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TIME-ADAPTIVE FINITE ELEMENT SIMULATIONS OF DYNAMICAL
PROBLEMS FOR TEMPERATURE-DEPENDENT MATERIALS

MATTHIAS GRAFENHORST, JOACHIM RANG AND STEFAN HARTMANN

Dynamical systems in finite elements yield systems of second-order differential equations. Incorporating
inelastic material properties, thermomechanical coupling and particular Dirichlet boundary conditions es-
sentially changes the underlying mathematical problem. In this respect, we investigate the behavior of a
number of subproblems such as reaction force computation, high-order time-integration, time-adaptivity,
etc., which yield (depending on the underlying problem) systems of differential-algebraic equations or
a mixture of systems of second-order and first-order ordinary differential equations (especially if the
constitutive equations are of evolutionary-type, as in the case of viscoelasticity and viscoplasticity). The
main goals are to provide higher-order time integration schemes using diagonally implicit Runge–Kutta
methods and the generalized-α method so that they may be applied to the constitutive equations, and
to apply time-adaptivity via embedded schemes so that step-sizes are chosen automatically. The consti-
tutive equations are given by a thermoviscoplasticity model of Perzyna/Chaboche-type with nonlinear
kinematic hardening.

1. Introduction

The modeling of thermomechanically coupled material properties is an important and challenging task
for both constitutive modeling and for numerical treatment. In the case of polymers, small temperature
variations essentially change the mechanical response. Cyclic processes induce heat and must be consid-
ered under such circumstances. Other applications are metal forming processes either via heat treatment
or by recurrent processes.

The numerical treatment of thermomechanically coupled problems using finite elements is connected
to the historical evolution of considering the constitutive equations of rate-type for both quasistatic com-
putations and in the case of dynamical situations. To begin with, let us discuss quasistatic mechanical
but transient thermal problems where the constitutive equations are defined by evolution equations of
rate-type. The unsteady heat equation yields after its spatial discretization using finite elements to a
system of ordinary differential equations (ODEs), which is coupled with the algebraic equations defining
the mechanical equilibrium [Lewis et al. 1996; Reddy and Gartling 2000; Quint et al. 2011]. The latter
is coupled with the constitutive model of rate-type. In our case, it forms a first-order ODE system as
well (with case distinction in the case of viscoplasticity with yield function). This system can be solved
using partitioned or monolithic approaches [Schrefler 2004]. In [Felippa and Park 1980; Felippa et al.
2001], the authors proposed a partitioned approach where the mechanical and the thermal parts are
solved separately (commonly two different programs and/or meshes are chosen [Erbts and Düster 2012;
Erbts et al. 2015; Wendt et al. 2015]). Particular investigations on partitioned systems and their stability
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are provided in [Simo and Miehe 1992; Armero and Simo 1992; 1993]. The monolithic approach was
proposed in [Glaser 1991; Miehe 1988] and extended to high-order time-integration schemes in [Quint
2012; Rothe 2015; Rothe et al. 2015a]. In the latter case, the resulting equations define differential-
algebraic equations (DAE) after spatial discretization, using finite elements that lead to changes in the
numerical and theoretical properties of the mathematical model. In view of thermoviscoelasticity and the
combination of high-order methods in space and time, we refer to [Netz and Hartmann 2015; Hamkar
2013].

Concerning inertia effects, the case of linear elastodynamics for small strains represents a huge scien-
tific area which is not discussed here, as we focus on proposals treating inelastic material properties. The
case of finite strain viscoelasticity is treated in [Conde Martín et al. 2014], where the constitutive model
must have a particular structure (a so-called GENERIC scheme) to fit within the numerical scheme. This
is extended in [Krüger et al. 2016] to the case of dynamical systems for finite strain thermoviscoelasticity.
The application of dynamical systems in the context of viscoplasticity is proposed in [Noels et al. 2006;
2008], where variational update formulations are considered.

Our goal is the application of higher-order time-integration schemes (at least second-order accurate) so
that all quantities — displacements, velocities, temperatures, and internal variables — reach second order.
Commonly, first-order accurate methods are used. Even the Newmark-method has only a maximum order
of two in the context of dynamical systems [Newmark 1959; Hughes 1987; Zienkiewicz and Taylor 2000].
However, it is common to treat the evolution equations on Gauss-point level with a first-order method so
that the entire system cannot reach the expected order (regarding the relation of the Newmark-method in
the context of Nyström-methods, see [Fritzen 1997]). Since we have a coupled system of second-order
and first-order ODEs, the question arises as to what the appropriate method might be, since there are
methods to treat second-order ODEs directly or the second-order ODEs are transferred into a system of
first-order ODEs. Thus, two methods are considered here: first, we convert the second-order ODEs to a
first-order ODE system and apply diagonally implicit Runge–Kutta (DIRK) methods to the entire system
(for details concerning DIRK methods, see [Hairer et al. 1989; 1993; Hairer and Wanner 1996]). These
methods have been successfully applied in the context of finite elements for isothermal and quasistatic
problems in [Ellsiepen and Hartmann 2001; Hartmann 2002; Hartmann et al. 2008a] and quasistatic
coupled problems in [Birken et al. 2010; Hartmann and Rothe 2013; Rothe et al. 2015b]. In the present
article, the quasistatic problems are recapped as well, where a DAE system has to be solved. One
intention is to show the underlying difference in the equations.

For problems in the field of linear structural dynamics, the generalized-α method formulated as a one-
step method was originally introduced in [Chung and Hulbert 1993]. For first-order ODEs the method
was introduced in [Jansen et al. 2000]. These methods show second-order accuracy in most numerical
experiments, minimal numerical dissipation of lower modes, and maximal numerical dissipation of higher
modes in the linear structural dynamics regime, where this numerical dissipation mechanism can be
controlled by certain parameters. For first-order ODEs, an analysis of the generalized-α scheme was
performed in [Dettmer and Perić 2003]. For the corresponding consistency and stability analysis of the
generalized-α method for the second-order ODE system in structural dynamics, the reader is referred
to [Chung and Hulbert 1993; Erlicher et al. 2002]. Furthermore, the generalized-α method includes the
most popular classical numerical dissipative and nondissipative time integration schemes (the Newmark-
family [Newmark 1959], the HHT-α method [Hilber et al. 1977] and the WBZ-α method [Wood et al.
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1980]) in the field of structural dynamics. For this reason, it is a widely applied time integration scheme
which has been successfully applied, for example, in [Hartmann 2007; Popp 2012; Kuhl 1996; Kuhl and
Crisfield 1999; Kuhl and Ramm 1999]. Rang [2013a] proposed a simple adaptive time-step control for
the one-step versions of the generalized-α method. A coupling between the generalized-α method for
first-order ODEs and for second-order ODEs is presented in [Rang 2013b].

This paper is structured as follows: first, the basic equations are summarized; starting with a model
problem of thermoviscoplasticity, the weak forms and their spatial discretization. Second, the time
discretization is explained using DIRK and a modified generalized-α method. Finally, we investigate the
order and efficiency of these methods by drawing on some examples.

The notation in use is defined in the following manner: geometrical vectors are symbolized by Ea and
second-order tensors A by boldface Roman letters. We introduce matrices at the global level symbolized
by boldface italic sans-serif letters A and matrices on local level using the upright counterpart, A.

2. Basic equations

In the following, the basic equations are summarized, which are: the constitutive model under consid-
eration; the weak forms of the balance of linear momentum; the unsteady, nonlinear heat equation; and
the result of the spatial discretization using finite elements.

2.1. Constitutive model. In the scope of our application in thermoviscoplasticity, we restrict ourselves to
the case of small strains (large strains are straight forward and are embedded in the numerical schemes as
well). Let E(Ex, t)= 1

2(grad Eu(Ex, t)+gradT
Eu(Ex, t)) be the linearized strain tensor, Eu(Ex, t) the displacement

vector, Ex the material point and t the time. Most phenomenological constitutive models are expressed by

T= h(E,2,q), (1)

q̇(t)= rq(E,2,q), (2)

where q∈ Rnq is the vector of internal variables, T(Ex, t) is the stress tensor and 2(Ex, t) is the absolute
temperature. In Table 1, qT

= {ET
v ET

r } is given by two different strain-like internal variables in Voigt-
notation, i.e., nq = 12, Er ∈ R6, Ev ∈ R6. For details of the model, see [Tsakmakis and Willuweit 2004;
Rothe et al. 2015a]. Pure (thermo)elasticity is embedded as well (q= q̇= 0).

2.2. Spatial discretization. We investigate the partial differential equations

div T(Ex, t)+ ρ(Ex)Ek = ρ(Ex) Ëu(Ex, t), (3)

ĉp(E,2)2̇=
1
ρ

div(κ(2) grad2)+ p̂(E, Ė,2,Ev,Er), (4)

where ρ is the density, Ek is the acceleration of gravity,

cp = ĉp(E,2)=
(

c2−
9Kα2

2

ρ
−

3cKα2

ρ
γ (E,2)

)
2 (5)

is the temperature- and strain-dependent heat capacity (with the abbreviation γ (E,2)= I ·E− 3α22),
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yield function: f (T,X,2)=
√

3
2(T−X)D

· (T−X)D
− k̂(2)

elasticity relation: T= K (2)(tr E)I+ 2G(2)(E−Ev)
D
− 3K (2)α2ϑI

loading condition:
{

elasticity f < 0
viscoplasticity f ≥ 0

flow rules:

{
elasticity Ėv = 0, Ėr = 0

viscoplasticity Ėv = λ
(T−X)D
‖(T−X)D‖ , Ėr = λβXD

abbreviations: X= cX ED
k = cX (Ev−Er)

D,

λ= 1/η
〈
f (T,X,2)/σ0

〉m
,

k̂(2)= (k0− kH )e−b(2−20)+ kH ,

K (2)= K0− cK (2−20),

G(2)= G0− cG(2−20)

Table 1. Summary of constitutive equations (thermoviscoplasticity small strains).

and the heat production term due to dissipation and thermoelastic coupling is

p = p̂(E, Ė,2,Ev,Er)= δ−
2

ρ

(
(3Kα2+ cKγ )I+ 2cG(E−Ev)

D)
· Ė+ 2

ρ
2cG(E−Ev)

D
· Ėv (6)

with

δ =
1
ρη

〈
f̂ (E,2,Ev,Er)

σ0

〉m(
‖2G(2)(E−Ev)

D
− cX (Ev−Er)

D
‖−βc2

X‖(Ev−Er)
D
‖

2). (7)

The angle brackets define Macauley brackets symbolizing a case distinction: 〈x〉 = 0 if x < 0 and 〈x〉 = x
if x ≥ 0. Equation (3) represents the balance of linear momentum. In view of the balance of energy (5),
Fourier’s model (Eq =−κ(2) grad2) is assumed, where Eq defines the heat flux vector.

