by studying the propagation properties of seismic waves. In
[Safack 1999] the changes in the propagation characteristics of seismic waves in a building were shown
to be more reliable indicators of damage than changes in natural frequencies. In [Ivanovic et al. 2001;
Safak et al. 2009] the wave propagation method is used for structural health monitoring purposes.

A detailed treatment of elastic waves is available in [Royer and Dieulesaint 2000], which addresses
the different types of waves that propagate in isotropic and anisotropic solids, with particular focus
on the propagation and generation of waves in crystals. Progressive waves and the Fresnel-Hadamard
condition for their propagation, involving the acoustic tensor, are discussed in [Truesdell and Toupin
1960]. Progressive waves have been studied in [Gurtin 1972; Chadwick 1989] for isotropic and trans-
versely isotropic linear elastic media. Lastly, the acoustic tensor and its eigenvalues and eigenvectors are
explicitly calculated in [Chadwick 1989].

This paper deals with the propagation of progressive elastic waves in a masonry-like body subjected
to a given homogeneous strain field. Unlike [Gurtin 1972; Chadwick 1989], which deal with linear
elasticity, here we consider the constitutive equation of masonry-like materials [Del Piero 1989; Lucchesi
et al. 2008], which models the mechanical behavior of materials (such as masonry, rocks and stones) that
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do not withstand tensile stresses. A masonry-like material is a nonlinear hyperelastic material with zero
tensile strength and infinite compressive strength. For the Cauchy stress T and the infinitesimal strain
E (both belonging to the set Sym of symmetric tensors), the stress-strain relation is determined by the
nonlinear relation T = C[P(E)], where C is the fourth-order elasticity tensor, and P is the nonlinear
projection of the strain tensor onto the image of the set C~!Sym™ of negative-semidefinite stresses
Sym™ under C~! with respect to the energetic scalar product on Sym. The tensor E/ = E — P(E),
which is positive-semidefinite and orthogonal to T, is called fracture strain and is different from zero
where fractures arise.

The constitutive equation of isotropic masonry-like materials is briefly described in Section 1, which
also presents the explicit expression for the stress function T(E) = C[P(E)] as E varies in the four
regions V;, i = 0,1, 2, 3. Regions V; characterize the different types of behavior that a masonry-like
material can exhibit. In V3 the material behaves like a linear elastic material, since the stress is negative-
semidefinite. In Vj the stress tensor is zero and the material can crack in all directions. Regions V; and
V> exhibit mixed behavior: the stress tensor has respectively two and one eigenvectors corresponding to
the zero eigenvalue, and the material can fracture orthogonally to these directions. As demonstrated in
[Lucchesi et al. 2008; Padovani and §ilhav§/ 2015], the function T is differentiable on W = U?=0 Wi,
with W; being the interior of set V;. The derivative Dg T(E) of T with respect to E is a symmetric
fourth-order tensor from Sym with values in Sym, whose spectral representation has been calculated in
[Lucchesi et al. 2008] and is recalled here.

The boundary-initial-value problem of the dynamics of masonry-like solids has been addressed in
[Casarosa et al. 1998; Lucchesi et al. 1999; Degl’Innocenti et al. 2006], which deal with the nonlinearity
of the equation of motion. The exact solution to the problem of free longitudinal vibrations of both
finite and infinite beams has been calculated in [Casarosa et al. 1998; Lucchesi et al. 1999]. The main
features of the solution is the development of a shock wave [Silhavy 1997] at the interface between
the cracked and compressed parts of the beam, which determines a loss of mechanical energy and a
progressive decay of the solution. As far as the numerical solution of the dynamic problem of masonry
structures is concerned, Degl’Innocenti et al. [2006] proposed a method to integrate with respect to
time the system of ordinary differential equations obtained by discretizing the structure into finite ele-
ments. The method has been implemented in the NOSA-ITACA code [Binante et al. 2014] and was
used to study the dynamic behavior of historical masonry buildings [Callieri et al. 2010; De Falco et al.
2014].

The approach followed in this paper is rather different: instead of addressing the boundary-initial-
value problem of dynamics, we consider the propagation of progressive elastic waves in a masonry-like
body subjected to a given homogeneous strain field E belonging to W. By using the differentiability
of the stress function at E and considering elastic displacements superimposed on E, we obtain the
linearized equation of the motion involving the constant fourth-order tensor D g T(E). We then consider
progressive waves and determine the condition they must satisfy in order to propagate in the masonry
body. This condition involves the acoustic tensor A(E, n), whose eigenvalues and eigenvectors are
calculated in Section 2.

Unlike the linear elastic case, in which the acoustic tensor depends only on the direction of propagation
n, here it depends on the strain E as well. Moreover, even though symmetric, 4 (E, n) is positive—
semidefinite, since its eigenvalues are non-negative.
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The acoustic tensor and the properties of progressive waves are analyzed as the given homogeneous
strain field E varies in the regions W;, i =0, 1,2, 3. For E € W, the material is completely cracked and
elastic waves cannot propagate. For E € W;, W5, due to the presence of cracks, the wave propagation
velocities in masonry are lower than in a linear elastic material. Moreover, longitudinal waves propagate
only for some values of n, depending on the directions of cracking. For the remaining values of n the
waves are neither longitudinal nor transverse and propagate with different velocities in different directions.
Finally, if E € W3, masonry behaves like a linear elastic material.

Section 3 provides a detailed description of the two-dimensional case. In order to highlight the differ-
ence between a masonry-like and a linear elastic material, pictures illustrating the effects of the presence
of cracks on the propagation of elastic waves are presented.

1. The constitutive equation

Let Lin be the set of all second-order tensors with the scalar product
A-B =t(4T B)

for any A, B € Lin, with AT the transpose of 4. For Sym, the subspace of symmetric tensors, Sym™
and Sym™ are the sets of all negative-semidefinite and positive-semidefinite elements of Sym. Given the
symmetric tensors A and B, we denote by A ® B the fourth-order tensor defined by

AR B[H]= (B-H)A

for H € Lin, and by lsy;, the fourth-order identity tensor on Sym. For a and b vectors, the dyad a ® b
is defined by @ @ bh = (b - h)a, for any vector h, and - is the scalar product in the space of vectors. We
define the subspaces

Span(a,b) ={v=aa+bb :a,b e R},

Span(a)L ={v:a-v=0}

of the three-dimensional vector space.
Now, let C be the isotropic fourth-order tensor of the elastic constants

C=2ulsym+AI 1, (1-1)

where I € Sym is the identity tensor and u and A are the Lamé moduli of the material satisfying the
conditions
uw>0, A>=0. (1-2)

