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A NOTE ON CROSS PRODUCT BETWEEN
TWO SYMMETRIC SECOND-ORDER TENSORS

LÁSZLÓ SZABÓ

The present work is concerned with defining the cross product for symmetric, second-order tensors. The
operation presented in this paper generalizes the classical vectorial cross product from three-dimensional
Euclidean space to symmetric tensor fields on a seven-dimensional vector space. The result of the cross
product operation expresses a nonsymmetric tensor as a sum of a symmetric and a skew-symmetric tensor
with one parameter, which satisfies the usual properties of the vector cross product except the triple cross
product rule. The cross product formulation can be applied to pairs of symmetric or nonsymmetric
tensors where the skew-symmetric parts have the same eigenvectors.

1. Introduction

The vectorial cross product in three-dimensional Euclidean space is broadly used in physics, engineering
and other fields. It is a bilinear operation on two vectors a, b, in three-dimensional vector space, that
outputs a vector, a× b, that is perpendicular to both a and b. The operation is characterized by three
basic properties:

(1) skew-symmetry (a× b=−a× b),

(2) orthogonality (a× b ⊥ a and b),

(3) length rule (|a× b| = |a||b| sinα, where α denotes the angle enclosed by a and b).

Applying the geometric formula for the Euclidean inner product, a · b= |a|||b| cosα, the third property
can be written in the form of Lagrange’s identity: |a|2|b|2 = (a · b)2+ |a× b|2.

An operation similar to the dot product can be defined for two second-order tensors A, B defined on the
same vector space via the double dot product: A : B = ‖A‖‖B‖ cosβ. The analogue of the cross product
between A and B, however, has not been proposed in literature. Analogous to the vectorial cross product
in R3, a cross product of second-order tensors would plausibly have to satisfy the three properties listed
above: skew-symmetry, orthogonality and Lagrange’s identity. Defining such a cross product, however,
is hindered by the same challenges as extending the cross product to higher-dimensional vector spaces.
As a consequence of those challenges, vectorial cross products can only be defined in the three- and
seven-dimensional Euclidean spaces (see, e.g., [Eckmann 1943; Brown and Gray 1967; Massey 1983;
Shaw 1987]). An exception, however, is the cross product between two general second-order tensors
acting on three-dimensional Euclidean space, given that each tensor can be viewed as elements of a
nine-dimensional vector space.

In this paper, we introduce a tensorial cross product for symmetric, second-order tensors. When
viewed as a subspace of seven-dimensional linear space, the six-dimensional subspace of symmetric

Keywords: vector cross product, second-order tensors, tensorial cross product, seven-dimensional vector space.
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tensors inherits a cross product from the ambient seven-dimensional space. The result of this product
operation will be a well-defined but nonsymmetric tensor. This construct is analogous to the three-
dimensional vectorial cross product restricted to vectors in a two-dimensional plane of R3, with the
resulting cross product normal to the plane in R3.

In this paper, we first introduce the notation used. In Section 2, the basic properties of cross product
in three- and seven-dimensional vector spaces are briefly summarized before some definitions of cross
product of second-order tensors are outlined. Sections 3 and 4 present a definition of the cross product
between two symmetric second-order tensors. In Section 5, a simple application of the newly developed
cross product operation is presented on the field of elastoplasticity. Finally, a conclusion of the results is
given in Section 6.

Regarding notation, vectors and tensors are denoted by bold-face characters, the order of which is
indicated in text. The cross product is denoted by ×, the superscript T denotes the transpose and the
trace is indicated by the prefix tr. The tensor product is denoted by ⊗ and the following symbolic
operations apply:

a · b= ai bi and (A · B)i j = AikBk j and A : B = Ai j Bi j ,

with summation over repeated indices. The symbols

|a| =
√

a · a and ‖A‖ =
√

A : A≡
√

tr(A · AT )

are used to denote a norm of vector a and second order tensor A. The three- and seven-dimensional
Euclidean spaces are represented by the symbols R3 and R7, and the orthonormal basis vectors for these
spaces are denoted by ei (i ∈ [1, 3]) and Eα (α ∈ [1, 7]), respectively. The notation [a] and [A] represent
the column vector and square matrix, respectively, formed by the coordinates of the vector a and the
second-order tensor A.

2. Theoretical background

2.1. Cross product of two vectors in a 3D vector space. In this section, we briefly summarize the basic
properties and identities of the cross product defined on the three-dimensional vector space (see, e.g.,
[Fenn 2001; Itskov 2015; Young 1993]). Let a = ai ei and b = bi ei be two vectors in R3. The cross
product of vectors a and b, or a× b, is defined by

a× b= ai b jεi jk ek, (1)

and its coordinates can be expressed as

[a× b]T = [a2b3− a3b2, a3b1− a1b3, a1b2− a2b1], (2)

where εi jk represents the Levi–Civita permutation symbol, ai and bi are the vector coordinates with
i ∈ [1, 2, 3].

The resulting vector has the distinct property of orthogonality between two given vectors, which
implies that

a · (a× b)= 0, b · (a× b)= 0. (3)
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From (2), it is readily seen that the cross product is skew-symmetric, that is

a× b=−b× a. (4)

The magnitude of vector a× b is given by

|a× b| = |a||b| sinα, (5)

where α is the angle between a and b. The angle α can also be defined in the inner or dot product of
vectors a and b:

a · b= |a||b| cosα. (6)

A well-known consequence of formulas (5) and (6) is that the cross product is related to the inner product
via the formula

|a× b|2 = |a|2|b|2− (a · b)2. (7)

Finally, we introduce two important identities. Let c be a vector in R3. The vector triple cross product
identity can be written in the form

a× (b× c)= (a · c)b− (a · b)c. (8)

From (8), it follows that

a× (b× c)+ b× (c× a)+ c× (a× b)= 0, (9)

which is known as the Jacobi identity.

2.2. Some further definitions of the cross product in 3D vector space. A number of ways to extend the
definition of the cross product, in three-dimensional Euclidean space, have been proposed in the literature
(see, e.g., [Altenbach 2012; Rubin 2000; Schade and Neemann 2009; Steinmann 2015]). Let’s take a
brief look at some of these.

2.2.1. Cross product between a vector and a second-order tensor. The left cross product of vector a and
second-order tensor A is defined by

a× A= (ai ei )× (A jl e j ⊗ el)= ai A jl εi jk ek ⊗ el, (10)

while the right cross product is given by

A× a = (A jl e j ⊗ el)× (ai ei )= ai A jlεkli ek ⊗ el . (11)

2.2.2. Cross product of second-order tensors. Define A= Ai j ei ⊗ e j and B = Bi j ei ⊗ e j in R3. Then
we have the following three definitions of the cross product between two second-order tensors:

A×B = Ai j Bk jεpik ep, (12)

A×B = Ai j Bkl εikmε jlnem ⊗ en, (13)

A×B = Ai j Bklεkpj ei ⊗ ep⊗ el . (14)



150 LÁSZLÓ SZABÓ

It is important to note that the operations above do not in general satisfy properties (3)–(9) of the vector
product. For more details on these cross products, we refer to [Altenbach 2012; Rubin 2000; Schade and
Neemann 2009; Steinmann 2015; de Boer 1982].

Note that the formulation (14) is used in the definition of the homography tensor in the field of com-
puter vision, [Shashua and Wolf 2000] and (13) has been used most recently by Bonet et al. [2015].

2.3. Cross product of two vectors in a 7D vector space. Three- and seven-dimensional Euclidean spaces
are the only Euclidean spaces to have a vector product (see, e.g., [Eckmann 1943; Brown and Gray 1967;
Massey 1983; Shaw 1987; Chauhan and Negi 2011; Silagadze 2002; Bisht et al. 2008]). Namely, if
u =uαEα and v =vαEα are two vectors in R7, then a vector u× v also in R7 can be written as

u× v = (uαEα)× (vβ Eβ)= wγ Eγ = w, (15)

where uα, vα, and wα are the vector coordinates, and α ∈ [1, 7]. In what follows, the subscript index
with Greek letters takes the values 1, 2, 3, . . . , 7.

The coordinates of the resulting vector w can be defined by

wγ = uαvβ fαβγ ; (16)

here the symbol fαβγ (see, for example, [Shaw 1987; Chauhan and Negi 2011; Bisht et al. 2008; Baez
2002]) takes the value 1 for the triples

fαβγ =+1 for (αβγ )= (123), (471), (257), (165), (624), (543), (736), (17)

and is otherwise characterized by being completely antisymmetric in the indices (so for example f123=+1
implies f213 = f321 = f132 =−1, and fαβγ = 0 unless all three indices are distinct).

For further consideration, the coordinates wα are listed below:

w1 = u2v3− u3v2+ u6v5− u5v6+ u4v7− u7v4,

w2 = u3v1− u1v3+ u4v6− u6v4+ u5v7− u7v5,

w3 = u1v2− u2v1+ u5v4− u4v5+ u6v7− u7v6,

w4 = u3v5− u5v3+ u6v2− u2v6+ u7v1− u1v7,

w5 = u4v3− u3v4+ u1v6− u6v1+ u7v2− u2v7,

w6 = u2v4− u4v2+ u5v1− u1v5+ u7v3− u3v7,

w7 = u1v4− u4v1+ u2v5− u5v2+ u3v6− u6v3.

(18)

Note that while the three-dimensional cross product is unique up to a sign, there are many seven-
dimensional cross products (see, e.g., [Shaw 1987; Chauhan and Negi 2011; Baez 2002; Dray and
Manogue 2015]). These are defined using the symbol fαβγ and are associated to the octonion multi-
plication table (see, e.g., [Fenn 2001; Chauhan and Negi 2011; Baez 2002; Dray and Manogue 2015;
Ebbinghaus et al. 1991]). In our case, the cross product is consistent with the three-dimensional sub-
spaces, namely if u4 = u5 = u6 = u7 = 0 and v4 = v5 = v6 = v7 = 0, the resulting vector is equivalent
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to (2). For further details of octonion algebra, the reader is referred to [Baez 2002; Dray and Manogue
2015; Fenn 2001].

Like the cross product in three-dimensions, the seven-dimensional product is anticommutative and
u× v is orthogonal both to u and to v, namely

u× v =−v× u, u · (u× v)= 0, v · (u× v)= 0. (19)

Moreover, the Pythagorean formula (6) with (5) and (7) can also be satisfied:

|u× v|2 = |u|2|v|2− (u · v)2. (20)

Finally, it is important to note that the vector product in R7 does not satisfy the triple cross product (8),
nor the Jacobi identity (9). However, the seven-dimensional cross product satisfies the Malcev identity
(see, e.g., [Ebbinghaus et al. 1991]):

(u× v)× (u× t)+ u×[(u× v)× t] − u×[u× (v× t)] + v×[u× (u× t)] = 0, (21)

as a generalization of Jacobi identity. Here t =tαEα is also a vector in R7.

3. Cross product between two symmetric second-order tensors

3.1. The case of two symmetric second-order tensors. In this section we introduce a new definition of
cross product on two symmetric second-order tensors. This operation is based on the seven-dimensional
Euclidean cross product.

Let A= Ai j ei ⊗ e j and B = Bi j ei ⊗ e j be two symmetric second-order tensors in R3 (AT
= A and

BT
= B), with the matrices of these tensors defined by

[A] =

A11 A12 A13

A21 A22 A23

A31 A32 A33

, [B] =
B11 B12 B13

B21 B22 B23

B31 B32 B33

.
Moreover, consider two vectors, u= uαEα and v = vαEα in R7, with coordinates defined using Mandel’s
matrix notation:

[u]T =
[
A11 A22 A33

√
2A23

√
2A13

√
2A12 0

]
, (22)

[v]T =
[
B11 B22 B33

√
2B23

√
2B13

√
2B12 0

]
. (23)

In this case, the dot products are identical, so that

A : B = u · v. (24)

Now, the cross product of vectors u and v is defined by an expression similar to (15), but u7 = v7 = 0:

u× v = (uαEα)× (vβ Eβ)= uαvβ fαβγ Eγ = wγ Eγ = w, (25)
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where the symbol fαβγ is defined in (17), and the components wα, where α ∈ [1, 7], using (18) are
expressed as

w1 = A22 B33− A33 B22+ 2(A12 B13− A13 B12),

w2 = A33 B11− A11 B33+ 2(A23 B12− A12 B23),

w3 = A11 B22− A22 B11+ 2(A13 B23− A23 B13),

w4 =
√

2(A12 B22− A22 B12+ A33 B13− A13 B33),

w5 =
√

2(A11 B12− A12 B11+ A23 B33− A33 B23),

w6 =
√

2(A22 B23− A23 B22+ A13 B11− A11 B13),

w7 =
√

2(A11 B23− A23 B11+ A22 B13− A13 B22+ A33 B12− A12 B33).

(26)

Finally, we define the cross product as
A× B = C, (27)

where the tensor C can be decomposed into symmetric and a skew-symmetric parts:

C = CS +CA. (28)

The components of these tensors are defined by the components of the resulting vector w (25) as follows:

[CS] =

 w1
1
√

2
w6

1
√

2
w5

1
√

2
w6 w2

1
√

2
w4

1
√

2
w5

1
√

2
w4 w3

 , [CA] =
1
√

2
w7

 0 1 0
−1 0 0

0 0 0

 . (29)

Now, we impose the seven-dimensional vector space structure on 3x3 (real) matrices by looking at
symmetric matrices [CS] with 6 coordinates (wα, where α ∈ [1, 6]) together with one antisymmetric
piece (w7).

As in the preceding Section 2.3, we have the following properties:

(i) skew-symmetry,
A× B =−(B× A); (30)

(ii) orthogonality
(A× B) : A= 0, (A× B) : B = 0, (31)

so A× B is orthogonal to both A and B; and

(iii) the dot product
A : B = ‖A‖‖B‖ cosα, (32)

where norm of the cross product,

‖A× B‖ = ‖A‖‖B‖ sinα, (33)

is associated with the same angle α, from which the Pythagorean formula holds:

‖A× B‖2 = ‖A‖2‖B‖2− (A : B)2. (34)
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As a special case, the triple cross product takes the form

(A× B)× A=(A : A)B−(B : A)A. (35)

Note that the triple cross product identity fails for the cross product defined in this section, however,
the Malcev identity (21) is satisfied.

3.2. The case of a symmetric and a nonsymmetric second-order tensors. It is clear that the preceding
definition of a cross product generalizes to the case of one symmetric and one nonsymmetric second-
order tensor. Namely, let AT

6= A be a nonsymmetric second-order tensor, and let BT
= B be a

symmetric second-order tensor. Then, the tensor A can be decomposed into its symmetric AS and
skew-symmetric AA parts, i.e.,

A= AS + AA, (36)

such that
AS =

1
2(A+ AT ), AA =

1
2(A− AT ).

The tensor AA has zero diagonal elements and only three independent scalar quantities, given as a, b
and c. Hence, the matrix of AA may be defined in the form

[AA] =

 0 −a b
a 0 −c
−b c 0

 . (37)

The eigenvalues and the eigenvectors of AA are defined as [Itskov 2015]

λ1 = 0, λ2 = ωi, λ3 =−ωi, (38)

and
AA · v2 = λ2v2, v3 · AA =−λ3v3,

where
ω =

√
a2+ b2+ c2.

The spectral representation of AA takes the form

AA = ω( p⊗ q− q⊗ p), (39)

where
p= 1

√
2
(v2+ v3), q = 1

√
2
i(v3− v2).

The vectors p and q, by a straightforward manipulation, are given by

[ p]T =
1

ω
√

b2+ c2
[−ac,−ab, b2

+ c2
], [q]T =

1
√

b2+ c2
[−b, c, 0].

In addition, we define a third vector
r = p× q. (40)
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Then, in the coordinate system referred relative to the bases ( p, q, r), the matrix of tensor AA becomes

[ ÃA] =

 0 ω 0
−ω 0 0

0 0 0

 , (41)

which has the same form as CA in (29).
Finally, transforming the tensors AS and B to the same system as in ÃA,

Ãs = QT AS Q, B̃ = QT B Q, (42)

where the first, second and third column of matrix of Q contains the vectors p, q and r , respectively.
Now, the vectors u and v have the forms

[u]T = [( Ãs)11 ( Ãs)22 ( Ãs)33
√

2( Ãs)23
√

2( Ãs)13
√

2( Ãs)12
√

2ω],

[v]T = [B̃11 B̃22 B̃33
√

2B̃23
√

2B̃13
√

2B̃12 0],

and the cross product defined previously, using (25) and (18) with v7 = 0 can be determined.
However, the resulting tensor is defined in the rotated system, that is

Ã× B̃ = C̃, (43)

where Ã= Ãs + ÃA. In order to complete the procedure, we need to transform the tensor C̃ back to the
original coordinate system. This is accomplished by noting that

A× B = C = QC̃ QT. (44)

It should be noted that our cross product is also applicable for nonsymmetric tensors as long as their
skew-symmetric parts have the same eigenvectors. In this case the matrices of tensor A and B are

[A] =

 A11 A12+ωA A13

A21−ωA A22 A23

A31 A32 A33

 , [B] =
 B11 B12+ωB B13

B21−ωB B22 B23

B31 B32 B33

 , (45)

with Ai j = A j i and Bi j = B j i and vectors u and v are given by

[u]T = [A11 A22 A33
√

2A23
√

2A13
√

2A12
√

2ωA],

[v]T = [B11 B22 B33
√

2B23
√

2B13
√

2B12
√

2ωB].

The cross product, A× B = C, can be calculated by the relations (18), (25) and (27)–(29). The matrix
of the resulting tensor is defined by

[C] =

 C11 C12+ωC C13

C21−ωC C22 C23

C31 C32 C33

 , (46)
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A33

A32

A31
A23

A22

A21

A13

A12

A11
x3

x2

x1

e3 e2

e1

Figure 1. Illustration of the components of a symmetric second-order tensor.

where the components Ci j , using (18), are expressed as

C11 = A22 B33− A33 B22+ 2(A12 B13− A13 B12+ A23ωB − B23ωA),

C22 = A33 B11− A11 B33+ 2(A23 B12− A12 B23+ A13ωB − B13ωA),

C33 = A11 B22− A22 B11+ 2(A13 B23− A23 B13+ A12ωB − B12ωA),

C23 = C32 = A12 B22− A22 B12+ A33 B13− A13 B33+ A11ωB − B11ωA,

C13 = C31 = A11 B12− A12 B11+ A23 B33− A33 B23+ A22ωB − B22ωA,

C12 = C21 = A22 B23− A23 B22+ A13 B11− A11 B13+ A33ωB − B33ωA,

ωC = A11 B23− A23 B11+ A22 B13− A13 B22+ A33 B12− A12 B33.

(47)

The cross product formulations (47) can be applied to all the cases introduced in this paper, namely:

(i) when A and B are symmetric (ωA = ωB = 0),

(ii) when A is nonsymmetric but B is symmetric (ωA 6= 0, ωB = 0), and

(iii) A and B are nonsymmetric and the skew-symmetric parts of both of them have the same eigenvectors
(ωA 6= 0, ωB 6= 0).

4. An alternative and equivalent definition

The cross product operation defined in this paper can be introduced in a different way. In many engineer-
ing fields, such as solid mechanics, the components of a symmetric second-order tensor (e.g., stress or
strain tensors) can be represented on three mutually perpendicular planes, as shown in Figure 1.
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Consider the following second-order orthonormal base tensors (see [Itskov 2015; Mehrabadi and
Cowin 1990; Moakher and Norris 2006]):

m11 = e1⊗ e1, m22 = e2⊗ e2, m33 = e3⊗ e3,

m23 ≡ m32 =
1
√

2
(e2⊗ e3+ e3⊗ e2),

m13 ≡ m31 =
1
√

2
(e1⊗ e3+ e3⊗ e1),

m12 ≡ m21 =
1
√

2
(e1⊗ e2+ e2⊗ e1),

mskew =
1
√

2
(e1⊗ e2− e2⊗ e1).

(48)

These base tensors are associated with the tensor components (mi j  Ai j ) and the tensors A and B
defined in (45) can be expressed as

A= A11m11+ A22m22+ A33m33+
√

2(A12m12+ A13m13+ A23m23+ωAmskew) (49)

and

B = B11m11+ B22m22+ B33m33+
√

2(B12m12+ B13m13+ B23m23+ωB mskew). (50)

The following relationships are crucial for our method. We define the cross product of the base tensors
with the right-hand rule as follows.

For m11, m22 and m33:

m11×m22 = m33, m22×m33 = m11, m33×m11 = m22. (51)

Moreover, for m1i , m2i and m3i , which are related to three mutually perpendicular planes (Figure 1):

m1i m1 j = εi jk m1k, m2i m2 j = εi jk m2k, m3i m3 j = εi jk m3k, i ∈ [1, 2, 3], (52)

and

m11×m23 = mskew, m22×m31 = mskew, m33×m12 = mskew. (53)

Then the cross product A× B = C, using (51)–(53), can be defined by

C = C11m11+C22m22+C33m33+
√

2(C12m12+C13m13+C23m23+ωC mskew), (54)

and the components Ci j and ωC are listed in (47).

Remark. There are many possible cross products in R7, namely 480 as shown in [Coxeter 1946; Schray
and Manogue 1996], and listed by Barber [2015]. In this analysis, we view the symmetric second-order
tensor as a column vector of six components. However, the order of these components is subjective. But,
when the cross product of the base tensors with the right-hand rules (51)–(53) is taken into account, the
resulting tensor of the cross product is uniquely defined by (47) independently of the order of the elements
in vector u and v. In other words, a given order of the tensor components (·)i j in seven dimensions is
always associated with exactly one multiplication set (triples), fαβγ , which satisfies the right-hand rule
for the base tensors.
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5. A simple application

As an illustration, the applicability of the newly developed cross product operation is demonstrated by
reformulating the constitutive relation of classical elastoplasticity. The deviatoric part of the Prandtl–
Reuss equation in elastic-perfectly plastic case is defined by (see, e.g., [Simo and Hughes 1998])

ṡ = 2G[ė− n(ė : n)], (55)

where s is the deviatoric stress tensor, ė is the rate of the deviatoric strain and

n= 1
R

s, R = ‖s‖, n : n=1. (56)

Equation (55), using the identity (35), can be rewritten as

ṡ = 2Gn× (ė× n). (57)

6. Conclusion

We have introduced a cross-product operation between two symmetric second-order tensors. This op-
eration generalizes the classical vectorial cross product from a three-dimensional Euclidean space to
symmetric tensor fields. The operation developed here utilizes the vectorial cross product defined on
a seven-dimensional vector space. The resulting product tensor is the sum of a symmetric and a skew-
symmetric tensor with one parameter, satisfying the usual properties of the vector cross product with
the exception of the triple cross product rule. Potential application areas for the tensorial cross product
developed here could possibly include computer vision, continuum mechanics and electromagnetism.
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FRACTURE IN THREE DIMENSIONS DUE TO DIE MOTION ON
CRACK SURFACES: FRAMEWORK FOR STUDY OF

CRACK/CONTACT ZONE GEOMETRY

LOUIS M. BROCK

Dynamic steady state growth in 3D of a semi-infinite plane crack in isotropic elastic solids is considered.
Growth is driven by the translation of a rigid die between the two crack surfaces. Sliding friction is
neglected, but the possibility that crack surfaces resume contact in the wake of the die is considered.
Translation and crack growth occur at the same, constant, subcritical speed. An analytical solution is
obtained, and a criterion for fracture based on dynamic energy release rate imposed, with kinetic energy
included. A nonlinear differential equation for crack edge location and constraint equations result, and
together form a framework for study of crack and contact zone geometry.

Introduction

One result of 2D studies of dynamic fracture is an equation of motion for the crack tip [Freund 1990].
In a 3D study, such an equation must describe the contour defined by the crack edge in the crack plane.
For the dynamic steady state, this goal is considered in [Brock 2015a] for semi-infinite crack growth in
an unbounded solid. [Brock 2015b] extends this effort in two ways:

(a) Per the standard model [Freund 1990], dynamic energy release rate is equated with surface energy.

(b) The standard model is itself modified by the inclusion of kinetic energy [Gdoutos 2005].

As in [Brock 2015a], the crack remains in its original plane, and growth is caused by translation at
constant subcritical speed of compression loads on the crack faces. Such growth can be viewed as an
example of hydraulic fracture, e.g., [Mastrojannis et al. 1980]. The present article considers fracture
driven not by specified crack face loading, but by wedging, i.e., rigid die motion between faces of an
initially closed crack.

The 2D, dynamic steady state study of sliding contact, e.g., [Brock and Georgiadis 2000], shows that
for subcritical sliding speed the apex of a smooth-contoured, convex rigid die lies within the contact
zone. In subsequent 2D studies, e.g., [Brock 2004], semi-infinite crack extension by the wedging action
of such a die exhibits the same behavior. Moreover, crack closure (crack surfaces resuming contact in
the wake of the die) is possible. This paper considers the same possibility.

The problem statement and governing equations begin the analysis. The unmixed problem for (largely
unspecified) discontinuities in displacement and traction over a planar area in the same solid is then
addressed. Integral transforms are obtained, and analytical expressions for the inverses applied to the
fracture problem. As stated above, sliding contact is frictionless. For purposes of illustration and possible
application in future work, however, this part of the analysis incorporates sliding friction. A framework

Keywords: 3D, dynamic, criteria, contact zone, crack edge, kinetic energy.
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of equations is developed and its application in the frictionless limit allows study of both crack and
contact zone contours.

Problem statement and governing equations

An unbounded isotropic solid is at rest, but contains a closed slit. In Cartesian basis x = x(xk), k =
(1, 2, 3) the slit comprises semi-infinite region (x3 = 0, x1 < 0) with boundary BS (x1 = 0). A rigid
die is inserted in the slit, and its shape and placement guarantee symmetry with respect to both the
x1x2-plane and x2x3-plane. The die then translates in the positive x1-direction at subcritical constant
speed V . Translation is opposed by friction, and contact zone AC with closed boundary BC forms on
each slit face. Fracture occurs so that BS also moves, and may no longer be rectilinear. Crack closure,
i.e., surfaces resume contact [Brock 2004], is allowed in the wake of the die. Thus a crack gap exists in
region AG between BS and a contour B−C , and AC ∈ AG . The crack closure region is designated A−C , and
the nonfractured region ahead of BS is designated as AN . Contour B−C is also of infinite length, and not
necessarily rectilinear. A dynamic steady state ensues, such that (BS, BC , B−C ) no longer change shape
but translate in the positive x1-direction with speed V . Displacement u(uk) and traction T (σik) do not
vary in the moving frame of (BS, BC , B−C ). Basis x is therefore also translated with speed V so that
uk = uk(x), σik = σik(x) and the (absolute) time derivative (D f, ḟ ) can be written −V ∂1 f . Here ∂k f
signifies xk-differentiation. For convenience, the origin of x is placed in AC . Die shape and expectations
that (BS, BC , B−C ) do not intersect suggest that contours and contour gradients can be defined by single-
valued, continuous functions of (x1, x2).