The partial differential equation (3) is multiplied with virtual displacements δEu(Ex) and is integrated
over the volume V . The divergence theorem is applied, which leads to d’Alembert’s principle∫

V
h(E,2,q)︸ ︷︷ ︸

T

·δE dV +
∫

V
ρ Ëu · δEu dV =

∫
A
Et · δEu dA+

∫
V
ρEk · δEu dV, (8)

where δE(Ex)= (grad δEu(Ex)+gradT δEu(Ex))/2 defines the virtual strain tensor. In this context δEu(Ex)=E0 has
to hold on the boundary Au of the material body, where the displacements are prescribed; A = Aσ ∪ Au ;
Eu(Ex, t) = Eu(t) on Au (Dirichlet boundary conditions). Here, Et(Ex, t) = T(Ex, t)En(Ex, t) defines the stress
vector on the surface Aσ , where En represents the surface normal and Et(Ex, t)= Et(Ex, t) on Aσ defines the
Neumann boundary conditions.

We multiply the unsteady, nonlinear heat equation (4) with the virtual temperature δ2 in a similar
manner, and perform both the integration over the volume as well as the application of the divergence
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theorem, yielding the principle of virtual temperatures∫
V
ρĉp(E,2)2̇δ2 dV =

∫
A

q δ2 dA−
∫

V
κ(2) grad2 · grad δ2 dV +

∫
V
ρ p̂(E, Ė,2,q)δ2 dV . (9)

The boundary conditions are: 2(Ex, t)=2(Ex, t) on the surface, A2 and q(Ex, t)= q(Ex, t) on Aq . Here,
we assume q = −Eq · En with the normal vector En on the outer surface. Of course, mixed boundary
conditions for temperature-dependent heat fluxes such as convection or radiation must be considered
as well, q = q̂(2). Here, we refer to [Quint et al. 2011] and the literature cited therein. The entire
mathematical model considers the heat production due to mechanical dissipation in an exact manner.

In order to solve the initial boundary-value problem (3) and (4) together with constitutive models of
type (1) and (2), we draw on the method of vertical lines. First, the spatial discretization is performed,
followed by the time-discretization. The spatial discretization is carried out using the finite element
method, i.e., an ansatz for the displacements, virtual displacements, absolute temperatures and virtual
temperatures are inserted into the weak forms (8) and (9). As summarized in more detail in Appendix A,
this leads to the mixed first and second-order ODE system

Mü(t)=−gu(t,u,Θ,q)−Mupü(t),

C2(t,u,Θ)Θ̇(t)= r2(t,u, u̇,Θ,q),

q̇(t)= r Q(t,u,Θ,q),

(10)

with the initial conditions

u(0)=u0, u̇(0)= v0, Θ(0)=Θ0, q(0)=q0. (11)

Equation (10)1 represents the (semidiscrete) equation of motion with a constant and consistent mass
matrix M ∈ Rnuu×nuu (see (76)) which is assigned to the unknown displacement degrees of freedom (DOF)
u ∈ Rnuu . Here, Mup ∈ Rnuu×nup symbolizes the mass matrix assigned to the known (prescribed) displace-
ment DOF u ∈ Rnup . Thus, ü(t)∈ Rnup are the prescribed nodal accelerations, which are explicit functions
of time t . The matrix C2(t,u,Θ)∈ Rn2u×n2u defines the deformation and temperature-dependent heat-
capacity matrix (see (82)) where Θ ∈ Rn2u are the unknown nodal temperatures. The ODE system (10)3

is the result of assembling all evolution equations of the internal variables into a large vector q ∈ RnQ ,
see the discussion in [Ellsiepen and Hartmann 2001; Hartmann 2005].

2.2.1. Subproblems. There are a number of subproblems which are connected to the dynamical system
(10) if particular quantities do not appear, i.e., if they are neglected. In the case of q̇(t)=q(t)= 0, the
case of thermoelasticity under dynamical agencies is given, see (12) of Table 2. Additionally, if Θa is
constant spatially and temporally (where Θa ∈ Rn2a), and n2a= n2u+n2p defines all nodal temperatures,
pure elasto-dynamic has to be solved (see (13)). Of course, further subproblems can appear, such as:
C2 = constant or gu(t,u,Θ) represents a linear function in u and Θ , or one-sided coupling is assumed,
etc. This can be solved with specific numerical methods.

The quasistatic case holds for ü(t)≈0 leading to DAE systems, see the case of thermoinelasticity (14),
isothermal inelasticity (viscoelasticity, viscoplasticity) (15), and pure elasticity (16). The case of rate-
independent elasto-plasticity with a yield function leads to the evolution equations Aq̇(t)=r Q(t,u,Θ,q),
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thermoelasticity:
Mü(t)=−gu(t,u,Θ)−Mupü(t)

C2(t,u,Θ)Θ̇(t)= r2(t,u, u̇,Θ)
(12)

elasto-dynamics: Mü(t)=−gu(t,u)−Mupü(t) (13)

quasistatic thermoinelasticity:

0= gu(t,u,Θ,q)

C2(t,u,Θ)Θ̇(t)= r2(t,u, u̇,Θ,q)

q̇(t)= r Q(t,u,Θ,q)
(14)

quasistatic inelasticity:
0= gu(t,u,q)

q̇(t)= r Q(t,u,q)
(15)

elasticity: 0= gu(t,u) (16)

Table 2. Dynamical and quasistatic subproblems.

where A is a singular matrix and r contains case distinctions (see the discussion in [Ellsiepen and Hart-
mann 2001]).

2.2.2. Reaction force computation. Another question connected to the dynamical systems under consid-
eration is related to the computation of the reaction forces at those degrees of freedom, where the displace-
ments are prescribed. This is not provided by d’Alembert’s principle (8) since the virtual displacements
vanish at those DOF for which the displacements are prescribed (and no virtual work is produced). The
same situation holds for the heat flux computation for those nodes with prescribed temperatures.

This is consistently discussed for isothermal quasistatic problems in [Hartmann 2005] and the literature
cited therein. Hamkar [2013] treats this issue for quasistatic thermomechanical problems since other time-
integration methods require these investigations. He applies a concept developed by Gear [1986]. The
basic idea is as follows: we assume that all displacement DOF ua ∈ Rnuu+nup are unknown. The vector is
decomposed into DOF that are connected to Dirichlet boundary conditions and the remaining quantities,

ua(t)=
{
u(t)
û(t)

with u ∈ Rnuu and û ∈ Rnup .

Consistently, all virtual displacements are arbitrary, δua ∈ Rnuu+nup . However, there is the constraint
equation

cu(t,aa)=Z T
u ua(t)−u(t)= û(t)−u(t)= 0 (17)

at the DOF for which displacements are prescribed, with

Z u =

[
0nuu×nup

I nup×nup

]
,Z u ∈ R(nuu+nup)×nup
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and the prescribed functions u(t)∈ Rnup . Additionally, the weak form changes to

δu T
a
{
Maüa(t)+gua(t,ua,Θa,q)−Z uλu(t)

}
= 0,

i.e., there is an additional term defined by the Lagrange-multiplier λu ∈ Rnup . In other words,

Maüa(t)+gua(t,ua,Θa,q)−Z uλu(t)

=

[
M Mup

Mpu Mpu

]{
ü(t)
¨̂u(t)

}
+

{
gu(t,u, û,Θ, Θ̂,q)

ĝu(t,u, û,Θ, Θ̂,q)−λu(t)

}
= 0 (18)

has to be solved in combination with the constraint (17). The same idea holds for the heat equation
having the constraint

c2(t,Θa)=Z T
2Θa(t)−Θ(t)= Θ̂(t)−Θ(t)= 0 (19)

for the given nodal temperature functions Θ(t)∈ Rn2p . The modified weak form reads

δΘT
a
{
C2a(t,ua,Θa)Θ̇a(t)−r2a(t,ua, u̇a,Θa,q)−Z2λ2(t)

}
= 0,

with the Lagrange multiplier λ2(t)∈ Rn2p and the matrix

Z2 =

[
0n2u×n2p

I n2p×n2p

]
,Z2 ∈ R(n2u+n2p)×n2p .

The decomposition yields the ODE system[
C2 C2up

C2pu C2pp

]{
Θ̇(t)
˙̂
Θ(t)

}
=

{
r2(t,u, û, u̇, ˙̂u,Θ, Θ̂,q)

r̂2(t,u, û, u̇, ˙̂u,Θ, Θ̂,q)+λ2(t)

}
. (20)

Table 3 summarizes the entire DAE system. For the case of quasistatic and isothermal problems and
implicit finite elements, see [Hartmann et al. 2008b].

3. Time discretization schemes

In the following we propose two implicit time integration methods to treat the ODE system (10) since
we are interested in a low frequency response. Explicit methods are widely used in the context of high
frequency responses and wave-like phenomena — or in high velocity impact situations, where contact

Maüa(t)=−gua(t,ua,Θa,q)+Z uλu(t)

Z T
u ua(t)−u(t)= 0

C2a(t,cr a,Θa)Θ̇a(t)= r2a(t,ua, u̇a,Θa,q)+Z2λ2(t)

Z T
2Θa(t)−Θ(t)= 0

q̇(t)= r Q(ua,Θa,q)

(21)

Table 3. Entire DAE system if reaction force and reaction heat flux have to be determined
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conditions dominate the problem. Implicit methods have the advantage in that it is possible to apply rel-
atively large time-step sizes in comparison to explicit schemes. However, the implementation of implicit
methods is more challenging due to the fact that nonlinear solution methods have to be considered, see
in this context [Belytschko et al. 2000].