C is symmetric,
A-C[B]= B -C[A] forall A, B € Sym, (1-3)

and in view of (1-2) is positive-definite on Sym,
A-C[A]>0forall A € Sym, A #0. (1-4)

Then C is invertible, with inverse C™!. We define the energetic scalar product on Sym by setting
(A,B) = A-C[B] for any A, B € Sym.
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A masonry-like material is a nonlinear elastic material characterized by the fact that, for E € Sym,
there exists a unique triplet (T, E¢, E/) of elements of Sym such that [Lucchesi et al. 2008]

E=E°+E/, (1-5)

T =C[E“], (1-6)

T eSym~, E/ eSymt, (1-7)
T-E/ =o0. (1-8)

T is the Cauchy stress corresponding to strain E; E€ and E f are respectively the elastic and inelastic
parts of E; E [ is also called fracture strain. Denoting by P : Sym — Sym the metric projection onto
the closed convex cone C~!Sym™ with respect to the energetic scalar product, it is possible to prove that
E¢ =P(E) and T = C[P(E)] [Padovani and Silhavy 2015]. The stress function T : Sym — Sym is
given by

T(E)=T =C[P(E)] for any E € Sym. (1-9)
The explicit expression for the stress function T, calculated in [Lucchesi et al. 2008], is recalled in
the following.

For E € Sym, let e; < e, < e3 be its ordered eigenvalues and ¢, g5, g3 the corresponding eigenvectors.
We introduce the orthonormal basis of Sym (with respect to the scalar product -)

011=q1®q1, O0»n=q2®q>, 033 =q3R¢3,
012 =1/V2(q1 @42 +¢:2®4q1), O13=1/v2(q1 ®q3+q3®q1),
023 = 1/V2(q2 ® 45 + q3 ® q2). (1-10)

Given E, the corresponding stress satisfying the constitutive equation of masonry-like materials is given
by

if E€V,,then T =0, (1-11)
if E€V,, then T = Ee; 0y, (1-12)
if E€Vy,then T =2u/Q2+a){2(1 +a)e; +aez]O11 + (e +2(1 + @)ez] 0373}, (1-13)
if E € V3, then T = C[E], (1-14)

where the sets V}, are

Vo ={E €Sym:e; >0}, (1-15)
Vi={E €Sym:e; <0, ae;+2(1+a)e, >0}, (1-16)
Vo ={FE € Sym:ae; +2(1 +a)e; <0, 2e3 +atr E >0}, (1-17)
Vi ={FE €Sym:2e3 +atr E <0}, (1-18)

with « = A/ and the Young’s modulus £ = (20 +31)/ (10 + A). As for the fracture strain, we have



PROPAGATION OF WAVES IN MASONRY-LIKE SOLIDS 509

if E €V, then Ef = E, (1-19)
if E€V,, then E/ = (e24+a/(2(1 +a))e1)Orz + (e3 +a/(2(1 + @))eq) O33, (1-20)
if E €V, then E/ =[es+a/Q2+a)(e; + €2)]033, (1-21)
if E € V3, then E/ = 0. (1-22)

Thus, as E varies in the four regions V;, i =0, 1, 2, 3, the corresponding stress tensor T and fracture
strain E/ have rank i = 0,1,2,3and r = 3,2, 1,0, respectively.

For W}, the interior of V, function T turns out to be differentiable on W = Ul-3=0 W; [Lucchesi et al.
2008; Padovani and Silhavy 2015]. The derivative D T(E) of T(E) with respect to E in the regions
W; has been calculated in [Lucchesi et al. 2008]. DgT(E) is a symmetric fourth-order tensor from Sym
into itself and has the following expressions:

if E € W,, then DgT(E) = O, (1-23)

where O is the null fourth-order tensor,

if E € W,, then DET(E):E(OH(X)O“— 0,00, 013®013), (1-24)
ey —eq €3 — €
2n 2(1
if £ €W,, then DET(E) =2u01, ® O15 — p 20 +ajer +ae; 031013
2+« €3 —e€q
2[,L (X€1+2(1+Ol)€2 2#(24‘306) 011+022 011+022
- 033 ® 033 +
24+ ez —ep 24« V2 V2
0,1—0 0,,—0
+ou 11 22 o Y 22’ (1-25)
V2 V2
if E € W3, then DET(E) =C. (1-26)

From (1-24) and (1-25), bearing in mind that they are the spectral decomposition of DgT(E) for
E € Wi and E € W, [Itskov 2015], by taking (1-16) and (1-17) into account, we conclude that D T(E)
has non-negative eigenvalues [Lucchesi et al. 2008] and is positive-semidefinite; hence it satisfies the
Legendre—Hadamard condition [gilhavy 1997]

a®b+bxa
2

a®Rb+b®a

DET(E)[ >

:| >0 for each vector a, b. (1-27)

For E € W3, DgT(E) coincides with the tensor of elastic constants (1-1); it is positive-definite and
then strongly elliptic [Gurtin 1972].

2. Progressive waves

We are interested in studying the propagation of small amplitude elastic waves in an infinite masonry-like

solid % with homogeneous mass density p, homogeneous material properties w, and A satisfying (1-2),

subjected to a uniform stress 7 = T(E), with E being a given uniform strain belonging to W = U?:o W;.
From the differentiability of T at E in W [Padovani and Silhavy 2015], it follows that

T(E+H)=T + DgT(E)[H]+0o(H), HeSym, H —0. (2-1)
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We consider small elastic displacements #, defined on % x (0, 00), such that their gradient Vau is small,
and denote by 0%u/dt? the acceleration and by div the divergence. For such displacements superimposed
on strain E, from (2-1), neglecting terms of order o(Vu), we obtain the linearized equation of motion
in the absence of body forces

div(DgT(E)[(Vu+VaT)/2]) = pd*u/dt* on B. (2-2)
A progressive wave has the form
u(x,t)=my(n-x —vt), (2-3)

where the unit vectors m and n are respectively the polarization vector (or direction of motion) and the
direction of propagation, v is the wave velocity and v an arbitrary function of class C? on (—o0, 00)
such that

d*y/ds® #0. (2-4)

The wave u in (2-3) is longitudinal if m = =£n, and transverse if m - n = 0. Moreover, u is elastic if it
satisfies the equation of motion (2-2).
From (2-3) we get [Gurtin 1972]

Vu=v'men, (2-5)
%u/dt> =y "v*m, (2-6)
with
‘/’/ = dw/dsls=n~x7vt ’ (2_7)
V' =dPY)ds?| - (2-8)
From (2-5) it follows that
Vu+Vaul
DEWI(E)[—’“L2 “ ]:WDEW(E)[—”'@";”(@”']. (2-9)
Moreover, since Dg T (E) is independent of x,
T
div(Dﬂ(E)[%D - WDET(E)[M};: — py" A(E ,n)m, (2-10)

where A(E, n) is the tensor defined by

a@n+n@a

A(E ,n)a =,0_1DETT(E)|: 5

:|n for every vector a. (2-11)

