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AN ANISOTROPIC MODEL FOR THE MULLINS EFFECT IN MAGNETOACTIVE
RUBBER-LIKE MATERIALS

M. H. B. M. SHARIFF AND ROGER BUSTAMANTE

An anisotropic phenomenological model is proposed to describe the Mullins phenomena for magneto-
active elastomers. The model is based on the use of direction-dependent damage parameters and a set
of spectral invariants presented recently in the literature. The effect of the magnetic field on the Mullins
phenomena for simple tension and simple shear is discussed.

1. Introduction

Magnetosensitive (MS) elastomers correspond to a class of rubber-like materials, which are filled with
magnetoactive particles during the curing process, where the particles are usually made of iron and
carbonyl iron (see, for example, [Bellan and Bossis 2002; Boczkowska and Awietjan 2012]). When such
an elastomer solidifies, the MS particles remain locked inside it. Subsequently, if an external magnetic
field is applied, it is possible to obtain relatively large deformations [Bellan and Bossis 2002; Boczkowska
and Awietjan 2012] that can be controlled by this external field, and for this reason this class of elastomers
is classified as a smart material [Ginder et al. 2001; Ghafoorianfar et al. 2013]. There are many possible
applications for these elastomers, such as in the design of flexible robots and in vibration suppression
[Böse et al. 2012; Farshad and Roux 2004; Kashima et al. 2012; Zhu et al. 2012].

Due to the potential applications of these MS elastomers, in the last few years there has been an
interest in the mathematical modeling of the mechanical behavior of such materials. Some relatively
recent works on this topic are the series of papers by Dorfmann and Ogden [2003; 2004a; 2004b; 2005],
Triantafyllidis and coworkers [Kankanala and Triantafyllidis 2004; Danas et al. 2012], Steigmann [2004]
and Vu and Steinmann [2010]1.

In most of these works, the MS elastomers were assumed to be hyperelastic bodies; however, when
mixing a rubber-like material with MS particles, we expect to observe some inelastic phenomena since
most elastomers, especially elastomers with fillers, exhibit an anisotropic stress-softening phenomenon
widely known as the Mullins effect [Mullins 1947; Coquelle and Bossis 2006]. Quite often, the stress is
softened significantly, hence modeling MS elastomers as purely elastic deformations can be erroneous.
In addition to this, modeling the nonvirgin reference stress-free state of an MS material as isotropic is
not accurate, since generally it is not isotropic in the stress-free reference state and the type of anisotropy
depends on the history of strain.

Keywords: magnetoactive materials, Mullins effect, anisotropic stress-softening, spectral invariants.
1See the book by Ogden and Steigmann [2010] for more references on this topic; the interested reader can also see [Brown

1966; Eringen and Maugin 1990; Maugin 1988] for some older works on the interaction of electromagnetic fields and continua.
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In the present communication, the mechanical behavior of MS elastomers is modeled via an anisotropic
Mullins model, which is based on the direction-dependent model proposed by Shariff [2014]. In partic-
ular, we are interested in studying the influence of the magnetic field on the anisotropic stress soft-
ening behavior of MS elastomers, where we currently believe there is no model that could describe
three-dimensional anisotropic stress-softening behavior (Mullins effect) of MS materials in the pres-
ence of a magnetic field. Our proposed model is based on the model of Shariff [2014], where he uses
direction-dependent damage parameters (that depend on the history of strain) to simulate the anisotropic
behavior that manifests due to the Mullins effect. His model is able to reasonably predict a variety
of nonproportional (i.e., successive loadings with different directions of stretching or types of loading)
experimental data on the anisotropic Mullins effect for different types of rubber-like materials. The
constitutive equations for MS elastomers proposed in the present paper are characterized using a set of
(useful) experimentally spectral invariants recently developed in the literature by Shariff and coworkers
[Bustamante and Shariff 2015; Shariff 2008]. Most MS elastomers are nearly incompressible, however,
in this communication it is assumed, for simplicity, that they are incompressible.

This paper is divided in the following parts: in Section 2 the main elements of the theory of Dorfmann
and Ogden [2003; 2004b; 2004a; 2005] for MS elastomers are presented. In Section 3 the model for
the Mullins effect is shown, while in Section 4 some boundary value problems are studied. Finally, in
Section 5 some final comments are given.

2. Preliminary

2.1. Kinematics. In this paper, all subscripts i , j and k take the values 1, 2, 3, unless stated otherwise.
Let B denote the MS body, and x ∈ Bt denote the position of a particle X ∈ B in the current con-

figuration Bt . The position of the same particle in the reference configuration is denoted as X ∈ Br ,
where Br is the body in the reference configuration, which is assumed to be undeformed and unstressed.
It is assumed that there exists a one-to-one mapping χ such that x = χ(X, t) for any time t > 0. The
deformation gradient, the left Cauchy–Green B and right Cauchy–Green C deformation tensors are
respectively defined as

F = ∂x
∂X , B = F FT

= V 2, C = FT F = U2, (1)

where χ is assumed such that J = det F > 0.
In this communication, only quasistatic deformations and time-independent fields are considered, and

the mechanical body forces are assumed to be negligible.