Since we are interested in one-step methods, we follow the numerical schemes in [Ellsiepen and
Hartmann 2001] (see [Fritzen 1997] for problems concerning the aspect of dynamics). Accordingly, the
ODE part of second order is transferred into a system of first-order ODEs and stiffly accurate diagonally
implicit Runge–Kutta methods are applied. A second method is an extension of the generalized-α method
seen in [Chung and Hulbert 1993]. Here, we draw on a one-step formulation.

In contrast to these methods, there are multistep methods that require a special starting procedure as
well as access to time-step information reaching back even further than tn .

3.1. DIRK methods. In order to obtain a basic background of the proposed time integration scheme, we
recall the general class of implicit Runge–Kutta methods (IRK) applied to (10) [Strehmel et al. 2012;
Hairer et al. 1993]. In the next step, we introduce the class of diagonally implicit Runge–Kutta (DIRK)
methods using a special choice of algorithmic parameters in order to obtain the important goal of com-
putational efficiency. To this end, we transform the coupled system of second-order ODEs in (10) to a
first-order ODE system by exploiting the trivial equation u̇ = v(t). Accordingly, the system

Mv̇(t)=−gu(t,u,Θ,q)−Mupv̇(t),

u̇(t)= v(t),

C2(t,u,Θ)Θ̇(t)= r2(t,u,v,Θ,q),

q̇(t)= r Q(t,u,Θ,q),

(22)

must be solved. To achieve a high-order method, we divide the integration step from time tn to tn+1 in
further points in time

Tni = tn + ci1tn, i = 1, . . . , s, (23)

with coefficients ci , i = 1, . . . , s. These points are called stages, where s defines the number of stages.
At every stage, the stage variables in the corresponding field are defined according to

U ni =un +1tn
s∑

j=1

ai jV nj , V ni = vn +1tn
s∑

j=1

ai jAnj ,

Θni =Θn +1tn
s∑

j=1

ai jΘ̇nj , Qni =qn +1tn
s∑

j=1

ai jQ̇nj ,

(24)

with weighting factors ai j . The index ni denotes the i-th stage at time Tni . Formally, we now have
two sets of unknowns, namely the so-called stage values U ni ,V ni ,Θni ,Qni (displacements, velocities,
temperatures and internal variables) and the stage derivatives V ni ,Ani , Θ̇ni ,Q̇ni . However, since they
are not independent, due to (24), we choose the stage derivatives V ni ,Ani , Θ̇ni for the following expla-
nations, and the stage value Qni as the primary unknown for the internal variables. Since we are looking
for the approximate solution at tn+1, we need a relation which maps the stage derivatives to the unknown
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c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...
...

. . .
...

cs a1s a2s · · · ass

b1 b2 · · · bs

(a) IRK method

c1 a11 0 · · · 0

c2 a21 a22
. . .

...
...
...

. . . 0
cs b1 b2 · · · bs

b1 b2 · · · bs

(b) SDIRK method

c A

b T

(c) RK scheme

c A A

b
T

b T

(d) Indirect RKN scheme

Figure 1. Butcher-tableaus.

quantities at tn+1. These integration formulas are based on quadrature rules in [Hairer et al. 1993; Hairer
and Wanner 1996; Strehmel et al. 2012] and are defined by

un+1 =un +1tn
s∑

i=1

biV ni , vn+1 = vn +1tn
s∑

i=1

biAni ,

Θn+1 =Θn +1tn
s∑

i=1

biΘ̇ni , qn+1 =qn +1tn
s∑

i=1

biQ̇ni ,

(25)

with the weighting factors bi , i = 1, . . . , s. The weighting factors ai j , bi , and ci are usually summarized in
a Butcher array to distinguish different classes of Runge–Kutta methods, see Figure 1(a). These factors
are defined and calculated in order to obtain efficient, stable and accurate methods. By applying the
general implicit Runge–Kutta scheme to (22) (i.e., inserting the primary variables and the relations of
(24)), we obtain (for i = 1, . . . , s)

MAni =−gu(Tni ,U ni (Anj ),Θni (Θ̇nj ),Qni )−Mupü(Tni ),

V ni (Anj )= vn +1tn
s∑

j=1

ai jAnj , j = 1, . . . , s,

C2(U ni ,Θni )Θ̇ni = r2(Tni ,U ni (Anj ),V ni (Anj ),Θni (Θ̇nj ),Qni ),

Q̇ni (Qnj )= r Q(Tni ,U ni (Anj ),Θni (Θ̇nj ),Qni ),

(26)

a coupled nonlinear system of equations with the dimension (2nuu+ n2u+ nQ)× s in each time-step
1tn , where all stage unknowns are coupled. Next, we can eliminate V ni in (25)1 and (24)1 by exploiting
(26)2. Furthermore, we assume existing stability requirements in the form of

ci =

s∑
j=1

ai j ,

s∑
i=1

bi = 1, (27)
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Figure 2. Butcher tableau for Newmark-method and presentation of schematic direct
RKN scheme: Newmark-methods embedded as Nyström-method (left) and Nyström-
scheme (right).

which ensures a consistent method and applicability for nonautonomous ODEs. This leads to

U ni =un+1+ ci1tnvn +1t2
n

s∑
j=1

āi jAnj , (28)

un+1 =un +1tnvn +1t2
n

s∑
i=1

b̄iAni , (29)

with the new coefficients

āi j =

s∑
k=1

aikak j , and b̄i =

s∑
j=1

b j a j i . (30)

This approach is identical to the construction of an indirect Runge–Kutta–Nyström method (RKN) by
consistent application of an underlying Runge–Kutta scheme [Hairer et al. 1993; Strehmel et al. 2012;
Fritzen 1997]. A schematic Butcher-tableau for an indirect RKN method is depicted in Figure 1(d). The
stage quantities U ni and V ni can now be expressed as functions of the stage acceleration Anj , so that it
is sufficient to store only the stage derivatives. For a pure structural dynamical problem, it is possible to
save half the storage.

There are further schemes apart from these indirectly constructed Runge–Kutta–Nyström methods. We
call them direct Runge–Kutta–Nyström methods if the conditions in (30) do not exist and if the weighting
factors āi j and b̄i are independent from ai j and bi . The direct RKN methods are principally applicable
to first-order ODEs and to coupled systems, such as the one presented in (10). These methods were
originally developed for general second-order ODEs. Furthermore, in the case of second-order ODEs
which are not coupled with ODEs of first order and do not depend on u̇ (i.e., gu does not depend on u̇, see
the case of structural dynamics in (13)), the coefficients ai j are no longer needed. Methods for which no
coefficient matrix A is given are called Nyström methods [Hairer et al. 1993], see Figure 2 (right). How-
ever, taking (24)2–(24)4 in to account, these coefficients are indispensable. Fritzen [1997] showed that
the popular Newmark-family is included in the class of diagonally implicit, direct Runge–Kutta–Nyström
(DIRKN) methods in form of the Butcher-tableau in Figure 2 (left), with the well-known algorithmic
parameters γ ∈ [0, 1] and β ∈ [0, 1/2] determining the stability and accuracy behavior (see Section 3.2).
Because of the restrictions regarding u̇ mentioned above and the treatment of ODEs, portions of first-
order general Newmark methods with arbitrary algorithmic parameter combinations are not applicable to
(10). There exists one exception to this statement. The trapezoidal rule, which is known as the constant
average acceleration method (CAA) in structural dynamics literature, is considered the most effective
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if the parameters {γ = 1/2, β = 1/4} are chosen [Hughes 1987]. This second-order method fits into
the class of DIRK methods [Ellsiepen and Hartmann 2001]. For this reason, the trapezoidal rule is the
method of choice if we solve (10) with a Newmark-scheme (see [Ortiz and Popov 1985] for additional
information regarding the trapezoidal rule).

The computational expense of a solution using IRK methods is high and thus is a drawback compared
to other time integration methods. To decouple the stage quantities and to preserve the sparse structure of
the linearized finite element system, we use DIRK methods where ai j = 0 and — with regard to (30)1 —
āi j = 0 for j > i holds (compare Figures 1(a) and 1(b)). In this case, the integration step for each field
variable reduces to

U ni =U S
ni +1t2

n āi iAni , V ni =V S
ni +1tnai iAni ,

Θni =Θ
S
ni +1tnai iΘ̇ni , Qni =Q S

ni +1tnai iQ̇ni ,
(31)

with starting values

U S
ni =un + ci1tnvn +1t2

n

i−1∑
j=1

āi jAnj , V S
ni = vn +1tn

i−1∑
j=1

ai jAnj ,

ΘS
ni =Θn +1tn

i−1∑
j=1

ai jΘ̇nj , Q S
ni =qn +1tn

i−1∑
j=1

ai jQ̇nj ,

(32)

depending only on stage derivatives already calculated in previous stages. In each time-step — due to the
decoupling of the stage quantities — we have to consecutively solve a sequence of s nonlinear systems
of equations with nuu+ n2u+ nQ unknowns (Ani , Θ̇ni ,Qni ) of the form

G u(Tni ,Ani , Θ̇ni ,Qni )=MAni +gu(Tni ,U ni (Ani ),Θni (Θ̇ni ),Qni )+Mupü(Tni )= 0,

G2(Tni ,Ani , Θ̇ni ,Qni )=C2(U ni ,Θni ) Θ̇ni

−r2(Tni ,U ni (Ani ),V ni (Ani ),Θni (Θ̇ni ),Qni )= 0,

L (Tni ,Ani , Θ̇ni ,Qni )=Qni −Q S
ni −1tnai i r Q(Tni ,U ni (Ani ),Θni (Θ̇ni ),Qni )= 0.

