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HIERARCHICAL MULTISCALE MODELING OF THE EFFECT OF
CARBON NANOTUBE DAMAGE ON THE ELASTIC PROPERTIES OF

POLYMER NANOCOMPOSITES

G. DOMÍNGUEZ-RODRÍGUEZ, A. K. CHAURASIA, G. D. SEIDEL, A. TAPIA AND F. AVILÉS

The influence of various levels of carbon nanotube (CNT) structural damage on the transversely isotropic
elastic properties of CNTs and CNT/polymer composites is investigated through a hierarchical multiscale
modeling strategy. Assessment of the effect of structural damage on the CNTs is first conducted by
removing C-C bonds and using atomistic finite element analysis. The composite cylinder method is then
used to model composites whose effective properties are obtained from the Mori–Tanaka method. The
axial, radial, transverse shear and in-plane shear moduli of CNTs decrease ∼ 70% for 10% damage.
This decrease is more pronounced for CNTs with small radii, and when the broken bonds coalesce. The
transverse Poisson’s ratio of CNTs increases about six times for 10% damage. When these defective
CNTs are used in polymer composites, the axial elastic modulus of the composite reduces by ∼80%
while the transverse Poisson’s ratio increases about three times.

1. Introduction

The engineering applications of carbon nanotube (CNT) reinforced polymers are numerous [De Volder
et al. 2013]. It is well-known that adding small quantities of CNTs can enhance the mechanical and elec-
trical properties of their host polymer, creating multifunctional materials [Gates et al. 2005; Fukushima
et al. 2006; Spitalsky et al. 2010]. The transportation and aerospace industries are examples of potential
users, where low density, high strength, and multifunctionality are important for service and design.

Different forms of structural damage have been reported for CNTs and other sp2/sp3 carbon-based
nanostructures. Structural defects are commonly generated during the CNT synthesis, or by postsynthesis
treatments such as electron/ion irradiation or chemical methods [Balog et al. 2010; Banhart 1999; Banhart
et al. 2011; Kim et al. 2009; Krasheninnikov and Banhart 2007; Lucchese et al. 2010]. A common kind of
topological CNT defect is the one frequently called “Stone–Wales” defect (although it has been suggested
that a “Thrower” defect is a more proper name [Monthioux and Charlier 2014]), where two carbon atoms
rotate to transform four hexagons into two heptagons and two pentagons [Araujo et al. 2012; Banhart
et al. 2011]; see Figure 1, left. A second kind of defect are vacancies, i.e., places where an atom is
missing; vacancies can be single (Figure 1, center) or formed by more than one missing atom (Figure 1,
right).

Defects are associated with a degradation of mechanical properties of CNTs [Shet et al. 2005], with
vacancies being more influential than Thrower-type defects [Sammalkorpi et al. 2004; Zandiatashbar et al.
2014]. According to Talukdar and Mitra [2010] and Sharma et al. [2012], a Thrower defect can reduce
the axial elastic modulus of a singlewall CNT (SWCNT) up to 6%. In contrast, molecular dynamics
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Figure 1. Different kinds of topological defects present in carbon nanostructures: left,
Thrower defect; center, single vacancy; right, double vacancy.

simulations predict a reduction of about 10% in the elastic modulus for a concentration of vacancies of
2.5% [Fefey et al. 2011] and about 40% for a concentration of vacancies of 8%[Yuan and Liew 2009].
Mielke et al. [2004] and Tserpes et al. [2007] showed that Thrower defects and vacancies are important
causes of tensile fracture.