We call A(E, n) the acoustic tensor for strain E and direction n. From (2-2), by taking (2-6), (2-10)
and (2-4) into account, we obtain the condition

A(E, n)m = v’m, (2-12)

which expresses the Fresnel-Hadamard propagation condition [Gurtin 1972]. Thus, for an elastic pro-
gressive wave to propagate in a direction n, its polarization vector must be an eigenvector of the acoustic
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Figure 1. Depiction of a plane wave with direction of propagation n and polarization
vector m in a cracked body.

tensor A (E, n) and the square of the velocity of propagation must be the associated eigenvalue. Figure 1
depicts a progressive wave with direction of propagation n and polarization m in an infinite body sub-
jected to a homogeneous strain field E € W,. According to (1-21), the fracture planes are orthogonal
to ¢3. For a given constant ¢, at any time ¢, the displacement field # in (2-3) is constant on the plane
P, ={x:x-n—vt =}, called the wave front.

2A. The acoustic tensor. In this subsection we state some properties of the acoustic tensor A(E, n)
defined in (2-11) and obtain its expression in the four regions W;.

Proposition 2.1.
(a) A(E,n) is symmetric.
(b) For E in U?:l W;, let

6
DET(E) =) _§;(E)V;(E)®V;(E), (2-13)
j=1

be the spectral decomposition of DgT(E), with §;j(E) eigenvalues and V;j(E) eigentensors of
DET(E), j=1,...,6. Thus

6
AE.n)=p~" Y 8} (E)W;(E)n®V;(E)n. (2-14)
ji=1

(c) A(E,n) is positive-semidefinite for E € Ui2=0 Wi, and positive-definite for E in W3,
(d) A(E,n) = A(E, —n) for each unit vector n.
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(e) Let Orth be the subset of Lin of orthogonal tensors Q, Q QT = QT Q = I. The acoustic tensor
satisfies the relation

QA(E.n)QT = A(QEQT, Qn) for each Q € Orth. (2-15)
Proof.

(a) By taking the symmetry of DgT(E) into account, for each vector / and p we have,

I-A(E.n)p zl.p—lDET(E)[w]n

e

_ l®n42rn®l .p—lDET(E)[P(@";n@P]

— p—IDEwr(E)[’@”JZF”@’} . P®"J2r"®1’

= pp_lDE—ﬂ—(E)[—l®n;n®l:|n

=p-AE, n)l. (2-16)
(b) From (2-13) it follows that
6
DET(E)[—P‘@”;"@P}, - Zsj(E)(V,-(E)- [—1’®”§”®1’DV,-(E>,,

Jj=1

6
=Y " 5;(E)(V;(E)n- p)V;(E)n
ji=1

6
=" 8 (E)V;(E)yn® V;(E)n)p. (2-17)
j=1
for all vectors p, and (2-14) follows from (2-11).

(c) IfE € Ui2=0 W;, from (2-16) for I = p, by taking the condition (1-27) into account, we obtain
that A(E, n) is positive-semidefinite. If E € W3, DgT(E) = C is positive-definite and A (E, n)
coincides with the acoustic tensor of an isotropic linear elastic material and is positive-definite (see
(2-24)).

(d) A trivial consequence of (2-11).
(e) We note that from the isotropy of the stress function T [Lucchesi et al. 2008],

T(E) =T(QEQT) for each E € Sym, Q € Orth, (2-18)
the invariance of its derivative D g T(E) [Gurtin 1981]

ODrT(E)H]|QT = DET(QEQT)QHQT], (2-19)
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follows for each E € U?:o W;, Q € Orth, H € Sym.
Thus, for E € U?:o W; and n unit vector, from (2-11) and (2-19), we obtain

A(E.n)=0TA(QEQOT, On)Q for each Q € Orth. (2-20)

Equation (2-20) extends an analogous relation proved in [Gurtin 1972] for isotropic linear elastic

materials. From (2-20) it follows that if m is an eigenvector of A(E,n) corresponding to the

eigenvalue v, then Qm is an eigenvector of A (QE QT, Qn) corresponding to the same eigenvalue
2

ve. O

From Proposition 2.1, tensor A(E,n) defined in (2-11) turns out to be symmetric and positive-
semidefinite, hence, for each n, there exist three orthogonal eigenvectors m, m,,m3, and three as-
sociated non-negative eigenvalues vf, v%, v%, whose expressions are calculated in the following.

Due to the different expressions of D g T(E) in the regions W;, from (2-11) it follows that the acoustic
tensor A(E, n) has different expressions 4;(E, n) in the four regions W;. In view of Proposition 2.1(b)

we have:

it E € W,, then Ao(E,n) =0, (2-21)

if E € Wy, then A{(E,n) = Ep_1(011n®011n

— O1,n® 0n— O3nQ® 013n) (2-22)
€r—e€q €3 —¢€1
if E € W, then Ay(E.n) =2up~"! (012n ® O12n
2(1 +a)e; +aey aer +2(1 +a)ey
- (0] O13n— (0] (0]
Crares—en MO T G (e ey 2P OB
2+43a 011 + Ox 011+ 02 011— 07 011— 07 )
+ n® n+ n® nj, (2-23)
2+a 2 V2 V2 V2
if E € Wy then A3(E.n)=Qu+Mp 'n@n+pup (I —n®n). (2-24)

Our goal is to find the eigenvalues ¢, )(E n) > c(l)(E n) > cgl)(E n) and eigenvectors m( )(E n),
(l)(E n), m(l)(E n) of the acoustic tensor 4;(E,n), fori =1,2,3.
For E € Wy, from (2-22) we get

— -1 . 2 €1 . 2 €1 . 2
Ai(E,n) = Ep {[(” q1) —2(62_e1)(’1 q2) —2(e3— )(" q3) ]011
€1 2

€1
- o 2-25
«/_(e3—e1)(n q1)(n-q3) 13} (2-25)
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Thus, if n = ¢4, then

whose eigenvalues and eigenvectors are

AVE q) = Ep™ Oni = 5o s 00— 505053
1(E.q1) = Ep { U 2(ea—e) P 2(es—en) 33}
~ Ep~le
cgl)(E,q1)=E,0 " Cgl)(E’ql)z_m’
—1
(1) Epa
E’ =,
¢y (E.q1) 2es —ep)

1
m\VE.q)=qi, mPE.q)=q. m(E.q) =g

If n-q; =0, then

_ e e
Ay(E.n)=—Ep 1[—1(n-q2)2 + —1<n-q3>2}011,

2(ex—eq) 2(e3 —eq)

whose eigenvalues and eigenvectors are

Ep~le
2
cgl)(E,n) = cgl)(E,n) =0,

mE m =g, mPE n=q m(E n=q.