2.2. Governing equations for magnetosensitive elastomers.

2.2.1. The Maxwell equations. The theory of magnetosensitive elastomers (with no dependence on time)
employed here makes use of three vector fields in the current configuration — the magnetic field h, the
induction b and the magnetic polarization m — to describe the magnetic effects in an MS body. In the
absence of electric interactions and time effects, the magnetic field and the magnetic induction have to
satisfy the simplified form of the Maxwell equations

div b= 0, curl h = 0, (2)
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where, respectively, div and curl are the divergence and curl operators with respect to x. Using the global
form of (2), it is possible to define the following Lagrangian counterparts (in the reference configuration)
of the magnetic field hl , and the magnetic induction bl

hl = FT h, bl = F−1b. (3)

The above variables satisfy [Dorfmann and Ogden 2004a]

Div bl = 0, Curl hl = 0, (4)

where Div and Curl are the divergence and curl operators with respect to X , respectively.
In vacuum, the magnetic field and the magnetic induction are related by the equation

b= µ0h, (5)

where µ0 is the magnetic permeability in vacuo. For condensed matter, an additional field is required,
which is the magnetization field m and it is related to b and h through (see [Kovetz 2000] for more details
on the theory of electromagnetism)

b= µ0(h+m). (6)

2.2.2. The theory of magnetoelastic interactions by Dorfmann and Ogden . In nonlinear magnetoelastic-
ity, there are different ways to express the equation of motion, the relation between the stresses, the strains
and the magnetic variables; there are also different possible definitions for the stress tensor [Hutter et al.
2006]. In this communication, as a basis for our work the theory developed by Dorfmann and Ogden
[2004a] is used, where they define a total stress tensor T that incorporates in its definition the magnetic
body forces (which are expressed as the divergence of a Maxwell stress tensor). The total (symmetrical)
stress tensor T is related to the nonsymmetrical (elastic) Cauchy σ stress via the relation [Dorfmann and
Ogden 2004b]

T = σ + 1
µ0

[
b⊗ b− 1

2(b · b)I
]
+ (m · b)I − b⊗m, (7)

where ⊗ and · denote the dyadic and dot products, respectively. The nonsymmetrical mechanical Cauchy
stress σ is part of the symmetrical total stress, and its role is important in deriving the proposed total
energy (see (16) below). A key ingredient of this theory is the definition of a total energy function (see
[Dorfmann and Ogden 2004a, Equation 3.10] and Section 3.3 below), where relatively simple expressions
for the total stress and one of the magnetic variables are obtained.

2.2.3. Equation of equilibrium and continuity conditions. The total stress tensor T must satisfy the bal-
ance equation [Dorfmann and Ogden 2004a, Equation 2.13]

div T = 0. (8)

Through the surface of the body ∂Bt the magnetic variables and the total stress tensor must satisfy
the continuity conditions [Kovetz 2000]

n · [[b]] = 0, n×[[h]] = 0, T n= t̂ + T M n, (9)

where n is the unit outward normal vector to ∂Bt , t̂ is the external mechanical traction, [[ ]] denotes the
difference of a quantity from outside and inside a body, and T m is the Maxwell stress tensor with the



562 M. H. B. M. SHARIFF AND ROGER BUSTAMANTE

relation [Kovetz 2000]
T M = h⊗ b− 1

2(h · b)I . (10)

3. Anisotropic stress softening model

When rubber is loaded in simple tension from its virgin state, and is then unloaded and reloaded, due to
some damage, the stress required is less than that of the initial loading for stretches up to the maximum
stretch achieved on the initial loading. This stress softening phenomenon is referred to as the Mullins
effect. Here, a brief description on the behavior of the ideal Mullins effect is given; the unloading
and reloading (in the same direction and up to the same “maximal” strain) paths coincide, and there
is no permanent set. This description is made clear in Figure 1 below. In this section, we also define
direction-dependent damage parameters, introduce the concept of the damage function [Shariff 2006;
2014] and construct a total energy function using a set of spectral invariants. In this communication, the
term “damage” is interpreted in its widest sense; for example, it may mean “rupture of molecular bonds
that reform to create new microstructure” or “conversion of hard phase to soft phase” or “any change in
the ground state mechanical properties that are induced by strain”. We are only concerned with strain
induced damages that lead to stress softening.

3.1. Description of the ideal Mullins effect in nonproportional uniaxial loadings with no permanent
set. Consider the case when there is no magnetic field (h = 0) and a magnetosensitive (MS) material
is being prestretched uniaxially as shown on the primary (virgin material response) loading path Oa
in Figure 1. On unloading from a the elastic path aE O is followed; we call this path elastic because
when the material is loaded again up to point a the path aE O is retraced as O Ea, hence the material
behaves elastically and its ground-state-material-constant values are fixed during this deformation. From
the point a the material is loaded to the point b via the primary loading path Oab. When the material
is unloaded from b, the elastic bE O path is followed. After unloading completely, a simple tension
deformation is applied in a direction 30◦ from the prestretch loading direction on a smaller specimen cut

nominal stress

O

O

h 6= 0

a

b

E
c

E

b

h = 0
E

c

aE

E

E
E

stretch

elastic curve

Figure 1. Schematic loading-unloading curves in simple tension of an MS Mullins material.
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from the prestretched material. This sequence of deformations was done experimentally by Machado et
al. [2012] on a non-MS material. The nonelastic 30◦ path is depicted by the path Ocb and the elastic
paths (unloading from c and b) are depicted by cE O and bE O . The elastic properties for the elastic paths
O Ea, O Eb and O Ec are different. The nominal stress on any path can be obtained by differentiating
the area under an elastic path. From Figure 1, the stress-strain behavior in different loading directions
are not the same, which suggests that the damage caused by strain is anisotropic. The areas under
different elastic paths can be represented by different direction dependent total elastic energy functions,
although the material itself is not elastic. Note that the ground state material properties may change
during deformation. With these in mind, following the work of Shariff [2006; 2014], we introduce a
“free” energy function for an inelastic solid that can be portrayed by an infinite family of total elastic
energy functions parameterized by the direction-dependent damage parameter defined in Section 3.2.

When a magnetic field (h 6= 0) is applied on the undeformed reference configuration, the material will
deform due to the magnetic forces. In this case, an external stress is required to maintain that undeformed
configuration F = I . Consider the sequence of uniaxial deformations described previously, where the
directions of the magnetic field are always in the uniaxial directions. The behavior of the loading paths
are similar to the loading paths mentioned before, but due to the presence of a magnetic field the uniaxial
stresses are generally higher (as depicted in Figure 1) than the stresses when there is no magnetic field
[Bellan and Bossis 2002].