Structural defects such as vacancies are able to rearrange their topology to minimize their formation
energy [Yuan and Liew 2009; Berber and Oshiyama 2006]. During this rearrangement, new bonds are
formed and others broken. Some defects, such as Thrower-type, do not reduce the number of bonds, while
others, such as vacancies, reduce the number of bonds by two or three bonds, with a corresponding energy
reconfiguration [Mielke et al. 2004; Tserpes and Papanikos 2007]. Modeling the dynamic rearrangement
process after bond elimination is a complex task which demands dedicated ab initio computations [Gallo
et al. 2007; Prasomsri et al. 2010; Ahangari et al. 2013] that are very limited in size. Traditional density
functional theory computations are in the range of a few hundreds of atoms and can only reach thousands
for clusters with hundreds of cores [Kohn 1995; Fonseca Guerra et al. 1998; Hine et al. 2009]. An
alternative approach to tackle this problem is by finite element analysis (FEA). Although FEA does not
account for quantum effects needed to predict the rearrangement of structural defects after relaxation,
within the Newtonian mechanics framework FEA is a versatile and accurate tool to efficiently predict
elastic properties of nanostructures [Giannopoulos et al. 2013; Haghbin and Khalili 2014; Domínguez-
Rodríguez et al. 2014]. To date, bridging scales to predict elastic properties of polymer composites
seems to be plausible only by using classical mechanics modeling tools. Continuous homogenization
models have been previously conducted for macroscopic lattices in order to simplify the prediction of the
mechanical properties of beam structures [Noor et al. 1978; Sun et al. 1981; Noor 1988; Dow and Huyer
1989; Sun and Liebbe 1990; Usik 1994]; more recently they have also been applied to nanostructures
such as graphene sheets and CNTs [Odegard et al. 2002; Blanc et al. 2002; Caillerie et al. 2006]. In the
present work, a hierarchical multiscale modeling approach is undertaken, wherein FEA is used at the
smallest scale to predict the (transversely isotropic) elastic properties of SWCNTs. In order to damage
the CNTs, carbon-carbon (C-C) bonds are sequentially eliminated. Two approaches for bond elimination
are used. In the first one, bonds are randomly broken without consideration of the previous damage
state; in the second one, the sequential bond breaking process is conducted only at adjacent bonds,
simulating clustering damage. These properties are then used as an input to compute the influence of
such CNT structural defects on the elastic properties of SWCNT/polymer composites, using classical
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micromechanics theories. The composite cylinder method [Hashin and Rosen 1964] is then used to
model the elastic properties of a CNT/polymer composite using the local orientation scale and including
an interphase, whereas the Mori–Tanaka (MT) method [1973] is used to predict the elastic properties of
composites including CNTs with multiple orientations, chiralities, and damage severity.

2. Methodology

2.1. Elastic properties of a transversely isotropic CNT. CNTs can be treated as transverse isotropic
materials, which means that five independent elastic properties are needed to construct their stiffness
tensor. The five independent elastic properties chosen for investigation in the current work are the axial
elastic modulus (E11), the in-plane bulk modulus (K23), the transverse Poisson’s ratio (ν12), the transverse
shear modulus (µ12) and the in-plane shear modulus (µ23). Here, 1, 2 and 3 represent the axial, radial
and angular directions of the local material coordinates of the CNT, respectively, whereas x , y, and z
are the orthogonal axes of the global Cartesian coordinates as shown in Figure 2. Here, r is the radial
position and θ is the angle between the axes x and 2. The CNT stiffness tensor is defined by [Qu and
Cherkaoui 2006]

Ci j =



C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 µ23 0 0
0 0 0 0 µ12 0
0 0 0 0 0 µ12


, (1)

where C11 = E11+ 4ν2
12K23 and C12 = 2ν12K23 and C22 = K23+µ23 and C23 = K23−µ23.

The definition of the transverse Poisson’s ratio for defective CNTs may be ambiguous, since structural
defects produce localized perturbations in the displacement field that can differ greatly from the free
transverse contraction. Therefore, the axial component of the stiffness tensor (C11) was obtained from

x y

z

1

2

3

Figure 2. Material coordinates used in this work.
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an energy balance and is used here to predict the transverse Poisson’s ratio as

ν12 =

√
C11− E11

4K23
. (2)

The radial elastic modulus (E22) was obtained from the axial elastic modulus (E11), the transverse
Poisson’s ratio (ν12), the in-plane bulk (K23), and shear moduli (µ23) as

E22 =
4K23µ23

K23+µ23+ 4ν2
12K23µ23/E11

. (3)

2.2. Finite element analysis of defective CNTs. The atomistic FEA proposed by Li and Chou [2003b]
was used here to predict the elastic properties of CNTs. In this method, the atoms are considered as
nodes and the C-C bonds are modeled as solid beams with a circular cross section, whose elastic modulus
(Ebeam) and shear modulus (Gbeam) are obtained from an equivalence between the structural deformation
energies and the molecular mechanics potentials associated with tension, bending, and torsion of the
atomic bonds. The selection of the beam’s cross-section does not affect the calculations as long as
the area and moment of inertia are preserved [Li and Chou 2003b]. Each type of bond deformation is
associated with a bond force constant, representing tension (kT ), bending (kB), and torsion (kτ ) [Li and
Chou 2003b]. The elastic and geometric properties of the beams that model the C-C bonds are defined
as [Li and Chou 2003b; Sakhaee-Pour 2009]