The equations that govern (u, T ) in the unbounded solid are [Brock 2015a; 2015b]:

∇ · T − ρV 2∂2
1 u = 0, (1a)

1
µ

T = 2ν
1−2ν

(∇ · u)1+∇u+ u∇. (1b)

In (1) (∇,∇2, 1) respectively are gradient, Laplacian, and identity tensor. Constant (µ, ρ, ν) are shear
modulus, mass density and Poisson’s ratio. Equation (1) embodies the assumption that body forces can
be neglected, and uncoupling gives

u = uS + uD, (2a)

(∇2
− c2∂2

1 )uS = 0, (c2
D∇

2
− c2∂2

1 )uD = 0, (2b)

∇ · uS = 0, ∇ × uD = 0. (2c)

Dimensionless quantities are also introduced as

c = V/VS, cD = VD/VS =
√

m+ 1, m = 1/(1− 2ν). (3a)

Here (VS, VD) are shear and dilatational wave speeds, and

VS =
√
µ/ρ. (3b)

Conditions for x3 = 0, (x1, x2) ∈ (AN , A−C ) are

[uk] = [σ3k] = 0. (4a)
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Here [ f ] = f (+)− f (−) and f (±) signifies evaluation at x3 = 0(±). Equation (4a) therefore embodies the
assumption that slip does not occur in slit closure region A−C . Singular behavior of (T ,∇u) is expected
near BS , but not near (BC , B−C ). In AG − AC

[σ3k] = σ
(±)
3k = 0. (4b)

Mixed conditions (for infinitesimal deformation) hold in AC as

u(±)3 = (∓)U, [u1] = [u2] = 0, (4c)

σ
(±)
31 = (±)γ σ

(±)
33 , σ

(±)
32 = 0, [σ33] = 0. (4d)

Here γ is the (dimensionless) friction coefficient. Function U (x1, x2) is defined by shape and orientation
of the die, and thus is bounded, continuous and symmetric in x2. The inhomogeneous Equation (4c)
involves bounded terms, and (4c) and (4d) hold in finite region AC . Solutions (u, T ) should therefore
be finite for |x| →∞.

Constraints also apply:

(I) Traction in AC is finite and continuous.

(II) Normal traction is nontensile in (AC , A−C ) and tensile near BC in AN .

(III) Normal traction in AC is invariant with respect to resultant compressive force on AC [Brock 2012].

(IV) The dynamic energy release rate criterion [Freund 1972] governs, with kinetic energy included
[Gdoutos 2005; Brock 2015b].

Related problem: translating discontinuities

As in [Brock 2015a; 2015b], an unmixed problem for translation of discontinuities in displacement and
traction on the x1x2-plane is considered first. Equations (1)–(3) again hold, and the solution is also
bounded for |x| →∞. ([uk], [σ3k]) vanish for (x1, x2) /∈ AG , and are piecewise continuous functions of
(x1, x2) ∈ AG . Equations (4c) and (4d) are therefore replaced by

[uk] = [σ3k] = 0 (x1, x2) /∈ AG . (5)

For (x1, x2) ∈ AG components of [u] are bounded, but near BC components of [σ3k] can be singular. The
double bilateral transform [Sneddon 1972] is now introduced as

f̂ =
∫∫

12
f (x1, x2) exp(−p1x1− p2x2) dx1 dx2. (6)

Symbol 12 signifies integration over the x1x2-plane. Application of (6) to (1)–(3) gives

ûS = V (±) exp(−B|x3|), ûD = U (±)
D exp(−A|x3|). (7)
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Superscript (±) signifies x3 ≥ 0 and x3 ≤ 0, respectively, and

p1V (±)
1 + p2V (±)

2 (∓)BV (±)
3 = 0, (8a)

(UD)
(±)
1 = p1U (±)

D , (UD)
(±)
2 = p2U (±)

D , (UD)
(±)
3 = (∓)A±U (±)

D , (8b)

B =
√

c2
1− p2

1 − p2
2, A =

√
c2

1/c
2
D − p2

1 − p2
2, c1 = cp1. (8c)

Here (V (±)
1 , V (±)

2 ,U (±)
D ) are arbitrary functions of (p1, p2), and bounded behavior of (7) as |x3| →∞

requires that Re(B, A) ≥ 0 in the cut (p1, p2)-planes. Use of (5)–(8) gives six equations for finding
(V (±)

1 , V (±)
2 ,U (±)) in terms of ([ûk], [σ̂3k]). Solutions are given in Appendix A by (A.1) and (A.2).

Together with the transform of (1b) they generate (A.3).

Transform inversion — general formulas

Equations (4c) and (4d) indicate that application of related problem results to the crack growth problem
requires expressions that relate ([uk], [σ3k], σ

(+)
3k ). Therefore (A.3) is subjected to the inversion operation

corresponding to (6). This results in three equations of the general form∑
j

∫∫
G

f j dξ1 dξ2

( 1
2π i

)2
∫∫

dp1 dp2 C j exp[p1(x1− ξ1)+ p2(x2− ξ2)] = 0. (9)

Here f j (ξ1, ξ2) represents ([uk], [σ3k], σ
(+)
3k ) and C j (p1, p2), coefficient of the corresponding transform

in (A.3). Subscript G signifies integration over AG , and the remaining integrals are taken over the entire
Im(p1)- and Im(p2)-axes. Results in [Brock 2012; 2015a; 2015b] suggest use of transformations

p1 = p cosψ, p2 = p sinψ, (10a)[
x
y

]
=

[
cosψ sinψ
− sinψ cosψ

] [
x1

x2

]
,

[
ξ

η

]
=

[
cosψ sinψ
− sinψ cosψ

] [
ξ1

ξ2

]
. (10b)

Here Re(p) = 0+, |Im(p), x, y, ξ, η| < ∞ and |ψ | < π/2. Parameters (p, ψ), (x, ψ; y = 0) and
(ξ, ψ; η = 0) resemble quasipolar coordinates, i.e.,

dx1 dx2 = |x | dx dψ, dξ1 dξ2 = |ξ | dξ dψ, dp1 dp2 = |p| dp dψ. (10c)

In (8) and (A.1)–(A.3), quantities (A, B, T, DR, DN , DM) can be written as products of functions of p
and, respectively, factors as

A =
√

1− c̄2/c2
D, B =

√
1− c̄2, T = c̄2

− 2, (11a)

R = 4AB− T 2, N = 2AB+ T, M = 2N + c̄2 (11b)

c̄ = c cosψ. (11c)

For Re(A, B) ≥ 0 the requirement that Re(
√
±p) > 0 respectively, in the cut p-plane with branches

Im(p)= 0, Re(p) < 0 and Im(p)= 0, Re(p) > 0 guarantees that (7) is bounded. However Re(A, B)≥ 0
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requires 0 < c < 1, i.e., translation speed is restricted to range 0 < V < VS . Equation (9) assumes the
general form

∑
j

1
iπ

∫
9

C j dψ
∫

Gη
dη
∫

Gξ
f j dξ 1

2π i

∫
|p|
p

dp
(

1,
√
−p
√

p

)
exp p(x − ξ)= 0. (12a)

Now f j = f j (x, ψ; η) represents (∂[uk]/∂ξ, [σ3k], σ
(+)
3k ) and C j = C j (ψ). Integration is along the

positive side (Re(p) = 0+) of the entire Im(p)-axis, and p-dependence is seen to be of two types.
Symbol 9 signifies integration over range |ψ |<π/2. Symbols (Gξ,Gη) signify integration with respect
to (ξ, η) over AG . Performance of the p-integration [Brock 2015a; 2015b] gives

∑
j

∫
9

C j dψ
∫

Gη
dη
(

f j ,
1
π

∫
Gξ

f j dξ
ξ − x

)
= 0. (12b)

The first (nonintegral) term in parentheses vanishes for x /∈ Gξ and appears for x ∈ Gξ ; the integral
(second term) is then evaluated in the principal value (vp) sense. It is noted that (AG, AC , A−C , AN ) and
(∂[uk]/∂ξ, [σ3k], σ

(+)
3k ) can be defined completely in terms of (x, ψ), and that

f (x, ψ)=− ∂

∂x

∫
Gη

dη
∫

Gξ
dξ f (ξ, ψ)δ(x − ξ)δ(η). (12c)

Here δ is the Dirac function. These results imply that form (12b) is satisfied when

∑
C j (ψ)

[
f j (x, ψ),

1
π

∫
Gξ

f j (ξ, ψ)
dξ
ξ−x

]
= 0.

In light of this equality, together with (10)–(12) and (A.3), the three equations in (A.3) give for x3 = 0(+),
|ψ |< π/2:

∂

∂x
[u1] =

cosψ
µR
[σ33] +

2
µRπ

∫
G X

dξ
ξ − x

[
g1(σ

(+)
31 − [σ31]/2)+ g12(σ

(+)
32 − [σ32]/2)

]
, (13a)

∂

∂x
[u2] =

sinψ
µR
[σ33] +

2
µRπ

∫
G X

dξ
ξ − x

[
g12(σ

(+)
31 − [σ31]/2)+ g2(σ

(+)
32 − [σ32]/2)

]
, (13b)

∂

∂x
[u3] =

N
µR

[
[σ31] cosψ + [σ32] sinψ

]
−

2c̄2 A
µRπ

∫
G X

dξ
ξ − x

(σ
(+)
33 − [σ33]/2), (13c)

g1 = M/B sin2 ψ + c̄2 B, g2 = M/B cos2 ψ + c̄2 B, g12 =−M/B sinψ cosψ. (13d)

Subscript G X signifies integration over those segments of Gξ in which integrand terms do not vanish.
In (11) and (13), R is the Rayleigh function, where R → 0+ (c̄ = 0), R = −1 (c̄ = 1) and R = 0
(c̄ = cR, 0 < cR < 1). Term c̄ < c for |ψ | < π/2 in (11c), so that restriction 0 < V < VR now applies,
where VR = cR VS is the Rayleigh speed.
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Basic solution to crack growth problem

In view of (5), (10) and conditions (4) imposed on (AG, AC) and (BS, BC , B−C ), the geometry of these
regions on x3 = 0 can be defined for |ψ |< π/2 as

AC : −r−(ψ) < x < r+(ψ), (14a)

AG : −r−C (ψ) < x < rS(ψ), (14b)

AG − AC : −r−C (ψ) < x <−r−(ψ), r+(ψ) < x < rS(ψ), (14c)

A−C : x <−r−C (ψ), AN : x > rC(ψ). (14d)

Here (r±, rS, r−C ) > 0, and a continuous boundary BC requires that r+(±π/2) = r−(∓π/2). In view
of, e.g., [Brock 2004], it is reasonable to expect that (rS, r−C )� r±, but this expectation plays no role
until the basic solution is illustrated for a specific die geometry. Equations (4) and (10) indicate that for
x3 = 0(+), |ψ |< π/2

AC : [σ32] = [σ33] = σ
(+)
32 = 0, ∂

∂x
[u1] =

∂

∂x
[u2] = 0, (15a)

AG − AC : [σ3k] = σ
(+)
3k = 0, k = (1, 2, 3), (15b)

(A−C , AN ) : [σ3k] =
∂

∂x
[uk] = 0, k = (1, 2, 3). (15c)

In addition, properties assumed for the die suggest that

AN : σ
(+)
31 = σ

(+)
32 = 0, (16a)

AC : [u3] = 2u(+)3 , [σ31] = 2σ (+)31 . (16b)

Equations (13a) and (13b) are thus satisfied when ([u1], [u2]) ≡ 0. Notation (σ (±)33 → σ, ξ → t) is
introduced in (13c), which in view of (4c) and (10) gives

A−C : (vp)
∫

C−

σ dt
t−x
+

∫
C

σ dt
t−x
+

∫
N

σ dt
t−x
= 0, (17a)

A0 : −
2c̄2 A
µRπ

[∫
C−

σ dt
t−x
+ (vp)

∫
C

σ dt
t−x
+

∫
N

σ dt
t−x

]
+

2N
µR

γ σ cosψ =−2∂U
∂x
, (17b)

AN :

∫
C−

σ dt
t−x
+

∫
C

σ dt
t−x
+ (vp)

∫
N

σ dt
t−x
= 0. (17c)

Subscripts (C−,C, N ) respectively signify integration over range t <−r−C , −r− < t < r+ and t > rS .
Solution of set (17) for (x, ψ) ∈ AC and (x, ψ) ∈ (A−C , AN ) respectively, is

σ

µ
=

R
S

[
∂U
∂x

cosπ�+ sinπ�

√
x + r−C
rS − x

(r+− x)1+�

(x + r−)�
(vp)QC

(∂U
∂x
; x
)]
, (18a)
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σ

µ
=

R
S

√
x + r−C
x − rS

(x − r+)1+�

(x + r−)�
QC

(∂U
∂x
; x
)
, (18b)

QC( f ; ξ)=
1
π

∫
C

f
√

rS − t
t + r−C

(t + r−)�

(r+− t)1+�
dt

t − ξ
. (18c)

Equation (18a) satisfies constraint I when∫
C

∂U
∂t

√
rS − t
t + r−C

(
t + r−
r+− t

)� dt
t − r+

= 0. (18d)

In (18a) and (18b) terms (�, S) are defined as

�=− 1
2 +0 < 0, 0 =

1
π

tan−1
(
−γ N cosψ

c̄2 A

)
> 0, (19a)

S =
√
(γ N cosψ)2+ (c̄2 A)2. (19b)

For r+ < x < rS and −r−C < x <−r− respectively in AG − AC

∂

∂x
[u3] =

2c̄2 A
S

√
x + r−C
rS − x

(x − r+)1+�

(x + r−)�
QC

(
∂U
∂x
; x
)
, (20a)

∂

∂x
[u3] = −

2c̄2 A
S

√
x + r−C
rS − x

(r+− x)1+�

(−x − r−)�
QC

(
∂U
∂x
; x
)
. (20b)

Knowledge of ([u3], ∂1[u3]) for r+ < x < rS will be required. Equations (10) and (20a) provide ingredi-
ents for this with

[u3] = −
2c̄2 A
Sπ

∫
C

∂U
∂t

dt
√

rS − t
t + r−C

(t + r−)�

(r+− t)1+�

∫
+

√
τ + r−C
rS − τ

(τ − r+)1+�

(τ + r−)�
dτ
τ − t

, (21a)

∂1 f = cosψ
∂ f
∂x
−

sinψ
|x |

∂ f
∂ψ

, ∂2 f = sinψ
∂ f
∂x
+

cosψ
|x |

∂ f
∂ψ

. (21b)

Symbol + signifies integration over range x < τ < rS . As is appropriate, (21a) vanishes for x→ rS−.

Constraint (I, II, III): preliminary observations

Contour parameters r±(ψ), rS(ψ) and r−C (ψ) remain to be determined. Equation (18d) provides one
equation, and (18a) must satisfy (unilateral) constraint II. If such is indeed the case, the resultant force
on each contact zone AC is

−

∫
9

dψ
∫

C
|x |σ(x, ψ) dx . (22a)

Constraint III requires that σ be invariant with respect to the force, i.e., for arbitrary (δx, δψ)

δσ =
∂σ

∂x
δx +

∂σ

∂ψ
δψ = 0. (22b)
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Therefore for −r− < x∗ < r+

∂σ

∂x
(x∗, ψ)= 0,

∂σ

∂ψ
(x∗, ψ)= 0. (22c)

Equation (22) is examined below in terms of specific die geometry (U ).

Constraint IV: dynamic energy release rate

In this study kinetic energy is considered [Brock 2015b; Gdoutos 2005]. Nevertheless known procedures,
e.g., [Freund 1972], can be used to derive the balance equation required by constraint IV:

D
∫∫

G
eG dx1 dx2 =

∫∫
0
[σ3k u̇k] dx1 dx2+ D

∫∫∫
123

ρ

2
u̇k u̇k dx1 dx2 dx3. (23)

Subscript 123 signifies integration over the unbounded solid. Subscript 0, integration over a thin strip
that straddles crack edge BS and subscript G, integration over gap surface AG . Term eG is the surface
energy per unit area of AG , and is treated as constant [deBoer et al. 1988; Skriver and Rosengaard 1992;
Freund 1990]. The presence of operators ( ḟ , D f ) signifies fixed basis x. Use of translating basis x and
Green’s theorem [Malvern 1969], imposition of the dynamic steady state, and use of (10) give for the
first term in (23),

V eG

∫
9

√
r2

S + (r
′

S)
2 cosψ dψ. (24a)

Here f ′ signifies d f/dψ and it is noted that the radical in (24a) can be written as

rS

√
D2

S + D2
C , (24b)

with

DS =
1
rS
(rS sinψ)′, DC =

1
rS
(rS cosψ)′. (24c)

Because ([u1], [u2])≡ 0, use of (10) gives for the second integral in (23),

µV
∫
9

dψ
∫
+

−

|x | dx σ∂1[u3]. (25)

Here ± signifies integration limits rS±. Term (σ, [u3])= 0 for r+ < x < rS and x > rS , respectively. In
view of (18b) and (20a), however:

σ

µ
≈

R
S

GC

π
√

x − rS
(x→ rS+), (26a)

∂

∂x
[u3] ≈ −

2c̄2 A
S

GC

π
√

rS − x
(x→ rS−), (26b)

GC =
√

lG
(rS − r+)1+�

(rS + r−)�

∫
C

∂U
∂t

(t + r−)�

(r+− t)1+�
dt

√

t + r−C
√

rS − t
, lG = rS + r−C . (26c)

Equation (26a) must give positive σ (constraint II), and this requires that GC > 0. Distance between
BS and B−C , measured along a line passing through (x1, x2)= 0, is lG . In view of (21b), ∂1[u3] exhibits
(26b), but also the derivative of (21a) with respect to ψ . Chain/product-rule differentiation is required for
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this. Quantity U and parameters involving (�, c̄) are given functions of ψ , but (r±, rS, r−C ) are not. For
x→ rS− however, the dominant contribution involves r ′S , and ∂[u3]/∂rS =−∂[u3]/∂x . Equation (21b)
then gives

∂1[u3] ≈ −
2c̄2 A

S
GC DS

π
√

rS − x
(x→ rS−). (27a)

In view of (26a) and (27a) the x-integrand exhibits Dirac function δ(x − rS) [Freund 1972], so that (25)
gives

µV
2π

∫
9

dψ
R
S

G2
CrS DS. (27b)

Singular behavior as x → rS and rapid decay as |x | → ∞ seen in (26) are manifest in ∇u generally.
Therefore integration in the third term in (23) can be confined to a tube of radius rB→ 0 that encloses
BS . Term u̇k = −V ∂1uk in translating basis x for the dynamic steady state, and 3D expressions for
√

(x − rS)
2
+ x2

3 < rB , |ψ | < π/2 are required. Equations (A.1) and (7) lead to û(p1, p2, x3), and
relevant components are given in Appendix B. In light of (B.1) and (10), (∂(ui )D/∂x, [uk], [σ3k]) are
related by three equations of general form (compare (12a)):∑

j

C j
∂

∂x

∫
G X

dξ f j

∫
|p|
p

dp
(

x3

|x3|
,

√
−p
√

p

)
exp[p(x − ξ)− A

√
−p
√

p|x3|] = 0. (28)

The integration range for f j = ∂(ui )D/∂x is |ξ−rS|< rB , for f j = [uk] is r+< ξ < rS and for f j = [σ3k]

is −r− < ξ < r+. Three similar equations in terms of ∂(ui )S , with A replaced by B, follow from (B.2).
Integration with respect to p [Brock 2015a; 2015b] and use of (10) give expressions ∂uk/∂x that are valid
for (|x3| ≈ 0, x→ rS−). The results for x3 ≈ 0(+) are given in Appendix C by (C.1)–(C.3). Expressions
for ∂1[u3](|x3| ≈ 0, x → rS−) can then be developed in a manner similar to that involving ∂1uk . The
last term in (23) entails integration over the tube with radius rB → 0. A standard polar coordinate
system (r, φ), centered on BC , is therefore defined for given ψ in the xx3-plane by

r =
√
(x − rS)

2
+ x2

3 , φ = tan−1 x3

x − rS
(|φ|< π). (29)

Combining (24b), (24c), (26) and (29) with the formulas based on (C.1)–(C.3) and corresponding for-
mulas for x3 ≤ 0 results in (C.4). Use of Green’s theorem [Malvern 1969] in the dynamic steady state
with translating basis x produce for the last term in (23) an integral over the tube surface. Use of (C.4)
and (C.5) then gives for this term

−µV
∫
9

dψ rS

√
D2

S + D2
C

(
c̄3 A
π S

GC DS

)2 ∫
8

E cosφ dφ, (30a)

with

E =
(

T A+
2AA8

+
B B+
B8

)2

+

(
T A−
2A8

+
B−
B8

)2

. (30b)

Symbol 8 signifies integration over range |φ| < π . Parameter c̄ ≤ c < cR < 1. Therefore, for speeds
V which are rapid but well below Rayleigh value VR = cR VS , first order expansions for (A, B) in (11c)
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and (A8, B8) in (C.5) allow approximations

E = 2c̄4 sin2 φ

2

[
1

c4
D
+ 4

(
1−

1
c2

D

)2
sin4 φ

2
cos2 φ

]
+ O(c̄6), (31a)∫

8

E cosφ dφ =−πc4
1 E8, E8 =

1
4

[
1

c4
D
+

23
8

(
1−

1
c2

D

)2
]
. (31b)

Equations (24), (27) and (30a) all involve integration with respect to ψ and exhibit speed V as factor, so
that (23), (24a), (27b), (30a) and (31) give

cosψ
√

D2
S + D2

C − PC G2
C M DS = 0, (32a)

PC =
µ

πeG

R
2S
, M = 1+ 2

(c̄2 A)2

S R
c̄2 E8DS

√
D2

S + D2
C . (32b)

For |ψ |< π/2, (32a) and (24c) define a nonlinear differential equation for rS(ψ), but parameters r−C (ψ)
and r±(ψ) are also involved. Equation (18c) and continuity requirements r+(±π/2)= r−(∓π/2) also
serve as constraints upon (32a).

Comment on effects of kinetic energy

In the limit as c̄→ 0
c̄2 A

S
→ 1, 2

c̄2 A
R
→

c2
D

c2
D − 1

. (33)

Thus the effect of kinetic energy (E8) in (32a) is proportional to c̄2, i.e., V 2. The term M is a magnifi-
cation factor for this effect. Setting M = 1 in (32a) leads for |ψ |< π/2 to

DS −
DC cosψ

√

P2
G − cos2 ψ

= 0 (PG = PC G2
C > cosψ). (34)

Particular case: disk-shaped die

Consider the die to be a disk in the shape of ellipsoid of revolution

x2
1 + x2

2 +C3x2
3 = r2

0 ,

where (C3 � 1). Length r0 is the disk radius, and there should be clearance between disk edge and
(BS, B−C ). Moreover span lC of AC is assumed to be small. Thus for |ψ |< π/2

lC = r++ r−� 2r0, (rS, r−C ) > r0. (35a)

In view of (4c) and (10)
∂U
∂x
=−

x
√

C3r0
. (35b)
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If the expectation that (rS, r−C )� r± is now also imposed, series expansions for functions of (rS, r−C , r±)
can be introduced. In particular integration in (18d) and (26c) can be performed analytically, and con-
straint I and key parameter GC have asymptotic forms

r++�lC − 1/2rS(1+ rS/r−C )
[
(r++�lC/2)(r++�lC)+

3
2�lCr−

]
= 0, (36a)

GC =
√

rS/C3

√
1+ rS/r−C

π S
c̄2 Ar0

(D0 I0+ D1 I1+ D2 I2). (36b)

The (D, I )-terms in (36b) are given in Appendix D. Letting (rS, r−C )→∞ for |ψ |< π/2 in (36a) gives
the result found for sliding on a half-space by an axially symmetric die [Brock 2012]:

r+ =−�lC , r− = (1+�)lC . (37)

Use of (35b) and (36b) in (22) yield asymptotic results x∗+ r−+�lC = 0 and

σ(x∗)= σ ∗ =−
µR

S
√

C3

lC(1+�)1+�

r0(−�)�

[
1+

1
2rS

(1+ rS/r−C )(r++�lC)

]
. (38)

The right hand side of (38) is negative, in accordance with constraint II. Constraint III requires that (38)
be invariant for |ψ |< π/2.

For the disk, the framework developed for study is now seen to consist of:

(a) Properties of the disk (r0,C3, c), disk-solid (γ ) and solid, e.g., (µ, cD, cR, eG).

(b) Values of c such that V is well below VR , but not negligible.

(c) For these inputs, formulas for parameters (r±, rS, r−C ) are to be determined from (32)–(38), Appen-
dix D and invariance of (38). As is noted at the outset, this paper considers frictionless sliding
contact. This does not mean that friction is a negligible effect: parameter � in (19a) plays a key
role in solution formulas derived above, and calculations in Table 1 for various c and (γ, ψ) suggest
that friction effects, while small, become noticeable as sliding/crack growth speed V increases. For
purposes of illustrating the use of the framework, and to take advantage of the low-speed kinetic

(ψ, γ )↓ c→ 0.05 0.1 0.2 0.3

(ψ, 0) −0.5 −0.5 −0.5 −0.5
(0◦, 0.2) −0.48424 −0.48399 −0.48367 −0.48306
(0◦, 0.4) −0.46855 −0.46807 −0.46742 −0.46621
(30◦, 0.2) −0.48634 −0.48608 −0.48594 −0.48556
(30◦, 0.4) −0.47274 −0.47221 −0.47194 −0.47118
(45◦, 0.2) −0.48813 −0.48868 −0.48861 −0.4884
(45◦, 0.4) −0.47629 −0.47739 −0.47725 −0.47682
(60◦, 0.2) −0.49211 −0.49212 −0.49201 −0.49192
(60◦, 0.4) −0.48422 −0.48424 −0.48403 −0.48385
(90◦, γ ) −0.5 −0.5 −0.5 −0.5

Table 1. Parameter � for various c and (ψ, γ ).
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energy parameter result (31b) however, calculations for the disk are now presented for the case
�=−0.5 (γ = 0).

Crack/contact zone contours: key equations

The algebraic manipulations involved in studying the geometry of crack and contact zone contours with
the formulas derived thus far are simpler if performed, in part, in terms of parameters

lC = r++ r−, dC = r+− r−, β = rS/r−C . (39)

Equations (36a) and (38) now give for |ψ |< π/2,

lC

r0
= χ/3[1+ 2β − (1+β/2)

√
1+β

√
(χr0)/(6rS) ], (40a)

dC

r0
=−

3
16(χ/3)

2(1+β)(1+ 2β)2r0/rS, (40b)

χ =
2c̄2 A
µR

√
C3|σ

∗
|(χ, r0/rS) < 1. (40c)

In appropriate fashion (lC , dC , r±) = 0 when |σ ∗| = 0 (χ = 0). The quantity dC = 0 when rS →∞,
a result consistent with (37) when γ = 0. Use of (36a), (39) and (40) in (32) when γ = 0 gives for
|ψ |< π/2:

cosψ
√

D2
S + D2

C − P Mr0/rS DS = 0. (41)

In (41) we have

M = 1+
2c̄4 A

R
E8DS

√
D2

S + D2
C , (42a)

P =
π

C3

µr0

eG

R
2c̄2 A

(χ/4)4 F(β)
(

P
r0

rS
> cosψ

)
, (42b)

F(β)= (2
3β)

2(1+β)(1+ 2β)4. (42c)

For ψ = 0 (41) and (42) give

rS

r0
= P1 M1,

r−C
r0
=

rS

β1r0

(
rS

r0
,

r−C
r0

)
> 1, (43a)

M1 = 1+
2c4 A1

E8
, (43b)

P1 =
π

C3

µr0

eG

R1

2c2 A1
(χ1/4)4 F(β1), χ1 =

2c2 A1

µR1

√
C3|σ

∗
|< 1. (43c)

Subscript 1 signifies that c̄→ c in (11a) and (11b).
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For |ψ | → π/2,

rS ≈
hS

cosψ
, r−C ≈

h−C
cosψ

, (44a)

hS

r0
= P2 M2,

h−C
r0
=

hS

β2r0
, (44b)

M2 = 1+
c2

Dc2

c2
D − 1

E8, (44c)

P2 =
π

C3

µr0

eG
(1− 1/c2

D)
3
(√

C3

4µ
|σ ∗|

)4

F(β2). (44d)

Subscript 2 signifies that c̄→ 0 in (11).
Equations (10) and (44) show that points on (BS, B−C ) approach rectilinear asymptotes that parallel

the x2-axis at great distances from the path of the die. That is,

BS : x1→ hC , |x2| →∞, (45a)

B−C : x1→−h−C , |x2| →∞. (45b)

Term M in (32) and (42a) is the magnification factor for the effect of kinetic energy, and (M1,M2) are
limit cases. To illustrate their behavior, consider a generic solid with properties [Brock and Georgiadis
2000; deBoer et al. 1988; Skriver and Rosengaard 1992]:

µ= 79 GPa, |σY | = 250 MPa, eG = 2.2 J/m2

VS = 3094 m/s, cD = 2.0, cR = 0.933.