(1 _ 1 . 2 1
¢; (E,n)= |:€2—€1(n q2) +e3—el

(n 'CI3)2i|,

In particular, if n = ¢q5, then

and for n = ¢3, then

—1
(1) Ep~e;
c; (E.q2)=——.
! 2(ex—eq)
—1
(1) Ep~ e
CD(E g3)=——L L
! 1) 2(e3 —ey)

If n- g, = 0, then the eigenvalues and eigenvectors of 41 (E, n) are

—1 2
ci”(E,n)=EpT[(n-q1)2—ﬁ+\/((n-ql)z A} 424

 2(e3—ey) e3—eq
—1

(1 Ep~ e 2

c; (E.n)=—————(n-q1)",

2 2(ex —eq)

("'%)4},

" _ Ep! » eq ( 5 €1 )2 €1
E _ ] __ e . — 2
c; (E,n) 5 [(" q1) 2(e3—e1) \/ (n-q1) 2(e3—eq) + e3—ey

(where cél) <c

(1
3

or cgl) > cgl) depending on E') and

mgl)(E,n) =q>, m(ll)(E,n), mgl)(E,n) € Span(q1, ¢q3).

(”"11)4:|

(2-26)

(2-27)

(2-28)

(2-29)

(2-30)

(2-31)

(2-32)
(2-33)

(2-34)

(2-35)

(2-36)

(2-37)

(2-38)

(2-39)
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Analogously, if n- g3 = 0, the eigenvalues and eigenvectors of A (E, n) are

—1T T 2-40)

(1) 7 R S (g2 52 )2 & gyt ]

Cl (E’n)_ 2 _(n ql) 2(82—61)-"_\/ (” ql) 2(@2—81) +2€2—€1 (n ql) -?
—-1T T 2-41)

(D _ Ep N2 €1 - ( N2 €1 )2 4 (

CZ (E’n) 2 -(n ql) 2(82_61) \/ (n ql) 2(62_61) +262 el( ql) ’

(g gy EP e 2 2-42
GUEm) =5 g (2-42)
(where cél) =< cgl) or c(l) > cg ) depending on E) and

mgl)(E,n), mgl)(E, n) € Span(q1,¢q>), mgl)(E,n) =qs3. (2-43)

Forn-q1 #0,n-q, # 0, n-q3 # 0, the eigenvalues of 4;(E,n) can be determined by using the
formulae in [Kachanov 1974]:

c(l)(E, n) = ix(l) cos(8) — 3+ %11(1), (2-44)
SVE ) = 23D cos(6D + Z) 4 L1V, (2-45)
1)(E n) = ﬁx( )cos M) 4 1 I(l) (2-46)
where
X0 = Ea®)2 =310, (2-47)
)
cos 30 — 33y (2-48)
2(x)3
y® =[O 10O 2 Dy3) (2-49)
with

1D = r 4,(E, n)

— — 2 e 2 2 2
= Ep~ )’ = 5 S (000 + (002 = 5 Sl + gl (250
1D = Y(ir Ay (E, m))* —tr A1 (E, n)?], (2-51)
3.3 .20, . \6
1V = det A (E.n) = Elpein-q1) (2-52)

4(ex—eq)(e3—eq)’

the principal invariants of A 1 (E,n). The angle 6" varies between 0 and 7/3.

Since n-q; # 0, then I 79 0 and 4 (E, n) has no zero eigenvalues.

For j =1,2,3, given c(1 (E, n), the corresponding eigenvector m( )(E n) can be calculated by
solving the system

(A1(E.n) =V (E.n)HmV (E .n) = 0. (2-53)
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Let us now consider the case in which E € W,. From (2-23) we obtain

2(1 +0()€1 + ey
e —e)
-1 2 > aer+2(1+ae; 2
+p (M(n-ql) +o(n-q2)" — 2t a)e—ea) (n-q3) )022
B _1( 2(1 +a)eq +aey (n-q1)* + ae; +2(1+a)esy
Cra)es—en TR e -

_1\/—2+3 (n-q1)(n-q2)01>

_1\/_2(1 +a)el + ey
(2+a)(ez —eq)
—1\/50‘61 +2(1 +a)es

Az(E,")=P_1(<P("'¢11)2+/1«("'¢12)2— ("'¢I3)2) 011

("'42)2) 03;

(n-q1)(n-q3)013

—up (n-q2)(n-q3)033, (2-54)
(2+a)(es —e2)
with 4p(l40)
_apllta) 9.
24a (2-55)
If n = ¢4, then
_ _ _12(1+a)e; +aer
Ay(E.q)=¢p 'O+ pup ' Oy —pup™! (2-56)
(2+a)(es—ey)
whose eigenvalues and eigenvectors are
cPE.q =" PE.q)=pp, (2-57)
-1
N 2(1 +a)e; +ae
D) =12 L2 (2-58)
+o e3 —eq
m(lz)(E,ql)=q1, mg)(E,q1)=qz, m§2)(E,q1)=q3. (2-59)
If n = ¢q,, then
_ _ _jaer +2(1 +a)e;
A>(E.q2) = pp~ 011 +9p~ 1 02y —pp™! (2-60)
(2+a)(es —e)
whose eigenvalues and eigenvectors are
2 - 2 —
NE.q)=p. PE.q2)=pp ", (2-61)
-1
wp~ " ae; +2(1+a)e
cP(E. q2) = - 5 - 2, (2-62)
+ o €3 — €y
m(lz)(E,%) ={q>, mgz)(E,qz) =41, m§2)(E,qz) ={qs. (2-63)
If n = g3, then
_12(1+a)e; +ae e +2(1+a)e
A>(E q3) = —pp”! 201 —pp — 2055, (2-64)

(2+a)(e3 —ey) 2+a)(ez—ez)
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whose eigenvalues and eigenvectors are

-1 —1
) uwp~ 2(1+a)e; + ey ) wp~aer +2(1 +a)e;
E7 - - ) E? - — b 2_65
¢ ( ¢I3) 2t e3—e ¢y ( ¢I3) 2+« 3 —es ( )
(D(E q3) =0, (2-66)
m(lz)(E,qs) =41, mgz)(E,qa) = q2, m§2)(E,q3) =q3. (2-67)

If n # q1, 42, q3, then the eigenvalues of A,(E, n) can be determined by using the formulae in
[Kachanov 1974]:

(B m) = 2@ cos(0@ - 5) + 11, (2-68)
E m) = 2y @ cos(0P + 2) + 11, (2-69)
PE ) = =2y P cos 6P + 117, (2-70)

where
= T o

2
cos 30 = ——3(2\/5(;/))3 , (2-72)
X
)/(2) _ 13(2) _%11(2)12(2) + %(11(2))3’ (2-73)
with

11(2) =trA,(E,n).