3.2. Direction-dependent damage parameter and damage function. Based on simple tension defor-
mations, in the original work by Mullins [1947], it was assumed that stress softening takes place if
the current (principle) tensile stretch is less than the maximum stretch. In view of this, most previous
models [Mullins 1947; Govindjee and Simo 1991; Johnson and Beatty 1993; Itskov et al. 2010] used
maximum tensile stretch as their damage parameter. However, in simple tension there are three principal
stretches, one in tension and two in compression; hence one should consider both the maximum tensile
and minimum compressive stretches. It is worth noting that the Pawelski [2001] experiment showed that
stress softening also occurs in compression. This suggests that minimum compressive stretch should
not be ignored in stress softening modeling and hence, in our model, we include both the maximum
and minimum stretches. They are related to the proposed direction-dependent damage parameter αi as
explained below.

The principal stretches satisfy the following inequality

s(min)
i ≤ λi ≤ s(max)

i , (11)

where
s(max)

i = max
0≤z≤t

√
ei ·C(z)ei and s(min)

i = min
0≤z≤t

√
ei ·C(z)ei . (12)

Physically, s(max)
i and s(min)

i are the maximum and minimum “stretch” values of the ei line element
throughout the history of the deformation, respectively. From the above equation it is clear that s(max)

i ≥ 1,
s(min)

i ≤ 1 and λi is bounded by s(min)
i and s(max)

i . Consider, for example, a material being prestretched
by a simple tension deformation process. A simple tension deformation is then applied on this prestretch
material in the same direction as the prestretch direction, where the deformation is described by

U(λ)≡
(
λ, 1/
√
λ, 1/
√
λ
)
, (13)
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where 1 ≤ λ ≤ λm = s(max)
1 , s(min)

2 = s(min)
3 = 1/

√
λm ≤ 1/

√
λ ≤ 1 and s(min)

1 = s(max)
2 = s(max)

3 = 1. In
(12), s(max)

i and s(min)
i are related to the amount of damage; the interval in (11) widens as the amount of

damage increases.
For a non-MS Mullins material, Shariff [2006; 2014] proposed an anisotropic stress softening damage

model using the direction-dependent damage parameter αi , where

αi =

{
s(max)

i when λi > 1,
s(min)

i when λi < 1.
(14)

Note that in (14) we do not consider λi = 1, because our model is constructed in such a way that αi does
not contribute to the stress softening when λi = 1 (see Section 3.5 below). In the case when λi = λ j

(i 6= j), the directions of ei and e j are not unique. In view of this, we let

αi = α j =

1/
√

s(min)
k when λi = λ j > 1,

1/
√

s(max)
k when λi = λ j < 1,

(15)

where i 6= j 6= k 6= i . In the case when all the principal stretches are equal, the principal directions ei are
all nonunique. However, for an incompressible material this can only happen when λ1 = λ2 = λ3 = 1 and,
as mentioned above, the corresponding αi in this case do not contribute to the stress softening; hence
their values are not given here.

Stress softening models usually have softening functions which control the softening behavior. The
softening function is governed by the amount of damage [Simo 1987; Ogden and Roxburgh 1999; Itskov
et al. 2010]. The rate of change of the amount of damage with respect to time or any deformation
parameter that increases with primary loading should be nonnegative. In our model, in view of the
definition of the damage parameter αi , a measure of an amount of damage (damage function) related
to the ei line element is proposed. The proposed damage function g (which may depend on material
properties) is defined such that 0 = g(1) ≤ g(x), x ∈ R, x > 0. The function g has also the properties
that ĝ′(α)≥ 0, where ĝ(α)= g((1−α)+αw), 0< α ≤ 1 and w > 0 ( 6= 1) is a constant. The function
ĝ′(α) need not be defined at α = 0. If it is defined then ĝ′(0)= 0. In view of our definition, g increases
monotonically as x moves away from the point x = 1; hence, g(λi ) ≤ g(αi ). Physically, g(αi ) can be
considered as a measure of an amount of damage related to the ei line element; for a strictly monotonic
g, the higher the value of g the bigger the damage induced on the ei line element. Specific forms of g
are given below in (64) and (72).

3.3. Constitutive equations and spectral invariants . For an isothermal problem the Clausius–Duhem
inequality take the form

σ : D− ρ0ψ̇ −m · ḃ≥ 0, (16)

where the superposed dot represents the time derivative, : denotes the inner product of two second order
tensors, ρ0 is the density of the incompressible material, ψ is the Helmholtz free energy function, D =
grad v, grad is the gradient operator with respect to x and v is the velocity. Following [Dorfmann and
Ogden 2004a] and [Shariff 2014] the Helmholtz free energy can be expressed as

ρ0ψ = ψa(F, b, g), (17)



AN ANISOTROPIC MODEL FOR THE MULLINS EFFECT IN MAGNETOACTIVE RUBBER-LIKE MATERIALS 565

where the vector g ≡ [g(α1), g(α2), g(α3)]
T is an internal variable. Taking note that, for an incompress-

ible material tr(D)= 0, and since σ : D = (F−1σ )T : Ḟ, (16) and (17) give the relations(
σ + p I − F

∂ψa

∂F

)
: Ḟ−

(
m+

∂ψa

∂b

)
· ḃ−

3∑
i=1

∂ψa

∂g(αi )
ġ(αi )≥ 0, (18)

σ =−p I + F
∂ψa

∂F
, m =−

∂ψa

∂b
, (19)

and the inequality

−

3∑
i=1

∂ψa

∂g(αi )
ġ(αi )≥ 0 . (20)

In view of the property of g, ġ(αi )≥ 0, and to satisfy (20), the condition

∂ψa

∂g(αi )
≤ 0 (21)

is imposed. If we define
8(F, bl, g)= ψa(F, Fbl, g), (22)

the nonsymmetric Cauchy stress [Dorfmann and Ogden 2004a] takes the form

σ =−p I + F ∂8
∂F − (m · b)I + b⊗m, (23)

where p is the associated Lagrange multiplier due to the incompressibility constraint and I is the second
order identity tensor.