Here |σY | is the magnitude of the yield stress in compression. Calculations of (43b) and (44c), based
on these properties, are given in Table 2 for various values of c. Entries show that the kinetic energy
effect in M1 and M2 reaches 17% and 14%, respectively, when V = 0.536VR . In view of (31) therefore,
subsequent calculations are restricted to range 0< c < 0.5.

Crack/contact zone contours: calculations

Table 2 indicates that kinetic energy is a perturbation in the study of crack and contact zone contours
for ψ = 0 and |ψ | → π/2. Equation (34) and rearrangement of (32a) however show that kinetic energy
serves as a singular perturbation in the governing differential equation for 0< |ψ |< π/2,

D2
C +

[( rS

r0 P
cosψ −

2c̄4 A
R

E8D2
S

)2
− 1

]
D2

S = 0. (46a)

c 0.05 0.1 0.2 0.5

M1 1.00139 1.00563 1.02304 1.1734
M2 1.0014 1.0056 1.0224 1.1394

Table 2. Parameters (M1,M2) for various c.
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c 0.05 0.1 0.2 0.4 0.5

C∗3 5.67(104) 5.56(104) 5.34(104) 4.36(104) 3.65(104)

Table 3. C∗3 (χ1 = 1, |σ ∗| = |σY |).

Study of (46a) near ψ ≈ 0 for a given ratio β = rS/r−C suggests asymptotic solution

rS

r0
≈

µr0

C3eG

πF(β1)

cosψ

(
χ1

4

)4( R1

2c2 A1
+ c2 E8

)
. (46b)

This result agrees with (43) at ψ = 0 and approximates the asymptotic behavior of (43a) for |ψ | → π/2.
In view of (10) therefore asymptotic formulas for contours (BS, B−C ) are, respectively√

x2
1 + x2

2 ≈ rS (x1 > 0),
√

x2
1 + x2

2 ≈ r−C (x1 < 0). (46c)

Equations (44a) and (46c) suggest a results similar to that described in [Brock 2015b]. The crack gap
lies in a band which bulges outward from the die along its path, but forms a strip of finite width far away
from the path.

Results (43)–(45) and related calculations for ψ = 0 and |ψ | → π/2 by themselves allow insight
into contour geometry. Parameter σ ∗ is the maximum compressive stress in contact zone AC formed
by the disk, and for the ellipsoidal disk, 1/

√
C3 is the disk thickness-diameter ratio. These are coupled

in (χ, χ1), where χ1 > χ (0< |ψ |< π/2). Analysis is elastic, so |σ ∗|< |σY |, and approximation (40)
requires that χ < 1. Limit case (χ1 = 1, |σ ∗| = |σY |) examination shows that constraint C3 < C∗3 applies.
Calculations of C∗3 for the generic solid in Table 3 imply that the disk can be essentially flat. These
observations suggest examining parameters (lC , dC) for contact zone AC , and (β1, β2) for crack gap AG .

For the same generic solid we choose subcritical values |σ ∗| = 150 MPa and C3 = 10000, with disk
radius r0 = 0.05 m and clearance ratios

rS

r0
= 4 (ψ = 0),

hS

r0
= 1 (|ψ | → π/2).

In Tables 4 and 5 values of, respectively, lC/r0 and dC/r0, for ψ = 0 are given for various (c, β1).
Corresponding values β2 follow from (43a) and (44b) as roots of

F(β2)−
M1

M2

[
2c2 A1

R1

(
1−

1
c2

D

)]3

F(β1)= 0. (47)

c↓ β1→ 0.01 0.1 0.2 0.5 0.8

0.05 0.075 0.091 0.107 0.154 0.201
0.1 0.077 0.092 0.108 0.155 0.203
0.2 0.82 0.096 0.114 0.165 0.215
0.5 0.094 0.112 0.115 0.19 0.248

Table 4. lC/r0 (rS/r0 = 4, ψ = 0).
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c↓ β1→ 0.01 0.1 0.2 0.5 0.8

0.05 −0.0034 −0.00052 −0.00077 −0.00194 −0.004
0.1 −0.00035 −0.00053 −0.00077 −0.002 −0.004
0.2 −0.0004 −0.0006 −0.00088 −0.0022 −0.0046
0.5 −0.00053 −0.00081 −0.0012 −0.003 −0.0062

Table 5. dC/r0 (rS/r0 = 4, ψ = 0).

β1 0.01 0.1 0.2 0.5 0.8 1.0
β2 0.00271 0.0564 0.117 0.275 0.55 0.825

lC/r0 0.0756 0.084 0.093 0.118 0.16 0.205

Table 6. Values of (β1, β2, lC/r0) for rS/r0 = 4, hS/r0 = 2 and c = 0.2.

Study of (42c) for β > 0 shows that F > 0, with rapid monotonic growth. Thus numerical determination
of roots is not difficult. Based on (47) therefore, a snapshot of how gap-die clearance ratios (β1, β2)

compare is given in Table 6. Corresponding values of lC/r0 (|ψ | → π/2) are also given (dC = 0).

Some observations

This paper considered crack growth in the dynamic steady state caused by the translation of a rigid,
smooth die between the surfaces of an initially closed slit. Analysis produced a nonlinear differential
equation for the radial distance rS(ψ) from the die center to the crack edge, where ψ is the angle with
respect to the path of die translation. Equation coefficients, however, depend on radial distances r±(ψ)
and r−C (ψ) to the contours of respectively the crack/die contact zone and the closure zone, i.e., the region
in the wake of the die where crack surfaces resume contact. Moreover, the sliding contact aspects of the
process lead to algebraic constraints. A framework of equations for the process is thus generated, and
was studied to gain insight into the geometry of crack and contact zone behavior. In addition to various
formulas:

(a) Calculations in Table 1 show that neglect of sliding friction could affect solution behavior as
die/crack growth speed increases.

(b) Calculations in Table 2 show that inclusion of kinetic energy is a perturbation for significant, but
clearly subcritical, die/crack growth speeds.

(c) Calculations in Table 3 illustrate the relationship between thickness of a disk-shaped die and maxi-
mum allowable die/crack contact zone compression.

(d) Calculations in Tables 4 and 5 show that contact zone width and location of its center with respect
to die center are sensitive to die/crack growth speed. They are also sensitive to the relative distances,
measured along the die path, from die center to crack edge and crack closure contour. For example,
consider in Table 4 the die speed that is 20% of the shear speed in the solid: if the closure contour
is 100 times further away from the die center than is the crack edge, contact zone width is 8.2% of
the die radius. If it is only 1.25 times further away, the ratio is 24.9%.
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(e) Calculations in Tables 4–6 show that the relative distances measured along the die path are greater
than relative distances far away from the die path. This observation, together with formulas, show
that the gap opened up by die-induced fracture is an infinitely long slit of finite width; its contours
bulge out from the die near its path, but are rectilinear and parallel far away.

Die sliding was frictionless, but friction was considered in derivation of the framework. A complete
solution for the nonlinear differential equation was not attempted. Thus, The framework was not fully uti-
lized here. However, general conclusions concerning the geometry of crack and contact zones did emerge.
These conclusions and the equations themselves could provide the basis for a more general investigation.
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Equation (8c) holds for (A.1), and it is noted that p1V̂ (±)
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For x3 = 0(+) use of (A.1) and (A.2) lead to
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Terms (DR, DN , DM) in (A.3) are given by
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+ 4(p2

1 + p2
2)AB, DN = T − 2AB, DM = 2DN + c2

1, (A.4a)

T = (c2
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2. (A.4b)

Appendix B

In view of (15)–(17), Equations (A.1) and (7) give for x3 > 0(−) and x3 < 0(+),
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p2 B[û3] −

p1 p2

2B
[σ̂31]/µ

)
exp(−B|x3|)= 0, (B.2b)
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In light of (24a), (24c), (26c) and (29) results for r→ 0, |φ|< π , |ψ |< π/2 are
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D0 = 1− 1/rS(r++�lC)+�(1+�)(lC/(2rS))
2, (D.1a)

D1 = 1/(2rS)(rS/r−C − 1)[1− 2/rS(r++�lC)], (D.1b)

D2 = 1/(2r2
S)
[ 3

4(rS/r−C − 1)2+ rS/r−C
]
. (D.1c)

I0 = r++�lC , (D.2a)

I1 = r2
+
+�r+lC −�/2(1−�)l2

C , (D.2b)

I2 = r3
+
+ 3�r2

+
lC − 3�/2(1−�)r+l2

C +�/6(1−�)(2−�)l
3
C . (D.2c)

References

[Brock 2004] L. M. Brock, “Dynamic fracture of transversely isotropic coupled thermoelastic solids: wedging by a cylinder
with friction”, J. Therm. Stresses 27:11 (2004), 1053–1073.

[Brock 2012] L. M. Brock, “Two cases of rapid contact on an elastic half-space: the sliding ellipsoid die, rolling sphere”, J.
Mech. Mater. Struct. 7:5 (2012), 469–483.

[Brock 2015a] L. M. Brock, “Contours for planar cracks growing in three dimensions”, J. Mech. Mater. Struct. 10:1 (2015),
63–77.

[Brock 2015b] L. M. Brock, “Contours for planar cracks growing in three dimensions: influence of kinetic energy”, J. Appl.
Mech. (ASME) 82:11 (09/28 2015), 111011.

[Brock and Georgiadis 2000] L. M. Brock and H. G. Georgiadis, “Sliding contact with friction of a thermoelastic solid at
subsonic, transonic, and supersonic speeds”, J. Therm. Stresses 23:7 (2000), 629–656.

[deBoer et al. 1988] F. R. deBoer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in metals,
North-Holland, Amsterdam, 1988.

[Freund 1972] L. B. Freund, “Energy flux into the tip of an extending crack in an elastic solid”, J. Elasticity 2:4 (1972),
341–349.

[Freund 1990] L. B. Freund, Dynamic fracture mechanics, Cambridge Monographs on Mechanics and Applied Mathematics,
Cambridge University Press, Cambridge, England, 1990.

http://dx.doi.org/10.1080/01495730490498403
http://dx.doi.org/10.1080/01495730490498403
http://dx.doi.org/10.2140/jomms.2012.7.469
http://dx.doi.org/10.2140/jomms.2015.10.63
http://dx.doi.org/10.1115/1.4031585
http://dx.doi.org/10.1080/01495730050130039
http://dx.doi.org/10.1080/01495730050130039
http://dx.doi.org/10.1007/BF00045718
http://dx.doi.org/10.1017/CBO9780511546761


FRACTURE IN THREE DIMENSIONS DUE TO DIE MOTION ON CRACK SURFACES 177

[Gdoutos 2005] E. E. Gdoutos, Dynamic fracture, pp. 239–264, Solid mechanics and its applications 123, Springer, New York,
2005.

[Malvern 1969] L. S. Malvern, Introduction to the mechanics of continuous media, Prentice-Hall, Englewood Cliffs, New
Jersey, 1969.

[Mastrojannis et al. 1980] E. N. Mastrojannis, L. M. Keer, and T. Mura, “Growth of planar cracks induced by hydraulic
fracturing”, Int. J. Numer. Meth. Eng. 15:1 (1980), 41–54.

[Skriver and Rosengaard 1992] H. L. Skriver and N. M. Rosengaard, “Surface energy and work function of elemental metals”,
Phys. Rev. B 46 (Sep 1992), 7157–7168.

[Sneddon 1972] I. N. Sneddon, The use of integral transforms, McGraw-Hill, New York, 1972.

Received 25 Feb 2016. Revised 4 Apr 2016. Accepted 6 Aug 2016.

LOUIS M. BROCK: louis.brock@uky.edu
Department of Mechanical Engineering, College of Engineering, University of Kentucky, Lexington, KY 40506-0038,
United States

mathematical sciences publishers msp

http://dx.doi.org/10.1007/1-4020-3153-X_8
http://dx.doi.org/10.1002/nme.1620150105
http://dx.doi.org/10.1002/nme.1620150105
http://dx.doi.org/10.1103/PhysRevB.46.7157
mailto:louis.brock@uky.edu
http://msp.org




JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 12, No. 2, 2017

dx.doi.org/10.2140/jomms.2017.12.179 msp

MAXWELL’S EQUIVALENT INHOMOGENEITY AND
REMARKABLE PROPERTIES OF HARMONIC PROBLEMS INVOLVING

SYMMETRIC DOMAINS

SOFIA G. MOGILEVSKAYA AND DMITRY NIKOLSKIY

This paper revisits the Maxwell concept of equivalent inhomogeneity in the context of two-dimensional
harmonic problems involving composite or porous materials of periodic structure. As previously done
for elasticity problems, here the scheme is modified to accommodate for the shape of the equivalent
inhomogeneity and for the interactions between the constituents of the cluster. New numerical results for
periodic materials with hexagonal arrangements of fibers (holes) demonstrate that, with these modifica-
tions, the scheme allows for accurate estimates of the effective material properties. It is also shown that,
as for elasticity problems, some harmonic symmetric inhomogeneities possess remarkable properties.
Under the action of uniform far-fields, the averages of the fields within these inhomogeneities preserve
the structure of the applied far-fields.

1. Introduction

This paper presents further studies of the Maxwell [1892] homogenization scheme that is based on
the concept of an equivalent inhomogeneity. The concept suggests that a cluster that represents the
material in question affects the fields at large distances away from it in the same manner as an equivalent
inhomogeneity whose properties are equal to the effective ones.

The idea has a long history (see, e.g., [Milton 2002; Torquato 2002], and the references therein) and
has been reinvented in a few later publications, e.g., [Kuster and Toksöz 1974; Hasselman and Johnson
1987; Lu and Song 1996; Lu 1998; Shen and Yi 2000; 2001; 2004]. In recent years, the concept has
attracted even more attention, (e.g., [McCartney and Kelly 2008; McCartney 2010; Koroteeva et al. 2010;
Mogilevskaya et al. 2010; 2012a; 2012b; 2013; Weng 2010; Pyatigorets and Mogilevskaya 2011; Levin
et al. 2012; Mogilevskaya and Crouch 2013; Kushch 2013; Kushch et al. 2014; Kushch and Knyazeva
2016; Kushch and Sevostianov 2016]) and, in some of these publications, was generalized to include
information on the geometrical arrangement of the constituents of the cluster and their interactions.

The original Maxwell scheme and its later modifications in application to the material with overall
isotropy adopted either a spherical (three-dimensions) or a circular (two-dimensions) shape of the equiv-
alent inhomogeneity. However, the papers [Jasiuk et al. 1992; 1994; Sevostianov and Kachanov 2011;
Kushch and Sevostianov 2015] (see also the references therein) have demonstrated that the shape has an
influence on the far-field asymptotic behavior. Some of these publications, although not directly related
to Maxwell’s concept, are relevant because the analysis of the far-fields is a cornerstone of the original
Maxwell concept.

Keywords: Maxwell equivalent inhomogeneity, harmonic problems, composite and porous materials, effective properties.
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In the context of Maxwell’s scheme, the issue of shape was investigated in [Sevostianov and Giraud
2013; Sevostianov 2014; Kushch et al. 2014; Kushch and Sevostianov 2016; Kushch and Knyazeva 2016].
These authors studied more general cases that involved materials with overall anisotropic behavior and
suggested using a more general shape of the equivalent inhomogeneity (elliptical for two-dimensional
and ellipsoidal for three-dimensional problems). Their major arguments were based on the availability
of closed form analytical solutions for the fields due to these inhomogeneities, see [Eshelby 1957; 1959;
1961]. In [Mogilevskaya and Nikolskiy 2015], it was demonstrated numerically that, for two-dimensional
elastic materials with hexagonal symmetry, the estimates for the effective bulk and shear moduli based on
a hexagonal shape of the equivalent inhomogeneity are more accurate than those based on circular shape.
In addition, while circular-based estimates for some materials diverge with the size of the cluster, their
hexagonal counterparts converge. Also in that paper, it was numerically discovered that two-dimensional
regular polygonal and other symmetric inhomogeneities possess some remarkable properties. Under
the action of uniform far-fields, the averages of the fields within these inhomogeneities have the same
structure as that of the applied far-fields. In [Mogilevskaya and Stolarski 2015], these properties have
been rigorously proved for a wider class of two- and three-dimensional elastic problems, which included
anisotropic and nonuniform materials subjected to either far-field loads or constant transformational
strains within the inhomogeneity.

In this paper, we use the approach in [Mogilevskaya and Nikolskiy 2015] to study the issue of the
shape of Maxwell’s inhomogeneity in the context of problems governed by the Laplace equation (har-
monic problems). New developments presented here include new numerical results on the effective
properties (e.g., conductivities) of two-dimensional materials with hexagonal symmetry, including the
convergence studies. As previously done for elasticity problems in the above cited paper, some remark-
able properties of symmetric inhomogeneities are numerically discovered here for harmonic problems.

The paper is structured as follows. In Section 2, the classical concept of Maxwell’s equivalent inhomo-
geneity for harmonic problems is described and the generalized Maxwell approach is briefly reviewed.
In Section 3, we consider the problem of finding the property of an arbitrarily shaped inhomogeneity
whose asymptotic far-fields’ expansions contain the same leading terms as those for the circular inho-
mogeneity of the same area. In Section 4, we analyze the obtained interrelations between the properties
of the arbitrarily shaped and circular inhomogeneities. This analysis leads to the discovery of some
remarkable properties of regular polygonal and other symmetric inhomogeneities. In Section 5, using
the results on the effective properties obtained with the use of circular equivalent inhomogeneity (see
[Mogilevskaya et al. 2012b]), we recalculate the effective properties for the periodic materials using a
hexagonal shape for that inhomogeneity. We demonstrate that these new estimates converge faster with
the size of the cluster than the corresponding circular inhomogeneity-based estimates. The discussion of
the obtained results and the direction for future work are presented in Section 6.

2. Maxwell’s scheme and a review of the generalized Maxwell approach that
accounts for interaction

The original Maxwell scheme is based on the idea that a cluster that represents the material in question
(Figure 1, left, for the two-dimensional case) affects the fields at large distances away from it in the
same manner as an equivalent circle (sphere) (Figure 1, right) whose property (e.g., thermal or electric
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Figure 1. Cluster of circular inhomogeneities (left) and equivalent inhomogeneity (right).

conductivity) is equal to the effective one. The radius R of the equivalent circle/sphere is chosen such
that the ratio of the total area (volume) occupied by the constituents of the cluster to that of the equivalent
circle (sphere) reflects the volume fraction of the material.

Below we review the basics of the scheme and its generalization in the context of the steady-state heat
conduction problem. However, the scheme can be easily reformulated in terms of any harmonic problem
(e.g., antiplane elasticity in two dimensions). We assume that the cluster consists of N nonoverlapping
fibers/particles that are perfectly bonded to the material matrix. In the original Maxwell’s scheme the
fibers/particles are of circular/spherical shapes. In that scheme, the geometrical arrangement of the
fibers/particles is neglected (from large distances away, they are perceived as to be located at the same
point), and the interactions between them are not accounted for (the contribution of every fiber/particle
to the far-fields is evaluated under the assumption that this fiber/particle is the only one in the matrix).
Maxwell [1892], who considered the three-dimensional case, assumed that all particles had the same
conductivities kp that are different from the conductivity k of the matrix. The latter restriction is easy to
lift as it was done in [McCartney and Kelly 2008; Mogilevskaya et al. 2012a] for the three-dimensional
case and in [Mogilevskaya et al. 2012b] for the two-dimensional case (the latter paper considered the
scheme in the context of antiplane problem).

With the above assumptions, Maxwell’s scheme yields the following result for the effective conduc-
tivity kef of the material (both for two- and three-dimensional problems):

kef

k
=

1− (d − 1)B0

1+ B0 , B0
=

N∑
j=1

c j

(
1−

k j

k

)
1

(d − 1)+ k j/k
, (1)

in which k j is the conductivity of the j-th circular fiber (spherical particle) of radius a j , the variable d
is the dimension of the problem (d = 2 in two-dimensions, d = 3 in three-dimensions), and c j is the
so-called volume fraction of j-th particle/fiber ( j = 1, . . . , N ) that is defined as

c j =

(
a j

R

)d

. (2)

The papers [Mogilevskaya et al. 2012a; 2012b; 2013; Kushch et al. 2013; 2014; Kushch and Knyazeva
2016; Kushch and Sevostianov 2016] generalized the Maxwell scheme by precisely evaluating the
far-fields due to the cluster using semianalytical methods. These methods explicitly account for the
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geometrical arrangements of the particles/fibers in the cluster and their interactions. The effective con-
stants were obtained by comparing the dipole coefficients in the multipole expansions of far-fields with
the dipole coefficients for the equivalent inhomogeneities. The effective conductivity (that was assumed
to be the same as that of the equivalent inhomogeneity) was expressed by equations similar to that of
(1)–(2) but with different parameters, B0 (see e.g., [Mogilevskaya et al. 2012a, Equations (16)–(18)] with
B0
= A∗10 for spherical particles). In the generalized approach in [Koroteeva et al. 2010; Mogilevskaya

et al. 2012a; 2012b], the shape of the equivalent inhomogeneity was assumed to be the same (circular or
spherical) as that in the original Maxwell’s approach while [Kushch et al. 2014; Kushch and Knyazeva
2016; Kushch and Sevostianov 2016] suggested the use of an elliptical (ellipsoidal) shape when the
overall behavior of the materials is anisotropic.

We now consider the two-dimensional case, assuming that shape of the equivalent inhomogeneity
may be arbitrary, and formulate the following auxiliary problem: determine the property of a noncircular
inhomogeneity such that the asymptotic expansions of the far-fields induced by it have the same leading
terms as that induced by the circular inhomogeneity.

3. The expressions for the far-fields induced by the inhomogeneity

We assume that the circular inhomogeneity of radius R and conductivity kc has its center at the origin of
the Cartesian coordinate system x1Ox2 (Figure 2, left). The counterpart problem of the inhomogeneity
D of arbitrary shape and conductivity kI is shown on Figure 2, right, where L is the boundary of that
inhomogeneity. For both problems, it is assumed that the temperature gradient T∞ = αx1 is applied
at infinity. Both problems are governed by the Laplace equation. The solution for the first problem is
well-known (see, e.g., [Honein et al. 1992]). The temperature at the point z = x1+ i x2 located inside the
matrix can be written in the form

T (z)= T∞(z)+α
1− kc/k
1+ kc/k

Re
R2

z̄
, (3)

in which z̄ = x1− i x2.
The solution for the second problem is also available in [Linkov 2002; Dobroskok and Linkov 2009]

and [Dong and Lo 2013]. The temperature at the same point z is

T (z)= T∞(z)+ (1− kI /k)Re 1
2π i

∫
L

T (τ ) dτ
τ − z

. (4)
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Figure 2. Circular inhomogeneity (left) and arbitrarily shaped inhomogeneity (right)
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Assuming that the point z is located far away from the inhomogeneity, one can obtain the following
asymptotic expansion for the complementary temperature T com(z)= T (z)− T∞(z):

T com(z)=−(1− kI /k) Im 1
2π

{
1
z

∫
L

T (τ ) dτ +
1
z2

∫
L

T (τ )τ dτ + O
(

1
z3

)}
. (5)

The comparison of (3) with the leading terms of (5) yields the following set of equations:

Re
∫
L

T (τ ) dτ = 0, (6)

Im
∫
L

T (τ ) dτ =−2πR2 α

1− kI /k
1− kc/k
1+ kc/k

. (7)

It can be shown that

Re
∫
L

T (τ ) dτ =−
∫

D

∂T (τ )
∂x2

dD, (8)

Im
∫

L
T (τ ) dτ =

∫
D

∂T (τ )
∂x1

dD, (9)

which indicates that these integrals are proportional to the corresponding average temperature gradients
within the inhomogeneity.

4. Analysis of the equations of Section 3

It follows from (6) and (8) that ∫
D

∂T (τ )
∂x2

dD = 0, (10)

which indicates that the average temperature gradient within the inhomogeneity has only the x1 compo-
nent, as is the case for the applied temperature field. Certainly, it could only be valid for the problems with
particular types of symmetry. Using virtually the same arguments as those presented in [Mogilevskaya
and Stolarski 2015], it could be proved that (10) is valid for the inhomogeneities whose shapes possess
certain types of rotational symmetry. For such problems, the interrelation between the property of the
inhomogeneity associated with the problem and that of the circular inhomogeneity can be obtained from
(7) and (9) as follows:

kI

k
= 1− 2

1− kc/k
1+ kc/k

α

4
, (11)

in which

4=
1
πR2

∫
D

∂T (z)
∂x1

dD. (12)

5. Results

5.1. Interpretation of the equations of Section 4. We now assume that the area of the inhomogeneity is
the same as that of the circle, πR2. It can be seen that the expression in the right-hand side of (12) is the
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Figure 3. Infinite hexagonal array of inhomogeneities (left), finite cluster of inhomo-
geneities and equivalent hexagonal inhomogeneity in homogeneous matrix material
(middle), finite cluster of inhomogeneities and equivalent circular inhomogeneity (right).

area average of the temperature gradient in the corresponding direction. Therefore, the conductivity of the
inhomogeneity D is expressed by (11) via the corresponding property of the circular inhomogeneity of
the same area and via the average given by (12). However, this average also depends on the conductivity
of the inhomogeneity D, which has yet to be found.

To resolve this issue, we propose the simple iteration procedure in which the boundary value problem
of the inhomogeneity of the same geometry as D but with the properties (kI )0 taken to be the same as for
the corresponding circular inhomogeneity, (kI )0 = kc, and is solved first by means of a boundary element
code. The conductivities kc were evaluated in [Mogilevskaya et al. 2012b]. The new conductivity (kI )1

obtained from (12) is then used in the next iteration. The process is terminated when the difference
between the values obtained in last two iterations becomes less than the prescribed accuracy level.