1P = Y(tr Ay(E, m)? —tr A5 (E ,m)?), (2-74)

1P = det A5 (E , n). (2-75)
the principal invariants of A,(E,n). The angle 8®) varies between 0 and /3.

As in the case of E € Wy, for j = 1,2, 3, given c}z)(E , n), the corresponding eigenvector m](.z)(E . n)
can be calculated by solving the system

(A2(E.n) =P (E.n))m'® (E .n) = 0. (2-76)

Note that the acoustic tensor A3(E, n) for E € W3 coincides with the acoustic tensor of a linear
elastic material with Lamé moduli p and A; its eigenvalues are

P =pleut+rn. = =p"p. @-77)
and the corresponding eigenvectors

m?)(E,n) =n, mgS)(E,n) and mg3)(E,n) belong to Span(n)J‘. (2-78)
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2B. Behavior of plane waves in the regions W;. Let us now analyze the behavior of progressive waves
in a body composed of a masonry-like material with homogeneous stress 7 associated to a homogeneous
strain field E. This behavior is different in the four regions W; introduced in Section 1, since it depends
on A(E,n), which has a different expression 4;(E, n) in W; (see (2-21) , (2-22), (2-23) and (2-24)).
If E € Wy, from (2-21) it follows that no waves propagate in the medium. .
For E € W;,i = 1,2, 3, Tables 1, 2 and 3 report the eigenvalues c}l) > cg) > cgl) of A(E,n), for
each unit vector n. The associated wave velocities are vJ@ = \/CJT) ,fori,j=1,2,3.
Let us consider the case of E € W;.

For the eigenvalues cgl), cgl), cgl) in (2-27)—(2-28), it is a simple matter to prove that

AV(E q) <V =p p+ 1) (2-79)
and

SVEq) < =p7 . (Eq) < =07 (2-80)

The first inequality in (2-80) follows from the condition ae; 4+ 2(1 4 a)e, > 0, which characterizes
Wy (see (1-16)).
As for cll) in (2-31), simple calculations show that

S(E ny < p~'p. (2-81)
For the eigenvalues in (2-36)—(2-38) and (2-40)—(2-42) we have

3 - ! ’ B
SUEm <V =pT'eu+h), GVEm <P =o', (2-82)
1 3 -
SVE ) < =p

The polarization vector and the squared velocity of waves propagating in the masonry body subjected
to a uniform strain field E € W) are summarized in Table 1, for varying directions of propagation n.

E eW; cil) cél) cgl)
. Ep~! (2-27) (2-28)
n longitudinal wave, ¢4 transverse wave, ¢, transverse wave, ¢3
P (2-31) 0 0
7 transverse wave, ¢ no propagation no propagation
n-q, =0 (2-36) (2-37) (2-38)
transverse wave, ¢,
n-gs=0 (2-40) (2-41) (2-42)
transverse wave, ¢3
n-qp#0
n-q,#0 (2-44) (2-45) (2-46)
n-q37#0

Table 1. Wave velocities squared for E € W;.
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If n = ¢, there are one longitudinal wave and two transverse waves,

A1(E.q1)q1 =p 'Eq. (2-83)
Ep~le Ep~le
A (E.q1)q> =—qu, A (E.q1)q3 =—Lq3. (2-84)
2(ex —eq) 2(e3 —ey)

Due to (2-79) and (2-80), the velocities of the longitudinal and transverse waves are lower than those
of the corresponding waves in a linear elastic material. In particular, if e, = e3, the transverse waves
have equal velocities; if not, the lowest velocity is associated with the direction of motion ¢3, which
corresponds to the highest values of the fracture strain (see (1-20)).

If n-q; = 0, only a transverse wave can propagate with square velocity (2-31), which, because of
(2-81), is less than the squared velocity of the transverse linear elastic wave.

In the case of m-¢g, = 0 or n-q3 = 0, three waves propagate, a single transverse one with squared
velocity less than p~! 1, while the other two have squared velocities respectively less than p~1 (2 + 1),
and less than p~! 11 (see (2-82)).

Let us consider E € W,. For the eigenvalues Cﬁz), céz), ng)’ in (2-57)—(2-58), it is an easy matter to
prove that

SUE.q) <e =pT Cu+n), P(E.q) < =p""n (2-85)

where the last inequality comes from the condition 2e3 4+ a(e1 + e + e3) > 0, which holds in W, (see
(1-17)).
Analogously, for ng) in (2-62) we have

cgz)(E,n) < c§3) =p L. (2-86)

The polarization vector and the squared velocities of waves that propagate in the masonry medium for
E € W, are summarized in Table 2, for different values of the propagation vector n.
If n = q; or n = q,, there are one longitudinal wave and two transverse waves:

A2 (E.q)q1 =90 'q1. A2(E.q)q2 = 1o "2, (2-87)
-1
wp~ " 2(1 +a)ey +ae;
A2(E.q1)q3 = —5 q3: (2-88)
+ o €3 —eq
E eW, cfz) céz) C§2)
"= op”! pp~! (2-58)
longitudinal wave, ¢4 transverse wave, ¢» transverse wave, 3
"=, pp~! pp~! (2-62)
longitudinal wave, ¢, transverse wave, ¢1 transverse wave, 3
n=gq (2-65) (2-65) 0
3 transverse wave, ¢ transverse wave, ¢, no propagation
n#4qi, 92, 43 (2-68) (2-69) (2-70)

Table 2. Wave velocities squared for E € W,.
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Ay (E.q2)q2 = 0p 'q2.  A2(E.q2)q1 = o 'q1. (2-89)
“laey +2(1 +a)e
A2(E q2)g3 = =51~ 245. (2:90)
+ o €3 —e)

Due to (2-85) and (2-86), the velocities of longitudinal and transverse waves are less than those of the
corresponding waves in a linear elastic material.

If n = ¢3, no longitudinal waves propagate, and two transverse waves propagate with velocities (2-65)
that, in view of (2-85) and (2-86), are less than the velocity of the transverse linear elastic waves.