Following [Dorfmann and Ogden 2004a], an amended free energy function

�m(F, bl, g)=8(F, bl, g)+ 1
2µ0

bl ·Cbl (24)

is defined and using (24) the simplified relation

hl =
∂�m

∂bl
(25)

is obtained.
In this paper, hl is chosen (instead of bl) as the independent variable and a complementary (total)

energy function �e =�a(F, hl) is defined through the partial Legendre transformation as

�e =�a(F, hl, g)=�m(F, bl, g)− bl · hl, (26)

where, in view of the inequality (21), the inequality

∂�e

∂g(αi )
≤ 0 (27)

is automatically satisfied. The relation

bl =−
∂�e

∂hl
(28)
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is obtained from (26).
If �e is treated as a function of C, the objectivity condition is automatically satisfied and can be

written as
�e =�c(C, a, g, h)=�a(F, hl, g), (29)

where the unit vector a= hl/h and h = |hl |. Following the work of Spencer [1971], �e can be expressed
in terms classical invariants, i.e.,

�e =�d(I1, I2, I4, I5, g, h), (30)

where

I1 = tr(C), I2 =
I 2
1 − tr(C2)

2
, I4 = a ·Ca, I5 = a ·C2a (31)

and tr denotes the trace of a second order tensor. Except for I4, the rest of the above classical invariants
have no immediate physical interpretation. Hence, they are not attractive in seeking to design a rational
program of experiments2 for MS solids. For example, it is not straightforward to design an experiment
to construct (rigorously) a specific functional form of the total energy �e, where the experiment requires
varying a single classical invariant while keeping the remaining classical invariants fixed [Holzapfel
and Ogden 2009; Humphrey et al. 1990; Lin and Yin 1998]. In this paper our total energy function is
characterized using a set of spectral invariants, where each invariant has a clear physical meaning and
have an experimental advantage [Shariff 2008] over the standard (classical and its variants) invariants
commonly used in dealing with anisotropic problems. Note that

C =
3∑

i=1

λ2
i ei ⊗ ei , (32)

where λi is a principal value (stretch) of the right stretch tensor U , and ei is a principal direction of U .
In view of (29) and (32),

�e =� f (λ1, λ2, λ3, e1⊗ e1, e2⊗ e2, e3⊗ e3, a, g, h). (33)

Hence, following the work presented in [Shariff 2008], �e can be written in terms of h and the
corresponding spectral invariants, i.e.,

�e =�(λ1, λ2, λ3, ζ1, ζ2, ζ3, g, h), (34)

where ζi = (a · ei )
2. The physical meaning of λi is obvious, and it is clear that ζi is the square of the

cosine of the angle between the principal direction ei and the preferred direction a. Since a is a unit
vector, this implies ζ3 = 1− ζ1− ζ2. The invariant h and the spectral invariants have an experimental
advantage over classical invariants presented in the literature, e.g., a simple triaxial test can vary a single
invariant while keeping the remaining invariants fixed [Shariff 2008].

Note that (34) has the symmetrical property

�(λ1, λ2, λ3, ζ1, ζ2, ζ3, g, h)=�(λ2, λ1, λ3, ζ2, ζ1, ζ3, g, h)=�(λ3, λ2, λ1, ζ3, ζ2, ζ1, g, h). (35)

2See [Criscione 2003] for a criticism on the use of the classical invariants by Spencer and Rivlin [1962].
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In view of the nonunique values of ei and e j when λi = λ j , a unique valued � should be independent of
ζi and ζ j when λi = λ j and � should be independent of ζ1, ζ2 and ζ3 when λ1 = λ2 = λ3. We call this
independent property together with the symmetrical property (35) the P-property [Shariff 2016]. Our
total energy function proposed later in this paper is required to satisfy the P-property.

In view of (22), (23), (24), (26) and (7),

T = 2F
∂�e

∂C
FT
− p I . (36)

The total nominal stress S is given by [Dorfmann and Ogden 2004b]

S= F−1T . (37)

Following the results presented in [Shariff 2008], the Lagrangean spectral components of ∂�e
∂C can be

expressed as (
∂�e

∂C

)
i i
=

1
2λi

∂�

∂λi
(i not summed), (38)

and the shear components (
∂�e

∂C

)
i j
=

ei · Ae j

(λ2
i − λ

2
j )

(
∂�

∂ζi
−
∂�

∂ζ j

)
, (39)

where A = a⊗ a. The Eulerian spectral components of Ti j of the total stress T are [Bustamante and
Shariff 2015]

Ti i = λi
∂�

∂λi
− p, (40)

Ti j = 2λiλ j
ei · Ae j

(λ2
i − λ

2
j )

(
∂�

∂ζi
−
∂�

∂ζ j

)
, i 6= j. (41)

Expressed in terms of spectral components, the magnetic induction has the form [Bustamante and
Shariff 2015]

bl =

3∑
k=1

bk ek, (42)

where in view of (28)

bk =−(a · ek)

[
∂�

∂h
+

2
h

(
∂�

∂ζk
−

3∑
i=1

∂�

∂ζi
ζi

)]
. (43)

The magnetic induction in the deformed configuration is obtained from (3), i.e.,

b= Fbl . (44)

The Eulerian expression of b is simply

b=
3∑

k=1

λkbkvk, (45)

where vk is the principal direction of the left stretch tensor V .
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3.4. The undeformed configuration. Magnetic fields distort an MS body, so if the body is to remain in
the undeformed state (F = I) when a magnetic field is applied, then it must be subject to an external
traction that depends on the magnetic field. In the undeformed state, λ1 = λ2 = λ3 = 1 and the principal
directions of U are not unique. For simplicity, let a = e3 such that ζ3 = 1, ζ1 = ζ2 = 0. From (40) and
(41), for the case of when hl is constant, it is necessary to apply an external traction such that the body
remains undeformed, i.e.,