Below, the proposed approach is used to evaluate the effective conductivities of a two-phase com-
posite material with a hexagonal arrangement of fibers (Figure 3, left). The unit cell of this material
is a hexagon that possesses desirable symmetry with respect to the coordinate axes. The problem of
hexagonal inhomogeneity was solved by using an in-house boundary element code that employs qua-
dratic approximations for the unknown temperature on each straight boundary element. Using this code,
we demonstrated numerically that the conditions of (10) are satisfied up to 11 significant digits. These
conditions, as explained above, imply that the average directional temperature gradients have the same
structure as those of the applied far-field temperature field. These “strange” properties of symmetric
inhomogeneities can be proved theoretically for more general classes of two- and three-dimensional
anisotropic and nonuniform materials using virtually the same arguments as those used in [Mogilevskaya
and Stolarski 2015] for elastic problems.

5.2. Circular fibers. The cluster of N = N (p) = 1+ 3p(p+ 1), where p ≥ 1, circular fibers (holes)
of radius r0 that forms a hexagon D is taken from an infinite double-periodic array of fibers (holes)
(Figure 3, left) and placed in an infinite matrix material (Figure 3, middle). The area |D| of the hexagon
is

|D| =
3
√

3d2

2
p2, (13)

in which d is the distance between the centers of the inhomogeneities.
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N = 7 N = 19 N = 37

N = 61 N = 91

Figure 4. Clusters of N inhomogeneities.

The volume fraction c of the fibers (holes) in the above mentioned double-periodic array is defined as

c =
2πr2

0
√

3d2
. (14)

The equivalent circular inhomogeneity (Figure 3, right), considered in [Mogilevskaya et al. 2012b], has
the same area as the hexagon. The radius of that inhomogeneity can be found from the equation

πR2
=

3
√

3d2

2
p2. (15)

The examples of five clusters of the material with N = 7, 19, 37, 61, and 91 fibers are shown in Figure 4.
Assume that k f is the conductivity of the fibers. Consider the cases:

(i) of holes, where k f /k = 0, and

(ii) of high contrast in fibers/matrix conductivities, where k f /k = 135.

The accurate estimates of the normalized effective conductivity (kper/k) were provided to us by Godin
[2013] (for both cases) and Kushch [2013](for the second case). These authors solved the double periodic
problem using two different methods. For high contrast composites, the results obtained by both methods
were identical up to the requested five significant digits. The estimates kc/k are obtained by the method
described in [Mogilevskaya et al. 2012b]. Note, these estimates take the full account for the interactions
among all fibers of the cluster and its geometry.

The conductivity of the hexagonal inhomogeneity, kh/k, is calculated from the iteration procedure
described in the beginning of this section. The parameter defining the accuracy level was set up as 10−5.
The values of the moduli for each iteration were obtained from (11) in which the conductivity needed
to evaluate 4 was taken from the previous iteration. The number of iterations depended on the volume
fraction and varied from 1 (for low volume fractions) to 64 (for high volume fractions). The boundary
element solution required to evaluate 4 employed 32 elements on each side of the hexagon.
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c
kc/k Periodic (kper/k),

N = 7 N = 19 N = 37 N = 61 N = 91 [Godin 2013]

0.1 0.81814 0.81814 0.81814 0.81814 0.81814 0.81818
0.2 0.66635 0.66635 0.66637 0.66638 0.66639 0.66667
0.3 0.53745 0.53748 0.53754 0.53758 0.53761 0.53844
0.4 0.42621 0.42635 0.42650 0.42660 0.42667 0.42845
0.5 0.32868 0.32901 0.32932 0.32953 0.32967 0.33281
0.6 0.24167 0.24224 0.24277 0.24313 0.24337 0.24834
0.7 0.16227 0.16308 0.16387 0.16441 0.16478 0.17208
0.8 0.08705 0.08791 0.08896 0.08970 0.09021 0.10042
0.85 0.04875 0.04940 0.05051 0.05132 0.05189 0.06383

Table 1. Normalized effective conductivity for hexagonal arrays, k f /k = 0. Circular
equivalent inhomogeneity.

c
kh/k Periodic (kper/k),

N = 7 N = 19 N = 37 N = 61 N = 91 [Godin 2013]

0.1 0.81818 0.81818 0.81818 0.81818 0.81818 0.81818
0.2 0.66661 0.66661 0.66663 0.66664 0.66665 0.66667
0.3 0.53819 0.53822 0.53828 0.53832 0.53835 0.53844
0.4 0.42773 0.42787 0.42802 0.42812 0.42818 0.42845
0.5 0.33129 0.33162 0.33192 0.33213 0.33227 0.33281
0.6 0.24569 0.24625 0.24677 0.24712 0.24736 0.24834
0.7 0.16806 0.16885 0.16962 0.17014 0.17051 0.17208
0.8 0.09506 0.09588 0.09689 0.09761 0.09812 0.10042
0.85 0.05813 0.05876 0.05983 0.06060 0.06116 0.06383

Table 2. Normalized effective conductivity for hexagonal arrays, k f /k = 0. Hexagonal
equivalent inhomogeneity.

The results for kh/k are tabulated in Tables 2 and 4 (the corresponding results for kc/k are given in
Tables 1 and 3). Graphical representation of the results is presented in Figure 5. It could be seen that,
while both circular- and hexagon-based estimates seem to converge with the size of the cluster, the latter
estimates are more accurate. This is true for both cases of contrast in fiber and matrix conductivities. To
better illustrate this fact, the relative errors δ = |kI − kper|/kper are plotted in Figure 6 for cases (i) and (ii)
with volume fractions c = 0.6 and 0.85. The results indicate that both estimates converge linearly, i.e.,

lim
p→∞

|k(p+1)
I − kper|

|k(p)I − kper|
= λ > 0, (16)
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c
kc/k Periodic (kper/k),

N = 7 N = 19 N = 37 N = 61 N = 91 [Godin 2013; Kushch 2013]

0.1 1.2187 1.2187 1.2187 1.2187 1.2187 1.2186
0.2 1.4915 1.4915 1.4915 1.4915 1.4914 1.4908
0.3 1.8426 1.8424 1.8423 1.8421 1.8420 1.8393
0.4 2.3131 2.3124 2.3116 2.3111 2.3107 2.3016
0.5 2.9814 2.9786 2.9760 2.9742 2.9730 2.9464
0.6 4.0179 4.0090 4.0008 3.9954 3.9917 3.9165
0.7 5.8849 5.8582 5.8321 5.8145 5.8026 5.5744
0.8 10.5035 10.4135 10.3056 10.2313 10.1800 9.2521
0.85 17.4471 17.2641 16.9526 16.9526 16.5806 13.9231

Table 3. Normalized effective conductivity for hexagonal arrays, k f /k = 135. Circular
equivalent inhomogeneity.

c
kh/k Periodic (kper/k),

N = 7 N = 19 N = 37 N = 61 N = 91 [Godin 2013; Kushch 2013]

0.1 1.2186 1.2186 1.2186 1.2186 1.2186 1.2186
0.2 1.4910 1.4910 1.4910 1.4910 1.4909 1.4908
0.3 1.8402 1.8400 1.8399 1.8397 1.8396 1.8393
0.4 2.3053 2.3046 2.3038 2.3033 2.3029 2.3016
0.5 2.9592 2.9564 2.9539 2.9521 2.9510 2.9464
0.6 3.9561 3.9475 3.9397 3.9346 3.9311 3.9165
0.7 5.6970 5.6724 5.6486 5.6325 5.6216 5.5744
0.8 9.7125 9.6377 9.5483 9.4865 9.4438 9.2521
0.85 15.0606 14.9286 14.7037 14.5444 14.4333 13.9231

Table 4. Normalized effective conductivity for hexagonal arrays, k f /k = 135. Hexagonal
equivalent inhomogeneity.

where k(p)I is the conductivity of the equivalent inhomogeneity representing a cluster containing N =
N (p) inhomogeneities. The convergence analysis of the tabulated results suggests that the hexagon-based
estimates converge with λ≈ 0.8, which is faster than the circle-based estimates with λ≈ 0.95.

6. Conclusions

In this paper, we studied the shape of Maxwell’s equivalent inhomogeneity for two-dimensional harmonic
problems. For problems with hexagonal symmetry, we report new tabulated and graphically illustrated
numerical results that are obtained with the use of the modified Maxwell’s scheme that accounts for
the interactions within the cluster and employs the hexagonal equivalent inhomogeneity. By performing
convergence studies, we demonstrated that this scheme provides more accurate estimates for the effective
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kc/k (k f /k = 0) kh/k (kt/k = 0)
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N = 37
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Figure 5. Normalized effective conductivity for hexagonal arrays: a) circular equivalent
inhomogeneity, k f /k = 0; b) hexagonal equivalent inhomogeneity, k f /k = 0; c) circular
equivalent inhomogeneity, k f /k = 135; d) hexagonal equivalent inhomogeneity, k f /k = 135.
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Figure 6. Relative error of normalized effective conductivity δ = |kc− kper|/kper for circular
equivalent inhomogeneity, δ = |kh − kper|/kper for hexagonal equivalent inhomogeneity.
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properties of the materials than that employing circular shape. In addition, we demonstrated numerically
that hexagonal inhomogeneities possess remarkable properties. Under the action of a uniform temper-
ature gradient, the averages of the temperature within the inhomogeneity preserves the structure of the
applied far-fields. These “strange” properties of symmetric inhomogeneities can be proved theoretically
for more general classes of two- and three- dimensional anisotropic and nonuniform harmonic materi-
als using virtually the same arguments as those used in [Mogilevskaya and Stolarski 2015] for elastic
problems.
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INTERFACIAL MICROSCOPIC BOUNDARY CONDITIONS
ASSOCIATED WITH BACKSTRESS-BASED HIGHER-ORDER

GRADIENT CRYSTAL PLASTICITY THEORY

MITSUTOSHI KURODA

A strategy for modeling various interfacial boundary conditions associated with a higher-order gradi-
ent crystal plasticity theory is proposed. The gradient theory employed is based on the concept of the
backstress that is produced in response to the spatial variation of the geometrically necessary dislocation
densities. To set arbitrary interfacial boundary conditions for the crystallographic slip at the continuum
level, a model with a single scalar quantity that aims to control the slipping rate at an interface is in-
troduced. This scalar quantity is intended to represent the resultant effects of microscopic mechanisms
such as absorption, emission, and transmission of the dislocations at an interface or a grain boundary
(GB). As a realistic application of this basic idea, an orientation-dependent GB model is proposed,
which incorporates effects of the degree of misorientation between the adjacent grains as well as the
orientation of the GB plane relative to the grains. To illustrate capabilities of the proposed model, the
bicrystalline micropillar compression problem is considered. Finite element simulations are performed
for the bicrystalline micropillars including either a large-angle grain boundary (LAGB) or a coherent
twin boundary (CTB) parallel to the compression axis. The numerical results are qualitatively compared
with experimental observations reported in the literature. It is shown that the proposed GB model has
a capability to represent the overall material responses associated with both LAGB and CTB using the
same material parameter values.

1. Introduction

Size-dependent mechanical behaviors are usually observed in metallic materials at the micrometer or
smaller scales. Predictions of size-dependent material responses are particularly important in the fields
of small-scale electromechanical systems and nanostructured metallic materials. A considerable number
of studies have been done so far with the aim of incorporating the size-effect into plasticity theories since
the pioneering work of Aifantis [1984; 1987]. Since the studies of Kröner [1963] and Mindlin [1964],
nonlocal or higher-order gradient effects in elasticity have been discussed and investigated (e.g., [Gutkin
and Aifantis 1999; Bacca et al. 2013]).

The crystal plasticity theory (e.g., [Peirce et al. 1983; Asaro and Needleman 1985]) is a physically
based model that accounts for the mechanisms of crystallographic slips in metals. However, it does not
account for any size effects intrinsic in the materials. Extensions of the conventional crystal plasticity
theory to incorporate the size effects have been proposed in many studies so far.

One of the methods of introducing the size effects into crystal plasticity theory is to formulate plastic-
strain-gradient-dependent work hardening laws (e.g., [Acharya and Bassani 2000; Ohashi 2005]). Spatial

Keywords: strain gradient plasticity, crystal plasticity, interfaces, grain boundaries, geometrically necessary dislocations.
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gradients of plastic strain (or crystallographic slips) correspond to the densities of geometrically necessary
dislocations (GNDs) [Ashby 1970; Fleck et al. 1994]. The size effects can be introduced into conventional
crystal plasticity models by assuming that the GNDs contribute to the increase in work hardening. In
this type of modeling, only scalar quantities that represent the hardness of slip systems are augmented by
a contribution from the GNDs. Therefore, the formulation of the boundary-value problem remains the
same as that in the conventional theories. Only the tractions or prescribed displacements on the surfaces
of a body are considered as the boundary conditions, and prescribing values of slips or their gradients at
the boundaries is outside the scope.

Another method of incorporating the size effects, which is of interest in the present study, is higher-
order extensions of the conventional theory (e.g., [Gurtin 2002; 2008a; Borg 2007; Yefımov et al. 2004b;
Evers et al. 2004; Arsenlis et al. 2004; Bayley et al. 2006; Levkovitch and Svendsen 2006]). These
higher-order theories open up the possibility of modeling extra boundary conditions for slips and their
gradients at an interface or a grain boundary. Higher-order gradient crystal plasticity theories have been
developed with two different trends so far. According to the classification proposed by Kuroda and
Tvergaard [2008b], they are referred to as the “work-conjugate type” and “non-work-conjugate type”
of theories. The first type is based on the concept of higher-order stresses that are introduced as work
conjugates to spatial gradients of crystallographic slips and higher-order tractions that are postulated to
exist as work conjugates to crystallographic slips on external surfaces or internal interfaces (e.g., [Gurtin
2002; 2008a]). This type introduces, as the major premise, a virtual work principle extended with the
higher-order quantities and their work conjugates. Equilibrium or balance equations in the form of partial
differential equations are derived from this premised virtual work statement. The second type is based
on the concept of a backstress, that is, a long-range internal stress produced by an array of GNDs. The
backstress effect can be incorporated directly into the conventional framework of a crystal plasticity
theory (e.g., [Groma et al. 2003; Yefımov et al. 2004b; Evers et al. 2004; Arsenlis et al. 2004; Kuroda
and Tvergaard 2006]). According to the classical dislocation theory, the spatial gradient of GND density
is the origin of the backstress (equivalently, the internal stress), and superposition of the backstress and
the externally induced resolved shear stress is taken to be an effective shear stress that activates slip
deformations [Evers et al. 2004]. This second type of theory has a higher-order nature in the sense that
extra boundary conditions for the crystallographic slips can be imposed, but it does not directly rely on
higher-order stress quantities. Some mathematical equivalence between these two types of higher-order
gradient crystal plasticity theories has been emphasized by Kuroda and Tvergaard [2008a; 2008b].

In the context of higher-order gradient crystal plasticity theories, two kinds of extreme extra bound-
ary conditions have been mostly considered in previous applications. One is the microscopically hard
condition, which supposes situations that all dislocations stop at the boundary and consequently the slip
or its rate is fully constrained at the boundary. The other is the microscopically free condition, which
assumes that the higher-order traction is zero in the work-conjugate type formulation [Gurtin 2002] or no
GND density is required at the boundary in the non-work-conjugate type formulation [Evers et al. 2004;
Kuroda and Tvergaard 2008b]. Gurtin and Needleman [2005] proposed a model of grain boundary
behavior within the work-conjugate type framework, which accounts for a flow of the Burgers vector
across the GB, and suggested, as an example, the defect-free condition, which assumes that the Burgers
vector flow out of one grain is equal to that into the adjacent grain. Recently, Gurtin [2008b] has proposed
another model of grain boundary conditions, which accounts for grain misorientation and grain-boundary
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orientation relative to the grains. Van Beers et al. [2013] proposed a model of grain boundary interface
mechanics based on a mixed treatment of the work-conjugate and non-work-conjugate formulations, in
which the slip rates at the grain boundary are assumed to be governed by bulk-induced and energetic
interfacial higher-order microforces. Ekh et al. [2011] proposed a grain boundary model in which a
newly defined grain boundary microstress is assumed to activate the slip at the boundary, depending on
the misorientation between the adjacent grains. Wulfinghoff et al. [2013] and Bayerschen et al. [2015]
proposed a gradient plasticity model with an interface yield condition that accounts for the resistance of
grain boundaries against plastic flow occurrence. They used an equivalent strain rather than slips on the
individual slip systems as a fundamental field variable in order to simplify the formulation of the model.

Recently, for the purpose of clarifying the nature and roles of grain boundaries, experimental stud-
ies on bicrystalline micropillars have been conducted. Ng and Ngan [2009] and Imrich et al. [2014]
independently showed that a large-angle grain boundary (LAGB) can act as a strong barrier to mobile
dislocations, leading to a significant dislocation pile-up and an increase in dislocation density, for the
size range (diameter or edge length of micropillars) of 6–7µm. In contrast, Kunz et al. [2011] reported a
completely opposite observation on submicron-sized bicrystalline pillars. The grain boundaries in their
specimens seemed to act as sinks absorbing dislocations. Kim et al. [2015] stated that the LAGB in their
submicrometer-sized bicrystalline pillar showed an ability to nucleate dislocations and did not act as a
strong barrier to dislocations. These observations confirm that the nature of grain boundaries is complex
and is not simply a function of the orientation of the boundary with respect to the grains or the relative
misorientation of the grains. According to the studies of Ng and Ngan [2009], Kunz et al. [2011], and
Imrich et al. [2014], for micropillars of different sizes, the distance from the grain boundary to the free
surface may have some influence on the nature of the grain boundaries. Imrich et al. [2014] further carried
out compression tests on a bicrystalline micropillar with a size of ∼ 4µm and a coherent twin boundary
(CTB). The CTB sample showed mechanical behavior very similar to that of single-crystalline samples,
as if no grain boundary had existed. Hirouchi and Shibutani [2014] also conducted compression tests
on copper bicrystalline micropillars with 63 CTB and found that the bicrystalline micropillars exhibited
a stress-strain response and deformation behavior fundamentally similar to those of single-crystalline
micropillars having one of the crystal orientations that constitutes the bicrystalline micropillars.

In the present study, an alternative strategy for treating the higher-order interfacial boundary conditions
within the non-work-conjugate type (or backstress-based) framework of the gradient crystal plasticity
theory is proposed. To treat various interfacial boundary conditions for the crystallographic slip in a
simplified manner, a model with a single scalar quantity that aims to control the slipping rate at an
interface is introduced. This scalar quantity represents the resistance of an interface or a grain bound-
ary to slip occurrence, which results from finer-scale phenomena such as absorption, emission, and
transmission of the dislocations that are not resolved in the continuum modeling of crystal plasticity.
As mentioned above, the grain boundary nature observed in experiments reported in the literature is
complex. The real mechanism by which the observed grain boundary behavior is manifested has not
been clarified sufficiently at present. Given this circumstance, the proposed model may seem to be rather
phenomenological. However, it has plenty of room for extension, which can incorporate geometric
relations of adjacent grains, grain boundary yielding, and many other phenomena that are likely to occur
at the grain boundaries and internal interfaces. The present model may also be used to represent specific
characteristics of external surfaces partially penetrable to dislocations, which may correspond to surfaces



196 MITSUTOSHI KURODA

having fragile oxide layers or microscopically incomplete contact surfaces. The first part of the paper is
devoted to illustrating the basic idea of the proposed model and demonstration of its fundamental nature
through analysis of a typical benchmark problem, i.e., the constrained simple shear problem. In the
following parts, a generalization of the model and its application to a practical problem are presented.
The bicrystalline micropillar compression problem is adopted to illustrate the efficiency of the proposed
model.

2. Illustrations of basic idea

2.1. Backstress-based higher-order gradient crystal plasticity theory: the simplest version. To illus-
trate the fundamental nature of the proposition introduced in the present paper, we confine our attention
to a backstress-based higher-order gradient crystal plasticity theory that is as simple as possible but not
too simple [Kuroda and Tvergaard 2006]. In the subsequent sections that are devoted to its generalization
and application to a practical problem, we will employ a much more generalized version of the theory
[Kuroda and Tvergaard 2008a; 2008b].

Under a small strain assumption, the total strain rate Ė is assumed to be decomposed into elastic and
plastic parts:

Ė = (∇ ⊗ u̇)sym = Ėe
+ Ėp, (1)

where u̇ is the displacement rate vector, ∇ is the spatial gradient operator, ⊗ is the tensor product, the
subscript sym denotes the symmetric part of the tensor, the superscripts e and p stand for “elastic” and
“plastic”, respectively, and a superposed dot denotes the material-time derivative.

Hooke’s law is applied to represent elasticity,

Ėe
= C−1

: σ̇ , (2)

where C is a fourth-order elasticity modulus tensor, the superscript −1 denotes the tensor inverse, and
σ is a symmetric (Cauchy) stress. Plastic deformation is assumed to take place through a single slip:

Ėp
= γ̇ P, P = (s⊗m)sym, (3)

where γ̇ is the slip rate, s and m are the unit vectors specifying the slip direction and slip plane normal,
respectively, and P is the Schmid tensor. In this simplified theory, it is assumed that s and m constitute
a planar slip system, i.e., they are both on the X1-X2 plane and p= s×m is parallel to the X3-axis.

The yield plane in the stress space is defined by

f = |τ − τb| − g = 0, (4)

where τ , τb, and g are the resolved shear stress (RSS), backstress, and critical resolved shear stress
(CRSS) respectively given by

τ = σ : P, τb = β∇ρG · s, g = τ0+ h
∫ t

0
|γ̇ | dt. (5)

Here, ρG is the geometrically necessary dislocation (GND) density, β is a coefficient for dimensional
consistency with dimensions of [force × length], which is assumed to be constant, τ0 is an initial value
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of CRSS, h is a slip hardening modulus taken to be constant for simplicity, and t is time. The GND
density ρG must satisfy the relation [Ashby 1970; Arsenlis and Parks 1999]

ρG+
1
b
∇γ · s = 0, (6)

where b is the magnitude of the Burgers vector. Note that ρG in (5)2 and (6) represents the density of
edge-type GNDs1 as we consider the planar slip system.

For continued plastic deformation, the stress point must remain on the yield plane; therefore,

ḟ =
∂τ

∂σ
: σ̇ −β∇ρ̇G · s− hγ̇ = 0, (7)

which leads to

γ̇ =
P : C : Ė−β∇ρ̇G · s

A
, A = P : C : P + h. (8)

In the derivation of the above relation, it is assumed that the signs of γ̇ and τ − τb are identified. Sub-
stituting (8) into (3), and combining it with (2) and (1), we have the elastoplasticity constitutive relation

σ̇ = Cep
: Ė+

β

A
C : P∇ρ̇G · s, (9)

where
Cep
= C − 1

A
(C : P)⊗ (P : C). (10)

Now, we introduce an incremental form of the virtual work principle as∫
V

˙̃E : σ̇ dV =
∫

St

˙̃u · ṫ dS, ˙̃E = ( ˙̃u⊗∇)sym. (11)

Here, ˙̃u is the virtual displacement rate that takes zero on part of the surface, Su , where real displacement
rates are prescribed, otherwise it can take any arbitrary value, and ṫ is the surface traction rate prescribed
on the remaining part of the surface, St (recall that formally we write S = St ∪ Su with the total surface S
of the body under consideration). Substituting (9) into (11) gives∫

V

˙̃E : Cep
: Ė dV +

∫
V

˙̃E : C : P
β

A
∇ρ̇G · s dV =

∫
St

˙̃u · ṫ dS. (12)

Equation (12) has two independent variables, u̇ and ρ̇G, which cannot be determined by a single equation.
Now, we view (6) as an additional governing equation implying that the GND density balances with

the spatial gradient of a slip in the slip direction. A weak form of the incremental relation of (6) becomes∫
V
ρ̃ρ̇G dV −

∫
V

1
b
∇ρ̃ · sγ̇ dV =−

∫
Sγ

1
b
ρ̃n · sγ̇ dS, (13)

where ρ̃ is a virtual weighting function that is zero on part of the surface, Sρ , where ρ̇G is prescribed,
otherwise it can take any arbitrary value, n is a unit normal to the boundary, and γ̇ is a slip rate prescribed

1Different researchers sometimes use different sign conventions for the GND densities. The sign convention for the edge-
type GND density in (6) follows that introduced by Arsenlis and Parks [1999].
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on part of the surface, Sγ (formally we consider S = Sρ ∪ Sγ ), except for the special case of n · s = 0,
where γ̇ must be free of any constraint. Substituting (8) into (13) gives

−

∫
V

1
bA
∇ρ̃ · (s⊗ P) : C : Ė dV +

∫
V

[
ρ̃ρ̇G+

β

bA
∇ρ̃ · (s⊗ s) · ∇ρ̇G

]
dV =−

∫
Sγ

1
b
ρ̃n · sγ̇ dS. (14)

2.2. Treatment of microscopic boundary conditions: a proposition. In previous studies [Evers et al.
2004; Kuroda and Tvergaard 2006; 2008a; 2008b], the following two types of microscopic boundary
condition have been considered:

• Microscopically hard condition:

n · sγ̇ = 0, (15)

• Microscopically free condition:

ρ̇G = 0. (16)

In general cases of n · s 6= 0, (15) is equivalent to γ̇ = 0.
An alternative representation of the microscopic boundary conditions is considered. Suppose that the

value of γ̇ coincides with γ̇ given by (8) for n · s 6= 0. In this case, the boundary is said to be transparent,
i.e., it possesses the same property as that of the bulk part of the material. Now, we formally write the
slip rate at the boundary as

γ̇ = φγ̇ , (17)

where φ is a dimensionless scalar quantity. Then, the two extreme boundary conditions can be written as

φ = 1 for the transparent condition, (18)

φ = 0 for the microscopically hard condition. (19)

Thus, the domain of φ is naturally assumed to be

0≤ φ ≤ 1. (20)

A value of φ within 0< φ < 1 gives a relaxed microscopic boundary condition for the slip at an interface.
Substituting (17) with (8) into (14) gives

−

∫
V

1
bA
∇ρ̃ · (s⊗ P) : C : Ė dV +

∫
Sγ

φ

bA
ρ̃n · (s⊗ P) : C : Ė dS

+

∫
V

[
ρ̃ρ̇G+

β

bA
∇ρ̃ · (s⊗ s) · ∇ρ̇G

]
dV −

∫
Sγ

φβ

bA
ρ̃n · (s⊗ s) · ∇ρ̇G dS = 0. (21)

The present treatment of the boundary may also represent specific characteristics of external surfaces.
For example, a strongly passivated surface is modeled by φ = 0, and an external surface coated by an
incomplete or fragile thin oxide layer that is partially penetrable to dislocations may be modeled by
0 < φ < 1. It is noted that Yefimov et al. [2004a] have assumed a condition equivalent to φ = 1 (i.e.,
γ̇ = γ̇ ) to represent a perfect free surface of a bent foil specimen.
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σ12

X2
H

s

m

X1

σ12

Figure 1. Constrained simple shear problem of a strip with an infinite lateral length and
a single slip system whose slip direction is parallel to the thickness direction. The micro-
scopically hard condition is imposed on the bottom surface, whereas flexible boundary
conditions (0≤ φ ≤ 1) are adopted on the upper surface.

2.3. Finite element equation. A finite element equation for the present model is derived straightfor-
wardly from (12) and (21), choosing u̇ and ρ̇G as the nodal quantities to be solved. It is written as

[
K(uu) K(uρ)
K(ρu) K(ρρ)

]{
U̇
ṖG

}
=

{
Ḟ
0

}
, (22)

where {U̇} is a vectorial array of nodal values of u̇, { ṖG} is a vectorial array of nodal values of ρ̇G, [K(ab)]

(where “a” and “b” stand for “u” or “ρ”) are the corresponding stiffness matrices, and {Ḟ} is a vectorial
array of nodal forces, which corresponds to the right-hand side of (12). Actual numerical computations
are performed using an adoptive forward Euler time integration scheme proposed by Yamada et al. [1968].