dbeam = 4

√
kB

kT
, Ebeam =

k2
T Lbeam

4πkB
, Gbeam =

k2
T kτ Lbeam

8πk2
B

, (4)

where dbeam is the beam’s diameter, Ebeam is the beam’s elastic modulus, Gbeam its shear modulus, and
Lbeam is the C-C bond length. Following the recommendations of Li and Chou [2003b], a C-C bond
length of Lbeam = 0.142 nm and bond force constants of kT = 6.52 · 10−7 N · nm−1 and kB = 8.76 ·
10−10 N · nm−1

· rad2 and kτ = 2.78 · 10−10 N · nm−1
· rad2 were employed, as reported by Cornell et al.

[1995] and Jorgensen and Severance [1990] for benzene.
The numerical solution was conducted through the commercial code ANSYS 13.0, using the “BEAM4”

element which allows bending, torsion, axial compression, and tension.
Following the method of Li and Chou [2003b], nonbonded interactions such as van der Waals forces are

neglected, given their significantly lower contribution when compared to covalent interactions, especially
for SWCNTs [Li and Chou 2003a; Kalamkarov et al. 2006]. However, it is important to notice that van
der Waals forces might be relevant for interactions between layers for the case of multiwall CNTs [Li
and Chou 2003a].

Armchair SWCNTs of different chiralities were considered ranging from (3,3) (with a radius of R ≈
0.2 nm) to (10,10) (R ≈ 0.7 nm), containing a total number of 200 unit cells of height H = 2.46 Å
(see Figure 3) for a total CNT length of L = 49.2 nm. This length, albeit short, keeps the problem
computationally tractable and was proven to yield mechanical properties which are independent of the
CNT length in a previous analysis [Domínguez-Rodríguez et al. 2014]. An equivalent wall thickness of
t = 3.4 Å was considered for homogenization purposes, which is equivalent to the interlayer distance
between graphene sheets [Ferrari and Basko 2013; Gao et al. 2008; Ni et al. 2007; Blake et al. 2007;
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Figure 3. Geometric parameters of a representative SWCNT.

Burnett et al. 2012; Novoselov et al. 2005; Obraztsova et al. 2008]; see Figure 3. The selection of other
wall thicknesses may significantly change the elastic properties of CNTs when homogenized as a hollow
cylinder [Demczyk et al. 2002; Zhang et al. 2002; Srivastava et al. 2003; Natsuki et al. 2004; Tserpes
and Papanikos 2005]. However, if homogenized as an effective solid cylinder, the values of the effective
CNT properties would change marginally with the wall thickness.

2.2.1. Loading cases. The five loading cases depicted in Figure 4 were chosen in order to calculate
the five independent elastic properties of the SWCNT considered as a transversely isotropic material.
The total strain energy was computed for each loading case and the corresponding elastic property was
obtained through an energy balance, to be further discussed. Specific boundary conditions for each
loading case were imposed by applying linear equations representing the constraints on the displacement
field as functions of the radial (ur ), angular (uθ ), and axial (uz) displacement fields. The applied strain (εr ,
εrθ , εzr or εz) was set to 0.02, although the resulting elastic properties are independent of this input value.

In order to obtain the axial elastic modulus of the CNT (ECNT
11 ), an axial (z) strain (εz = 0.02) was

applied through a displacement field uz = εz L at the atoms located at the top edge of the CNT (z = L),
whereas all degrees of freedom were restricted at the bottom edge (z = 0) of the SWCNT (ur |z=0 =

uz|z=0= uθ |z=0= 0); see Figure 4a. The rest of the atoms were allowed to move freely in this loading case.
For simulation of the radial expansion to determine K CNT

23 , the top and bottom atoms were restricted to
prevent contraction or expansion along the axial direction (uz|z=0= uz|z=L = 0), and a radial displacement
ur = rεr was applied to all of the nodes; see Figure 4b.

In order to obtain CCNT
11 , an axial strain (εz) was applied through a displacement uz = εz L at the top

edge atoms (z = L), whereas uz was set to zero at the bottom edge atoms (z = 0). Displacements ur and
uθ were restricted for all atoms in this loading case, as shown in Figure 4c.