T = T 0 =

3∑
i=1

∂�

∂λi
(1, 1, 1, 0, 0, 1, h)ei ⊗ ei − p I . (46)

From (42) and (43), the magnetic induction takes the form,

b=−�′0(h)e3, (47)

where

�′0(h)=
∂�

∂h
(1, 1, 1, 0, 0, 1, h). (48)

3.5. A specific constitutive equation. Using the damage parameter αi and the above set of spectral
invariants and following the work of [Bustamante and Shariff 2015; Shariff 2014], a simple separable
constitutive equation

�e =

3∑
i=1

[
η̂(g(λi ), g(αi ))r(λi )+φ(λi , αi )+ ζi z(λi , h)

]
(49)

=

3∑
i=1

[∫ λi

1
η̂(g(y), g(αi ))r ′(y) dy+ ζi z(λi , h)

]
(50)

is proposed, where

φ(λi , αi )=−

∫ λi

1
r(y)

dη̂
dy
(g(y), g(αi )) dy (51)

and

z(y, h)= q(y, h)−
µ0h2

2y2 . (52)

The first term of the total energy �e (50) can be considered as the sum of energies, where each energy
depends on λi and on the damage function g(αi ) of the ei line element, while the second term can
be considered as the sum of energies, where each energy depends on λi , the magnitude of h and its
components in the principal directions of U . The Eulerian magnetic induction then takes the form

b=−F ∂Q
∂hl
+µ0h (53)

and the magnetization is

m =− F
µ0

∂Q
∂hl

, (54)
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where

Q =
3∑

i=1

ζi q(λi , h). (55)

For simplicity of notation, let
η(y, d)= η̂(g(y), g(d)). (56)

The stress softening function η is introduced in (50) to soften the stress and has the properties 0<η≤ 1
and η(s, s)= 1. In view of (53), (54) and (55), it is clear that in vacuum b= µ0h and m = 0, and our
model suggests that the magnetic induction and the magnetization are independent of the stress-softening,
although the stress is affected by the magnetic field and the softening function.

The free energy (50) satisfies the P-property and is direction dependent since the damage parameter
αi is direction-dependent and hence it describes anisotropic damage.

On the primary loading η = 1, the free energy function simply becomes

�e =

3∑
i=1

[r(λi )+φ(λi , αi )+ ζi z(λi , h)]. (57)

Based on the work of Shariff [2000] on nonlinear isotropic elasticity, we let

r(λi )=

∫ λi

1

f (y)
y

dy, (58)

where f (1)= 0 and f is strictly monotone. It is clear that r(1)= 0, r ′(1)= 0, 0= r(1)≤ r(y) and r(y)
increases (strictly) monotonically away from y = 1.

The condition
∂η̂

∂g(αi )
(g(λi ), g(αi )) < 0 (59)

ensures that the inequality (27) is satisfied.
In this paper, we are not concerned with specific forms of the functions f , η, g and q, since there is

no available experimental data in the literature about Mullins effect for MS elastomers. However, some
qualitative properties of the functions f , η and g are discussed in [Shariff 2014] and specific forms for
f , η and g can be found in [Shariff 2000; 2014], i.e.,

f (y)=
4∑

i=1

aiφi (y), (60)

where

φ1(y)= 2
3 ln(y), φ2(y)= e(1−y)

+ y− 2, φ3(y)= e(y−1)
− y, (61)

φ4(y)=
(y− 1)3

yk , (62)

a1, a2, a3, a4 and k are material constants,

η̂(g(y), g(d))= eb1(g(y)−g(d))g(y)b2
− b3e−b4g(y)(g(d)− g(y)), (63)
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where b1, b2 and b3 are material constants and

g(y)=
(yc1 − 1)2

yc2
, (64)

where c1 and c2 are material constants and must be constrained so that g(y) increases monotonically as
y moves away from the point y = 1 [Shariff 2014]. In this paper we let

z(y, h)= d1
µ0h2

2y2 −
µ0h2

2y2 , (65)

where d1 is a material constant.

4. Homogeneous deformations

The objective of this section is to discuss the anisotropic mechanical behavior of the proposed constitutive
model in simple tension and simple shear deformations, where it can be important from the experimental
point of view. We note in passing, that for non-Mullins behavior, simple tension experiments have been
done by Bellan and Bossis [2002] and a simple shear experiment has been done by Jolly et al. [1996].
Results for nonproportional loadings to analyze the anisotropic behavior of Mullins materials are given
in this section. In the simple shear case, results on the anisotropic behavior due to the application of a
magnetic field in different directions are also given.

4.1. Simple tension. Due to edge effects, the continuity conditions on the surfaces are not easily sat-
isfied when simple tension is applied on a rectangular slab. To reduce the edge effects, a specific slab
configuration is considered, where the slab thickness in the e3 direction is very small relative to its width
(which is in the e1 direction), and its length in the e2 direction is very large relative to its width3. This
configuration is denoted as the S-configuration. A simple tension is applied in the e2 direction.