(33)

Equation (31)4 can be rearranged to

Q̇ni =
Qni −Q S

ni

1tnai i
. (34)

In other words, we have to solve the nonlinear system of equations

G u(Ani , Θ̇ni ,Qni )= 0,

G2(Ani , Θ̇ni ,Qni )= 0,

L (Ani , Θ̇ni ,Qni )= 0,

(35)

at each stage Tni to obtain the stage quantities (i.e., the acceleration Ani , the temperature-rate Θ̇ni and
the internal variables Qni ). Here, we have omitted the stage time Tni for brevity. This is done using the
multilevel Newton algorithm (MLNA) in [Rabbat et al. 1979]; regarding finite elements, see [Ellsiepen
and Hartmann 2001; Hartmann 2005].
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After solving these systems, the stage derivatives are known and the final solution at time tn+1 is
computable by the sum (29) and (25)2–(25)4.

At this point we would like to remark that for DAE systems resulting from the quasistatic case,
stiffly accurate methods are preferable [Ellsiepen and Hartmann 2001; Hartmann 2002; Hartmann et al.
2008a; Birken et al. 2010; Hartmann and Rothe 2013; Rothe et al. 2015b]. Here, the solution variables
Ans, Θ̇ns,Qns in the last stage coincide with the new solution at time tn+1, an+1 =Ans , Θ̇n+1 = Θ̇ns ,
qn+1 =Qns . This property guarantees that the algebraic constraints are fulfilled at the new time-step
[Prothero and Robinson 1974]. With regard to the Butcher-tableaus in Figure 1(b), stiff accuracy implies
a regular coefficient matrix A satisfying asi = bi and āsi = b̄i . From (24) and (25) it is obvious that
this results in the mentioned equivalence. Thus, the latter equation can be omitted, saving additional
computational time. In Section 4, we draw on stiffly accurate, diagonally implicit Runge–Kutta (SDIRK)
methods for our numerical examples in order to treat the quasistatic as well as the dynamic case.

3.2. Generalized-α method. In this section we apply the generalized-α method, formulated as a one-step
method, which was originally introduced in [Chung and Hulbert 1993] for second-order ODEs in the field
of computational solid dynamics. This unconditionally stable method allows us to introduce controllable
numerical dissipation into the considered system. For a special choice of the integration parameter set
consisting of the algorithmic parameters α f , αm , β and γ , the generalized-α method includes the most
popular classical numerical dissipative and nondissipative time integration schemes (for more details
regarding the Newmark-family [Newmark 1959], the HHT-α method [Hilber et al. 1977] and the WBZ-
α method [Wood et al. 1980], see [Kuhl and Crisfield 1999]). In many publications [Chung and Hulbert
1993; Jansen et al. 2000; Erlicher et al. 2002; Popp 2012], the proposed single-step version of the
integrator, which comprises a special parameter set, is assumed to be second-order accurate at all times.
In [Rang 2013a; 2013b], however, it was shown that this statement holds only for a particular parameter
set, which is not identical to the commonly used one, since there is a distinction between the one-step
and the multistep version [Erlicher et al. 2002]. These parameter sets {α f , αm, β, γ } are often expressed
in terms of a spectral radius ρ∞ ∈ [0, 1] as the sole free parameter

α f =
1

1+ρ∞
, αm =

2− ρ∞
1+ ρ∞

, γ =
1
2
+αm −α f , β =

1
4
(1+αm −α f )

2. (36)

The given setting follows directly from requirements of unconditional stability, optimized numerical
dissipation, and second-order accuracy for the multistep method. The spectral radius ρ∞ controls the
high-frequency dissipation, whereas ρ∞ = 1 designates the no dissipation case, and ρ∞ = 0 means
full annihilation [Chung and Hulbert 1993; Kuhl and Crisfield 1999; Jansen et al. 2000; Popp 2012].
Furthermore, ρ∞ ensures algorithmic parameters leading to optimal time integration schemes. In the
linear structural dynamic regime, this leads to maximized high-frequency dissipation, while damping for
the important lower modes is kept at a minimum. However, if these parameter sets are used for the one-
step method, it is theoretically only possible to reach first order. The error constant in this case is very
small, so the observed numerical order of convergence is two. Moreover, in [Rang 2013b], the one-step
version of the generalized-α method applied to second and first-order ODEs obtains better results than
the corresponding multistep version.

The chosen notation in this paper for the generalized-α method is based on the works of Rang [2013a;
2013b] and Jansen et al. [2000]. In the following, we apply the one-step version of the generalized-α
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method for second-order ODEs to the semidiscrete equations of motion (10)1 and use the presented
algorithmic parameter set {α f , αm, β, γ } as a function of ρ∞. We start with linear interpolation rules for
the generalized mid-point quantities which are commonly established for the generalized-α method,

U n+α f =α f un+1+(1−α f )un, U̇ n+α f =α f vn+1+(1−α f )vn, Ü n+αm =αman+1+(1−αm)an. (37)

Now, we introduce the well-known Newmark [1959] approximations to describe the discrete velocities
vn+1 and accelerations an+1 at tn+1 as functions of the unknown displacements un+1 and in terms of
already known quantities at time tn ,

vn+1 =
γ

β1tn
(un+1−un)−

γ−β

β
vn −

γ−2β
2β

1tnan, (38)

an+1 =
1

β1t2
n
(un+1−un)−

1
β1tn

vn −
1−2β

2β
an. (39)

The generalized midpoint velocities and accelerations in (37) can be expressed as function of the dis-
placements un+1,

U̇ n+α f =
α f γ

β1tn
(un+1−un)−

α f γ −β

β
vn −

(γ − 2β)α f

2β
1tnan, (40)

Ü n+αm =
αm

β1t2
n
(un+1−un)−

αm

β1tn
vn −

αm − 2β
2β

an. (41)

By applying the generalized-α method to the semidiscrete equation of motion (10)1 with

Tn+α f = tn +α f1tn = α f tn+1+ (1−α f )tn (42)

and
Tn+αm = tn +αm1tn = αm tn+1+ (1−αm)tn, (43)

we obtain the discrete linear momentum balance, i.e., the fully (meaning in space and time) discretized
finite element formulation of nonlinear structural dynamics. This modified structural equation of motion,
evaluated at some instant inside [tn, tn+1], reads

G u(tn+1,un+1,Θn+1,qn+1)=MÜ n+αm +gu(Tn+α f ,U n+α f ,Θn+α f ,Qn+α f )+Mup
¨U (Tn+αm )= 0,

(44)
where we have to evaluate the internal forces and external forces at the midpoint n+α f , which occur
in gu defined in (75). This is a midpoint-type approach. In this way we obtain an equivalent equation
structure and can use the same material and element routines as for the DIRK integrators. Alternatively,
a linear interpolation for gu based on a trapezoidal rule can be applied [Kuhl and Crisfield 1999; Erlicher
et al. 2002; Popp 2012]. For the linear case (small deformation and linear elastic material behavior) both
approaches are equivalent.

At this point, we would like to briefly mention the so-called energy-momentum conserving time
integration schemes [Simo and Tarnow 1992; Simo et al. 1992; Gonzalez 2000; Kuhl and Crisfield
1999; Kuhl and Ramm 1999], which are all included in an enhanced version of the generalized energy
momentum method (the so-called GEMM+ξ method) developed by Kuhl and Crisfield [1999]. Basically,
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the only difference between the GEMM+ξ method and the generalized-α method is the way the internal
forces are evaluated — or more specifically, the way for computing a generalized midpoint strain quantity.

In the following, we apply the generalized-α scheme for first-order ODEs formulated as a one-step
method to the semidiscrete heat equation (10)2. Based on the algorithmic parameter set introduced in
(36), whereas β is not used anymore, we violate the criterion of an optimized numerical dissipation in
case of the generalized-α for first-order ODEs [Jansen et al. 2000; Rang 2013a; 2013b]. Due to this
coupling, the optimal condition for αm cannot be satisfied anymore. However, unconditional stability
and second-order accuracy for the multistep version are still maintained. We start again with identical
linear interpolation rules for the generalized mid-point temperature quantities

Θn+α f = α fΘn+1+ (1−α f )Θn, Θ̇n+αm = αmΘ̇n+1+ (1−αm)Θ̇n. (45)

The discrete temperature velocities Θ̇n+1 at t = tn+1 can be expressed as

Θ̇n+1 =
1

γ1tn
(Θn+1−Θn)−

1−γ
γ

Θ̇n. (46)

Due to the properties of the heat capacity matrix C2, the semidiscrete heat equation (10)2 can be trans-
formed into explicit form. Applying the generalized-α method yields

Θ̇n+αm =C−1
2 (U n+α f ,Θn+α f ) r2(Tn+α f ,U n+α f ,U̇ n+α f ,Θn+α f ,Qn+α f ), (47)

with a capacity matrix evaluated at Tn+α f (see [Jansen et al. 2000] for further explanation).
In order to apply the same material and element subroutines, we transfer (47) to a DIRK similar

structure. By transforming (45)1 to

Θn+1 =
1
α f
Θn+α f −

1−α f

α f
Θn, (48)

and substituting into (45)2, we arrive at

Θ̇n+αm =
1
1tα

(Θn+α f −Θ
S
n+α f

), (49)

with the abbreviation 1tα = α f γ1tn/αm for a time-step quantity and the starting value

ΘS
n+α f
=Θn +

(
α f − γ

α f

αm

)
1tnΘ̇n =Θn +

αm − γ

γ
1tα Θ̇n, (50)

which depends only on already calculated quantities at time tn . Finally, we obtain the discrete formulation

G2(tn+1,un+1,Θn+1,qn+1)=C2(U n+α f ,Θn+α f )(Θn+α f −Θ
S
n+α f

)

−1tα r2(Tn+α f ,U n+α f ,U̇ n+α f ,Θn+α f ,Qn+α f )= 0 (51)

of the weak formulation in (9). Analogously to the just considered first-order ODE, the generalized-α
method applied to the evolution equations for the internal variables (10)3 can be written as

L (tn+1,un+1,Θn+1,qn+1)=Qn+α f −QS
n+α f
−1tα r Q(Tn+α f ,U n+α f ,Θn+α f ,Qn+α f )= 0, (52)
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with the starting value

QS
n+α f
=qn +

(
α f − γ

α f

αm

)
1tnq̇n =qn +

αm − γ

γ
1tα q̇n. (53)

The derivative q̇n+1 at t = tn+1 is defined, analogously to (46), by

q̇n+1 =
1

γ1tn
(qn+1−qn)−

1−γ
γ

q̇n. (54)

In other words, at each point in time, we have to solve the nonlinear system of equations

G u(u,Θ,q)= 0,

G2(u,Θ,q)= 0,

L Q(u,Θ,q)= 0,

(55)

where we have omitted the time tn+1 and the index n+ 1 for brevity. One drawback of the procedure can
be seen in (54), because we need the derivatives of the quantities at time t = 0. These can be obtained
by evaluating (10) at the beginning of the entire computation.