Note that even though the elasticity tensor is not strongly elliptic in W; and W,, and hence the
hypotheses of the Fedorov—Stippes theorem [Gurtin 1972] are not satisfied, longitudinal and transverse
progressive waves do exist. In particular, for E € Wy, then a longitudinal wave exists only for n = ¢;.
The other two progressive waves in direction ¢, whose directions of motion are equal to ¢, and ¢3, are
transverse. For n € W,, two longitudinal waves exist, one for n = ¢, and another for n = ¢,.

For E € W3 the material behaves like an isotropic linear elastic material, and there are but two types
of progressive waves: longitudinal and transverse, as shown in Table 3.

E cW; c§3) c§3) c§3)
" Qu+1)p~! pp~! pp~!
longitudinal wave transverse wave transverse wave

Table 3. Wave velocities squared for E € Wj.

3. The two-dimensional case

Let us consider a plane strain state and, for fixed g3, strain tensors E such that Eq; = 0. Let us indicate
with the same symbols E, T and E/ the restriction of E, T and E/ to the two-dimensional subspace
of the three-dimensional vector space orthogonal to ¢3.

Let e; < e, be the ordered eigenvalues of E, and ¢, ¢, the corresponding eigenvectors and put

011=q19q1, 01=¢:%q2, O01,=1/v2(q1 ®q2+4:R4q). (3-1)

Define the sets

So=1{E :e; >0}, (3-2)
S1={E :e; <0, ae; + 2+ a)e, = 0}, (3-3)
Sy ={FE :ae; + (2+a)e; <0}, (3-4)

depicted on the next page in Figure 2. Given E, the corresponding stress T = T(E) satisfying the
constitutive equation of masonry-like materials in the plane strain case is given as follows [Lucchesi
et al. 2008]:
if E € So,then T = 0; (3-5)
if E €S, then T =ge; 011, withg asin (2-55); (3-6)
if £ €8, thenT = u[24+ a)e; +aer]011 + plaer + 2+ a)er]0ss. (3-7)
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Figure 2. Subdivision of the half-plane e; < e, into the regions Sy, S; and S5.

As for the fracture strain, we have

if E€Sp, then Ef = E, (3-8)

ifE eS8, then E/ = (ey + ——¢1) 053, (3-9)
24«

if E €S,, then E/ = 0. (3-10)

For Z; the interior of S;, the derivative DgT(E) in regions Z; has been calculated in [Lucchesi et al.
2008] and has the expressions:

if E € Zy, then DpT(E) = O, (3-11)

if E € Z,, then DET(E) =90, ® 011 —p—L—0,, ® 012, (3-12)
€y —€q

if E € Z,, then DpT(E) = C. (3-13)

For E € Ui2=o Z; and unit vector n, the acoustic tensor 4 (E, n) defined in (2-11) has different
expressions A;(E, n) in the three regions Z; [Degl’Innocenti et al. 2006]:

if E € Zy, then Ag(E.,n) =0, (3-14)

if E € 71, then Ay (E.m) = gp™" [ (g1-m)* - e @ -m?] oy, (3-15)

-1 (] 5 1 e
- Py CARON P i N (g1-m)(gy-n)Os.
op 2(ez_el)(ql )" 022 —gp ﬁ(ez_el)(ql )(q2-n)01;

if E € Z,, then Ay(E.n) = Qu+Mp 'n@n+pp '(I —n®n). (3-16)

As in the three-dimensional case, our goal is to determine the eigenvalues cfi)(E ,n) > cg)(E ,n) and
eigenvectors mgl)(E,n), mg')(E,n) of the acoustic tensor A;(E,n), fori =1, 2.
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Let us now consider E € Z;. The components 4;;(E,n) = q; - A1 (E,n)q; of the acoustic tensor

A (E,n) in (3-15) with respect to the basis (g1, ¢,) are

- - €1
An(E.m) =¢p~ (qi-m)* —pp~ S ———(q2-n)*, (3-17)
2(e2—e1)
-1 (] 2
A (E.n) =—¢p~ s————(q1-n)", (3-18)
2(e2 —ey)
_ e
Aua(E.n) = —¢p™" (g1 -n)(g2-n). (3-19)
2(ex —ey)
If n = ¢4, then
_ _ e
ANE.q)=¢p ' 011 —pp~ ' =—— 00, (3-20)
2(e2—ey)
whose eigenvalues, both greater than zero, and eigenvectors are
— — €1
SUE.qy =g, SUE.q)=—0p s —— (3-21)
2(e2—ey1)
W, q1) = W(E, q1) = 3-22
m; (E.q)=q1, m, (E.q1)=q>. (3-22)
If n = q5, then
_ e
AVE . q3) =—¢p”' 5——— O, (3-23)
2(ex—ey)
whose eigenvalues and eigenvectors are
(1) -1__ @ (1)
¢, (E.qp)=—¢p ——, ¢, (E.q2)=0, (3-24)
! 2(ex —ey) 2
W g _ g _ )
mi’(E,q2) = q1, m, (E,q2) = q>. (3-25)
If n # g1 and n # ¢, the eigenvalues and eigenvectors of (3-15) are
—1 2
Mg _9p _ N2 el er+eq 4_ € N
c] ( ’n) 2 {(n ql) 2(62_61)—}_\/62 e (n ql) 62—61 (n ql) +4(€2—€1)2]’
(3-26)
-1 2
) _ P 2 €1 exte 4_ 2 |
E’ — T A~ * - - ° V) ’
¢ (E.m) 2 |:(n 1) 2(ex—ey) \/ez —ey (n-g1)" = 2—e1 (n-q1) +4(ez—el)2
(3-27)
)]
(1) 1 cl (E9n)_A11(E9n) )
m;’(E,n)=— + , 3-28
1 ( ) 1(q1 AIZ(E n) q2 ( )
(1)
(1) (E,n)—A(E,n) )
E.n + , 3-29
( ) mZ( AIZ(E n) q1 q2 ( )

where A11(E,n), A»>(E,n) and A1,(E, n) (which is different from zero since n # ¢, and n # ¢, and
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E € Z,) are given by (3-17), (3-18) and (3-19) and

(1 2
c; (E,n)—A1(E.n
o 1y @E M — A (B ) 330
A12(E, n)?
(1) 2
¢y (E,n)— A (E.,n
s 1 (Vo) — Az (B m)2 4
A12(E, n)?
Note that, taking (3-3) into account, it is a simple matter to prove that
(3-32)

cgl)(E,n) <Qu+rp 1, cgl)(E,n) <upt,

for ¢\ and ¢V given in (3-21), (3-24), and (3-26)~(3-27).
If E € Z,, the acoustic tensor A, (E, n) coincides with the acoustic tensor of a linear elastic material

subjected to a plane strain state. Its eigenvalues are
P =@u+npt P =P =pup (3-33)

and the corresponding eigenvectors are
(3-34)

mgl)(E, n)=n, mgz)(E,n) belonging to Span(n)L.