For defective CNTs, the conventional definition of the transverse Poisson’s ratio (νCNT
12 ) extracted di-

rectly from the transverse contraction of the axial strain loading case (Figure 4a) may be ambiguous, given
the excessive localized transverse deformation in the vicinity of the defect. Thus, νCNT

12 was calculated
here from a combination of ECNT

11 , CCNT
11 and K CNT

23 as stated in (2).
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Figure 4. Loading cases used in FEA to determine the five independent elastic constants
of the SWCNT: a, axial strain (ECNT

11 ); b, radial expansion (K CNT
23 ); c, axial strain with

radial restriction (CCNT
11 , νCNT

12 ); d, transverse shear strain (µCNT
12 ); and e, in-plane shear

strain (µCNT
23 ).
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The transverse shear modulus (µCNT
12 ) was determined by applying a transverse shear strain (εr z) mod-

eled as a nonuniform displacement field uz = rεr z cos(θ) for all atoms, while ur and uθ were restricted
to zero for all nodes to prevent contraction and rotation of the CNT; see Figure 4d.

Finally, to compute the in-plane shear modulus (µCNT
23 ), nonuniform radial and tangential displacement

fields of magnitude ur = rεrθ sin(2θ) and uθ = εrθ cos(2θ) were applied, whereas the top and bottom
atoms were restricted to prevent contraction or expansion along the axial direction (uz|z=0 = uz|z=L = 0);
see Figure 4e. This loading case simulates the application of an in-plane (xy) shear strain.

2.2.2. Energy balance. In order to obtain the elastic properties of the investigated SWCNTs, the strain
energy of the CNT’s structural model was set equal to the strain energy of a solid cylinder under the
same boundary conditions [Hashin and Rosen 1964], i.e.,

1
VC

N∑
n=1

E (B)n =
1

2VC

∫ L

0

∫ 2π

0

∫ R+t/2

0
(σ : ε)r ∂r ∂θ ∂z, (5a)

where E (B)n is the total strain energy of the n-th C-C beam, N is the number of beams (or C-C bonds),
VC is the volume of the CNT considered as a solid cylinder (to avoid interdependency among the five
elastic properties) and : represents the Frobenius inner product defined for dyadics [Meyer 2000].

Since the strains are not functions of z and VC = π
(
R+ 1

2 t
)2L , (5a) becomes

1
L

N∑
n=1

E (B)n =
1
2

∫ 2π

0

∫ R+t/2

0
(σ : ε)r ∂r ∂θ. (5b)

The evaluation of (5b) provides three linear equations for ECNT
11 and CCNT

11 and µCNT
12 and a set of two

linear algebraic equations whose solution yields µCNT
23 and K CNT

23 . Because of the CNT central hollow
area, (5b) shows a dependency of R and t on the CNT elastic properties. All five independent elastic
properties are used to construct the stiffness tensor listed in (1).

2.2.3. Damage generation. The approach used here to simulate structural defects was to sequentially
eliminate C-C bonds. Two configurations were investigated depending on the sequence of bond elimina-
tion followed, viz. randomly generated damage (Figure 5, top) or clustered damage (Figure 5, bottom).
Since each carbon atom has three bonds, breakage of the three bonds may be considered as a vacancy in
terms of missing bonds. In the random evolution scenario, the bonds are removed by generating random
numbers following a uniform distribution of probability from 0 to 1. The bond is deemed broken if
the randomly generated number is lower than the fraction of broken bonds to be simulated (broken
bonds/total number of bonds). Due to the random nature of the process, the computations were repeated
numerous times and the results averaged, reporting the average value of the computed elastic property.
A dedicated convergence analysis showed that 40 repetitions yielded differences less than 0.2% for all
elastic properties and damage states with respect to results with 80 of repetitions; thus 40 iterations was
deemed convergent.

CNT damage was also modeled following a clustering pattern. In this approach, the first broken
bond was randomly generated, and the following broken bonds were restricted to be chosen from the
neighbors of the already broken bonds, generating clustered damage (Figure 5, bottom). The clustering
pattern produces coalescence of CNT damage and is expected to severely affect the SWCNT properties;
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Figure 5. Schematic representation of the two cases of damage evolution investigated:
top, random; bottom, clustered.

see, e.g., [Sammalkorpi et al. 2004]. Therefore, even when quantum bond reconstruction is not addressed
in our classical mechanics approach, the clustered damage is expected to represent an upper bound for
the same fraction of broken bonds.