4.1.1. Simple tension in a fixed direction. To discuss the effect of a magnetic field on stress-softening
materials in fixed direction loadings, a simple tension in the Cartesian 2-direction is considered and the
magnetic field hl ≡ [0, h, 0]T is applied (where h is a constant) in the undeformed configuration which
automatically satisfies (4). With this particular type of deformation, the spectral variables take values
ζ2=1, ζ1=ζ3=0. Consider 1≤λ2=λ≤λm , hence s(max)

2 =λm and s(max)
3 = s(max)

1 =1/
√
λm=1/

√
s(max)

2 .
The total uniaxial stress simply takes the form

T22(λ2, h)= η(λ, s(max)
2 ) f (λ)− η

(
1
√
λ
,

1√
s(max)

2

)
f
(

1
√
λ

)
+λ

∂z
∂λ
(λ, h)−µ0

h2

2λ2 . (66)

The derivation of (66) has taken into account the effect of the Maxwell stress

TM33 =−µ0
h2

2λ2 (67)

3It is assumed that the length in direction 2 is very large in comparison with the dimensions in the other two directions so
that the continuity conditions (9) and (10) are satisfied only for the surface with normal e3.
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at the exterior surfaces of the material, where it is assumed that there are no mechanical stresses at these
surfaces. In the undeformed configuration,

T22(1, h)= ∂z
∂λ
(1, h)−µ0

h2

2
. (68)

Without the magnetic field it is expected that T22(1, 0)= 0 in the undeformed configuration. Hence, the
condition ∂z

∂λ
(1, 0)= 0 is imposed. It is assumed that the magnetic induction and the magnetization are

given as b≡ [0,−λ( ∂z
∂h (λ, h)), 0]T and m ≡ [0,m, 0]T , where

m =− 1
µ0
λ
∂q
∂h
(λ, h). (69)

In this section, for illustrative purposes, it is assumed

z(y, h)= µ0h2
(

d1

(y− a)2+ y
−

1
2y2

)
(70)

which satisfies the property ∂z
∂λ
(1, 0)= 0 mentioned previously. For simplicity, consider [Shariff 2014]

η(y, d)= eb1(g(y)−g(d))g(y)b2
, (71)

g(y)= (y−1)2

y
(72)

and
f (y)= a1φ1(y)+ a2φ2(y), (73)

with the ad hoc values

a = 1.2, a1 = a2 = 1.0 kPa, b1 = 2, b2 = 0.5, d1 =−2 kPa

for the material constants.
In Figure 2, the nominal stress (T22/λ2)-strain behavior is depicted for λm = 2.5, and from the figure

it is clear that our model produces stiffer stress when a magnetic field is applied and stress softening
Mullin’s behavior is simulated. The behavior of the stress difference depicted in Figure 3 due to two
different magnetic field values is similar to the experimental behavior found in Coquelle and Bossis
[2006].

4.1.2. Anisotropy induced by a uniaxial prestretch. Here, uniaxial deformations of the nonvirgin MS
material in directions different from the uniaxial prestretch direction are studied. Experiments on these
types of deformations on a non-MS material have been done by Machado et al. [2012], and Shariff
[2014] has developed a model to successfully describe these deformations. Consider a uniaxial prestretch
deformation in the 2-direction (corresponds to 0◦) of S-configuration virgin samples defined by

U(λ)≡ diag(1/
√
λ, λ, 1/

√
λ), (74)

where 1≤ λ≤ λm .
Then a set of smaller S-configuration specimens is cut from each of these preconditioned large samples

in different directions and each direction corresponds to an angle θ (the angle subtended, anticlockwise,
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Figure 2. Simple tension in a fixed 2-direction for different magnetic field values.
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Figure 3. Simple tension in a fixed 2-direction, where λ= λ2 and 1t2 = T22/λ2 (λ, 10)− T22/λ2 (λ, 0).

from the 2 direction). Each of these smaller specimens is then subjected to a uniaxial deformation in one
of these directions and we let this direction to be the e2 direction, where the Cartesian components of
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the principal directions of U are given by

e1 ≡

c
s
0

 , e2 ≡

−s
c
0

 , e3 ≡

0
0
1

 , (75)

where c = cos(θ), s = sin(θ) and 0≤ θ ≤ π/2. Consider the extremum values

ŝ(max)
i = max

1≤λ≤λm

√
ei ·U2(λ)ei , ŝ(min)

i = min
1≤λ≤λm

√
ei ·U2(λ)ei (76)

of the prestretch deformation in the ei directions. The extremum values given in (76) are [Shariff 2014]:

ŝ(max)
1 =

{
1, 1≥ c ≥

√
λm(1+ λm)/(1+ λm + λ2

m),

fc(λm), 0≤ c ≤
√
λm(1+ λm)/(1+ λm + λ2

m),
(77)

ŝ(min)
1 =


1, 0≤ c ≤

√
2
3 ,

fc
(
c2/(2(1− c2))

)1/3
,

√
2
3 ≤ c ≤

√
2λ3

m/(1+ 2λ3
m),

fc(λm),
√

2λ3
m/(1+ 2λ3

m)≤ c ≤ 1,

(78)

ŝ(max)
2 =

{
1, 1≥ s ≥

√
(λm(1+ λm))/(1+ λm + λ2

m),

fs(λm), 0≤ s ≤
√
(λm(1+ λm))/(1+ λm + λ2

m),
(79)

ŝ(min)
2 =


1, 0≤ s ≤

√
2
3 ,

fs
(
s2/(2(1− s2))

)1/3
,

√
2
3 ≤ s ≤

√
2λ3

m/(1+ 2λ3
m),

fs(λm),
√

2λ3
m/(1+ 2λ3

m)≤ s ≤ 1,

(80)

ŝ(max)
3 = 1, ŝ(min)

3 =
1
λm
, (81)

where

fc(λ)=

√
(1/λ− λ2)c2+ λ2, fs(λ)=

√
(1/λ− λ2)s2+ λ2. (82)

The maximum and minimum values for the principal-direction line elements corresponding to (75)
during the deformation of the prestretch nonvirgin material are

s(max)
i =

{
ŝ(max)

i , 1≤ λi ≤ ŝ(max)
i ,

λi , λi ≥ ŝ(max)
i ,

s(min)
i =

{
ŝ(min)

i , 1≥ λi ≥ ŝ(min)
i ,

λi , λi ≤ ŝ(min)
i .