Thus, the behavior of progressive waves in a body composed of a masonry-like material with homo-
geneous stress T associated to a homogeneous plane strain field E € U,~2:0 Z; can be summarized in
Table 4, which reports the polarization vector and the squared velocity of waves propagating in masonry
solids for different directions of propagation n. If E € Z, no propagation occurs. If E € Z, for n = ¢

EcZz cgo) c;o)
n 0 0
no propagation no propagation
E €74 c}l) cgl)
"= oo —pp e/ (2(e2 —e1))
longitudinal wave, ¢, transverse wave, ¢»
n=q —pp~'e1/(2(es —e1)) 0
transverse wave, ¢1 no propagation
n#qi.q> (3-26) (3-27)
Ecz, cfz) céz)
; Qu+1)p! pp~!
longitudinal wave transverse wave

Table 4. Wave velocities squared for E € Z;,i =0, 1, 2.
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there is one longitudinal wave and one transverse wave,
A1(E.qD)q1 = ¢p " q1. (3-35)

_lel
A(E.q1)q> = —

Qp
—q>. 3-36
2(ey —ey) 1 (5-39)

Due to (3-32), the velocities of the longitudinal and transverse waves are less than those of the cor-
responding waves in a linear elastic material. For n = ¢,, only one transverse wave propagates, with
squared velocity (3-24), which because of (3-32), is less than the squared velocity of the transverse linear
elastic wave. For n # ¢; and n # ¢,, two waves propagate with the squared velocities (3-26) and (3-27),
that are less than the squared velocities of the longitudinal and transverse waves in a linear elastic material
(see (3-32)).

For E € Z,, masonry material behaves like a linear elastic material and for each unit vector n, there
are a longitudinal wave and a transverse wave with the squared velocities in (3-33).

Now, we wish to analyze the behavior of eigenvalues cfl)(E, n) and cgl)(E, n) of A{(E,n), asn
varies.

Let us put
z=(n-q1)%, z€l0,1], (3-37)
and
k =—es/ey, (3-38)
with k satisfying the inequality
o
k > ra (3-39)

because E belongs to Z.
By taking (3-37) and (3-38) into account, the eigenvalue cfl)(E ,n) in (3-26) can be expressed in
terms of z and k via the expression

~1
N PP 1 k—1_, 1 1 )
Si(zi k) = 3 (Z+2(k+l)+\/k+lz +k+lz+4(k+l)2)' (3-40)

For each k satisfying (3-39), f1(z; k) is an increasing function of z, with

1

f10:K) = ¢ P(E.q2) = 500 (3-41)

ik =cM(E.q1) = oo, (3-42)
thus,

fi(z:k) < @p~! for each z €0, 1], (3-43)
and

lim  f1(0:k) = pup~",
k— =%
2+a (3-44)
lim fi(z;k) =¢@p 'z foreachz €0, 1].
k—o0
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Analogously, the eigenvalue cél)(E ,n) in (3-27) can be expressed in terms of z and k via the expression

-1
1y _ PO L k=15, 1 1 ]
[0 =55 (Z+2(k+1) \/k+12 Tt T a2 ) (3-43)
In particular, for each k satisfying (3-39),

f20:k)= S (E q2) = 0, (3-46)
-1
k)= cV(E. gy =P 3-47
fZ( ’ ) C2 ( sql) 2(k+1)’ ( )
and _
. Yp -
falzi k) < 23kt 1) for each z € [0, 1], (3-48)
moreover,
lim f>(z;k) =0, lim  f2(1:k) = pp ! for each z €0, 1]. (3-49)
k—o0 k—a/(2+a)

As for the elastic constants, we have assumed E/p = 500000 (m/s)? and v = 0.2 for the Poisson’s
ratio. Consequently, we have ju/p = E/(2p(1 4+ v)) = 208333 (m/s), A/p = vE/(p(1 +v)(1 —=2v)) =
138889 (m/s)2, ¢/p = 520833 (m/s)2, 2u + A)/p = 555556 (m/s)? and o = 0.7.

Figures 3 and 4 show the behavior of fi(z; k) and f>(z; k) versus z for different values of k compared
with the eigenvalues (2u + A)p~! and pup~! of the acoustic tensor corresponding to a linear elastic
material. The dashed line represents the function limg_, o, f1(z; k) in (3-44). In particular, we have
chosen k = 0.25 (corresponding to «/(2 + «)) and k = 0.3,0.5, 1, 2, 10. Both (3-44) and (3-49) are in
agreement with the jump conditions (3-65) and (3-67), reported in the Appendix, of the acoustic tensor
at the interfaces Sy N Sy and S; N S, which are reached when k& — oo and k — «/(2 + ). Note
that waves propagating in a masonry-like material are slower than waves propagating in a linear elastic
material and that their velocities decrease as k increases.

5.6-10° |

4.2-10°

2.8-10°

1.4-103

0 01 02 03 04 05 06 07 08 09 10

—linear elastic —k=0.25—£k=0.30 k=0.50—k=1.00 —k=2.00 —£=10.00

Figure 3. Function fi(z; k) vs. z € [0, 1] for different values of k.
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— lin. elastic —k=0.25—"%k=0.30 k=0.50 —k=1.00 —k=2.00 —k=10.00

Figure 4. Function f5(z;k) vs. z €0, 1] for different values of k.

Figure 5 shows a plot of the curves € (k) composed of the points having coordinates

(tfi(r k), V1=72 fi(x%:k)) (3-50)

6.0-10%-

4.0-10°

2.0-10°

q2
YV
Il Il Il Il Il
0 q1 2.0-10° 4.0-10° 6.0-10°

—Ilin. elastic —k=0.25 k=0.30 k=0.50 k=1.00 —k=2.00 —k=10.00

Figure 5. Curve 6, (k) formed by the points with coordinates in (3-50), for k£ = 0.25,
0.30, 0.50, 1.00, 2.00, and 10.00, from the top down. The thick black curve represents
the linear elastic case.
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2.0-105F

10105
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fr(2?:k) \ Py (k)
\
a
\
A " 1 |
0 q1 1.0-10° 2.0-10°

—lin. elastic —k=0.25 k=0.30 k=0.50 k=1.00 —k=2.00 —k=10.00

Figure 6. Curve 6, (k) formed by the points with coordinates in (3-51), for k£ = 0.25,
0.30, 0.50, 1.00, 2.00, and 10.00, from the top down. The thick black curve represents
the linear elastic case.

with respect to the Cartesian coordinate frame {q1, g,, O}, with t = n-¢q, €0, 1] for k = 0.25, 0.3, 0.5,
1, 2, 10. For Py, the intersection point of curve € (k) and the line passing from the origin and parallel to
the unit vector n of components (1 -q1,n-q,), the length of the segment OPy is f1((n-q1)?; k), which
coincides with the maximum squared velocity of a wave propagating along n.