3.3. Time adaptivity. Step-size control is an essential issue to obtain both accurate results and efficient
computations. We draw on the approach in [Gustafsson 1994; Hairer et al. 1993; Hairer and Wanner
1996], by using a PI-controller approach. Furthermore, the physical meaning of the different quantities
is taken into account. For details, especially for the case of the generalized-α method, see Appendix B.

4. Examples

In this section, the performance of the presented algorithms is studied by means of several numerical
examples. To demonstrate the advantages and capabilities of the approach in a thermoviscoplastic finite
element analysis, two different three-dimensional cases are investigated in detail. The finite element
analyses are carried out using the in-house code Tasafem for monolithic, coupled and time-adaptive
simulations.

4.1. Order analysis. In the first example, we perform an order analysis drawing on a uniaxial tensile
specimen, where only one-eighth of the thermoviscoplastic steel specimen is discretized (symmetry con-
ditions are assumed for the displacement as well as temperature distribution, see Figure 3 (left)). For the
spatial discretization, we employ a mesh with nel = 360 twenty-noded hexahedral finite elements (p = 2)
consisting of a total number n p = 2089 nodes (nuu = 4803, n2u = 2089, nQ = nel× 27× 12= 116640),
see Figure 3 (left) for the mesh.

The specimen is loaded by a sinusoidal displacement-control at the middle cross-section (y = 0) with
ū y = û sin(2π f t), û = 0.2 mm, f = 10 Hz within the time interval t ∈ [0 s, 0.1s]. Starting from the
rest position, we choose initial conditions uh(x, 0)= 0, and 2h(x, 0)=20, with an initial temperature
of 20 = 25 ◦C. To ensure consistent initial conditions in the coupled field equations for the velocity
and acceleration fields, we apply a smoothing step function (polynomial of fifth order) for ū y(t) within
t ∈ [0 s, 0.0125 s] for which vh(x, 0)= 0 and ah(x, 0)= 0 holds, see Figure 3 (right).

The chosen unit system consists of the basic units mm, t, s, and K. The material parameters used
in this example can be found in Table 4, where the heat capacity cp is given according to the unit
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Figure 3. Model setup: (left) geometry, mesh and boundary conditions (units in mm);
(right) loading path.

material parameters symbol value unit

bulk modulus K 1.6666 ·105 N/mm2

change of K with temperature cK 91 N/(mm2K)
shear modulus G 0.769 ·105 N/mm2

change of G with temperature cG 42 N/(mm2K)
thermal exp. coef. α2 1.2 ·10−5 K-1

hardening parameter cX 4230 N/mm2

hardening parameter β 3 ·10−3 N-1mm-2

initial yield stress k0 450 N/mm2

yield stress at high temperature kH 100 N/mm2

yield stress slope b 4.2 ·10−3 C-1

viscosity η 6 ·104 s
exponent m 1 -
normalization stress σ0 1 N/mm2

density ρ 7.836 ·10−9 Ns2/mm4

Table 4. Thermoviscoplastic material parameters.

system in mm2/(s2K). Thus, the conversion factor between SI units J/(kgK) and the chosen system
is 1 mm2/(s2K) = 10−6 J/(kgK). Instead of choosing the heat capacity given by (5), we choose a
temperature-dependent approach that originates from differential scanning calorimetry measurements.
In order to take into consideration the phase transformation at higher temperatures, a log-interpolation
of the two functions

cp1(2)= a1ea22+ a3, cp2(2)= a4e−a5(2−2̃0)+ a62, (56)
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DIRK
abbreviation method order p stages s reference

BE Backward Euler 1 1 [Butcher 2008]
Alex2/Ell Alexander/Ellsiepen 2 2 [Alexander 1977; Ellsiepen 1999]
CAA trapezoidal rule or CAA 2 2 [Hughes 1987; Ellsiepen and Hartmann 2001]
Alex3/Cash Alexander/Cash 3 3 [Alexander 1977; Cash 1979]
CAA+BE CAA + Backward Euler 2/1 2/1 -

generalized-α
abbreviation method order p stages s reference

Gen-α generalized-α, ρ∞ = 0.8 2 - [Chung and Hulbert 1993]

Table 5. Applied one-step methods with references in the context of ODE solution and
applications within finite elements.

is chosen according to Kreisselmeier and Steinhauser [1979]

cp(2)=−cW ln
(

e−cp1(2)/cW+e−cp2(2)/cW

2

)
. (57)

The calibrated parameters are as follows: a1 = 34.2 J/(kgK), a2 = 0.0026 K−1, a3 = 421.15 J/(kgK),
a4 = 956.5 J/(kgK), a5 = 0.012 K−1, a6 = 0.45 K/(kgK2), and 2̃0 = 900 K. The weighting factor of the
interpolation function is chosen to be cW = 30 J/(kgK).

The thermal conductivity κ is given in tmm/(s3K), which is equivalent to W/(mK). According to Quint
et al. [2011] we assume

κ(2)= b0+ b12+ b22
2
+ b32

3, (58)

with b0 = 40.1 W/(mK), b1 = 0.05 W/(mK2), b2 = −10−4 W/(mK3), and b3 = 4.9 ·10−8 W/(mK4),
which are taken from the steel 51CrV4.

For the order considerations, the relative error measures of the displacement, velocity, temperature
field and internal variables are computed. The relative error quantities are defined by the maximum
relative error over all points in time tn , given as

erru=max
n

 ‖u ref
n −un‖

max
n

(
‖uref

n ‖
)
 , errv=max

n

 ‖v ref
n −vn‖

max
n

(
‖v ref

n ‖
)
 , (59)

errΘ =max
n

 ‖Θ ref
n −Θn‖

max
n

(
‖Θ ref

n ‖
)
 , errq=max

n

 ‖q ref
n −qn‖

max
n

(
‖qref

n ‖
)
 , (60)

For the illustrated problem the integration methods compiled in Table 5 are analyzed in view of their
expected and achieved temporal convergence order for different fields. For further information regarding
the applied DIRK methods, we refer to [Ellsiepen and Hartmann 2001] and the literature cited in Table 5.
Cash’s [1979] method is the time-adaptive extension using an embedded scheme of Alexander’s [1977]



74 MATTHIAS GRAFENHORST, JOACHIM RANG AND STEFAN HARTMANN

‖~u‖ (mm) Θ (◦C)

Figure 4. Displacement norm (left) and temperature distribution (right) for reference
solution (Alex3/Cash, 1tn = 10−5 s) at t = 0.075 s.
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elastic
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Figure 5. von Mises-stress distribution (left) and yield function state (right) for refer-
ence solution (Alex3/Cash, 1tn = 10−5 s) at t = 0.075 s.

method of third order. Similarly, Ellsiepen’s [1999] method is the time-adaptive extension of Alexander’s
[1977] second-order method. In the following we call them Alex3/Cash and Alex2/Ell.

The algorithmic parameters of the generalized-α method —α f , αm , β and γ — are computed using
(36) as function of the spectral radius ρ∞. The order of convergence is given by the slope of the curves in
a double logarithmic plot. The reference solution is given by Alex3/Cash (highest-order method of our
investigations), with a constant step-size of 1tn = 10−5 s. The resulting deformation and temperature
distribution for the reference solution at t = 0.075 s are shown in Figure 4. Mechanical agencies of the
structure change the temperature distribution due to plastic dissipation, and cause plastic deformations,
see Figure 5.

Regarding the order considerations for the displacement field, only the Backward Euler (which is the
simplest DIRK method), the applied Newmark-scheme in the parametrization of the trapezoidal rule
(CAA), and the generalized-α method reach their theoretical orders in Figure 6 (left). The convergence
order for Alex2/Ell and Alex3/Cash degenerates after passing an optimal step-size. The reasons for this
are not known.

Due to the strong coupling of the displacement field to the internal variables, the combination of the
CAA and Backward Euler methods yields only order one, i.e., the order of the global trapezoidal rule
(Newmark-scheme) will be reduced, and the artificially created order reduction in the internal variables
affects the order in the displacement field. Thus, commercial programs using the Newmark-method
combined with a Backward Euler-like scheme on Gauss-point level for integrating the internal variables
cannot reach second order. This is different in the pure CAA approach.

For the convergence behavior in the velocity field, the higher-order DIRK methods — excluding the
Newmark-type schemes (CAA, generalized-α method) — reach only first order (see Figure 6 (right)).
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Figure 6. Convergence behavior for order analysis: (left) global error in displacement
field and (right) global error in velocity field.
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Figure 7. Convergence behavior for order analysis: (left) global error in temperature
field and (right) global error for internal variables.

However, the field variable velocity is only of minor importance compared to the others. On the other
hand, the convergence behavior for the temperature field in Figure 7 (left) for the different time inte-
gration methods matches the theory. As reported in [Ellsiepen 1999; Ellsiepen and Hartmann 2001],
we observe in the convergence graph for the internal variables (Figure 7 (right)) — due to the lack of
smoothness in the time domain — an order reduction where the third order of the Alex3/Cash method is
not attained. This is known from quasistatic and isothermal computations [Ellsiepen and Hartmann 2001].
As already mentioned, the combination of Backward Euler for the internal variables (stress-algorithm)
and the Newmark-method yields only order one.

It is not only the rate of convergence that is of practical importance, but the computational costs of the
methods as well. Figures 8 and 9 show the relative error in each field variable versus the computational
time.