(83)

Here, the magnetic field hl = he2 is considered. For this type of deformation ζ1 = ζ3 = 0 and ζ2 = 1.
For θ = 0◦, λ1 = λ3 and the axial nominal stress

S2 =

η(λ2, s(max)
2 ) f (λ2)− η(1/

√
λ2, 1/

√
s(max)

2 ) f (1/
√
λ2)+ λ2

∂z
∂λ2

(λ2, h)−µoh2/(2λ2
2)

λ2
. (84)
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Figure 4. Induced anisotropy represented by the theoretical uniaxial stress-strain re-
sponses for the different angles between the first and second loading directions
(hl = he2).

In the case of when θ is nonzero, λ1 6= λ3 in general and

S2 =

η(λ2, s(max)
2 ) f (λ2)− η(λ3, s(min)

3 ) f (λ3)+ λ2
∂z
∂λ2

(λ2, h)−µoh2/(2λ2
2)

λ2
. (85)

Note that for the non-0◦ deformations, the value for λ3 in (85) is obtained from λ2 via the equation

η(λ3, s(min)
3 ) f (λ3)= η(1/(λ2λ3), s(min)

1 ) f (1/(λ2λ3)), (86)

considering the boundary stress condition T33 =−µ0h2/(2λ2
2), the incompressibility condition λ1λ2λ3 =

1 and assuming T11 = T33, where Ti j are the components of the total stress T relative to a basis that
coincide with the basis {e1, e2, e3}.

The anisotropic stress softening behavior for λm = 2.5 is clearly shown in Figure 4, where the behavior
for h = 0 is similar to the Machado et al. [2012] experiment.

4.2. Anisotropy induced by a simple shear predeformation. The proposed model is based on direction-
dependent parameters where their values depend on the principal directions of U . Hence, it is important to
study stress-softening behavior in a sequence of deformations when the principal directions of U change
continuously. An example of such deformation is the simple shear deformations where the principal
directions of U change continuously during the deformation. Shariff [2014] has studied anisotropic
simple shear stress softening behavior for non-MS materials and the calculations in this section follow



AN ANISOTROPIC MODEL FOR THE MULLINS EFFECT IN MAGNETOACTIVE RUBBER-LIKE MATERIALS 575

that paper. Consider the prestretching of a material by a simple shear deformation described by

U2(γ )≡

1 γ 0
γ 1+ γ 2 0
0 0 1

 , (87)

where 0≤ γ ≤ γm and γ is commonly called the amount of shear.
Without loss of generality, the total stress normal to the plane of shear is assumed to be zero, since

incompressibility allows the superposition of an arbitrary hydrostatic stress without effecting the defor-
mation. In view of this, the total shear stress is

σs =

[
η(λ1, α1) f (λ1)− η(λ2, α2) f (λ2)+ ζ1λ1

∂z
∂λ1

(λ1, h)− ζ2λ2
∂z
∂λ2

(λ2, h)
]

cs

+
2

λ2
1− λ

2
2

[
z(λ1, h)− z(λ2, h)

]
(e1 · a)(e2 · a)γ cs

=

[
η(λ1, α1) f (λ1)− η(λ2, α2) f (λ2)

+µ0h2
(
−d1ζ1λ1

2(λ1− a)+ 1
((λ1− a)2+ λ1)2

+ d1ζ2λ2
2(λ2− a)+ 1

((λ2− a)2+ λ2)2
+
ζ1

λ2
1
−
ζ2

λ2
2

)]
cs

+
2µ0h2

λ1+ λ2

(
d1(2a− 1− λ1− λ2)

[(λ1− a)2+ λ1][(λ2− a)2+ λ2]
−
λ1+ λ2

2λ1λ2

)
(e1 · a)(e2 · a)γ cs, (88)

where [Bustamante and Shariff 2015]

c =
1

√

1+ λ2
1

, s =
λ1

√

1+ λ2
1

, c2
− s2
=−γ cs, (89)

λ1 =
γ +

√
γ 2+ 4
2

≥ 1, λ2 =
1
λ1
=

√
γ 2+ 4− γ

2
≤ 1, λ3 = 1. (90)

Note that c and s in this section are different from those defined in Section 4.1.2.

4.2.1. Simple shear of the prestretch in the primary shear direction. Consider a simple shear deformation
of the prestretched material in the same direction as the primary shear direction of the virgin material
[Shariff 2014]. The components of the principal directions of U of this nonvirgin simple shear are

e1 ≡

c
s
0

 , e2 ≡

−s
c
0

 , e3 ≡

0
0
1

 . (91)

For a fixed c and s,

s(max)
1 = max

0≤γ≤γm

√
(γ s+ c)2+ s2, s(min)

1 = min
0≤γ≤γm

√
(γ s+ c)2+ s2,

s(max)
2 = max

0≤γ≤γm

√
(γ c− s)2+ c2, s(min)

2 = min
0≤γ≤γm

√
(γ c− s)2+ c2,

s(max)
3 = s(min)

3 = 1 .
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Figure 5. Simple shear loadings and unloadings in the primary shear direction.

After some manipulation, the values

s(max)
1 =

√
(γms+ c)2+ s2, s(min)

1 = 1, 0≤ γ ≤ γm, γm ≥ 0,

are obtained. For 0≤ γm ≤ 2,
s(max)

2 = 1, 0≤ γ ≤ γm,

and for γm > 2

s(max)
2 =

{√
(γmc− s)2+ c2 , 0≤ γ ≤ (γ 2

m − 4)/(2γm),

1, (γ 2
m − 4)/(2γm) < γ ≤ γm .

For γm > 1,

s(min)
2 =

{
c, 0≤ γ < (γ 2

m − 1)/γm,√
(γmc− s)2+ c2, (γ 2

m − 1)/γm ≤ γ ≤ γm,

and for 0≤ γm ≤ 1

s(min)
2 =

√
(γmc− s)2+ c2, 0≤ γ ≤ γm .