2.4. Illustrative examples. To illustrate the effects of the proposed microscopic boundary conditions,
the constrained simple shear problem is considered. A strip with a height H in the X2-direction and an
infinite length in the X1-direction is subjected to simple shear (Figure 1). This material has only one
slip system whose slip direction and slip plane normal coincide with X2- and negative X1-directions,
respectively. The bottom surface is assumed to act as a microscopically hard boundary (i.e., φ = 0),
whereas various values of φ in the range 0≤ φ ≤ 1 are applied to the top surface to see the fundamental
nature of the proposed boundary model. The displacement rate U̇ in the X1-direction on the top surface
is prescribed, and the macroscopic shear strain 0 is defined as 0 =U/H .

The thickness of the strip is discretized with 60 quadrilateral elements in the thickness (X2-) direction,
and only one element is assigned in the lateral (X1-) direction. Periodic conditions are applied to both
sides of the finite element model. The serendipity shape functions are used to interpolate the displacement
rate field, while the bilinear shape functions are employed to interpolate the GND density rate field.
The coordinates of the nodes in the bilinear four-node elements are set to be identical to those of the
corner nodes in the serendipity eight-node elements. The Gaussian quadrature with 2 × 2 points is
used for volume integrals and that with 2 points is used for surface integrals. This combination of the
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Figure 2. Computational results for constrained simple shear problem with relaxed
microscopic boundary conditions at the upper surface for a relative length scale of
l/H = 1.0. Distributions of slip in the thickness direction at a macroscopic shear strain
0 of 0.01 (left). Curves of shear stress versus macroscopic shear strain (right).

shape functions and the Gaussian quadrature order gives satisfactory numerical results free of volumetric
locking and unexpected stress oscillation phenomena [Kuroda 2011; 2015].

The material constants are µ/τ0 = 333.3 (µ is the shear elastic modulus) and h/τ0 = 16.67. The
coefficient β in (5)2 is formulated as

β = l2bτ0, (23)

where l is a constant material length scale.
The responses of the strip with a size of l/H = 1 are shown in Figure 2. The distributions of slip γ in

the X2-direction at 0= 0.01 are depicted2 in Figure 2 (left) for φ values of 0≤ φ ≤ 1. Curves of the shear
stress σ12 (that equals −τ ) versus 0 are plotted in Figure 2 (right). For φ = 0 (i.e., the microscopically
hard condition), the analytical solution [Bittencourt et al. 2003] is also shown to validate the quality of
the present finite element solutions. In Figure 2 (left), it is seen that the constraint on γ at X2 = H is
released with the increase in φ. The slip distribution profile for φ = 0.5 is comparable to that for φ = 0.
Even for φ = 0.9, the value of γ at X2 = H is still smaller than half of the maximum of γ . In the
range of φ > 0.9, the slip distribution profile is sensitively changed with φ. For φ = 1, the condition of
dγ̇ /dX2 = 0 (equivalently, ρ̇G = 0 in this case) is established.

The distributions of slip at 0 = 0.01 for a relative length scale of l/H = 0.3 are depicted in Figure 3.
In this case, clear boundary layers are formed. The overall behavior associated with the change in φ
is similar to that for l/H = 1. Variation of the stress-strain curves due to a change in the interfacial

2The values of γ are computed at the Gaussian points and they are constant within each element in the present problem.
The smoothly plotted curves shown in Figure 2 (left), as well as in Figure 3, are obtained using the values of γ evaluated at
the positions of the corner nodes as the average of values in the adjacent elements. However, the values at the boundaries of
the body cannot be evaluated in this manner. Thus, the computed curves do not reach the boundaries at X2/H = 0 and 1 in
Figures 2 (left) and 3.
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l/H = 0.3

φ = 1.0 0.99 0.9 0

φ = 0 (analytical)

Elasto-plasticity
Elasto-viscoplasticity (m = 0.02)

Figure 3. Distributions of slip in the thickness direction for constrained simple shear
problem with relaxed microscopic boundary conditions at the upper surface for a relative
length scale of l/H = 0.3 at 0 = 0.01.

microscopic boundary conditions is very small in the case of l/H = 0.3, and their depiction is omitted.
The trend is fundamentally the same as that shown in Figure 2 (right) for l/H = 1.0.

In addition to the rate-independent elasto-plasticity analysis, an elasto-viscoplastic version of the
theory, which has been frequently employed in previous studies [Kuroda and Tvergaard 2006; 2008a;
2008b; El-Naaman et al. 2016], is examined here. The power law relation is used, instead of the yield
condition (4), given as

γ̇ = sgn(τ − τb)γ̇0

(
|τ − τb|

g

)1/m

, (24)

where m is a rate sensitivity exponent and γ̇0 is a reference slip rate. In the present example, m is chosen
to be 0.02, which is a realistic value for common metals at room temperature, and γ̇0 is identified with
0̇ in the computations. In the limit m→ 0, (24) reduces to (4). In the finite element computations of
the elasto-viscoplastic version, (13) is directly used for the GND density analysis, as in previous studies
[Kuroda and Tvergaard 2006; 2008a; 2008b]. Equation (17) with (24) is applied to the right-hand side
of (13). It has been confirmed that the responses of an elasto-viscoplastic material governed by (24)
with the microscopic boundary conditions prescribed by the use of (17) approximate the corresponding
elasto-plasticity responses, as observed in Figure 3. Note that an extrapolation is required to evaluate a
value of γ̇ at the edge of the element at the boundary because γ̇ is computed inside the element in the
present theory. In the present simple shear problem with the finite element type used here, the value of
γ̇ is constant within each element, and this constant value has been used as the extrapolated value at the
edge of the element at the upper end of the finite element model. The effect of such extrapolation on the
solution is subordinated in an appropriately discretized finite element meshing.

2.5. Three-dimensional, multislip description of the theory. In the above, we confined our attention to
the simplified theory with a single-slip system in the two-dimensional setting to illustrate the basic idea of
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the interfacial boundary condition newly proposed. The three-dimensional form of the theory with multi-
slip systems (but still in the small strain regime [Kuroda and Tvergaard 2008b]) is briefly described below.

For multislip conditions, adoption of the viscoplastic formulation is advantageous because it is free
from the problem of the unique determination of the slip rate on each slip system, which is encountered
in rate-independent crystal plasticity analyses. Thus, (24) is extended to

γ̇ (α) = sgn(τ (α)− τ (α)b )γ̇0

(
|τ (α)− τ

(α)
b |

g(α)

)1/m

, (25)

where α is the slip system number, and

τ (α) = σ : P (α); P (α) = (s(α)⊗m(α))sym, (26)

g(α) = τ0+

∫ t

0

∑
β

h(αβ)|γ̇ (β)| dt, (27)

τ
(α)
b = l2bτ0(∇ρ

(α)
G(e) · s

(α)
+∇ρ

(α)
G(s) · p(α)). (28)

Here, h(αβ) is a slip hardening moduli matrix that can incorporates latent hardening effects3, ρ(α)G(e) is the
density of the edge-type GNDs, ρ(α)G(s) is the density of the screw-type GNDs, and p(α) = s(α) ×m(α).
In (28), interactions between the slip systems are neglected for simplicity within the present paper. More
elaborate backstress models with the slip system interactions were proposed by Evers et al. [2004] and
Bayley et al. [2006], and were used in [Kuroda and Tvergaard 2008a; 2008b] and [Kuroda 2013].

Weak forms of the incremental relations of the edge- and screw-type GND density balances4 are,
respectively, ∫

V
ρ̃ρ̇

(α)
G(e) dV −

∫
V

1
b
∇ρ̃ · s(α)γ̇ (α) dV =−

∫
Sγ

1
b
ρ̃n · s(α)γ̇ (α) dS, (29)∫

V
ρ̃ρ̇

(α)
G(s) dV −

∫
V

1
b
∇ρ̃ · p(α)γ̇ (α) dV =−

∫
Sγ

1
b
ρ̃n · p(α)γ̇ (α) dS, (30)

with
γ̇ (α) = φ(α)γ̇ (α). (31)

A finite strain version of the theory has been given in [Kuroda and Tvergaard 2008a]. Equations for
the finite strain version are not repeated here for brevity.

3. Strategy for generalization of φ(α)

Consider a body composed of two parts (which may be grains), A and B, with a grain boundary (GB) or
an interface SGB (Figure 4). Under multislip situations, the expression of the present boundary model (17)
is extended to

γ̇
(α)
A = φ

(α)
A γ̇

(α)
A on SGB(A) and γ̇

(β)

B = φ
(β)

B γ̇
(β)

B on SGB(B), (32)

3Recently, a model of size-dependent latent hardening has been proposed by Bardella et al. [2013]. Such an effect has yet
to be introduced in the present model.

4Different researchers use different sign conventions for the screw-type GND density. The sign convention for the screw-
type GND density in (30) follows that used by Gurtin [2002; 2008b].
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Figure 4. Schematic illustration of a body with a grain boundary. Separated description
of grains A and B (left); grains A and B joined into a single body (right).

where the subscripts A and B denote that the corresponding quantities belongs to grain A or B, and
the superscript α and β represent the slip system number given within grains A and B, respectively,
and SGB(A) and SGB(B) are the interfacial surfaces seen from grains A and B, respectively. In general,
the continuum modeling of crystal plasticity, in which crystallographic slips are taken as a fundamental
deformation process, cannot directly resolve the individual dislocation behaviors such as absorption,
emission (or subsequent reemission), and transmission, which would be observed at a finer scale. The
resultant amount of slip rate resulting from these multiple phenomena is quantified via φ(i)I (with I = A
or B and i = α or β for brevity). The coefficient φ(i)I is said to give a mesoscopic representation of the
resistance of the interface to slip occurrence. In this modeling, the value of φ(α)A for grain A may be
determined independently of information from grain B, and vice versa, for a supposed situation where
the boundary on the grain A side acts as the dislocation sink and source, whereas the boundary on the
grain B side functions as a strong barrier to dislocations. On the other hand, it is possible to consider grain
interactions. Even in that case, it is reasonable to consider that φ(i)I does not become more than unity
because the slip behavior at a point infinitesimally close to the GB must be governed by the mechanical
conditions at that point located inside the grain. A negative φ(i)I is also inconsistent with the mechanical
conditions at the point infinitesimally close to the GB. Available experimental data is not sufficient for
formulating a unique form for the function φ(i)I . However, it is generally expected that φ(i)I will be affected
by a relative misorientation of the grains; the orientation of the GB relative to the grains; the spacing
between the GB and the external surface; the thickness, structure, and amount of precipitation of the GB;
temperature; and maybe some other factors.

In the current modeling, γ̇ (α)A at a point on the grain A side of the interface depends only on the
slip rate γ̇ (α)A in grain A. One might conceive a more elaborate and complicated formulation of γ̇ (α)A
that also incorporates the influences of the slip rates γ̇ (β)B in grain B. This coupling, which induces a
significant complexity in the formulation and computational procedure, is omitted in the present study.
Nevertheless, this simple model has the capability to represent a rather wide range of material responses
at the micrometer scale, as will be demonstrated in the next section.

In the following application, we consider a simple formulation that only takes into account the geo-
metrical configuration of the slip systems and the GB plane (i.e., the degree of misorientation between
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grains A and B, and the orientation of the GB plane relative to the grains):

φ
(α)
A = (max

β
C̄ (αβ)

AB )ν, φ
(β)

B = (max
α

C̄ (αβ)

AB )ν, (33)

where ν (≥ 0) is a scaling exponent, and the moduli C̄ (αβ)

AB represent the degree of misorientation between
the two adjacent grains and the GB orientation relative to those grains. The moduli C̄ (αβ)

AB are given by

C̄ (αβ)

AB =
∣∣s(α)A · s

(β)

B

∣∣∣∣q̄(α)A · q̄
(β)

B

∣∣,
q̄(α)A =

m(α)
A × nGB

‖m(α)
A × nGB‖

, q̄(β)B =
m(β)

B × nGB

‖m(β)

B × nGB‖
,

(34)

where nGB is the GB normal that points from grain A to grain B, and s(i)I and m(i)
I are respectively

the slip direction and the slip plane normal that constitute the slip systems in each grain. The condition
0≤ C̄ (αβ)

AB ≤ 1 leads to 0≤ φ(i)I ≤ 1. The basic idea for C̄ (αβ)

AB can be found in [Clark et al. 1992], and it has
recently been employed by Knorr et al. [2015] and Kheradmand et al. [2016] to evaluate the slip transfer
resistance of neighboring grains5 in problems of crack initiation at grain boundaries and deformation
in micrometer-sized bicrystals. Figure 5 shows a schematic diagram of the geometrical configuration
of the slip systems and the GB plane, which characterize values of C̄ (αβ)

AB . Using κ(αβ)AB to denote the
angle between intersection lines of opposite slip planes from the neighboring grains on the GB plane and
θ
(αβ)

AB to denote the angle between the slip directions of opposite slip systems of the neighboring grains,
then we can write C̄ (αβ)

AB = | cos θ (αβ)AB || cos κ(αβ)AB |. In the current formulation of (33), the slip resistance
is determined by the most orientationally favorable slip system in the neighboring grain, which has the
largest value of C̄ (αβ)

AB . One of the most critical situations described using this model may be coherent
twin boundaries (CTBs). Consider that the slip system α in grain A and the slip system β in grain B have
the same Burgers vector that is parallel to the CTB plane (i.e., a cross slip occurs across the CTB). Thus,
φ
(i)
I takes unity regardless of the value of ν since C̄ (αβ)

AB takes unity. This represents a fully transparent
characteristic of the GB showing no resistance to slip occurrence. It is noted that Gurtin [2008b] derived
similar grain interaction moduli,

C (αβ)

AB = s(α)A · s
(β)

B (m(α)
A × nGB) · (m

(β)

B × nGB) for 0≤ |C (αβ)

AB | ≤ 1,

in the context of a different modeling of the GB. The main difference between (34) and Gurtin’s moduli
is whether m(i)

I × nGB are normalized to unit vectors. The values of |C (αβ)

AB | do not reach unity for the
pair of slip systems positioned in the cross slip configuration at the GB. If |C (αβ)

AB | is used in (33), such
a model shows a GB response harder than that predicted using C̄ (αβ)

AB .
When m(i)

I is parallel to nGB, then the value of q̄(i)I is indeterminant, but simultaneously s(i)I · nGB = 0.
In this case, γ̇ (i)I is free from constraint,6 as is understood directly from (13). The interpretation that
a GB parallel to the slip plane does not act as an obstacle to slip deformation is physically acceptable
[Kuroda and Tvergaard 2008b].

5Kheradmand et al. [2016] defined the grain boundary transmission factor as ω(αβ)AB = 1−
∣∣s(α)A · s

(β)
B
∣∣∣∣q̄(α)A · q̄

(β)
B
∣∣ = 1−∣∣cos θ (αβ)AB

∣∣∣∣cos κ(αβ)AB
∣∣. The angles θ (αβ)AB and κ(αβ)AB are depicted in Figure 5. They used ω(αβ)AB in the context of the qualitative

interpretation of their experimental results, and they did not apply it to numerical simulations.
6In the actual numerical computations, use of an arbitrary value of C̄(αβ)AB for the case of s(i)I · nGB = 0 is sufficient to get

the exact solution of the interfacial slip rate.
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Figure 5. Schematic diagram of the geometrical configuration of the slip systems and
the GB plane.

When ν = 1, it is assumed that the amount of the interfacial slip depends linearly on the geometrical
configuration of the GB plane and adjacent grains. A value of the exponent ν smaller than unity gives
a more active plastic flow at the GB, whereas a large ν suppresses the plastic flow at the boundary.
Kheradmand et al. [2016] suggested that transferability of the GB rapidly decreases when the critical
condition

∣∣cos θ (αβ)AB

∣∣∣∣cos κ(αβ)AB

∣∣≤ cos 15◦ · cos 15◦ = 0.933 holds. If we postulate that a hard-type GB is
practically represented with φ ≈ 0.5, as is expected from the observation in Figure 2 (left), ν is assumed
to be ∼ 10.

4. Application to a practical problem: bicrystalline micropillar compression

4.1. Problem formulation. To illustrate the effect of the higher-order boundary conditions in a practical
problem of a small sized body, the bicrystalline micropillar compression problem is considered. The
finite element model of an f.c.c. bicrystal micropillar with a square cross section is considered, as shown
in Figure 6 (left). The aspect ratio of the gauge length H to the edge length W is selected to be 2.3
[Shade et al. 2012; Kuroda 2013]. A plane GB is assumed at X1 = 0 with an initial unit normal of nGB

0 =

(−1, 0, 0) in the undeformed configuration. The portion for X1 ≥ 0 is assigned as grain A, and that for
X1 < 0 is assigned as grain B. Although the specific material and experimental data are not strictly quoted
and no parameter fitting study is intended in the present computations, several practical conditions are
taken from the study of Imrich et al. [2014] who employed copper single- and bicrystalline micropillars.

Three models of bicrystalline micropillars with different sets of crystal orientations are considered.
The first model includes an arbitrary large-angle grain boundary (LAGB), and the other two models have
a coherent twin boundary (CTB). In the LAGB micropillar, the [3 1 0] and [1 3̄ 26] directions are chosen
to be parallel to the sample axis (the X3-direction) and X1-direction, respectively, for grain A. The [4 0 1̄]
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Figure 6. Bicrystalline micropillar compression problem. Finite element model (left);
schematic illustration of the boundary conditions (right).

and [3 1̄ 12] directions coincide with the X3- and X1-directions, respectively, for grain B. The two grains
have a difference of 22.8◦ in orientation around [1 3̄ 4]. One of the CTB micropillars, which is designated
as CTB-1, has crystal orientations such that the [1 1̄ 0] direction is parallel to the X3-direction and the
[1 1 1] direction coincides with the X1-direction. The crystal orientations of grains A and B are in mirror
symmetry about the GB plane, i.e., the orientation of grain A rotated at 180◦ around the [1 1 1] direction
coincides with that of grain B. Each grain has four potentially active slip systems that have the same
(highest) Schmid factors = 0.4082 (see [Imrich et al. 2014, Figure 6] for better understanding). Two of
these slip systems have the Burgers vectors parallel to the GB plane (φ(i)I = 1 for the two slip systems). In
the other CTB micropillar, which is designated as CTB-2, the crystal orientations considered in CTB-1
are rotated 7.5◦ about the X1-axis (counterclockwise rotation in the X2-X3 plane). Owing to this tilt, the
number of potentially active slip systems is reduced to one in each grain. This unique potentially active
slip system has a Schmid factor of 0.4553 and its Burgers vector remains parallel to the GB plane (and
also φ(i)I = 1 for this slip system). All other slip systems have Schmid factors smaller than 0.4. This
configuration is rather similar to that of a group of samples employed in [Hirouchi and Shibutani 2014].

The finite strain version of the theory [Kuroda and Tvergaard 2008a] is used. The same theory has
already been applied to single-crystal micropillar compression analysis by Kuroda [2013]. The elastic
constants are chosen to be c11= 171 GPa, c12= 122 GPa, and c44= 69.1 GPa [Berryman 2005]. The initial
slip resistance τ0 is taken to be 30 MPa for the LAGB micropillar and 50 MPa for the CTB micropillar
[Imrich et al. 2014]. The slip hardening modulus h0 (= h(αβ)) is set to zero for simplicity and also
as a reference to the experimental observation of very weak work hardening for single-crystal copper
micropillars in [Imrich et al. 2014]. The rate sensitivity parameter m is taken to be 0.05. The length
scale l is taken as l/W = 0.8.

In the finite element computations, the displacement field is solved using three-dimensional brick-type
twenty-node (serendipity) elements with 2× 2× 2 Gauss points (i.e., reduced integration) and the GND
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density field is solved using three-dimensional brick-type eight-node (bilinear) elements with 2× 2× 2
Gauss points (i.e., full integration). The coordinates of the nodes in the eight-node elements are set to
be identical to those of the corner nodes in the twenty-node elements.

The axial displacement U̇ , taken to be positive in the negative X3-direction, is assigned to the top
surface at a nominal strain rate of ε̇N = U̇/H = f (max)

S γ̇0 with f (max)
S being the highest absolute values of

the nominal Schmid factors among those for all slip systems in the bicrystalline micropillar. A schematic
illustration of boundary conditions of the micropillar model is given in Figure 6 (right). A nominal
compressive stress is defined as the sum of the nodal forces, P , in the negative X3-direction, divided
by the initial cross-sectional area W 2. Every material point (the nodes in finite element analysis) on the
top surface is free to move laterally and will be released from the rigid platen when the normal (contact)
stress at that point, which was negative (compressive) at the initial stage of loading, becomes zero. This
simply models the case where the friction between the top surface and the loading platen is very low.
Regarding the slip rates on the top surface, the microscopically hard condition (φ(α) = 0) is adopted.
The contact between the sample top and the loading platen, which are both sufficiently flat, is likely to
correspond to this condition. Very few slip lines are often observed on the top surfaces of micropillars
after testing (e.g., [Uchic et al. 2004]). This supports the validity of assuming the microscopically hard
condition on the top surface. On the traction free surfaces (i.e., on the lateral surface of the gauge region
and on the upper surface of the substrate), the microscopically free condition, which corresponds to the
null GND condition, is assumed. All the degrees of freedom for displacements on the bottom surface
of the substrate are fully constrained, and the microscopically hard condition is assumed on the bottom
surface. This setting does not much affect the computational results because essentially the slips are not
activated near the bottom surface of the substrate.

Next, we consider the microscopic boundary conditions at the boundary between grains A and B. The
following four conditions for the GB are assumed.

Hard GB: φ
(i)
I = 0,

Transparent GB: φ
(i)
I = 1,

Orientation-dependent GB I: Equations (33) and (34) with ν = 1,
Orientation-dependent GB II: Equations (33) and (34) with ν = 10.

Although the values of C̄ (αβ)

AB will vary owing to the lattice rotations in each grain under general finite
deformations, the updates of C̄ (αβ)

AB are omitted for simplicity and the initial values of C̄ (αβ)

AB are used
throughout the computations. This simplification may not significantly affect the results, because the
overall nominal compressive strain of the samples will be lower than 10%.

4.2. Results. The computed curves of nominal compressive stress versus nominal compressive strain
for the LAGB, CTB-1, and CTB-2 samples are shown in Figure 7. Computational results using the
conventional crystal plasticity model with no account of the size effect [Asaro and Needleman 1985] are
also shown in these graphs for comparison. In the case of the hard GB, high strain hardening behavior
is observed for all the cases of LAGB, CTB-1, and CTB-2. The significant hardening seen here is solely
attributed to the development of the backstresses near the hard GB, around which steep gradients of
the slips are generated owing to the constraint on the slips. This typical behavior of the backstresses
associated with the accumulation of the GNDs is illustrated in detail in Figures 9 and 10, focusing on
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Figure 7. Computed curves of nominal compressive stress versus nominal compressive
strain for bicrystalline micropillars with different GB conditions. LAGB samples (left);
CTB-1 samples (right); CTB-2 samples (bottom). The length scale is chosen to be
l/W = 0.8 unless indicated otherwise. In the graphs, “Conventional crystal plasticity”
denotes the result obtained using the conventional size-independent crystal plasticity
model of Asaro and Needleman [1985]. Orientation-dependent GB II corresponds to
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the results for CTB-2, which has the simplest deformation mechanism and is relevant for understanding
the fundamental mechanical behavior.

For LAGB, the computation with the hard GB has predicted high strain hardening behavior, which
seems to be consistent with that observed in the experimental stress–strain curve [Imrich et al. 2014]. The
orientation-dependent GB II (with ν = 10) also leads to high amounts of strain hardening comparable to
that predicted by the hard GB, because the values of φ(i)I computed with C̄ (αβ)

AB values of 0< C̄ (αβ)

AB < 1
are significantly decreased by the exponent ν = 10. The values of φ(i)I for the primary slip systems on the
grains A and B sides are respectively 0.360 and 0.525, which give sufficiently hard interface responses
as expected from the slip distribution profile shown in Figure 2 (left). The correspondence between the
current numerical and the experimental results partly supports the view that LAGB functions as a barrier
to dislocations. On the other hand, the orientation-dependent GB I (with ν = 1) and the transparent GB
predict a rather low strain hardening behavior.
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In the cases of the CTB-1 and CTB-2 samples that have the crystal orientations with the mirror sym-
metry about the GB plane, the nominal stress-strain curves are nearly linear. The computations with the
orientation-dependent GBs (both I and II) exhibit very weak (or almost no) hardening that is consistent
with that observed in the experimental stress-strain curves reported in [Imrich et al. 2014] and [Hirouchi
and Shibutani 2014]. These curves are close to those for the transparent GB. In the CTB-1 sample, there
are four active slip systems in each grain, which have the same highest Schmid factor. Two of these have
the Burgers vectors whose directions are parallel to the GB. Even on these slip systems, large amounts of
backstresses are produced owing to pileups of screw GNDs when the hard GB is assumed (i.e., a strong
slip gradient is produced in the direction perpendicular to the Burgers vector on the slip plane). In the
cases of the orientation-dependent GBs (both I and II), these slip systems have φ(i)I = 1, and thus the GB
exhibits no resistance to slips. Such a transparent nature of CTB has already been suggested by Imrich
et al. [2014]. The CTB-2 sample explains this condition more clearly due to its simplicity. The CTB-2
sample has only one active slip system whose Burgers vector is parallel to the GB plane in each grain.
Hirouchi and Shibutani [2014] conducted compression tests on bicrystalline micropillars having active
slip systems nearly parallel to the GB, which are similar to those in the CTB-2 samples. They observed
that their stress-strain curves were fundamentally equivalent to those for the single-crystalline samples
that showed minimal (almost no) strain hardening. This coincidence supports the view that the CTBs
have fundamentally no resistance to slips.

Figure 8 shows the deformations and contours of slips on the primary slip systems whose Burgers
vectors are parallel to the GB surface for the CTB-2 samples at a nominal compressive strain of 0.06.
The deformation modes predicted with the transparent GB (Figure 8b), the orientation-dependent GB I
(Figure 8c) and the orientation-dependent GB II (Figure 8d) are composed of two outer dead zones
and one distinct central shear zone that fully penetrates the body of the pillar. This deformation mode
is fairly consistent with the experimental observation by Hirouchi and Shibutani [2014] and it is also
similar to that of a single-slip single-crystal micropillar. Comparing the results shown in Figures 8b,
8c, and 8d, the samples with the orientation-dependent GBs (both I and II) exhibited more activated
slips on the primary slip systems than the sample with the transparent GB. In these cases, only φ(i)I
for the slip systems positioned in the cross slip configuration (including the primary slip system) show
unity. Smaller values of φ(i)I for the other slip systems (including the secondary and tertiary slip systems)
indicate the suppression of slip activations at the GB. In the case of the transparent GB, all slip systems
have φ(i)I = 1; thus, the secondary and tertiary slip systems could be activated much more easily than those
in the case of the orientation-dependent GBs. Such a distinct appearance of the shear zone may support
the properness of the present orientation-dependent GB models. The hard GB does not lead to a visible
shear zone and causes less amounts of slip, as shown in Figure 8a. The conventional theory provides no
constraint of the slip at every boundary because it has no higher-order microscopic boundary conditions.
The conventional theory does not predict the fully penetrating uniform shear zone, but predicts a weakly
concentrated and heterogeneous shear area (Figure 8e). Introduction of both the gradient effect and
the microscopic boundary conditions is necessary to reproduce the typical deformation mode with the
penetrating shear zone, as emphasized by Kuroda [2013].