Analogously, Figure 6 plots the curves €, (k), composed of the points having coordinates

(tfa(r% k), V1=12 fo(t%k)) (3-51)

with respect to the Cartesian coordinate frame {¢q, ¢,, O}, with t =n-q €10, 1] for £k = 0.25, 0.3, 0.5,
1, 2, 10. For Pj, the intersection point of curve 6, (k) and the line passing from the origin and parallel to
the unit vector n of components (7 -q1,n-q,), the length of the segment OPy, is f>((n-q1)?: k), which
coincides with the minimum squared velocity of a wave propagating along n.

Figure 7 shows the quantities

iy = WNEER Ve et IV AEER - VieeT (3-52)

V2 +A)p! pp!
as a function of t for different values of k. They measure the relative distance between the maximum
(top half) and minimum (bottom half) squared velocities of waves propagating in a masonry-like and a
linear elastic material. Figure 7 shows that, for a given k, the relative distances d;(t; k) and d,(t; k)
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Figure 7. Functions d;(t;k) and d,(t; k) vs. t €0, 1] for £ = 0.25, 0.30, 0.50, 1.00,
2.00, and 10.00, from the bottom up.

have a maximum for t = n-¢; = 0, namely when the propagation vector is orthogonal to the direction
of maximum compression ¢, and have a minimum when the propagation vector coincides with ¢;.

Figure 8 shows the behavior of the scalar product r(z:; k) = mgl (E,n)-nasafunctionof t =n-qq €
[0, 1]; it is a measure of the deviation of the eigenvector mgl)(E ,n) from the direction of propagation n,
along which the longitudinal wave travels in the linear elastic case.
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Figure 8. Function r(7; k) vs. T €0, 1] for different values of k.

Let us now consider the homogenous wave
u(x,t) =msin(n-x —vt). (3-53)

We wish to analyze the behavior of # as function of time ¢ in order to highlight the differences between
a linear elastic and a masonry-like material. For n = ¢, we can distinguish the longitudinal wave

up(x1.1) = qysin(x; — Vop '), (3-54)
and the transverse wave
-1
ur(x1,0) =g sin(x1 - %z) (3-55)

with x; = ¢ -x and ¢ > 0. The longitudinal and transverse waves in the case of linear elastic materials
are respectively

u§ (x1.1) =qqsin(x; — vV 2u+1)p~ 1), (3-56)
u(x1.1) = g2 sin(x; — Vip ), (3-57)

Figure 9 shows the functions uy, (x1,?) (red line) and u7 (x1,¢) (black line) versus # at x; = 0. Figure 10



530 MARIA GIRARDI, CRISTINA PADOVANI AND DANIELE PELLEGRINI
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Figure 9. Longitudinal wave propagating along n = ¢q1, uy (xy,t) at x; = 0 vs. ¢ for
different values of k.
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Figure 10. Transverse wave propagating along n = qq, ur(xy,t) at x; = 0 vs. ¢ for
different values of k.

shows the functions w7 (xy, ) and u% (xy,) versus ¢ at x; = 0. Displacement 7 (x1,?) is plotted for

k =0.25,0.3,0.5, 1, 2, 10.
For n = ¢q,, there is only one transverse wave,

-1
ur(xy,t) =qq sin(xz - %I) (3-58)

with x, = ¢, - x, and no longitudinal waves propagate in the material,

ur(xz,t)=0. (3-59)
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As for the linear elastic case, we have

ug (x2,1) = gz sin(xa — V2 +1)p~'0), (3-60)
UG (xa,1) = gy sin(x; — Vpp~'1). (3-61)

By replacing ¢ with E, we obtain the results for the plane stress state. Note that in view of the
inequality ¢ > E, the velocities of elastic waves, both longitudinal and transverse, in the plane strain
state are greater than the velocities in the plane stress state.

Conclusions

The propagation of elastic waves in an infinite masonry-like body subjected to a given homogeneous
strain field has been investigated. Masonry-like materials are characterized by the fact that they cannot
withstand tensile stresses and, as a consequence, they can crack. The stress function T defined on Sym
with values in the subset of the negative-semidefinite symmetric tensors is nonlinear and differentiable
on an open subset W of Sym. Starting with the differentiability of T with respect to E on W and using
the explicit expression for Dg T(E), we obtain the condition that a progressive wave must satisfy in
order to propagate in a masonry body subjected to a given homogeneous strain field E. The propagation
condition involves the acoustic tensor, which is a function of E and the direction of propagation n. We
show that the behavior of progressive waves propagating in the solid depends on the state of prestrain E
and on the corresponding crack distribution. In particular, due to the presence of cracks, the propagation
velocity of waves in masonry-like solids is lower than in linear elastic materials. A peculiar aspect of
masonry-like solids is that there exist directions n along which waves cannot propagate. The preliminary
results obtained in this paper can constitute a basis for the study of the propagation of small elastic waves
in masonry constructions. The problem is quite relevant to technical applications: in fact, measurement
of the wave propagation velocities in masonry buildings can furnish important information about the
mechanical behavior of their undamaged and cracked portions.

Appendix

As pointed out in [Lucchesi et al. 2008], no tangential discontinuity affects D g T(E) across the interfaces
So NSy and S; N S5,. In fact its jumps are

[DET(E)]=¢011 ® Oy for E € SyN Sy, (3-62)

and

2
[DET(E)] = M{zo_l,’__aoll ®O011+2+a)0228 024+2(011 R 022+ 02, ® 011)}
for E € Sl N Sz. (3-63)

For the jumps that the acoustic tensor inherits from D g T(E), from (3-14), (3-15) and (3-16) we get
[A(E.m)]=¢p~'(qi-m)?O1; for E € Son S, (3-64)

and, in particular,
[A(E.q)] = ¢p~' 011.[A(E . q2)] = 0. (3-65)
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Moreover,
_ (+a)e=2) o 20+wer 2}
[A(E,n)] = pp~ [ t e q1-n) +(2+a)(62_el)(¢12 n)° |0y,
_ 2(1+
+MIO 1|:1+ (2+(a)(:;)il )(ql'n)2+(1+a)(q2'n)2:|022
—gp! O, for E € S1NS,, (3-66
®p «/_(ez—el)(ql n)(q2-n)0q; for E € S1NS,, (3-66)
and ,
[A(E,ql)]zup_12+a011, [A(E.q2)]= Qu+1)p " 0n. (3-67)
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