The shear stress σs for the primary loading is

σs = ( f (λ1)− f (λ2))cs. (92)

The shear stress for the unloading and reloading of the prestretched material is given by

σs =
(
η1(λ1, s(max)

1 ) f (λ1)− η2(λ2, s(min)
2 ) f (λ2)

)
cs. (93)

For illustration purposes the ad-hoc values

a = 1.2, a1 = a2 = 1.0 kPa, b1 = 1.5, b2 = 0.5, d1 =−2 kPa,
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Figure 6. Simple shear loadings and unloadings in the primary shear direction in the
presence of the Lagrangean magnetic field hl ≡ [h, 0, 0]T .

are used.
Figure 5 depicts the loading and unloading curves for γm = 2 and γm = 3 when h = 0. It is clear from

Figure 5 that the stress-deformation curves behave as expected.
Only results for constant magnetic fields hl ≡ [h, 0, 0]T , hl ≡ [0, h, 0]T and hl ≡ [0, 0, h]T are given,

taking note that the conditions in (4) are automatically satisfied. In Figure 6, the stress-strain curves
for hl ≡ [h, 0, 0]T are depicted for h = 0, 5, 10. From the figure, it is found that the magnitude of the
shear stress is reduced, when a magnetic field in the same direction as the shear direction is applied. The
results for hl ≡ [0, h, 0]T are depicted in Figure 7, where in this case, a larger shear stress is required in
the presence of a magnetic field. It is clear from (88), as expected, the shear stress is not affected by the
magnetic field hl ≡ [0, 0, h]T ; hence, the corresponding graph will not be depicted.

In view of (88), in contrast to the simple tension case described in Section 4.1, no shear stress is re-
quired to maintain the undeformed deformation when the magnetic field h 6= 0 for the magnetic directions
considered in this section.

4.2.2. Simple shear of the prestretch in the opposite direction to the primary loading direction. In this
section, the prestretched material is sheared in the direction opposite to the primary direction up to γ = 2.
The components of the principal eigenvectors for this opposite direction shearing are

e1 ≡

−c
s
0

 , e2 ≡

s
c
0

 , e3 ≡

0
0
1

 . (94)

Consider the extremum prestretch values

ŝ(max)
i = max

0≤γ≤2

√
ei ·U2(γ )ei , ŝ(min)

i = min
0≤γ≤2

√
ei ·U2(γ )ei , (95)
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Figure 7. Simple shear loadings and unloadings in the primary shear direction in the
presence of the Lagrangean magnetic field hl ≡ [0, h, 0]T .

of the line elements of the presheared material in the ei directions for γm = 2.

ŝ(max)
1 =

√
(2s− c)2+ s2, ŝ(min)

1 = s,

ŝ(max)
2 =

√
(2c+ s)2+ c2, ŝ(min)

2 = 1.

The maximum and minimum values for the relevant principal-stretch line elements when 0≤ γ ≤ 2 are

s(max)
1 =

{
ŝ(max)

1 , 1≤ λ1 ≤ ŝ(max)
1 ,

λ1, ŝ(max)
1 ≤ λ1 ≤ 1+

√
2,

s(min)
2 =

{
ŝ(min)

2 , 1≥ λ2 ≥ ŝ(min)
2 ,

λ2, ŝ(min)
2 ≥ λ2 ≥

√
2− 1,

s(max)
3 = s(min)

3 = 1.

4.2.3. Simple shear of the prestretch in a direction perpendicular to the primary plane of shear. Here,
the prestretched material is sheared in a direction perpendicular to the initial plane of shear up to γ = 2.
The components of the principal eigenvectors for this shearing are

e1 ≡

0
s
c

 , e2 ≡

 0
c
−s

 , e3 ≡

1
0
0

 . (96)

In view of (95), the extremum values of the prestretch line elements are

ŝ(max)
1 =

√
4s2+ 1, ŝ(min)

1 = 1, ŝ(max)
2 =

√
4c2+ 1, ŝ(min)

2 = 1.
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Figure 8. Simple shear in directions different from the preshear direction.

The maximum and minimum values for the relevant principal-stretch line elements for 0≤ γ ≤ 2 are

s(max)
1 =

{
ŝ(max)

1 , 1≤ λ1 ≤ ŝ(max)
1 ,

λ1, ŝ(max)
1 ≤ λ1 ≤ 1+

√
2,

s(min)
2 =

{
ŝ(min)

2 , 1≥ λ2 ≥ ŝ(min)
2 ,

λ2, ŝ(min)
2 ≥ λ2 ≥

√
2− 1,

s(min)
3 = s(max)

3 = 1.

Figure 8 depicts, for h= 0, the results for various loadings given in Sections 4.2.2 and 4.2.3. The theory
closely predicts the experimental results of Muhr et al. [1999], where they stated that “the softening is
greatest for simple shear in the same direction, least for simple shear in the opposite direction and
intermediate for shear at 90 degrees”. The shear stress-strain behavior in the presence of a Lagrangean
magnetic field in a direction parallel to the shear direction or perpendicular to the shear direction and
parallel to the shear plane or perpendicular to the shear plane is similar to that described in 4.2.1.

5. Conclusions

The motivating key for this work is to provide a phenomenological model that could describe three
dimensional anisotropic stress softening behavior (Mullins effect) of MS materials in the presence of a
magnetic field, which up-to-date has not been proposed in the literature. The proposed model uses a set
of spectral invariants, where each invariant has a clear physical meaning, and hence have an experimental
advantage over other types of invariants with no physical interpretation such as the classical invariants
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by Spencer and Rivlin [1962]. Due to the absence of relevant experimental data, at the moment we are
not concerned with the construction of specific forms of the functions f , η, g and q; nevertheless, the
crude specific forms proposed in this paper seem to reasonably predict the anisotropic stress softening
behavior of MS elastomers in the presence of a magnetic field.
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