Figure 9 shows the distributions of the screw GND densities on the primary slip systems in the CTB-2
samples with different GB conditions. In the case of the hard GB (Figure 9 (upper-left)), the screw
GNDs significantly accumulate at the GB. In the cases of the transparent GB (Figure 9 (upper-right)),
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Figure 8. Deformed meshes and contours of slip on the primary slip systems for CBT-2
samples with different GB conditions at a nominal compressive strain of 0.06. The length
scale is chosen to be l/W = 0.8. The Burgers vectors of the primary slip systems are
parallel to the grain boundary. Hard GB (a); transparent GB (b); orientation-dependent
GB I (ν= 1) (c); orientation-dependent GB II (ν= 10) (d); conventional size-independent
crystal plasticity model (e).
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the orientation-dependent GB I (Figure 9 (lower-left)), and the orientation-dependent GB II (Figure 9
(lower-right)), the screw GND densities are much lower than that for the hard GB case. Figure 10
depicts the distributions of the backstresses on the primary slip systems in the CTB-2 samples with
different GB conditions. Significant amounts of backstresses were produced at the GB in the case of the
hard GB (Figure 10 (upper-left)). The influence of the backstress produced near the GB is observed as
apparently strong strain hardening in the stress–strain curves (Figure 7). The backstresses produced in
the transparent GB sample (Figure 10 (upper-right)), the orientation-dependent GB I sample (Figure 10
(lower-left)), and the orientation-dependent GB II sample (Figure 10 (lower-right)) are much smaller than
that produced in the hard GB samples. Consequently, very small amounts of strain hardening appear in
the stress-strain relations and this trend is consistent with experimental observations.

The length scale of l/W = 0.8 has been used thus far in the present application shown above. Results
for a different value of the length scale, l/W = 0.4, are additionally shown in Figure 7 (bottom) for
comparison. The nominal stress for the hard GB sample is significantly lowered by the decrease in the
length scale. The nominal stresses for the transparent GB sample, the orientation-dependent GB I sample
and the orientation-dependent GB II sample become close to that for the conventional plasticity result.
But, the overall deformation behaviors of the samples with l/W = 0.4 are very similar to those shown
in Figures 8–10, although their depictions are omitted.

5. Discussion

5.1. On the predictability of the model. From the comparison of the present numerical results of the
micropillar compression problem with experimental observations in the literature, it can be said that the
GB has the transparent nature if the opposite slip systems from the neighboring grains are positioned
in the cross slip configuration. The GB models given by (33) with (34), i.e., the orientation-dependent
GB I (with ν = 1) and orientation-dependent GB II (with ν = 10) in the application, represent this
nature. The experimentally observed mechanical response of the samples with CTB is characterized by
these models. The orientation-dependent GB II (with ν = 10) also predicts the experimentally observed
material response of the LAGB sample showing the significant amount of strain hardening. This finding
partly supports the soundness of the assumption that the amount of slip at the GB nonlinearly depends on
the moduli C̄ (αβ)

AB . As mentioned in the Introduction, however, opposite observations have been reported
[Kunz et al. 2011; Kim et al. 2015], i.e., LAGBs in submicrometer-sized bicrystalline pillars did not act
as strong barriers to moving dislocations nor caused additional strain hardening. Such behavior can be
apparently described with a low value of ν (e.g., ν ≈ 1 or lower), although its physical mechanism is not
known at present.

The present model only considers the geometrical configuration of the slip systems and the GB plane.
Incorporation of other possible effects, e.g., yielding of the GB at a certain stage of deformation, temper-
ature dependence, and interaction between the GB and the external surface, is left for future studies.

As mentioned in Section 3, in the current model, γ̇ (α)A at a point on the grain A side of the interface
is determined only by the slip rate γ̇ (α)A in grain A. A more elaborate formulation of γ̇ (α)A that also
considers the influences of the slip rates γ̇ (β)B in grain B may be conceived. Such coupling induces a
significant complexity in the formulation and also in the computational procedure that demands the use
of a kind of joint element. This results in a tremendous increase in the size of the system of the equations



212 MITSUTOSHI KURODA

GB

X1

X3

GB

GB GB

Figure 9. Contours of the screw GND densities (nondimensionalized as ρ(α)G(s)bl) on
the primary slip systems in the middle cross section (X1-X3 plane views) for CTB-
2 samples with different GB conditions at a nominal compressive strain of 0.06. The
Burgers vectors of the primary slip systems are parallel to the grain boundary. The length
scale is chosen to be l/W = 0.8. Hard GB (upper-left); transparent GB (upper-right);
orientation-dependent GB I (ν = 1) (lower-left); orientation-dependent GB II (ν = 10)
(lower-right).

especially in cases of three-dimensional analysis of a polycrystal. The proposed model with the omission
of this coupling is simple. Nevertheless, it has the capability to represent the overall material responses
associated with both LAGB and CTB using the same material parameter values.

The present treatment of the microscopic boundary conditions may also efficiently represent peculiar
microscopic characteristics of external surfaces. For example, an external surface coated by an incom-
plete or fragile thin oxide layer that is partially penetrable to dislocations may be modeled by 0<φ(α)< 1
with appropriate constitutive modeling of φ(α). This is also left for future studies.
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Figure 10. Contours of the backstresses on the primary slip systems in the middle cross
section (X1-X3 plane views) for CTB-2 samples with different GB conditions at a nom-
inal compressive strain of 0.06. The Burgers vectors of the primary slip systems are
parallel to the grain boundary. The length scale is chosen to be l/W = 0.8. Hard GB
(upper-left); transparent GB (upper-right); orientation-dependent GB I (ν = 1) (lower-
left); orientation-dependent GB II (ν = 10) (lower-right).

5.2. On the formulation of the model. The non-work-conjugate type (or backstress-based) strain gradi-
ent plasticity formulation, on which the current theory is based, can be converted to the work-conjugate
type representation, as has been discussed by Kuroda and Tvergaard [2006; 2008a; 2008b] and Ertürk
et al. [2009]. A virtual work expression that is the basis of the latter type is derived as follows. We use
mathematical expressions for the finite strain conditions, referring to [Kuroda and Tvergaard 2008a], but
the fundamental points do not differ from those of its small strain version [Kuroda and Tvergaard 2008b].
According to the kinematics of crystal plasticity, the virtual velocity gradient L̃ can be represented by

L̃ = ˙̃u⊗∇ = L̃e
+

∑
α

˙̃γ (α) s̄(α)⊗ m̄(α), (35)
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where ˙̃u is a virtual velocity, ∇ is redefined as the spatial gradient operator with respect to the current
(deformed) configuration, L̃e is a virtual elastic distortion rate, ˙̃γ (α) is a virtual slip rate, and s̄(α) and
m̄(α) are the slip direction and slip plane normal vectors in the deformed configuration, respectively
(a superposed bar denotes that the quantity is evaluated in the deformed configuration). Using the elastic-
plastic decomposition of L̃ in (35), the conventional virtual work principle is written as∫

V

(
σ : L̃e

+

∑
α

τ (α) ˙̃γ (α)
)

dV =
∫

S
t · ˙̃u dS. (36)

Here, V and S are respectively the volume and the boundary surface of the body in the deformed config-
uration.

If the backstress on each slip system can be expressed as the divergence of a vector quantity 7, ξ (α), i.e.,

τ
(α)
b =−∇ · ξ

(α), (37)

then we can rewrite the yield condition as

τ (α)+∇ · ξ (α) = π (α) (38)

with the definition π (α)= sgn(τ (α)+∇·ξ (α))g(α), where g(α) is the CRSS of each slip system. Substituting
(38) into (36) and applying the divergence theorem and integration by parts, (36) can be further expressed
as ∫

V
σ : L̃e dV +

∑
α

∫
V
(π (α) ˙̃γ (α)+ ξ (α) · ∇ ˙̃γ (α)) dV =

∫
S

t · ˙̃u dS+
∑
α

∫
S

n̄ · ξ (α) ˙̃γ (α) dS. (39)

This equation exactly corresponds to the virtual work principle expression introduced by Gurtin [2002]
as the major premise of the theory. In (39), the quantities ξ (α) may be viewed as microscopic stresses
that are work-conjugate to the slip rate gradients, and the quantities n̄ · ξ (α) appearing on the boundary
are considered as microscopic tractions.

Next, we consider two pieces of material, grains A and B, as shown in Figure 4 (left), which will
form a single body with a GB, as illustrated in Figure 4 (right). The virtual work expression of (39) is
applied to each of the grains shown in Figure 4 (left), recognizing the potential GB surfaces SGB(A) and
SGB(B) with unit normal n̄GB and −n̄GB, which are respectively expediently distinguished from the outer
surfaces SA and SB:∫

VA

σ : L̃e dV +
∑
α

∫
VA

(π (α) ˙̃γ (α)+ ξ (α) · ∇ ˙̃γ (α)) dV

=

∫
SA

t · ˙̃u dS+
∫

SGB(A)

t · ˙̃u dS+
∑
α

(∫
SA

n̄ · ξ (α) ˙̃γ (α) dS+
∫

SGB(A)

n̄GB · ξ
(α) ˙̃γ (α) dS

)
, (40)

7If we assume that ξ (α) = −l2bτ0
[
ρ̄
(α)
G(e) s̄

(α)
+ ρ̄

(α)
G(s) p̄(α)

]
, the backstress relation becomes τ (α)b = l2bτ0(∇ρ̄

(α)
G(e) · s̄

(α)
+

∇ρ̄
(α)
G(s) · p̄(α) + ρ̄(α)G(e)∇ · s̄

(α)
+ ρ̄

(α)
G(s)∇ · p̄(α)). The last two terms in parentheses on the right-hand side, ρ̄(α)G(e)∇ · s̄

(α) and

ρ̄
(α)
G(s)∇ · p̄(α), were omitted in the numerical computations performed in the present paper. These terms do not have any notable

effect when there is only a moderate amount of deformation [Kuroda and Tvergaard 2008a].
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VB

σ : L̃e dV +
∑
α

∫
VB

(π (α) ˙̃γ (α)+ ξ (α) · ∇ ˙̃γ (α)) dV

=

∫
SB

t · ˙̃u dS+
∫

SGB(B)

t · ˙̃u dS+
∑
α

(∫
SB

n̄ · ξ (α) ˙̃γ (α) dS−
∫

SGB(B)

n̄GB · ξ
(α) ˙̃γ (α) dS

)
. (41)

Here we assume that no displacement gap (no sliding nor crack opening) at the GB occurs, i.e., ˙̃u|A= ˙̃u|B
and σ |A · n̄GB− σ |B · n̄GB = 0. Now, we bond grains A and B as depicted in Figure 4 (right), and then
consider the addition of (40) and (41),

∫
V
σ : L̃e dV+

∑
α

∫
V
(π (α) ˙̃γ (α)+ξ (α) ·∇ ˙̃γ (α)) dV

=

∫
S

t · ˙̃u dS+
∑
α

(∫
S

n̄·ξ (α) ˙̃γ (α) dS
)
+

∑
α

(∫
SGB

[
(n̄GB ·ξ

(α) ˙̃γ (α))|A−(n̄GB ·ξ
(α) ˙̃γ (α))|B

]
dS
)
. (42)

According to the expression of (42), we may view the power expenditure at the GB per unit area as∑
α

{[[n̄GB · ξ
(α)γ̇ (α)]]}, (43)

where [[•]] = (•)|A− (•)|B indicates the jump across SGB.
Gurtin and Needleman [2005] proposed another expression for the power expenditure at the GB in

the small strain context, ∑
α

{[[n̄GB · ξ
(α)γ̇ (α)]]} = K : [[Ḣp

· (n̄GB×)]] ≥ 0, (44)

where K is an internal force tensor distributed over the GB, which is defined as a power-conjugate to
the tensor8

[[Ḣp
· (n̄GB×)]], where Ḣp

I =
∑

α γ̇
(α)
I s̄(α)I ⊗ m̄(α)

I (the subscript I stands for A or B) and the
sign of inequality indicates the dissipation condition. In particular, the ideal condition [[Ḣp

]](n̄GB×)= 0
represents a balanced Burgers vector flow, which means that the flow out of grain A is equal to that
into grain B. Gurtin and Needleman [2005] called this the defect-free condition. Okumura et al. [2007]
performed finite element analysis of a two-dimensional polycrystal (16 f.c.c. grains) unit cell model with
adoption of the defect-free condition at the GBs, and reported that the defect-free condition led to a
result rather similar to that predicted with a microfree condition n̄GB · ξ

(α)
I = 0. Later, Gurtin [2008b]

proposed another GB model in which constitutive relations are given to the interfacial microforces, λ(α)A ≡

n̄GB · ξ
(α)
|A and λ(α)B ≡ −n̄GB · ξ

(α)
|B (that appear in (42) and (43)), via thermodynamic consideration

based on the GB free energy newly proposed and defined. Computational applications of this GB model
have been reported in [Özdemir and Yalçinkaya 2014].

In contrast, in the non-work-conjugate approach on which the current model is based, the weak form
of the GND density evolution equation (i.e., (13), (29) and (30)) with the surface integral term gives a
deduction of the concomitant boundary conditions. In this context, it is natural to consider directly the
boundary conditions for the interfacial slip rate, which can be assumed to represent the resultant effects
of absorption, emission, and transmission of the dislocations at the GB.

8(a× )i j = eik j ak , where a is a vector and eik j is the permutation symbol.
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6. Conclusions

In the present paper, a basic strategy for setting arbitrary interfacial microscopic boundary conditions
associated with a backstress-based (non-work-conjugate type) higher-order gradient crystal plasticity
theory was proposed. A simple model of the GB behavior was considered, which incorporates a nonlinear
dependence of a geometrical correlation between orientations of the slip systems and the GB plane on
the amount of slip rate at the GB. The model was examined in analyses of the bicrystalline micropillar
compression problem. According to qualitative comparison with the experimental results reported in the
literature, the model has the capability to represent the overall material responses associated with both
LAGB and CTB using the same material parameter values.
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CONJUGATE STRESS/STRAIN BASE PAIRS FOR
PLANAR ANALYSIS OF BIOLOGICAL TISSUES

ALAN D. FREED, VEYSEL EREL AND MICHAEL R. MORENO

A theoretical framework is presented for the analysis of planar membranes based upon a triangular
(as opposed to a polar) decomposition of the deformation gradient. This leads to a distillation of the
deformation gradient into three distinct modes. Each mode can, in principle, be individually activated
in an experiment. Measures of stress are shown to exist for each mode of strain so that the stress power
can be decomposed into independent additive parts. The outcome is a set of three conjugate stress/strain
base pairs (each being a pair of scalars) from which constitutive equations can be constructed for planar
solids without relying on tensor invariants to cast the theory. Explicit and implicit elastic models are
derived that, when convolved, produce a material model whose stress/strain response is indicative of
soft biological tissues. Stress/strain curves for each conjugate pairing are constructed from published
experimental data. The model describes these data.

1. Introduction

Recent advances in regenerative medicine include the ability to tune the mechanical properties of engi-
neered tissue constructs, e.g., [Amensag and McFetridge 2014; Kharaziha et al. 2013; Xie et al. 2015].
With the advent of this capability, the challenges have become these: what mechanical properties have
relevance when designing a tissue-engineered construct? What should the target values for these me-
chanical properties be? Ideally, an engineered tissue graft, say, would possess the same mechanical
properties as the native tissue, and integrate seamlessly with respect to mechanical performance. Most
efforts to characterize the mechanical properties of tissue-engineered constructs have been based on
numerous simplifying assumptions (linear, homogeneous, isotropic) that typically treat the engineered
construct as a linear elastic material. These assumptions enable uniaxial mechanical tests to be conducted
wherein, e.g., a quasielastic modulus and a tensile strength can be determined. Unfortunately, this form
of mechanical characterization is ineffective at providing insight into how well an engineered tissue
actually mimics the native tissue in vivo. Biological tissues are complex materials that typically undergo
large deformations. They also exhibit complex mechanical behaviors that likely include a nonlinear
stress/strain curve, mechanical anisotropy, and a viscoelastic response.

The utility of treating an engineered tissue construct as a linear elastic material when establishing
mechanical properties is that it enables one-to-one comparisons between materials. A quasimodulus
and the tensile strength are physical parameters, each corresponding with a specific measurable physical
property; however, the quasimodulus lacks uniqueness. The issue is this: soft tissues are not linear elastic.

Veysel Erel received financial support from the Ministry of National Education, Turkey. Michael R. Moreno received financial
support from an NSF GOALI award.
Keywords: thermodynamic conjugate pairs, distortion, Gram–Schmidt decomposition, membrane, soft tissues.
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To address this nonlinearity, Fung [1993, §7.12] proposed an exponential strain-energy function of
the form

W = 1
2(q + c(eQ

− 1)),

whose parameters q and Q are quadratic forms in strain described by

q = ai jk`Ei j Ek` and Q = bi jk`Ei j Ek`,

with Ei j denoting strain components evaluated in a Lagrangian coordinate frame. There are nine con-
stants to parameterize for the planar case: c, four ai jk` and four bi jk`, because ai jk`=ak`i j and bi jk`=bk`i j

with i, j = 1, 2. Unfortunately, in this framework, there is no analog to an elastic modulus, i.e., there
is no parameter that corresponds with some unique, measurable, mechanical property. This system of
equations is indeterminable. In practice, data is gathered and a nonlinear least squares fit is used to
“solve” the system. Numerous combinations of constants (ai jk`, bi jk`, c) usually exist, each representing
a reasonable mathematical solution. Even though these parameters have utility in their ability to fit a
curve to the data, they (unfortunately) cannot be compared between fits of different materials or samples
because the model parameters themselves lack uniqueness and physical interpretation.

This unintended side effect of the Fung approach compromises its utility for the practical purpose of
designing engineered tissues with the intent of mimicking Mother Nature. Without unique and physical
material parameters, it is difficult to use such an approach for engineering synthesis, which is evident in
the apparent absence of models like Fung’s in the tissue engineering literature. This fundamental need
of the practicing tissue engineer motivated our study.

We seek a material model for planar membranes whose parameters are true material constants in that
their values are unique, physical and readily extracted from stress/strain curves. Future work will focus
on applying our model to tissue engineering. Here we focus on deriving the model.

The methodology developed herein leads to a material model described by three distinct stress/strain
curves. Each unique curve is characterized by three parameters. So our model and Fung’s model are
both described in terms of nine parameters. The difference being that our model is comprised of three
uncoupled responses, a response for each conjugate pairing, with data from each mode having sensitivity
to its three independent parameters. Whereas, Fung’s model, e.g., is described over the whole of two-
space wherein all nine parameters must be fit simultaneously, and getting a data set that is rich enough
to secure parameter sensitivity to all of its model parameters is problematic at best. The presumed
independence of the thermodynamic conjugate pairs in our approach greatly facilitates parameterization
of our model. The theory derived in this paper does not follow a conventional approach, viz., it is not
constructed from invariant theory; rather, it is founded upon the following conjecture.

Hypothesis. The governing tensors for stress and the rate of deformation can be encoded into a set of
independent conjugate base pairs wherein each stress/strain conjugate pair is a scalar pair. Individual
constitutive equations govern the response of each base pair, which may be elastic, viscoelastic, etc., as
determined from experiment. After the separate constitutive equations for all base pairs have been solved,
their constituents can be decoded to update the tensorial states of stress and the rate of deformation. An
admissible encoding/decoding algorithm is one-to-one.

The paper begins with a discussion of kinematics, including a discussion of the difference between
three frames of reference that are used: the Lagrangian frame, a material frame, and the Eulerian frame.
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In this material frame, work can be decomposed into three parts: dilation, squeeze and shear. From here
it is possible to extract three conjugate stress/strain pairs, one describing each deformation mode. They
are generalized displacements and tractions in the terminology of Hill [1978]. An encoding/decoding
algorithm is put forward that maps tensor components into conjugate base pairs and then back again. The
thermodynamic couplings of Kelvin and Poynting are addressed. Explicit and implicit elastic solids are
derived for planar membranes that, when convolved, transform into a constitutive theory that is suitable
for describing soft biological tissues. The model is demonstrated by fitting it to experimental data taken
from the literature.

There are five appendices. The first two compare the polar and triangular decompositions of the
deformation gradient for planar deformations. The third addresses acquisition of the components for
deformation and stress from planar experiments. The fourth derives stress power in terms of the triangular
decomposition. And the fifth decomposes the triangular description for deformation into three distinct
modes: dilation, squeeze and shear.

2. Kinematics

A theoretical framework is presented in this document for the analysis of materials that are planar sheets
whose utility is expected to reside in engineering design and synthesis. Experiments done on planar
membranes have a long history in the biomechanics literature, primarily studied for the purpose of
parameterizing material models [Grashow et al. 2006; Humphrey et al. 1987; Lanir and Fung 1974;
Sacks 1999; 2000; Sacks and Chuong 1993]. It is assumed that extensions and tractions are determined,
to sufficient accuracy, by the deformation of the middle surface of a sheet and, as such, the theory can be
cast in R2. Membrane thickness need not enter into the construction. Influences arising from membrane
curvature [Evans and Skalak 1979; Helfrich 1973; Humphrey 1998] are neglected because the radii of
curvature are taken to be infinite. For the interested, tension-field theory [Pipkin 1986; Steigmann 1990]
should be a viable approach to handle wrinkling, which is not addressed herein.

A material particle of interest is located at position X in a reference state at time t0 that at current
time t is located by a different position vector x. The motion of this particle is described by a vector
function x = χχχ(X, t) that is invertible in the sense that a complementary vector function X =

−1
χχχ (x, t)

exists so that X =
−1
χχχ (χχχ(X, t), t) [Truesdell and Noll 2004]. Motions are considered to be sufficiently

smooth so that the required derivatives exist. A particle traverses its path of motion χχχ through space with
a velocity of v = ∂χχχ(X, t)/∂t = ẋ.

An areal element dA of infinitesimal extent within a planar membrane consists of a dense set of point
particles filling a connected region in R2 at time t0. This same collection of material particles corresponds
with another areal element da at time t . From the conservation of mass comes dm = ρ0 dA = ρ da. This
areal element has a fixed mass of dm with planar densities ρ0 = dm/dA and ρ = dm/da at times t0 and t ,
and is considered to undergo affine motions.

Deformation at a particle is described by the gradient of its motion χχχ taken with respect to its posi-
tion X that produces a two-point tensor field F described by

F=
∂χχχ(X, t)
∂X

, which is commonly written as F=
∂x
∂X

. (1a)
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Its inverse F−1 exists because the Jacobian of deformation J := det F= da/dA = ρ0/ρ must be positive
from the conservation of mass, thereby allowing one to write

F−1
=
∂
−1
χχχ (x, t)
∂x

, which is commonly written as F−1
=
∂X
∂x
. (1b)

The deformation gradient is a linear transformation that maps tangent vectors between the current (Euler-
ian) and reference (Lagrangian) configurations with a push-forward map of dx = F dX and a pull-back
map of dX = F−1dx. Symmetric and upper-triangular decompositions of the deformation gradient and
its inverse are presented in Appendix A and Appendix B for the case of planar membranes.

3. Base vectors

At this point in our development we deviate from the path normally followed by decomposing the de-
formation gradient F into a product between an orthogonal rotation Q and an upper-triangular distortion
F̃, see Appendix B, instead of as a product between another orthogonal tensor R (6= Q) and a sym-
metric stretch U, see Appendix A. Specifically, we adopt a QR (Gram–Schmidt) decomposition of F
introduced into the mechanics literature by Srinivasa [2012] who expressed it as F=QF̃.1He explored
using this decomposition in lieu of adopting the polar decomposition F=RU used throughout mechanics.
Rosakis [1990] also derived an upper-triangular decomposition for the deformation gradient by consider-
ing materials with a preferred material orientation, his interests being phase transformations and twinning
in crystals. He did not use the QR matrix decomposition from linear algebra in his kinematic analysis.
Freed and Srinivasa [2015] derived the components for ln F̃, considering its applicability as a strain
measure, and have studied F̃ for a variety of boundary value problems used in material characterization.

There are three sets of orthogonal base vectors to sort out when using this approach for kinematic anal-
ysis, as depicted in Figure 1. They are rectangular Cartesian coordinate frames. There is a natural set of
Lagrangian base vectors {n1,n2}. The Lagrangian base vectors rotate from an Eulerian frame {e1, e2} via
an orthogonal matrix [R] that comes from the polar decomposition of F, viz., F=RU. The Eulerian frame
is typically considered to be fixed in space, e.g., a coordinate frame in one’s laboratory, through which
the body translates, rotates and deforms over time. There is also a set of material base vectors {m1,m2}

that rotate from the Eulerian frame via an orthogonal matrix [Q] that comes from the QR decomposition
of F, viz., F=QF̃. In the material frame {m1,m2}, direction m1 remains tangent to a physical material
line at the coordinate origin [Srinivasa 2012]. Maps between the three sets of base vectors obey

mξ = ei Qi
ξ , (2a)

nI = ei Ri
I , (2b)

nI =mξ R̃ξI =mξ [Q−1
]
ξ
i Ri

I , (2c)

and therefore R̃ :=QTR, as drawn in Figure 1. Here lower-case Latin indices associate with the Eulerian
frame {e1, e2}, upper-case Latin indices associate with the Lagrangian frame {n1,n2}, Greek indices

1 Notation QF̃ is chosen over notation QR because R is commonly used in the polar decomposition of the deformation
gradient to denote its rotational component, whereas, in the mathematics literature R in QR denotes a right-triangular matrix
that we call distortion. Srinivasa [2012] introduced his notation to avoid potential confusion within the mechanics community.
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ei

mi

θ

ni

9

R

Q

R̃=QTR

Figure 1. The Lagrangian (natural) base vectors ni are located by a rotation R through
an angle ψ measured from an Eulerian coordinate frame with base vectors ei , therefore
ni = ei R, where i = 1, 2. Rotation R is established through a polar decomposition of the
deformation gradient F= RU. Similarly, the material base vectors mi are located by a
rotation Q through an angle θ measured from the Eulerian base vectors ei , hence mi =

ei Q. Rotation Q is established through a triangular decomposition of the deformation
gradient F=QF̃. The Lagrangian frame {ni } rotates relative to the material frame {mi }

through a rotation R̃=QTR, i.e., ni =mi R̃, with angle ψ − θ . Clockwise rotations are
considered to be positive.

associate with the material frame {m1,m2}, and repeated indices sum according to Einstein’s summation
convention.

In many boundary value problems used to characterize materials, the material {mi } and natural {ni }

frames will be coincident. Pure shear is an example where all three coordinate frames are distinct [Freed
and Srinivasa 2015].