2.3. Prediction of the elastic properties of axially oriented CNT/polymer composites.

2.3.1. Composite cylinder method. The composite cylinder method (CCM), initially proposed by Hashin
and Rosen [1964], was used to predict the elastic properties of composite materials represented by con-
centric cylindrical layers. In the CCM, each layer (numbered from 1 to N ) represents a phase with its
own elastic properties, schematically represented as C i for illustration purposes in Figure 6. The CCM
method was employed here to predict the elastic properties of perfectly oriented polymer composites
containing CNTs, including an interphase, whose stiffness tensor varies as a piecewise constant from
that of the CNT (CCNT) to the one of the matrix (Cm) [Hernández-Pérez and Avilés 2010]; see Figure 6.
The stiffness tensor of the CNT was obtained from the energy balance between the strain energies of
the CNT structure and the solid cylinder; see (5). The interface between two adjacent interphases is
considered perfect, i.e., the stress tensor transfers from one layer to the other without loss. The number
of interphase layers was set to 5. While a higher number of interphase layers may increase precision, it
also increases the computational burden and more than 5 interphase layers was not deemed necessary in
this work, provided a proper convergence analysis. The center (first phase) represents the CNT (including
the central hollow region), whose stiffness tensor was previously homogenized by using the strain energy
of the CNT, while the outermost phase (N -th phase) represents the matrix; all phases in between (from 2
to N −1) correspond to different layers modeling the interphase; see Figure 6. The matrix was considered
to be an isotropic material with an elastic modulus of 1 GPa and a Poisson’s ratio of 0.35, simulating a
typical engineering polymer [Fink 2010; Mittal 2011]. In order to model different CNT volume fractions
in a composite, the thickness of the outermost phase was varied. The first phase (CNT) starts at r = 0
and ends at r = R+ 1

2 t , which represents the interface with the first layer of interphase. The last layer
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Figure 6. Schematic of the composite cylinder model.

of the interphase (N − 1) ends at r = rN−1 = R+ 1
2 t + ti , where ti is the i-th interphase thickness. The

thickness of the CNT/matrix interphase was set equal to the SWCNT wall thickness (ti = t) as suggested
in [Hernández-Pérez and Avilés 2010]. Finally, the matrix ends at r = rN = R+ 1

2 t + ti + tm , where tm
is the matrix thickness.

Since all phases have the same length and axial direction, the volume fraction of the CNT/polymer
composite (v f ) is calculated as

v f =

[
R+ 1

2 t

R+ 1
2 t + ti + tm

]2

. (6)

The maximum volume fraction available for each CNT (v f max) is obtained when tm = 0, i.e.,

v f max =

[
R+ 1

2 t

R+ 1
2 t + ti

]2

. (7)

The CCM was conducted for each armchair CNT chirality discussed in Section 2.2 — (3, 3) to (10, 10)—
as well as for the two scenarios of damage generation depicted in Figure 5.

2.3.2. Loading cases. Four loading cases were used to obtain the five independent transversely isotropic
elastic properties of CNT/polymer composites containing defective CNTs. These loading cases are sim-
ilar to those depicted in Figure 4 for the CNTs, but for the continuous composites E11 and ν12 were
extracted directly from the axial strain loading case. The four loading cases used to compute the elastic
properties of the axially oriented CNT/polymer composites by the CCM are illustrated in Figure 7.

Figure 7a shows the loading case used to calculate the axial elastic modulus (E11) and transverse
Poisson’s ratio (ν12) of the composites. An axial displacement is applied and radial contraction is al-
lowed. Detailed information about the system of equations for the boundary conditions, continuity, and
displacement fields is included in Section A.1 of the Appendix. Once the system of equations is solved,
the axial elastic modulus, E11, is obtained as

E11 = σ̄11/ε̄11, (8)
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Figure 7. Loading cases used in the composite cylinder method: a, axial strain; b, in-
plane bulk strain; c, transverse shear strain; and d, in-plane shear strain.

where σ̄11 and ε̄11 are volumetric averages of the axial stress (σ11) and axial strain (ε11). The Poisson’s
ratio is calculated as

ν12 =−ε̄22/ε̄11, (9)

where ε̄22 is the volumetric averaged radial strain which is equal to the radial strain at the outer surface
(r = rN ).