In these plots, the second-order DIRK methods (Alex2/Ell, CAA), with the exception of Figure 8 (right),
show an identical slope, which is steeper than the more accurate Alex3/Cash-method. They are more
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Figure 8. Efficiency analyses for displacement (left) and velocity (right) fields.
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Figure 9. Efficiency analyses for temperature field (left) and internal variables (right).

efficient for high accuracy requirements, i.e., the fastest methods for a given error tolerance. The Back-
ward Euler method yields only comparatively rough results — even for high computational times. The
considered generalized-α method behaves only moderately: acceptable results are only obtained for the
smallest time-step, see Figure 8 (left). All in all, the combination of Newmark-method and Backward
Euler seems to be superior to the pure Backward Euler method, but is not as attractive as the generalized-α
method due to the small slope in the displacements.

We would like to remark that the increase of elements by a factor of two in all directions, which yields
more accurate results in the spatial domain, does not influence the order diagrams, especially the order
reduction phenomenon of CAA and Alex3/Cash in Figure 6 (left). This can be explained by the accuracy
of the error tolerance of the global MLNA step, where the tolerances (norm of 1u and 1Θ) could not
be smaller than 10−7 in the computations. Otherwise, the MLNA will not converge.

4.2. H-Beam. In the second example, we study the dynamical behavior of a thermoviscoplastic H-Beam
profile by performing time-adaptive computations. The error of the current time-step is estimated by
using embedding methods as described in Section 3.3. The dimensions of the profile are depicted in



TIME-ADAPTIVE SIMULATIONS OF DYNAMICAL PROBLEMS FOR TEMPERATURE-DEPENDENT MATERIALS 77

εu
a εu

r ε2a ε2r ε
q
a ε

q
r

1.0 ·10−2 mm 1.0 ·10−3 1.0 ·10−2 ◦C 1.0 ·10−3 1.0 ·10−5 1.0 ·10−5

Table 6. Absolute and relative error tolerances for step-size estimation.

Figure 10 (left) and the material parameters are given in Table 4 with the nonlinear material functions
(57) and (58). The left end of the beam is clamped, i.e., all displacements are fixed, and the right side is
loaded by a time-dependent cyclic pressure load in z-direction,

p̄(t)=
{

K pt for 0 s≤ t ≤ 1 s with K p = 130 MPa/s
p0 sin(2π f t) for 1 s< t ≤ 2 s with p0 = 20 MPa, f = 233 Hz

, (61)

see Figure 10 (right). The frequency is chosen to be close to an eigenfrequency so that the influence of the
inertia terms becomes larger. Similar computations — which are not shown here — at a loading frequency
of f = 60 Hz show very similar amplitudes and phases for all time integration schemes. This holds for the
step-size behavior as well. The whole profile is discretized with nel = 11200 twenty-noded hexahedral
finite elements. Consequently, this implies a total number of 68591 nodes (nuu = 204300, n2u = 68591)
with nQ = nel× 27× 12 = 3628800 internal variables. The problem setup is completed by the initial
conditions uh(x, 0)= 0, vh(x, 0)= 0, q(0)= 0, and initial temperature distribution 2h(x, 0)=20 with
reference temperature 20 = 25 ◦C.

For all investigated time-integration methods, namely the generalized-α (Gen-α), Newmark (CAA),
and Ellsiepen (Alex2/Ell) time integrators, the same absolute and relative error tolerances for the field
variable’s displacement, temperature and internal variables are used (see Table 6) in order to estimate the
new step-sizes. The proposed adaptive time-step control uses the error measure em =max(eu, ev, eθ , eq)

for the step-size selection rule (95). As a result of the observed poor convergence behavior in the velocity
field for the DIRK methods Alex2/Ell and Alex3/Cash (see Figure 6 (right)), we do not take ev into
account to compute em . This — in combination with the chosen factors fmin = 0.3, fmax = 2.5, and
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Figure 10. Model setup and loading process: dimensions of the H-Beam, mesh and
boundary conditions (units in mm) (left); schematic loading path (right).
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fsafety = 0.85 of the step-size controller — leads to the step-size behavior shown in Figure 15 (left). An
initial step-size of 1t 0 = 10−2 s is chosen and applied at each external load-change, i.e., at tn = 0 s
and tn = 1 s. In the quasistatic loading range the step-size increases until it is limited by the stability
of the employed Multilevel Newton algorithm. If there are time-steps that are too large, a failure of the
applied Newton algorithm on the local level is obtained. Thus, step-size rejections are observable. As
the dynamics of higher modes of the structure are stimulated by the cyclic loading, the step-size in this
time interval is reduced significantly by the time-adaptive scheme.

For a comparison of the integration schemes, we consider the structural response at two nodes n1 and
n2. Figure 11 shows the deflection/time behavior at node n1. At the second evaluation point n2, however,
we observe the temperature evolution depicted in Figure 12. The generalized-α method and the applied
Newmark-scheme (CAA) yield approximately the same structural response, see Figure 11 (right) and
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Method No. of time-steps CPU time (s) Efficiency factor

Gen-α 12592 253136 0.54
CAA 12601 467034 1.00
Alex2/Ell 4107 106077 0.23

Table 7. Computational costs of applied time integration schemes.

‖~u‖ (mm)
Θ (◦C)

Figure 13. Displacement (left) and temperature (right) distribution at the end of the
computation (t = 2 s), computed with Ellsiepen’s method.

σv (MPa)
f (MPa)

elastic

plastic

Figure 14. von Mises stress (left) and yield function (right) state at the end of the com-
putation (t = 2 s), computed with Ellsiepen’s method.

Figure 12 (right). Moreover, both show a very similar step-size behavior which can be observed in
Figure 15. However, as shown by the CPU times in Table 7, the generalized-α requires only 54% of
the computational time of the trapezoidal rule (CAA). This fact is due to the use of a further stage
in the embedded scheme for the trapezoidal rule (a Backward Euler stage) for applying the proposed
time-adaptivity procedure in Section 3. The generalized-α method uses an estimation introduced by
Rang [2013a; 2013b]. Ellsiepen’s method yields larger step-sizes in the cyclic loading range and, ac-
cordingly, leads to the fastest computation.

Figures 13 and 14 (left) show the displacement, temperature and von Mises stress distribution at the
final stage of a time-adaptive computation with the Ellsiepen integrator. In Figure 14 (right), we consider
the regions where yielding appears. When the cyclic load is applied, a plastic zone starts to evolve at the
upper and the lower surface of the clamping. One can clearly see that in the area of clamping — above and
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Figure 16. Temperature difference between dynamic and quasistatic computation at the
end of the computation (t = 2 s), computed with Ellsiepen’s method.

below, where a singularity exists — the highest stresses occur. Furthermore, due to the elastic coupling
effect in the constitutive model, the maximum temperature occurs in the lower part of the clamping.

Figure 16 shows the influence of the inertia terms on the temperature distribution by comparing a
dynamical simulation with a quasistatic one. For this purpose, we perform an identical quasistatic
simulation by ignoring the inertia term and computing the difference between both simulations. The
resulting DAE system of the quasistatic simulation is listed in (14). It can clearly be seen that in the
lower part of the clamping, the temperature differs and reveals a temperature increase. In the remaining
part of the structure, there is no drastic change in temperature.

5. Conclusions

We studied the resulting ODE system of dynamical problems which were combined with heat conduction
problems and inelastic material behavior. All equations are coupled. The problem under consideration
is related to the computation of a system of second-order ODEs with first-order ODEs. The classical
Newmark-method, which is a method of second-order combined with stress-algorithms of first order on
Gauss-point level, does not lead to a second-order scheme. Thus, other methods must be treated. Another
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question is connected to an automatic step-size control technique based on local error estimations, due
to which the physical quantities and their temporal evolution determine the step-size.

Apart from the compilation of different semidiscrete forms, we investigated stiffly accurate, diagonally
implicit Runge–Kutta methods and the generalized-α method (single-step version). In the case of DIRK
methods, the second-order ODE part is transformed into a system of first-order ODEs. A particular
discussion of the relation to Runge–Kutta–Nyström methods was offered as well. The generalized-α
method, originally developed for second-order ODEs, was combined with a generalized-α method for
first-order ODEs. The different schemes were studied in view of their order of accuracy revealing similar
behavior. Since an order-reduction is known for the case of yield function-based models, only second-
order accuracy was expected. This was obtained for all methods in the displacements, temperatures
and internal variables. Only the fully consistently applied trapezoidal scheme (CAA) — consistent with
the integration scheme on Gauss-point level to determine the internal variables — the expected order is
achieved in the velocities as well.

Additional investigations of the embedded time-step control of the DIRK methods and the generalized-
α methods proved both the applicability of the time-adaptivity of the two methods as well as the greater
efficiency of DIRK methods. Unfortunately, the fully consistent CAA method is computationally four
times slower than the DIRK approach in our examples. Thus, either Ellsiepen’s method, which has turned
out to be very efficient for quasistatic and coupled problems, or the generalized-α should be applied. The
latter method is also applicable for problems with internal variables if it is applied in a consistent manner.
However, there is the drawback that the function evaluations are at stage-times within a time-interval so
that constraint problems cannot be satisfied.