To make things more precise, and to shed some light onto the subject, we cast the contravariant vector
equation dx = F dX into its various component forms. First, consider a polar decomposition of the
deformation gradient described by components

dx i
= F i

I dX I
= Ri

J U J
I dX I. (3a)

Second, consider an upper-triangular decomposition of the deformation gradient described by

dx i
= F i

I dX I
= Qi

ξ F̃ξI dX I. (3b)

From these formulæ, it immediately follows that there also exists a displacement vector described by

dx̃ξ = F̃ξI dX I
= R̃ξJ U J

I dX I (3c)
so that

dx i
= Qi

ξdx̃ξ , (3d)

wherein distortion F̃ is decomposed into a polar form of F̃ = R̃U with dx̃ = F̃ dX . The deformation
gradient F is the same in formulæ (3a) and (3b); however, their decompositions are quite different.

We now relax our notation from that of general tensors to Cartesian tensors without loss of generality.
The rotations R and Q in (3) are two-state fields, but the states are different between them: rotation
R= Ri j ei ⊗n j vs. rotation Q= Qi j ei ⊗m j . Stretch is a Lagrangian field in that U=Ui j ni ⊗n j while
distortion is a two-point tensor F̃= F̃i j mi ⊗n j like the deformation gradient F= Fi j ei ⊗n j . The matrix
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representations for rotation [Q] and distortion [F̃] can be obtained in a straightforward manner from both
theory and experiment, see Appendix B and Appendix C.

4. Stress power

The rate at which mechanical work is being done on a planar membrane by external tractions (forces per
unit reference length), also known as the stress power, is a mechanical property that is independent of
the coordinate frame used to quantify it [Hill 1978]. In the material frame {mi }, stress power becomes
(see Appendix D for the derivation)

Ẇ = tr(S̃L̃)= S̃11 L̃11+ S̃22 L̃22+ S̃12 L̃12, (4)

where the material stress S̃ := QTSQ has symmetric components S̃i j , whereby S̃ = S̃i j mi ⊗m j with
S= Si j ei⊗e j being the symmetric Kirchhoff [1852] stress, while the material velocity gradient L̃ := ˙̃FF̃−1

has upper triangular components L̃ i j such that L̃= L̃ i j mi ⊗m j .
Substituting the decomposition for L̃ from (E.3) and (E.4) into formula (4) allows the stress power to

be decomposed into three additive components, viz.,

Ẇ = Ẇ ◦+ Ẇ + Ẇ
6
. (5a)

This result is independent of any constitutive assumption to be imposed. The three constituents are:

(1) Stress power resulting from a distortion caused by uniform dilation:

Ẇ ◦ := tr(S̃L̃◦)= (S̃11+ S̃22)
1
2(ȧ/a+ ḃ/b). (5b)

(2) Stress power resulting from a distortion caused by squeeze:

Ẇ := tr(S̃L̃ )= (S̃11− S̃22)
1
2(ȧ/a− ḃ/b). (5c)

(3) Stress power resulting from a distortion caused by shear:

Ẇ
6
:= tr(F̃−1S̃F̃L̃ 6 )= (a/b)S̃12γ̇ . (5d)

An examination of the arguments in the traces of (5) leads one to conclude that there are two stresses
to consider. One stress S̃ for the diagonal contributions, and another stress F̃−1S̃F̃ for the off-diagonal
contribution. This observation is consistent with Hill’s findings [1978].

5. Transformed state: a basis for stress and strain

Classical constructions for describing the constitutive response of a continuum are usually formulated as
an application of invariant theory [Rivlin and Smith 1969; Spencer 1972]. Criscione [2003] has argued
that although the mathematical theory of invariants is elegant, its utility is flawed because of a covari-
ance that exists between the classic invariants, thereby making parameterization of an ensuing model a
daunting task. Addressing this flaw, Criscione et al. [2000; 2003a; 2003b] put forward physically based
sets of strain invariants that are orthogonal to one another in the isotropic case, and nearly orthogonal to
one another in the anisotropic case. Unfortunately, these strain invariants have been found to be difficult
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to work with for experimentalists, and experimentalists are often the ones tasked with parameterizing
some specified material model.

Motivated by Criscione’s work, yet another approach for constitutive construction is put forward here.
It is one possible adaptation of our hypothesis. Although we are of the opinion that there is great promise
in our approach, the utility of our construction in engineering practice remains to be assessed by its users
over time. Our approach is, we believe, particularly advantageous for experimentalists, see Appendix C.

The methodology put forward is not based upon invariant theory. Instead, linear transformations are
introduced that establish a set of conjugate stress/strain basis pairs from which constitutive equations can
be formulated in a rigorous way. In other words, we seek a set of generalized displacements qi and their
conjugate tractions pi so that dW =

∑
i pi dqi provides a coordinate invariant Pfaffian [Hill 1978]. Such a

set is not unique, so conjugate pairs ought to be chosen where paired responses are observed to be indepen-
dent of one another. As with physical laws, their presumed independence cannot be proved theoretically,
only disproved experimentally, if at all. If disproved for a certain scenario, that would not necessarily
invalidate the utility of a particular conjugate pairing; rather, it would bracket its range of applicability.

An inspection of (4) suggests that one introduce a set of variables expressing the stress power as

dW = π dδ+ σ dε+ τ dγ, (6)

where {π, δ} is a stress/strain conjugate pair of scalars describing uniform dilation, {σ, ε} is a stress/strain
conjugate pair of scalars describing squeeze, and {τ, γ } is a stress/strain conjugate pair of scalars de-
scribing shear. In other words, strains δ, ε and γ comprise a set of generalized displacements, viz.,
{q} = {δ ε γ }T, while stresses π , σ and τ comprise a set of generalized tractions, viz., {p} = {π σ τ }T,
such that (6) is a coordinate-invariant description for the work of deformation dW . One admissible
encoding/decoding scheme for (6) that is in accordance with our hypothesis is introduced below.

5.1. Encoding. Inspired by Becker [1893], we consider an encoding of the conjugate tensor fields S̃
and L̃ that describes a stress basis with constituents

π := S̃11+ S̃22, (7a)

σ := S̃11− S̃22, (7b)

τ :=
a
b

S̃12, (7c)

whose conjugate strain basis (which have exact differentials for rates) has constituents

δ := ln
√

ab dδ = 1
2(da/a+ db/b), (7d)

ε := ln
√

a/b with dε = 1
2(da/a− db/b), (7e)

γ dγ, (7f)

wherein parameters a, b and γ are established from F via (B.2) or (B.4) for theory, and from Figure 2
and (C.1) for experiment. Each generalized displacement has a rate that is an exact differential. As such,
these displacements are two-state fields, independent of the path traversed between states. Consequently,
each generalized displacement defined above is a viable measure for strain. This does not, however,
imply that dW is independent of path. As for the conjugate tractions, π is commonly referred to as the
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e2 m2
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m1

θ0

t0

e2 m2 m2,0b
bγ

φ

e1

m1

θ
a

t

Figure 2. General kinematic analysis for the homogeneous distortion of a unit square
into a parallelogram. Extensions a and b and shear γ = tanφ are the kinematic param-
eters to be measured. Coordinate directions e1 and e2 are orthogonal, as are coordinate
directions m1 and m2. Angle θ rotates {ei } into {mi } and is drawn in its positive sense.
Directions e1 and e2 are spatial and align with the axes of the load frame. Orthogonal
axes m1 and m2 can be thought of as being painted onto the material in some reference
state t0 at a angle of θ0 from the spatial frame {ei }. In a deformed state t , material axis m1

remains the same, now rotated by an angle of θ from the spatial frame {ei }, however,
the material line originally describing the m2 direction (drawn as m2,0 in the deformed
configuration) may no longer be orthogonal to m1. The angular difference, φ, is the
angle of shear. Direction m1 will often be selected to associate with a feature of interest
in the sample being tested, e.g., a fiber direction.

surface tension, σ is the first normal stress difference found in the rheology literature [Bird et al. 1987a],
and τ is a shear stress normalized by the extent of elongation that is present. Substituting (7) into (5) and
rearranging leads to (6). No assumption has been made regarding material constitution. No application
of invariant theory has been imposed in this construction.

Evans and Skalak [1979] and Lubarda [2010] considered a multiplicative decomposition for F of
F= FaFd wherein Fa =

√
λ1λ2(e1⊗ e1+ e2⊗ e2) and Fd = (1/

√
λ1λ2)(λ1e1⊗n1+ λ2e2⊗n2), which

they call the areal and deviatoric parts of the deformation gradient, respectively, where unit vectors n1

and n2 are the eigenvectors of stretch (they are not the Lagrangian base vectors). Our decomposition is
similar in purpose to theirs, but distinct in form and physics from theirs.

5.2. Decoding. For an encoding to be admissible, there must be a unique decoding such that the overall
encoding/decoding algorithm is one-to-one. The decoding that associates with the encoding put forward
in (7) describes a distortion tensor F̃ that populates as

[F̃] =
[

eδ 0
0 eδ

] [
eε 0
0 e−ε

] [
1 γ

0 1

]
=

[
eδ+ε eδ+εγ

0 eδ−ε

]
, (8a)

with an inverse of

[F̃]−1
=

[
1 −γ
0 1

] [
e−ε 0
0 eε

] [
e−δ 0
0 e−δ

]
=

[
e−ε−δ −eε−δγ

0 eε−δ

]
, (8b)
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whose affiliated material velocity gradient L̃ populates as

[L̃] =
[
δ̇ 0
0 δ̇

]
+

[
ε̇ 0
0 −ε̇

]
+

[
0 e2εγ̇

0 0

]
=

[
δ̇+ ε̇ e2εγ̇

0 δ̇− ε̇

]
. (8c)

Because the deformation F and velocity L := ḞF−1 gradients are typically known a priori, the material
rotation Q and spin 444 := Q̇QT tensors follow immediately via

Q= FF̃−1 and 444=W− W̃, (8d)

with W := 1
2(L−LT) and W̃ := 1

2

(
L̃− L̃T

)
being their respective vorticities.

Furthermore, the material stress tensor populates according to a decoding scheme of

[S̃] = 1
2

[
π 0
0 π

]
+

1
2

[
σ 0
0 −σ

]
+

[
0 e−2ετ

e−2ετ 0

]
=

[
1
2(π + σ) e−2ετ

e−2ετ 1
2(π − σ)

]
, (9a)

where stresses π , σ and τ are usually quantified through constitutive equations, but could also be mea-
sured experimentally, see Appendix C. The material stress rate therefore populates as

[
˙̃S] =

[
1
2(π̇ + σ̇ ) e−2ε(τ̇ − 2τ ε̇)

e−2ε(τ̇ − 2τ ε̇) 1
2(π̇ − σ̇ )

]
, (9b)

that when rotated into the Eulerian frame becomes

•

S=Q ˙̃SQT,
•

S :=
dS
dt
+S444−444S where S=QS̃QT, (9c)

with S being the symmetric Kirchhoff [1852] stress, dS/dt being its material derivative, and
•

S describing
an objective corotational rate. This objective rate is akin to the polar rate of Green and Naghdi [1965]
and Dienes [1979], but with Q replacing R.

A brief discussion of rate is in order. The question to be answered is this: in what frame does the
material, not the observer, sense its environment? It is in that frame that the appropriate time derivative
to use is the partial derivative. We stipulate that it is within an embedded coordinate frame where this
occurs, as developed by Oldroyd [1950] and adopted by his followers, e.g., [Bird et al. 1987a; 1987b;
Lodge 1964; 1974]. These constructions employ general tensor fields defined over curvilinear coordinate
frames whose coordinate axes are described by the same set of material particles over time. Within the
confines of Cartesian tensors, the material frame {mi } is the closest that one can get to mimicking an
embedded curvilinear coordinate frame, because the m1 coordinate line remains tangent to the 1 material
curve, and the 12 coordinate plane with normal m1×m2 remains tangent to the 12 material surface [Freed
and Srinivasa 2015; Srinivasa 2012]. They are tangents at the origin of coordinate frame {m1,m2,m3}.
It is here where the partial derivative most accurately approximates its actual physical rate, within the
confines of employing rectangular Cartesian tensors.
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5.3. Encoding/decoding maps. To show the one-to-one mapping property of this encoding/decoding
algorithm, the generalized displacement rates obey the linear mapping

q̇1

q̇2

q̇3

 :=

δ̇

ε̇

γ̇

=
1/2 1/2 0

1/2 −1/2 0
0 0 e−2ε


L̃11

L̃22

L̃12

 , (10a)

while their associated tractions obey the linear mapping
p1

p2

p3

 :=

π

σ

τ

=
1 1 0

1 −1 0
0 0 e2ε


S̃11

S̃22

S̃12

 , (10b)

which are invertible maps in that 
L̃11

L̃22

L̃12

=
1 1 0

1 −1 0
0 0 e2ε


δ̇

ε̇

γ̇

 (11a)

and 
S̃11

S̃22

S̃12

=
1/2 1/2 0

1/2 −1/2 0
0 0 e−2ε


π

σ

τ

 , (11b)

where S̃21 = S̃12. These are maps between continuum mechanics variables and generalized thermo-
dynamic variables. They obey Ẇ = S̃11 L̃11+ S̃22 L̃22+ S̃12 L̃12 = πδ̇+ σ ε̇+ τ γ̇ , as they must. Selecting
an encoding/decoding map is key to one’s construction of a model that satisfies our hypothesis. It is akin
to selecting a set of invariants to use for constitutive construction, but no invariants have been used here.

The encoding/decoding algorithm of (7)–(11) describes an isotropic material response in the sense
that an imposed state of uniform stress (i.e., π > 0, σ = 0 and τ = 0) will cause a uniform response
in strain (viz., δ > 0, ε = 0 and γ = 0). An encoding/decoding algorithm better suited for describing
anisotropic materials, both 2D and 3D, has been developed and will be introduced in a separate paper.

An isotropic membrane whose response is taken to be a function of the symmetric stretch tensor will
have two independent modes of deformation: dilation and shear. However, an isotropic membrane whose
response is taken to be a function of the triangular distortion tensor will have three independent modes of
deformation: dilation, squeeze and shear. This is consistent with Murnaghan’s [1954] theoretical finding
that a symmetric 2× 2 matrix has two invariants, while a triangular 2× 2 matrix has three invariants, see
Appendix A.1 and Appendix B.2.

6. Constitutive relations

An elastic solid can conduct heat, but does not convert work into heat over a closed cycle. This defines an
elastic body [Rajagopal 2011]. The second law of thermodynamics, when describing a reversible process,
as interpreted by Carathéodory [1909], implicates that an integrating factor (temperature T > 0) exists
that transforms the first law of thermodynamics, an inexact differential equation, into an exact differential
equation that becomes dS = 1/T (dU − 1/ρ0 dW ) for a solid continuum [Kestin and Rice 1970]. This is
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A (π − γ )/4 (π + γ )/4

Figure 3. Poynting’s [1909] stress analysis of simple shear. Forces P and Q align
with the principal axes of stretch, therefore, there are no shears acting on these faces.
Their axes are rotated γ /4 radians from the ±45◦ diagonals, where γ is the extent
of shear. Forces R and T are the normal and shear forces acting on the plane of
shear. Triangle ABC is a right triangle whose sides have lengths AB = 2` and
AC =

√
2`
(
1+ 1

4γ +
3

32γ
2
)

and BC =
√

2`
(
1− 1

4γ +
3
32γ

2
)
. His analysis is accurate

to second order.

the second law of thermodynamics governing a reversible process wherein U denotes the internal energy
and S denotes the entropy, both per unit mass. Introducing the Legendre transformation A = U − TS
allows one to rewrite the second law as dT =−1/S(dA−1/ρ0 dW ), where A is the Helmholtz free energy
per unit mass, with entropy S now being the integrating factor. Theories for elasticity follow forthwith.

6.1. Thermodynamic couplings. Two couplings that exist between conjugate pairs in a thermodynamic
state are the Kelvin [Thomson 1878] and Poynting [1909] effects. The Kelvin effect is a first-order effect
where a change in temperature causes a change in volume. The Poynting effect is a second-order effect
where a shear causes a lengthening normal to the shear plane that, if constrained in the sense of a simple
shear experiment, will lead to a compressive normal stress. The former effect is well known; the latter
effect is less so. They are handled as constitutive characteristics in our approach.

The Kelvin effect is typically modeled in three space as 1V = 3α1T where a change in volume 1V
is proportional to a change in temperature 1T with α being the constant of proportionality, i.e., the
coefficient of thermal strain.

Figure 3 presents an overview of Poynting’s stress analysis for simple shear. In a change of notation,
he considered a second-order response with principle tractions of ‖P‖/AC = G1γ − (

1
2 G1−G2)γ

2 and
‖Q‖/BC = G1γ + (

1
2 G1−G2)γ

2. Applying this notation to Poynting’s analysis, he determined that
the components of traction acting upon the plane of shear are ‖T‖/AB = G1γ and ‖R‖/AB =−G2γ

2

wherein G1 is the linear shear modulus of Lamé while G2 is a second-order shear modulus introduced by
Poynting. In the material frame {mi }, traction ‖T‖/AB equates with S̃12 and traction ‖R‖/AB equates
with −S̃22, while the stress component S̃11 is zero.

6.2. Explicit elasticity. A Green [1848] elastic solid assumes that the Helmholtz free energy is a state
function whose variation is described by an exact differential in state, namely, temperature and strain
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[Ogden 1984]. In terms of the decomposition of work put forward in (6), the second law takes on a form of

ρ0

(
∂A
∂T

dT +
∂A
∂δ

dδ+
∂A
∂ε

dε+
∂A
∂γ

dγ
)
=−ρ0S dT +π dδ+ σ dε+ τ dγ, (12)

which — because the temperature T , strain from dilation δ, strain from squeeze ε, and strain from shear γ
can all be varied separately and independently of one another (at least in principle) — requires that the
coefficients to differentials dT , dδ, dε and dγ must each vanish individually, leading to the following set
of constitutive formulæ:

S =−
∂A
∂T
, π = ρ0

∂A
∂δ
, σ = ρ0

∂A
∂ε
, τ = ρ0

∂A
∂γ
. (13)

These constitutive equations govern a planar Green elastic solid within the context of our theoretical
approach. Alternatively, Srinivasa [2012] derived a Green elastic solid in terms of the six upper-triangular
components of the distortion tensor F̃ in three-space.

6.2.1. A Hooke–Kelvin–Poynting solid. Consider a planar solid whose Helmholtz free-energy function
takes on the form of

ρ0 A =−C(T ln(T/T0)− (T − T0))+ 2K (δ−α(T − T0))
2
+Mε2

+
( 1

2 G1+G2(ε− δ)
)
γ 2, (14)

where C is the heat capacity and α is Kelvin’s coefficient of thermal strain, both of which reference to
some temperature T0, while K , M and G1 are akin to the bulk modulus, the P-wave modulus, and the
shear modulus from linear elasticity, as they apply to 2-space, with G2 being Poynting’s second-order
shear modulus.

Substituting this energy function into our elastic theory (13) produces the set of constitutive formulæ:

ρ0S = C ln(T/T0)+ 4αK (δ−α(T − T0)), (15a)

π = 4K (δ−α(T − T0))−G2γ
2, (15b)

σ = 2Mε+G2γ
2, (15c)

τ = (G1+ 2G2(ε− δ))γ, (15d)

which describe an elastic planar solid in the material frame {mi } where the deformation gradient is de-
composed into an orthogonal rotation matrix and an upper-triangular distortion matrix (see Appendix B).
This model accounts for both the Kelvin [Thomson 1878] and Poynting [1909] effects.

Poisson’s Ratio: In linear elasticity, the ratio of transverse strain to axial strain caused by an axial
traction, when multiplied by minus one to make it positive valued, is a material constant known as
Poisson’s ratio ν. In nonlinear elasticity, this ratio is a response function, not a material constant. In our
analysis, ln a is the axial strain while ln b is the transverse strain in a simple extension, see Appendix B.
Because stresses π and σ in (9) are equal during such a loading, (15) describes a Poisson’s response of

ν := −
ln b
ln a

∣∣∣∣S̃22=0
S̃12=0

≡−
δ− ε

δ+ ε

∣∣∣∣π=σ
τ=0

=
2K −M
2K +M

, (16)
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so that, e.g., the ratio ν = 1
2 whenever K = 3

2 M , the ratio ν = 1
3 whenever K = M , and the ratio

ν = 0 whenever K = 1
2 M . Consequently, both K and M can be parameterized from a single uniaxial

experiment, leaving G1 and G2 to be parameterized from a shear experiment.

6.2.2. Solution strategy. This scheme assumes that one is given a temperature T and a deformation
gradient F and seeks its associated entropy density S and Kirchhoff stress S.

Begin by computing extensions a and b and shear γ from (B.4) and then calculate the trigonometric
functions cos θ and sin θ from (B.5) from which rotation Q can be established via (B.3a). Now determine
the conjugate strains {δ, ε, γ } using the encoding algorithm of (7d)–(7f). Solve the constitutive equations
(15) for the entropy S and conjugate stresses {π, σ, τ }. Using these generalized stresses and the imposed
squeeze strain ε, populate the material stress S̃ using the decoding algorithm of (9a), which rotates into
the Eulerian Kirchhoff stress S via Q according to (9c).

6.3. Implicit elasticity. An implicit elastic solid assumes that the energy function A depends upon tem-
perature, strain and stress [Rajagopal 2003]. It cannot, however, depend upon both temperature and
entropy, as it depends upon both strain and stress, because either the temperature T or the entropy S is
the integrating factor for the second law, depending upon the thermodynamic potential selected. In terms
of the decomposition of work put forward in (6), the second law of thermodynamics takes on a form of

ρ0

(
∂A
∂T

dT+
∂A
∂δ

dδ+
∂A
∂π

dπ+
∂A
∂ε

dε+
∂A
∂σ

dσ+
∂A
∂γ

dγ+
∂A
∂τ

dτ
)
=−ρ0S dT+π dδ+σ dε+τ dγ (17)

which — because the temperature T , the dilation response {δ, π}, the squeeze response {ε, σ }, and the
shear response {γ, τ } can all be varied separately and independently of one another (at least in princi-
ple) — allows one to separate causalities resulting in the following set of constitutive formulæ:

S =−
∂A
∂T
, (18a)

π dδ = ρ0
∂A
∂δ

dδ+ ρ0
∂A
∂π

dπ, (18b)

σ dε = ρ0
∂A
∂ε

dε+ ρ0
∂A
∂σ

dσ, (18c)

τ dγ = ρ0
∂A
∂γ

dγ + ρ0
∂A
∂τ

dτ, (18d)

where the governing equations for the stress/strain response are now described by an implicit system of
ordinary differential equations.

As our interest from this point on resides with modeling soft biological tissues, we forgo addressing
the coupling effects of Kelvin [Thomson 1878] and Poynting [1909]. We can safely neglect the Kelvin
effect because mammals regulate their temperature. We neglect the Poynting effect as a simplification.
How this second-order geometric effect is to be accounted for in a material that itself is highly nonlinear
is a subject for future study. Furthermore, there is no experimental data known to us by which one could
substantiate such a theory.

6.3.1. Strain-limiting solid. Extrapolating the energy function put forward by Freed and Rajagopal [2016]
for an isothermal implicit strain-limiting elastic fiber into an energy function that is suitable for a planar
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elastic membrane implicates

ρ0 A = 4K δ−π +β◦πδ+ 2Mε− σ +β σε+Gγ − τ +β
6
τγ, (19)

where K , M and G are moduli describing tangent responses at zero stress and zero strain with β◦, β
and β 6 relating to their respective states of limiting strain: β◦ = 1/δmax, β = 1/εmax and β 6 = 1/γmax.
Substituting the energy function in (19) into the constitutive theory of (18) produces an implicit strain-
limiting planar elastic solid described by the following system of differential equations:

dπ
dδ
=

4K + (β◦− 1)π
1−β◦δ

, (20a)

dσ
dε
=

2M + (β − 1)σ
1−β ε

, (20b)

dτ
dγ
=

G+ (β 6 − 1)τ

1−β 6 γ
, (20c)

whose solution, by the separation of variables, describes a dilatoric response of

π =
4K
β◦− 1

(
1

(1−β◦〈δ〉)(β◦−1)/β◦ − 1
)

β◦ > 1, (21a)

a squeeze response of

σ = sgn(ε)
2M
β − 1

(
1

(1−β |ε|)(β −1)/β
− 1

)
β > 1, (21b)

and a shear response of

τ = sgn(γ )
G

β
6
− 1

(
1

(1−β 6 |γ |)(β
6
−1)/β 6

− 1
)

β
6
> 1. (21c)

These formulæ are written so strain causes stress. They can be written where stress causes strain [Freed
and Rajagopal 2016].

Formulæ (21b) and (21c) have been adjusted so that the stresses they produce are odd functions
of their respective strains. Both positive and negative squeeze and shear stresses can be supported by
membranes, provided that any negative contribution arising from squeeze is offset by a positive dilation.
In contrast, only positive dilations can be supported by a membrane. Negative dilations would wrinkle a
membrane, which is why the Macaulay bracket 〈δ〉 is introduced into formula (21a) with values for 〈δ〉
being δ whenever δ ≥ 0 and 0 otherwise. This aspect of the model could be made more robust through
an application of tension-field theory [Pipkin 1986; Steigmann 1990], but that lies beyond the scope of
the present paper.

6.3.2. Solution strategy. This scheme assumes that one is given a deformation gradient F and seeks its
associated Kirchhoff stress S. It is possible that a submitted F can be invalid, so a strategy needs to be
constructed to handle inadmissible deformation gradients. A more robust scheme would return strains
for supplied stresses, but that strategy does not align as well with finite element formulations.

Begin by computing extensions a and b and shear γ from (B.4) and then calculate the trigonometric
functions cos θ and sin θ from (B.5) from which rotation Q can be established via (B.3a). Now determine
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the conjugate strains {δ, ε, γ } using the encoding algorithm in (7d)–(7f). Test to ensure 0≤ δ < 1/β◦ and
|ε|< 1/β and |γ |< 1/β 6 . If none of these constraints are violated then continue, otherwise the supplied
deformation gradient F is inadmissible and must be handled. Solve the constitutive equations (21) for the
conjugate stresses {π, σ, τ }. Using these generalized stresses and the imposed squeeze strain ε, populate
the material stress S̃ using the decoding algorithm in (9a), which rotates into the Eulerian Kirchhoff
stress S via Q according to (9c).

6.4. A model for biological membranes. Freed and Rajagopal [2016] modeled collagen fibers as a non-
linear implicit elastic solid intertwined with a linear Hookean solid such that their compliances add,
with the outcome being a material response that is characteristic of most soft biologic materials. Here
a stress/strain curve starts out with a compliant nonlinear response and finishes up with a stiff linear
response. Their fiber model has three material constants whose values are unique, physical and visible
within a stress/strain curve, as shown in Figure 4. Their conjecture, applied here to each stress/strain
basis pair in R2, leads to the following set of three constitutive equations: one for the dilatoric response,

δ =
〈π〉

4K C +
1
β◦

(
1−

1
(1+ (β◦− 1)〈π〉/4K E)β

◦/(β◦−1)

)
β◦ > 1, (22a)

one for the squeeze response,

ε =
σ

2MC +
sgn(σ )
β

(
1−

1
(1+ (β − 1)|σ |/2M E)β /(β −1)

)
β > 1, (22b)

and one for the shear response,

γ =
τ

GC +
sgn(τ )

β
6

(
1−

1

(1+ (β 6 − 1)|τ |/G E)β
6
/(β
6
−1)

)
β
6
> 1, (22c)

which are expressed so that stresses cause strains. Moduli K C (> K E > 0) and MC (> M E > 0) and
GC (> G E > 0) are the terminating elastic moduli that describe deformation in their respective linear
regions, whereat collagen is the predominant load bearing constituent. Moduli K E, M E and G E are the
elastic moduli caused by the restoring forces of elastin that crimp the collagen fibrils in a neighborhood
surrounding zero stress and zero strain; while β◦ (= 1/δE

max) and β (= 1/εE
max) and β 6 (= 1/γ E

max) are
reciprocal measures for the three limiting states of configuration strain whereat, for soft tissues, the crimp
of collagen has been stretched taut. These are illustrated in Figure 4.