Appendix A. Derivation of matrices

In this section, we draw on the notation used in [Rothe et al. 2015a]. In finite elements, the displacements
Eu(Ex, t), the virtual displacements δEu(Ex), the temperatures 2(Ex, t), and the virtual temperatures δ2(Ex)
are approximated by shape functions within an element e,

uh(x, t)=Ne
u(ϕ

e
u(x))u

e(t)=Ne
u(ϕ

e
u(x))Z

e
uaU a =Ne

u(ϕ
e
u(x))

{
Z e

uu+Z e
uu(t)

}
, (62)

u̇h(x, t)=Ne
u(ϕ

e
u(x))u̇

e(t)=Ne
u(ϕ

e
u(x))Z

e
uaU̇ a =Ne

u(ϕ
e
u(x))

{
Z e

u u̇+Z e
u u̇(t)

}
, (63)

üh(x, t)=Ne
u(ϕ

e
u(x))ü

e(t)=Ne
u(ϕ

e
u(x))Z

e
uaÜ a =Ne

u(ϕ
e
u(x))

{
Z e

u ü+Z e
u ü(t)

}
, (64)

δuh(x)=Ne
u(ϕ

e
u(x))δu

e
=Ne

u(ϕ
e
u(x))Z

e
uaδU a =Ne

u(ϕ
e
u(x))Z

e
u δu, (65)

2h(x, t)=Ne T
2 (ϕe

2(x))2
e(t)=Ne T

2 (ϕe
2(x))Z

e
2aΘa =Ne T

2 (ϕe
2(x))

{
Z e
2Θ +Z e

2Θ(t)
}
, (66)

2̇h(x, t)=Ne T
2 (ϕe

2(x))2̇
e
(t)=Ne T

2 (ϕe
2(x))Z

e
2aΘ̇a =Ne T

2 (ϕe
2(x))

{
Z e
2Θ̇ +Z e

2
˙Θ(t)

}
, (67)

δ2h(x)=Ne T
2 (ϕe

2(x))δ2
e
=Ne T

2 (ϕe
2(x))Z

e
2aδΘa =Ne T

2 (ϕe
2(x))Z

e
2δΘ, (68)

where uh
∈ R3, δuh

∈ R3. For the three-dimensional case we have the matrix and vector shape functions
Ne

u ∈ R3×ne
u , and Ne

2 ∈ Rne
2 , where ne

u and ne
2 are the displacement and temperature element degrees of

freedom (DOF). Here, ue
∈ Rne

u and 2e
∈ Rne

2 describe the element DOF. In the case of h-elements, these
are displacements and nodal temperatures. The expression ξ = ϕe

u(x) defines the inverse coordinate trans-
formation of the global coordinates x to the local coordinates ξ in the reference element. Here, we have
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to distinguish between the coordinate transformation ϕe
u in the mechanical problem and the coordinate

transformation in the thermal problem ξ = ϕe
2(x). In a monolithic approach, both transformations are

assumed to be identical, ϕe
u(x)= ϕ

e
2(x) (of course, a generalization might be possible). In a partitioned

approach both meshes can be different. Thus, the given coordinate transformations x = χ e
u(ξ) and

x = χ e
2(ξ) with χ e

u = ϕ
e
u
−1 and χ e

2 = ϕ
e
2
−1 are distinct in the general case. In this context, ua ∈ Rnua

symbolizes all displacement DOF for the entire structure containing the unknown quantities u ∈ Rnuu and
the known (prescribed) displacement DOF u ∈ Rnup . Obviously, nua = nuu+ nup for u T

a = {u Tu T
} holds.

The same decomposition is carried out for the temperature DOF, Θa ∈ Rn2a , Θ ∈ Rn2u , Θ ∈ Rn2p (i.e.,
ΘT

a = {Θ
TΘ

T
} and n2a = n2u+ n2p). For ni j the first index denotes the mechanical and the thermal

quantities, i = u,2. The second subscript, j = a, u, p, stands for all, unknown and prescribed. The terms
u(t) and Θ(t) are the given functions at time t representing displacement-control and prescribed tem-
perature boundary conditions. The incidence matrices Z e

u ∈ Rne
u×nuu , Z e

u ∈ Rne
u×nup , Z e

2 ∈ Rne
2×n2u , and

Z e
2 ∈ Rne

2×n2p are related to the assemblage procedures, which are frequently symbolized by either ∪
n2el
e=1

or An2el
e=1 in [Wriggers 2001; Hughes 1987]. Accordingly, the incidence matrices Z are not programmed

explicitly, but symbolize the assemblage procedure of “local” quantities into “global” vectors or matrices.
They are also helpful in developing new algorithms [Hartmann 2005; Hartmann and Hamkar 2010] or
for describing the transition from local to global quantities.

In view of d’Alembert’s principle (8) and temperatures (9), respectively, both the strain and virtual
strain vectors as well as the temperature gradient and virtual temperature gradient are required:

Ee(t, ξ ,u)= Be
u(ξ)u

e(t)= Be
u(ξ)

{
Z e

uu+Z e
uu(t)

}
, (69)

Ėe
(t, ξ , u̇)= Be

u(ξ)u̇
e(t)= Be

u(ξ)
{
Z e

u u̇+Z e
u u̇(t)

}
, (70)

δEe(ξ , δu)= Be
u(ξ)δu

e
= Be

u(ξ)Z
e
u δu, (71)

γ e(t, ξ ,Θ)= grad2h
= Be

2(ξ)2
e(t)= Be

2(ξ)
{
Z e
2Θ +Z e

2Θ(t)
}
, (72)

δγ e(ξ , δΘ)= grad δ2h
= Be

2(ξ)δ2
e
= Be

2(ξ)Z
e
2δΘ, (73)

where Be
u(ξ)∈ R6×ne

u symbolizes the strain-displacement matrix, and Be
2(ξ)∈ R3×ne

2 represents the tem-
perature gradient-temperature matrix. In Voigt-notation, the stresses (1) read T= h(E,2,q), T∈ R6,
E∈ R6, which are inserted into the weak form (8) leading to the second-order ODE

Mü(t)=−gu(t,u,Θ,q)−Mupü(t) (74)

with

gu(t,u,Θ,q)=
nu

el∑
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Z e
u

T
{ne

GPu∑
j=1

we( j)
u Be( j)

u
T
h(Ee( j),2e( j),qe( j)) det Je( j)

u

}
−p (t), (75)

M =
nu

el∑
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Z e
u

T
[ne

GPu∑
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u Ne( j)

u
T
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]
Z e

u , (76)

Mup =

nu
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T
[ne
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we( j)
u Ne( j)

u
T
Ne( j)

u ρe( j) det Je( j)
u

]
Z e

u . (77)
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Here ne
GPu are the number of Gauss-points in the mechanical element e; we( j)

u symbolizes the weighting
factor of the spatial integration scheme, where we assume a Gauss-integration formula; Be( j)

u = Bu(ξ
( j))

is the strain-displacement matrix used in (69) and evaluated at Gauss-point ξ ( j); Ee( j)
= Ee(t, ξ ( j),u)

are the strains (69); 2e( j)
= 2e(t, ξ ( j),Θ) defines the temperature (66); and qe( j)

= qe(t, ξ ( j)) the
internal variables at Gauss-point ξ ( j). The Jacobian of the coordinate transformation is defined as Je( j)

u =

dχ e
u(ξ)/dξ |ξ=ξ ( j) and p (t) symbolizes the equivalent nodal force vector.
Following [Ellsiepen and Hartmann 2001], we formally assemble all internal variables of all Gauss-

points into a large vector

q(t)=
nu

el∑
e=1

ne
GPu∑

j=1

Z e( j)
Q

T
qe( j)(t) (or qe( j)(t)=Z e( j)

Q q(t)), (78)

and the ordinary differential equations (evolution equations of the internal variables) are treated in the

same manner (r Q =
∑nu

el
e=1

∑ne
GPu

j=1 Z e( j)
Q

T
rQ(Ee( j),2e( j),qe( j))), which leads to

q̇(t)= r Q(t,u,Θ,q). (79)

In our case qe( j)
∈ Rnq with nq = 12 (symmetry of the tensors Ev and Er is assumed), Z e( j)

Q ∈ Rnq×nQ ,
and q ∈ RnQ hold.

In its spatially discretized representation, the weak form of the heat equation (9) reads

g2(t,u, u̇,Θ, Θ̇,q)=
n2el∑

e=1

Z e
2

T
{ne

GP2∑
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w
( j)
2 ĉp(Ee( j),2e( j))Ne( j)
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2

}
+p κ(t,Θ)−p2(t,Θ)− p̂2(t,u, u̇,Θ,q), (80)

or by inserting (66)–(68) and (72), (73) one obtains the more brief form

C2(t,u,Θ)Θ̇(t)= r2(t,u, u̇,Θ,q). (81)

In this equation, the temperature-dependent heat capacity matrix is obtained:

C2(t,u,Θ)=
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]
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(C2 ∈ Rn2u×n2u) and

r2(t,u, u̇,Θ,q)=−p κ(t,Θ)+p2(t,Θ)+ p̂2(t,u, u̇,Θ,q), (83)

with the conductivity term

p κ(t,Θ)=
n2el∑

e=1

Z e
2

T
{ne
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w
( j)
2 κ(2e( j)) Be( j)
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2

}
(84)
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and the dissipation term

p̂2(t,u, u̇,Θ,q)=
n2el∑

e=1

Z e
2

T
{ne

GP2∑
j=1

w
( j)
2 p̂(Ee( j), Ėe( j)

,2e( j),qe( j))Ne( j)
2 det Je( j)

2

}
. (85)

For reasons of brevity, the heat flux and heat source on the surface are not explained in detail:

p2(t,Θ)=
∫

A
N2qh(2h) dA+

∫
V

N2rh dV . (86)

Appendix B. Time adaptivity

Regarding computational efficiency and accuracy, methods with a constant step-size perform poorly if
the solution varies rapidly in some parts of the time interval and slowly in other parts. For this reason
the step-size should be chosen in such a way that it is large in smooth parts and small in transient parts.
This calls for a step-size control technique which relies on the approximation of the local integration
error and adjusts the time-step so that the error measure remains within a prescribed tolerance. Since an
adaptive step-size control takes the behavior of the underlying equations into account, it stabilizes the
global procedure and keeps the global error within certain limits as well. The first widely used adaptive
time-stepping strategies in the field of structural dynamics were proposed in [Zienkiewicz et al. 1984;
Zienkiewicz and Xie 1991; Zeng et al. 1992; Li et al. 1993; Riccius and Schweizerhof 1996; Riccius
1997]. These approaches are based on an a posteriori estimation of the local integration error (see (89))
for the displacement field which results from a difference between numerical solution and an improved
solution calculated in a Taylor series at tn . Further details regarding this a posteriori error estimation tech-
nique and specific numerical examples in combination with generalized-α related methods can be found
in [Kuhl 1996; Kuhl and Ramm 1999]. An a posteriori error estimation technique for displacements and
velocities is proposed in [Hulbert and Jang 1995]. Step-size control algorithms based on the “apparent
highest frequency” as well other classical approaches built on general frequency information lie out of our
scope. In this section, we focus on the possibility of incorporating an efficient step-size control, which is
based on the estimation of the local integration error (local truncation error) and can be achieved with a so-
called embedding technique [Hairer et al. 1993; Hairer and Wanner 1996; Strehmel et al. 2012]. A further
approach for the time-adaptivity of one-step methods — the Richardson extrapolation — is presented in
[Hairer et al. 1993]. Due to the necessity of repeating the time-step with 1tn/2 and comparing the results
to the computations with the time-step 1tn , a higher computational effort is required. For that reason,
local error control using the Richardson extrapolation is not of particular interest to us.