6.4.1. Solution strategy. This scheme assumes that one is given a deformation gradient F along with an
initial guess for the Kirchhoff stress S whose actual value is being sought.

Begin by computing extensions a and b and shear γ from (B.4) and then calculate the trigonometric
functions cos θ and sin θ from (B.5) from which rotation Q can be established via (B.3a). Now determine
the assigned conjugate strains {δ, ε, γ } using the encoding algorithm of (7d)–(7f). Rotate the guessed
value for Kirchhoff stress S into the material frame using Q to get S̃ according to (9c). Encode the
conjugate stresses {π, σ, τ } using (7a)–(7c) and use these to solve the constitutive equations (22) to
get predicted values for the conjugate strains {δ, ε, γ }. Use a root finding algorithm to secure a set of
conjugate stresses whose associated conjugate strains are in error with the assigned conjugate strains
by less than some specified tolerance. Using the converged values for these conjugate stresses and the
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Figure 4. Representative plot depicting the tensile response for the three modes of
model (22). Modulus E E

∈ {K E ,M E ,G E
} describes the low-stress asymptotic behavior

where elastin governs the constitutive response, while modulus EC
∈ {K C ,MC ,GC

}

describes the high-stress asymptotic behavior where collagen governs the constitutive
response. The intersection of these two asymptotic lines is the reciprocal to parameter
β ∈ {β◦, β , β

6
} with 1/β designating the strain where collagen crimp stretches straight.

imposed squeeze strain ε, populate the material stress S̃ using the decoding algorithm in (9a), which
rotates into the Eulerian Kirchhoff stress S via Q according to (9c).

7. Experiments

A procedure is outlined in Appendix C for extracting the conjugate stresses π, σ, τ and strains δ, ε, γ
from a planar experiment, along with the angular rotation θ between the material and Eulerian frames.

At present, there is no single experimental data set that we are aware of that would allow one to quantify
all three modes of planar deformation introduced in this paper. Consequently, a parameterization of our
model (22) using data extracted from a single experiment possessing sensitivity to all model parameters
is not currently possible, nor is it for Fung’s [1993, p. 304] planar model, in that regard. Both are
constitutive equations in nine parameters under isothermal conditions. Plans have been put into motion
to address this deficiency from which the data set will be rich enough to provide sensitivity sufficient
for quantifying all model parameters. As for now, we are content with demonstrating that our material
model (22) is reasonable and worthy of further consideration and scrutiny.

Ideally, one would perform three separate experiments: one for each mode or conjugate pair. One
where {π, δ} vary and the other fields are held fixed, one where {σ, ε} vary and the other fields are held
fixed, and one where {τ, γ } vary and the other fields are held fixed. Here we analyze published data for
dilation and shear, but there is no published data where squeeze is the sole mechanism of deformation.
Fortunately, there is data where dilation exists both by itself and in conjunction with squeeze so that the
response of both modes can be extracted and studied.

Figure 5 presents data acquired from a double-lap shear test done on porcine myocardium by Dokos
et al. [2002, Figure 4], tabulated in [Freed 2014, Table 7.3]. They represent a passive shear response
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Figure 5. Loading behavior of a porcine myocardium under simple shear. The points
represent experimental data. The curve represents the response of model (22c) with
GC
= 15 kPa, G E

= 0.5 kPa and β 6 = 2.5.
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Figure 6. Dilation behavior of a porcine visceral pleural membrane under equibiaxial
loading conditions. The points represent experimental data. The curve represents the
response of model (22a) with K C

= 1, 875 N/m, K E
= 7 N/m and β◦ = 4.1.

for muscle. Only the loading portion of the curve is shown. Viscoelastic effects will be addressed in a
future paper. Our shear model (22c) does an excellent job of describing the nonlinear behavior exhibited
by these data.

Figure 6 presents data from an equibiaxial test done on porcine visceral pleura by Freed, Liao and
Einstein [2014]. Our dilation model (22a) does a nice job of describing the nonlinear behavior displayed
by these data, too.

A planar biaxial loading sequence was imposed on a visceral pleural membrane in the study cited
above. Specifically, an equibiaxial 1:1 loading was followed in sequence by two proportional loadings
with orthogonal traction ratios of 2:1 and 1:2. Figure 7 presents the squeeze response from these three
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Figure 7. Squeeze behavior of a porcine visceral pleural membrane under three propor-
tional loading conditions. The points represent experimental data. The curve represents
the response of model (22b) with MC

= 2500 N/m, M E
= 5 N/m and β = 17.

experiments. The response from the 2:1 traction ratio produced the data in the first quadrant, while the
response from the 1:2 traction ratio produced the data in the third quadrant. The equibiaxial experiment
produces noise around the origin in the squeeze domain, as it ought; dilation and squeeze are independent
deformation modes according to our theory. Our squeeze model (22b) provides a nice description for
these data as well.

There is a very large difference in the strain limits for dilation and squeeze in the visceral pleural
membrane, viz., 1/β◦ = 0.24 and 1/β = 0.06, respectively. This lends further credence to our conjecture
that these two modes of deformation are independent of one another.

Equation (16) is applicable for establishing Poisson’s ratio in a neighborhood around zero stress, in
which case we found ν = 0.47 because K E

= 7 N/m and M E
= 5 N/m. This is consistent with values

reported throughout the literature on Poisson’s ratio for soft biological tissues.
To further substantiate our methodology, the dilations from these three proportional experiments are

shown in Figure 8 along with the model correlation from Figure 6. The response from the 2:1 protocol is
in reasonable agreement with the equibiaxial experiment. The 1:2 protocol was the last leg executed in
the loading sequence imposed on this sample. Several slip-stick events caused by tissue tearing at suture
incision points occurred during the 1:2 loading leg [Freed, Liao and Einstein 2014] and are a likely cause
for why their dilation data in Figure 8 are offset from those of the other two protocols. Tearing also had
an effect on the squeeze response recorded in Figure 7 causing a small translation of the strain response
toward the origin in the third quadrant, but it is less noticeable there.

8. Summary

An elastic theory for planar biological membranes has been derived from thermodynamics and applied
to data reported in the literature. The theory is unique in that it is based upon conjugate stress/strain basis
pairs, not invariants. These pairs are generalized thermodynamic variables. Constitutive equations were
derived for explicit and implicit elastic solids that, when combined, produce a model suitable for soft
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Figure 8. Dilation behavior of a porcine visceral pleural membrane under three propor-
tional loading conditions. The points represent experimental data. The curve represents
the model response taken from Figure 6.

tissues. The resulting constitutive formulæ produce a power-law response through the toe and heel regions
that culminate with a linear terminal response, indicative of the behavior exhibited by most soft biological
tissues whose extracellular matrix consists of collagen fibers intertwined with an elastin network. Data
from biaxial experiments done on myocardium and visceral pleura substantiate the model.

Appendix A: Polar decomposition of F

Because det F> 0 from the conservation of mass, the deformation gradient F will have a unique matrix
decomposition of [F] = [R][U] where matrix [R] has orthonormal columns and matrix [U] is symmetric
with positive eigenvalues [Noll 1955].

Quantifying a polar decomposition of the deformation gradient, i.e., F= RU, see [Simo and Hughes
1998], begins with computing the eigenvalues for stretch via

λ1 =

√
1
2

(
(C11+C22)+

√
(C11+C22)2− 4(C11C22−C2

12)
)
, (A.1a)

λ2 =

√
1
2

(
(C11+C22)−

√
(C11+C22)2− 4(C11C22−C2

12)
)
, (A.1b)

where the symmetric Cauchy deformation tensor C= FTF has components C= Ci j ni ⊗n j evaluated in
the Lagrangian frame {n1,n2}. Knowing the principal stretches, one can populate the matrices for the
Lagrangian stretch [U] and its inverse [U]−1 via the formulæ [Ting 1985]:

[U] =
1
I
(II [I] + [C]), (A.2a)

[U]−1
=

1
I II

((I 2
− II )[I] − [C]), (A.2b)
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where the two invariants I and II of stretch are described by

I = λ1+ λ2 and II = λ1λ2. (A.3)

The rotation matrix [R] determined from [R] = [F][U]−1 becomes

[R] =
[

cosψ sinψ
−sinψ cosψ

]
, (A.4a)

wherein, from (A.1)–(A.3),

ψ =

{
sin−1(

[(I 2
− II −C22)F12−C12 F11]/(I II )

)
,

sin−1(
[(C11− I 2

+ II )F21+C12 F22]/(I II )
)
,

(A.4b)

where ψ is a rotation angle that orients the natural frame {ni } relative to the Eulerian frame {ei }, as drawn
in Figure 1, and is positive for clockwise rotations and negative for counterclockwise rotations.

A.1. Invariants. A symmetric 2× 2 matrix, say [A], with elements

[A] =
[

a c
c b

]
(A.5a)

in some coordinate frame {e1, e2}, rotates via some orthogonal matrix [R] into another coordinate frame
{ê1, ê2}where êi = ei R with the matrix mapping as [Â]= [R]T[A][R]. A function of matrix [A], say f (A),
is invariant under arbitrary rotations provided that

f (A)= f (Â)= f (RTAR). (A.5b)

It is well known that the trace and determinant obey this condition, resulting in the two invariants

I1 = a+ b and I2 = ab− c2, (A.5c)

wherein I1 := tr(RTAR)= tr(RRTA)= tr(A) and I2 := det(RTAR)= det(RT) det(A) det(R)= det(A)
and therefore tr(A2)= I 2

1 − 2I2. In the case of stretch, (A.3) and (A.5c) are equivalent, with (A.3) being
described in principal (spectral) coordinates.

Appendix B: QR decomposition of F

Because det F> 0 from the conservation of mass, the deformation gradient F will have another unique
matrix decomposition of [F] = [Q][F̃] where matrix [Q] has orthonormal columns (distinct from [R])
and matrix [F̃] is upper triangular with positive diagonal elements [Stewart 1973].

Quantifying a QR decomposition of the deformation gradient, i.e., [F] = [Q][F̃], leads to a distortion
[F̃] and its inverse [F̃]−1 that populate via [Freed and Srinivasa 2015]

[F̃] =
[

a aγ
0 b

]
and [F̃]−1

=

[
1/a −γ /b

0 1/b

]
, (B.1)

whose constituents are established through a Cholesky factorization of C = FTF = F̃TF̃ leading to
[Srinivasa 2012]

a =
√

C11, γ = C12/C11, b =
√

C22−C2
12/C11, (B.2)
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m2

m1

tt0

γ

φ

b

a

Figure 9. The homogeneous distortion of a unit square into a parallelogram. Extensions
a and b and shear γ = tanφ are the kinematic parameters to be measured in a planar
experiment to quantify distortion F̃ via (B.1) in the {mi } coordinate frame.

where parameters a, b and γ are physical quantities that can be extracted from experiment (see Appen-
dix C). Measurements are to be made in accordance with Figure 9. Parameter a is the extension ratio
in the m1 direction, viz., a = `1(t)/`1(t0). Parameter b is the extension ratio in the m2 direction, viz.,
b = `2(t)/`2(t0). Parameter γ measures the extent that a material line originally aligned with the m2 di-
rection rotates in the m1 direction — an extent described by γ = tanφ, wherein φ is the shear angle.
Extensions a and b and stretches λ1 and λ2 are coincident only in the absence of shear γ , otherwise they
are distinct quantities. Rosakis [1990, Lemma 5.1] has proven that λ1 ≥ a ≥ λ2, where λ1 and λ2 are the
eigenvalues of stretch given in (A.1).

The rotational contribution [Q] arising from an upper-triangular decomposition of the deformation
gradient is determined from [Q] = [F][F̃]−1 and (B.1) and (B.2) leading to

[Q] =
[

cos θ sin θ
−sin θ cos θ

]
, (B.3a)

wherein

θ =

{
−sin−1(F21/a),
sin−1((F12− γ F11)/b

)
,

(B.3b)

with θ being the angle that the material frame {mi } rotates relative to the Eulerian frame {ei } with positive
rotations occurring in a clockwise sense, see, Figure 1.

Recall that the angle of rotation of the Lagrangian frame {ni } relative to the Eulerian frame {ei } is ψ ,
see (A.4). Consequently, angle ψ− θ establishes the angle of rotation of the Lagrangian frame {ni } about
the material frame {mi }, see, Figure 1.

B.1. Derived from the deformation gradient. Alternatively, one can use the components of the deforma-
tion gradient [F] to directly quantify extensions a and b and shear γ , the building blocks of distortion [F̃],
plus the angle θ that determines rotation [Q] between the Eulerian {ei } and material {mi } coordinate
frames via

a =
√

F2
11+ F2

21, γ =
F11 F12+ F21 F22

F2
11+ F2

21
, b =

F11 F22− F12 F21√
F2

11+ F2
21

, (B.4)
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with
sin θ =

−F21√
F2

11+ F2
21

and cos θ =
F11√

F2
11+ F2

21

, (B.5)

thereby foregoing any need to construct the Cauchy deformation tensor C.

B.2. Invariants. An upper-triangular 2× 2 matrix, say [A], with elements

[A] =
[

a c
0 b

]
(B.6)

has three unitary invariants [Murnaghan 1954]:

Ī1 = tr(A)= a+ b, Ī2 = tr(A2)= a2
+ b2, Ī3 = tr(ATA)= a2

+ b2
+ c2, (B.7)

where Ī1, Ī2 and Ī3 are invariant of coordinate rotations because tr(RTAR)= tr(RRTA)= tr(A)= Ī1 and
tr((RTAR)(RTAR)) = tr(RTAAR) = tr(RRTA2) = tr(A2) = Ī2, and because tr((RTAR)T(RTAR)) =
tr(RTATRRTAR) = tr(RTATAR) = tr(RRTATA) = tr(ATA) = Ī3. It follows that det A = 1

2( Ī
2
1 − Ī2).

The extra invariant follows because matrix [A] is upper triangular and therefore [A]2 is upper triangular
whereas [A]T[A] is symmetric.

Appendix C: Experimentation

Lanir and Fung [1974], Humphrey et al. [1987], Sacks [1999; 2000] and others have been perfecting
the planar biaxial-stretch experiment for over four decades, as it applies to testing soft biological tissues.
Our analysis of this experiment assumes homogeneous deformation and incorporates an upper triangu-
lar decomposition of the deformation gradient to quantify deformation and stress from experimental
observations.

C.1. Deformation. An experimental assessment of deformation is straightforward. Extensions a and b
and shear γ = tanφ are the kinematic parameters to be acquired. Their values are directly observed and
readily measured in accordance with Figure 2. Once they are known, the distortion matrix [F̃] can be
populated according to (B.1). Coordinate directions e1 and e2 are orthogonal, as are coordinate directions
m1 and m2. Angle θ rotates {ei } into {mi } and is drawn in its positive sense in Figure 2. With θ measured
and known, one can populate the rotation matrix [Q] according to (B.3a).

Axes m1 and m2 can be thought of as being painted onto the material in some reference state t0
oriented at an angle of θ0 with respect to the spatial frame {ei } so that initially

[F0] =

[
cos θ0 sin θ0

−sin θ0 cos θ0

]
. (C.1a)

In a deformed state t , material axis m1 remains a material axis, now rotated by an angle of θ from the
spatial frame {ei }, however, the material line originally drawn in the m2 direction (drawn as m2,0 in
Figure 2) may no longer be orthogonal to m1 at times t > t0. Any angular difference (from being a right
angle) is caused by shear and quantified by φ = tan−1 γ . The deformation gradient is now given by

[F] = [Q][F̃] =
[

cos θ sin θ
−sin θ cos θ

] [
a aγ
0 b

]
=

[
a cos θ b sin θ + aγ cos θ
−a sin θ b cos θ − aγ sin θ

]
. (C.1b)
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e2 m2

m2,0

t2

tτ
b

bγ

φ
t12

t1

e1

θ

m1

a

t

Figure 10. In-plane loading of a sample that was originally square and has undergone bi-
axial extension through orthogonal tractions f1 and f2 applied in the e1 and e2 directions,
respectively, and have also undergone a shear through a traction fτ applied in the e1 direc-
tion, e.g., in the geometric sense of a double-lap shear. These three tractions have units of
force per unit undeformed length of line, as measured in a reference state at time t0 where
a = b = 1 and γ = 0. In a deformed state, say at current time t , the actual tractions are
t1= f1/b

√
1+ γ 2 and t2= f2/a and tτ = fτ/a and have units of force per unit deformed

length of line, where γ = tanφ. Traction t12 is an internal reaction caused by the grips.
It cannot be controlled by the experimentalist. It exists to conserve angular momentum.

Direction m1 will often be selected to associate with a feature of interest in the sample being tested, e.g.,
aligned with a fiber direction.

This kinematic assessment is valid for any homogeneous planar deformation. It is general.

C.2. Stress. Stresses are more challenging to get, but the process is fairly straightforward. Cauchy’s
[1827] fundamental theorem for stress implies that t=Tn where t= ti ei is a traction vector, T= Ti j ei⊗e j

is Cauchy’s stress tensor, and n= ni ei is a unit normal to the surface upon which traction t acts. All fields
are defined in the Eulerian frame {e1, e2}. The symmetric Kirchhoff [1852] stress, also an Eulerian field, is
defined by S :=det(F)T= Si j ei⊗e j , where det F=ab for membranes. Cauchy’s theorem for stress rotates
into the material frame {mi } to become t̃ = 1/(ab) S̃ñ wherein t̃ =QT t and ñ =QTn and S̃=QTSQ.
It is formula t̃ = 1/(ab) S̃ñ that we choose to apply to quantify stress in the material frame {m1,m2}.

When it comes to stress, each experiment is a separate boundary value problem. There is no general
result like there is for deformation. Here we consider the experiment illustrated in Figure 10. Data
extracted from such an experiment would be rich enough to ensure sensitivity for all parameters in our
material model (22), hence our interest in this experiment.

To aid in avoiding wrinkling over a range of interest in shear strain, a sample would ideally be exposed
to positive tractions in the 1 and 2 directions, denoted as t1 and t2 in Figure 10. After the membrane
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is supporting surface tension, to offset the onset of wrinkling, one would impose a traction of shear tτ
through, e.g., a double-lap shear gripping configuration (traction t12 present in Figure 10 is not under the
control of an experimentalist. It is an internal traction caused by the grips).

In accordance with Figure 10, an application of Cauchy’s theorem to the two edges of the areal element
in that figure, solving for stress components in the {mi } coordinate frame, leads to{

t1 cos θ + t12 sinφ
t1 sin θ + t12 cosφ

}
=

1
ab

[
S̃11 S̃12

S̃21 S̃22

]{
cosφ
−sinφ

}
(C.2a)

and {
−t2 sin θ + tτ cos θ

t2 cos θ + tτ sin θ

}
=

1
ab

[
S̃11 S̃12

S̃21 S̃22

]{
0
1

}
(C.2b)

that comprise a linear system of equations which, when solved for the components of stress S̃i j , yields

S̃11 = a(cos θ f1+ bγ t12)+ bγ (cos θ fτ − sin θ f2), (C.3a)

S̃12 = S̃21 = b(cos θ fτ − sin θ f2), (C.3b)

S̃22 = b(sin θ fτ + cos θ f2), (C.3c)

where, from symmetry of S̃, i.e., S̃21 = S̃12, one determines that

t12 =
−a sin θ cosφ f1− b sin(θ +φ) f2+ b cos(θ +φ) fτ

ab cosφ
, (C.3d)

wherein tractions f1, f2 and fτ have units of force per unit undeformed length of line. They associate
with tractions t1, t2 and tτ , which have units of force per unit deformed length of line, via the formulæ

f1 = b secφt1, f2 = at2, fτ = atτ . (C.4)

From (7a)–(7c), one finds that the conjugate stresses have values of

π = a(cos θ f1+ bγ t12)+ b((sin θ + γ cos θ) fτ + (cos θ − γ sin θ) f2), (C.5a)

σ = a(cos θ f1+ bγ t12)− b((sin θ − γ cos θ) fτ + (cos θ + γ sin θ) f2), (C.5b)

τ = a(cos θ fτ − sin θ f2), (C.5c)

and therefore an experimentalist needs to measure the three tractions f1, f2 and fτ and the three defor-
mations a, b and γ in order to quantify the three conjugate states of stress π , σ and τ .

These formulæ will simplify under a variety of special conditions, e.g., whenever θ = φ= 0 and fτ = 0,
(C.5) simplifies to

π = a f1+ b f2, σ = a f1− b f2, τ = 0, (C.6)

which describe the boundary condition used in the experiments of Lanir and Fung [1974], Humphrey
et al. [1987], Sacks [1999; 2000], Billiar and Sacks [2000b; 2000a], Freed, Liao and Einstein [2014] and
numerous others.
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Appendix D: Derivation of Equation (4)

We begin with the well known description for stress power [Ogden 1984]:

Ẇ = tr(PTḞ), (D.1)

and then apply properties of the trace. This allows one to rewrite the above expression as

Ẇ = tr(PTḞ)= tr(FPTḞF−1)= tr(SL), (D.2)

because stress S is symmetric and therefore S= PFT
= FPT. Incorporating the triangular decomposition

of the deformation gradient established in Appendix B permits one to rewrite the above equation as

Ẇ = tr(SL)= tr(SḞF−1)= tr(SQ̇F̃F̃−1Q−1)+ tr(SQ ˙̃FF̃−1Q−1). (D.3)

The first trace on the right-hand side is zero because the Kirchhoff stress S= Si j ei⊗e j is symmetric while
spin 444 = Q̇QT

= 4i j ei ⊗ e j is skew symmetric, therefore tr(SQ̇F̃F̃−1Q−1) = tr(SQ̇QT) = tr(S444) = 0.
Rearranging the second trace leads to

Ẇ = tr(QTSQ ˙̃FF̃−1)= tr(S̃L̃), (D.4)

wherein S̃ :=QTSQ= S̃i j mi ⊗m j and L̃ := ˙̃FF̃−1
= L̃ i j mi ⊗m j , as established in (E.4). Because S̃ is

symmetric and L̃ is upper triangular,

tr
([

S̃11 S̃12

S̃12 S̃22

] [
L̃11 L̃12

0 L̃22

])
= S̃11 L̃11+ S̃12 L̃12+ S̃22 L̃22, (D.5)

which proves (4).

Appendix E: Decomposition of distortion F̃

The distortion tensor F̃ in (B.1) can be decomposed into a product of three fundamental modes of defor-
mation, e.g., F̃= F̃◦F̃ F̃ 6 with matrix components

[F̃◦][F̃ ][F̃6 ] =
[√

ab 0
0
√

ab

]
︸ ︷︷ ︸

dilation

[√
a/b 0
0
√

b/a

]
︸ ︷︷ ︸

squeeze

[
1 γ

0 1

]
︸ ︷︷ ︸

shear

=

[
a aγ
0 b

]
= [F̃], (E.1)

where dilation F̃◦ is a uniform contribution to distortion, squeeze F̃ is an extrusion-like contribution to
distortion2, and shear F̃6 is an angular contribution to distortion. The distortions of dilation and squeeze
commute, because they are diagonal, and as such F̃◦F̃ = F̃ F̃◦. The distortions of squeeze and shear are
isometric, because they preserve area, and as such det F̃ = det F̃6 = 1.

2 Freed and Srinivasa [2015] refer to F̃ as extrusion. Here we call it squeeze to give it a more intuitive terminology to a
wider audience. It describes an isometric deformation that maps a square into a rectangle of the same area. It is similar to
(but distinct from) pure shear [Freed and Srinivasa 2015].
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E.1. Rates of distortion. Differentiating the decomposition of distortion (E.1) by the product rule gives

˙̃F= ˙̃F◦F̃ F̃ 6 + F̃◦ ˙̃F F̃ 6 + F̃◦F̃ ˙̃F6

=
˙̃F◦F̃ F̃ 6 + ˙̃F F̃◦F̃ 6 + F̃◦F̃ ˙̃F6

=
˙̃F◦(F̃◦)−1F̃+ ˙̃F (F̃ )−1F̃+ F̃(F̃ 6 )−1 ˙̃F6

= L̃◦F̃+ L̃ F̃+ F̃L̃6 ,

(E.2)

where, to advance from the first line to the second, we use the fact that F̃◦ and F̃ commute. Identities,
e.g., I = (F̃◦)−1F̃◦, along with (E.1) advance the second line to the third. Going from the third line to
the fourth is done by defining velocity gradients for the three modes comprising the rate of distortion:

(1) For dilation, define L̃◦ := ˙̃F◦
(
F̃◦
)−1
=
(
F̃◦
)−1 ˙̃F◦ whose matrix components are

[L̃◦] =
1
2

(
ȧ
a
+

ḃ
b

)[
1 0
0 1

]
. (E.3a)

(2) For squeeze, define L̃ := ˙̃F
(
F̃
)−1
=
(
F̃
)−1 ˙̃F whose matrix components are

[L̃ ] =
1
2

(
ȧ
a
−

ḃ
b

)[
1 0
0 −1

]
. (E.3b)

(3) For shear, define L̃6 := ˙̃F 6
(
F̃6
)−1
=
(
F̃6
)−1 ˙̃F6 whose matrix components are

[L̃6 ] =
[

0 γ̇

0 0

]
. (E.3c)

It turns out that the material velocity gradients L̃◦, L̃ and L̃6 commute in the products that define them.
The three material velocity gradients that are defined in (E.3) sum according to (E.2) to form a log-like

rate of distortion that is defined by L̃ := ˙̃FF̃−1
= L̃◦+ L̃ + F̃L̃6 F̃−1 with matrix components3

[L̃] =
[

ȧ/a aγ̇ /b
0 ḃ/b

]
. (E.4)

The Eulerian velocity gradient L := ḞF−1 and the material velocity gradient L̃ := ˙̃FF̃−1 relate to one
another through the expression

L̃=QT(L−444)Q,

=QTLQ−444,
wherein [444] =

[
0 θ̇

−θ̇ 0

]
(E.5)

with spin 444 := Q̇QT, an Eulerian field, designating the rate at which the material frame {mi } rotates
about the Eulerian frame {ei } with θ being defined in (B.3b) and drawn in Figure 1. The skew symmetric
part of (E.5) produces the useful result

444=W− W̃, (30)

3 Freed and Srinivasa [2015] define L̃ as F̃−1 ˙̃F, whereas we define it as ˙̃FF̃−1. They derived the logarithm of distortion ln F̃
whose rate is not L̃. The diagonal components of L̃ and ln F̃ are the same; it is in the off-diagonal components that they differ.
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stated in (8d), where W := 1
2(L−LT) and W̃ := 1

2(L̃− L̃T) are the spatial and material vorticities.

Remark. An important but subtle point is that L̃ is not integrable, because F̃L̃6 F̃−1 is not integrable,
and therefore L̃ is not a viable measure for strain rate. Strain is a field that depends only upon its two
end states, and not upon the path traversed to get from one state to the other. Consequently, strain rate
must be described by an exact differential, and L̃ is not an exact differential.
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