We start with recapping the coupled ODE system in (10) in explicit form

ẏ(t)= f (t,y(t)), y(t0)= y 0, (87)

with y = {u T ,v T ,ΘT ,q T
} ∈ R(2nuu+n2u+nQ).

Based on an exact value y n = y(tn) the local integration error δ in the time interval 1tn is defined by
the difference between the exact solution y(tn+1) and the numerical solution

y n+1 = y(tn)+1tnΦ(tn,y(tn),1tn), (88)
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using an arbitrary integration method of order p as

δ = y(tn+1)−y n+1 = y(tn+1)−
(
y(tn)+1tnΦ(tn,y(tn),1tn)

)
=1t p+1

n Ψ (tn,y)+O(1t p+2
n ).

(89)

Here, Φ marks the so-called increment function of the underlying integrator [Hairer et al. 1993; Strehmel
et al. 2012]. Based on Taylor series expansions of the exact solution and the numerical solution, we can
determine the order of consistency where the local truncation error can be split up into a main part
1t p+1

n Ψ (principal error) and a remainder of order p+ 2. In the following, the main part of the local
integration error δ is estimated so as to be able to control the error quantity. For this purpose, two methods
of different order p and p̂ = p− 1 are assumed:

y n+1 = y(tn)+1tnΦ(tn,y(tn),1tn),

ŷ n+1 = y(tn)+1tnΦ̂(tn,y(tn),1tn).
(90)

Each of these methods yield an expression for the local integration error

δ = y(tn+1)−y n+1 =1t p+1
n Ψ (tn,y)+O(1t p+2

n ),

δ̂ = y(tn+1)− ŷ n+1 =1t p̂+1
n Ψ̂ (tn,y)+O(1t p̂+2

n ).
(91)

Using the difference of both errors

δ− δ̂ = y err := ŷ n+1−y n+1 =1t p̂+1
n Ψ̂ (tn,y)+O(1t p̂+2

n )≈1t p̂+1
n Ψ̂ (tn,y), (92)

we are able to estimate the main part 1t p̂+1
n Ψ̂ of the local integration error of the lower order method,

i.e., we get the “second best” approximation of y(tn+1). Furthermore, we assume that the function Ψ̂
varies only slowly so that ‖Ψ̂ (tn,y)‖ ≈ C holds within 1tn . With this error estimate in hand we are able
to decide whether the error in each time step is lower than a user-specified tolerance

‖y err‖ ≈ C1t p̂+1
n ≤ εr‖ŷ n‖+ εa, (93)

where generally the tolerance value is given as combination of an absolute εa and a relative εr tolerance.
For the computation of an optimal new step-size 1tnew, we demand that the error equals the prescribed
mixed tolerance

C1t p̂+1
new = εr‖ŷ n‖+ εa. (94)

Eliminating the constant C by using the relationship in (93) and substituting it into (94), we arrive at the
desired result

1tnew =1tn

(
εr‖ŷ n‖+ εa

‖y err‖

)1/( p̂+1)

. (95)

In the numerical mathematics community it is common to advance the solution in time by using the
higher-order approximation y n+1 instead of ŷ n+1. We do so as well. The case in which the concept of
local error control is slightly abandoned is called local extrapolation (see [Hairer et al. 1993] for further
explanations). A theoretical justification for this violation is given in [Deuflhard and Bornemann 1994].

For the approximation of the local error in the case of DIRK schemes, we use a highly efficient method
which is based on an embedded Runge–Kutta scheme. For this purpose two s-stage methods of different
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Figure 17. Butcher-tableaus with embedding: embedded RK scheme (left) and embed-
ded RKN scheme (right).

order p and p̂ are constructed with identical stages ci , the same coefficient matrix A, but using different
weighting factors bi and b̂i . The pair of embedded RK methods share the same stage computations. Thus,
a further solution at tn+1 can be computed by using (29), (25)2–(25)4

ûn+1 =un +1tnvn +1t2
n

s∑
i=1

ˆ̄biAni , v̂n+1 = vn +1tn
s∑

i=1

b̂iAni ,

Θ̂n+1 =Θn +1tn
s∑

i=1

b̂iΘ̇ni , q̂n+1 =qn +1tn
s∑

i=1

b̂iQ̇ni ,

(96)

with the newly introduced algorithmic parameters b̂i and ˆ̄bi =
∑s

j=1 b̂ j a j i . As in [Ehlers and Ellsiepen
1998; Diebels et al. 1999], we decompose y err into the local integration error for each field variable in
order to take the different physical properties and the order of magnitude into account. Commonly, the
new weighting factors b̂i and ˆ̄bi are appended to the Butcher array to form an embedded RK scheme (see
Figure 17).

The consistency orders of the two methods differ by one (i.e., p̂ = p− 1). According to (92), a simple
hand calculation results in the following estimation formula for RK schemes:

uerr = ûn+1−un+1 =1t2
n

s∑
i=1

( ˆ̄bi − b̄i )Ani , verr = v̂n+1−V n+1 =1tn
s∑

i=1

(b̂i − bi )Ani ,

Θerr = Θ̂n+1−Θn+1 =1tn
s∑

i=1

(b̂i − bi )Θ̇ni , qerr = q̂n+1−qn+1 =1tn
s∑

i=1

(b̂i − bi )Q̇ni ,

(97)

where the stage derivatives of both integration schemes are equal on the basis of the same coefficients
ai j and āi j .

In the case of the generalized-α method we follow a proposal in [Rang 2013a]. There, the approxi-
mation of the generalized-α scheme was used as a second-order approximation (p = 2) since the error
constant is very small and since the methods in our numerical experiments (see Section 4) behave as a
second-order method [Chung and Hulbert 1993; Erlicher et al. 2002; Rang 2013a]. The Backward Euler
method can be used for a second solution of lower order p̂ = 1. To circumvent an entire calculation of
(10) by using the Backward Euler method, the necessary derivatives will be approximated by using (38),
(39), (46) and (54). The computation for the local truncation error quantities in each field variable yield

uerr = ûn+1−un+1 =un +1tnvn+1−un+1, verr = v̂n+1−vn+1 = vn +1tnan+1−vn+1,

Θerr = Θ̂n+1−Θn+1 =Θn +1tnΘ̇n+1−Θn+1, qerr = q̂n+1−qn+1 =qn +1tnq̇n+1−qn+1.
(98)
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Commonly, the estimation of 1tnew is carried out using a more efficient and computationally more stable
procedure if it is described by (95). Following the proposal in [Hairer et al. 1993; Hairer and Wanner
1996; Gustafsson 1994], we employ the relative error measures

eu :=

√√√√ 1
nuu

nuu∑
k=1

(
u k

err

εu
r |u k

n | + ε
u
a

)2

, ev :=

√√√√ 1
nuu

nuu∑
k=1

(
v k

err

εvr |v
k
n | + ε

v
a

)2

,

e2 :=

√√√√ 1
n2u

n2u∑
k=1

(
2 k

err

ε2r |2
k
n | + ε

2
a

)2

,

(99)

where u k
err, v

k
err and 2 k

err are the k-th components of the local integration error approximations uerr, verr,
Θerr, respectively. These error measures perform a componentwise weighting instead of the simple
global weighting ‖y err‖/(εr‖y n‖+εa) introduced in (94). For the local truncation error qerr in the interval
variables, Diebels et al. [1999] proposed the maximum norm

eq := max
1≤k≤nQ

∣∣∣∣ q k
err

ε
q
r |q k

n | + ε
q
a

∣∣∣∣. (100)

Furthermore, the user-defined relative εu
r , ε

v
r , ε

2
r , ε

q
r and absolute εu

a , ε
v
a , ε

2
a , ε

q
a error tolerances may

depend on the components of the field variables reflecting different magnitude and physical meaning
of these quantities [Hairer et al. 1993]. For the sake of simplicity they are chosen to be constant. The
maximum em =max(eu, ev, eθ , eq) of the weighted error measures is used to determine the new step-size,

1tnew =1tn ·
{

max( fmin, fsafetye−1/( p̂+1)
m ) if em > 1

min( fmax, fsafetye−1/( p̂+1)
m ) if em ≤ 1

, (101)

comparing em to one. In the case em ≤ 1 the computed step is accepted and the integration can march
forward with 1tnew, otherwise the step has to be repeated with a smaller step-size 1tnew. The safety factor
0< fsafety < 1 prevents oscillations in the step-size controller while fmin and fmax keep the step-size from
increasing and decreasing too fast. In practice, typical values for these factors are: 0.8 ≤ fsafety ≤ 0.9,
0.2≤ fmin ≤ 0.5, 2≤ fmax ≤ 3 [Ellsiepen and Hartmann 2001].

Although the proposed standard controller [Hairer et al. 1993] works quite well, the local error control
algorithm yields strong oscillations in the step-size behavior in phases of quickly changing dynamics
[Gustafsson et al. 1988; Gustafsson 1991; 1994; Strehmel et al. 2012]. With regard to a further stabi-
lization and an increased time integration performance of the step-size controller, several approaches
from a control theoretical point of view were studied in [Gustafsson et al. 1988; Gustafsson 1991; 1994;
Söderlind 2002]. In Section 4 we employ a modified hybrid PI-controller based on [Lang 2001], which
works according to the following step-size selection rule

1tnew =1tn ·
{

min
(

fmax,max( fmin, fsafety (1/en+1
m )K I (en

m/e
n+1
m )K P )

)
if em > 1

min
(

fmax,max( fmin, fsafety (1/en+1
m )K I )

)
if em ≤ 1

, (102)

using time-step and error data en
m from the previous time-step. K P and K I define the proportional and

the integral gain of the controller, which can also be dependent on previous time-steps sizes and on
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previously computed error data. For further details about the implementation of the proposed automatic
step-length control we refer to [Gustafsson 1994; Hairer and Wanner 1996; Lang 2001].
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