Figure 7b shows the loading case used to calculate the in-plane bulk modulus of the composite (K23).
The axial displacements are restricted at z = 0 and z = L and a radial displacement is applied at r = rN .
The system of equations stated in Section A.2 of the Appendix is solved and the in-plane bulk modulus
is obtained as

K23 = σ̄22/2ε̄22, (10)

where σ̄22 and ε̄22 are volumetric averages of the radial stress (σ22) and the radial strain (ε22).
Figure 7c shows the loading case used to calculate the transverse shear modulus of the composite (µ12).

For this loading case, all radial and tangential displacements are restricted and a transverse shear strain
is produced by applying an axial displacement at r = rN as a function of θ . Analytical expressions for
modeling such displacement conditions are presented in Section A.3 of the Appendix. The transverse
shear modulus is then obtained from statement of equivalent surface tractions between the composite
cylinder assemblage and the effective homogeneous cylinder, i.e.,

µN
12ε

N
12|r=rN = µ12ε12|r=rN , (11)



MODELING OF CARBON NANOTUBE DAMAGE ON THE PROPERTIES OF POLYMER NANOCOMPOSITES 273

CNTs with different chiralities,
fraction of defects and orientations

Effective material

Matrix

Mori-Tanaka
(MT)

1

Mori–Tanaka
(MT)

CNTs with different chiralities,
fraction of defects and orientations

Figure 8. Mori–Tanaka approach for CNT/polymer composites.

where µN
12 and εN

12 are the transverse shear modulus and strain of the N -th phase, and µ12 and ε12 are the
transverse shear modulus and strain of the effective homogeneous cylinder.

Figure 7c shows the loading case used to calculate the in-plane shear modulus of the composite (µ23).
Following Seidel and Lagoudas’ methodology [2006], the generalized self-consistent composite cylinder
method is employed to obtain the in-plane shear modulus (µ23). This method is different from the conven-
tional CCM because µ23 is not calculated by using its definition once the strains are obtained, but µ23 is
explicitly included as an additional variable in the system of equations; see Section A.4 of the Appendix.

2.4. Mori–Tanaka approach for CNT/polymer composites. The Mori-Tanaka (MT) method allows for
the prediction of elastic properties of a composite material constituted by different phases, each of them
with its own geometry and material properties [Mori and Tanaka 1973]. The MT method is used here
to predict the stiffness tensor of a CNT/polymer composite containing CNTs with different chiralities,
fractions of broken bonds, and orientations; see Figure 8. The elastic properties of each phase are
obtained from the CCM calculations in order to include the interphase.

In the MT method, the stiffness tensor (C) of the composite material is obtained as [Mori and Tanaka
1973]

C =
(
vmCm Am+

N∑
i=1

vi Ci Ai

)
·

(
vm I+

N∑
i=1

vi Ai

)−1

, (12)

where I is the identity tensor (in Voigt’s notation), Cm is the stiffness tensor of the polymer matrix, Ci

is the stiffness tensor of the i-th phase, vm is the volume fraction of the matrix phase, vi is the volume
fraction of the i-th phase, N is the total number of phases, Ai is the dilute strain concentration tensor
for the i-th phase, transferring the strain applied on the composite to the coordinate system of each
embedded phase. There are different ways to obtain Ai , one of those is by using an Eshelby [1957;
1959] tensor. Herein, the tensors are solved as matrices using Voigt’s notation. Using an Eshelby tensor
and an energetic equivalence between an inclusion with residual stresses and the phase to be modeled,
the dilute strain concentration tensor for the i-th phase is [Lagoudas et al. 1991]

Ai = [I + Si C−1
m (Ci −Cm)]

−1, (13)

where Si is the Eshelby tensor for the i-th phase assumed as a cylindrical inclusion.
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In order to compute the stiffness tensor of composites reinforced with randomly oriented CNTs, a
rotational transformation is applied to both the strain concentration tensor and the stiffness matrix of
each phase. The rotational transformations applied are of the form

X∗ = Q̃ · X · Q̃T, (14)

where X is the tensor (Voigt’s notation) to be rotated and Q̃ is a 6× 6 matrix constructed from Q =
Q(θ, φ), which is a 3× 3 rotation matrix defined by

Q(θ, φ)=

 cos(θ) sin(φ) sin(θ) sin(φ) cos(φ)
− sin(θ) cos(θ) 0

− cos(θ) cos(φ) − sin(θ) cos(φ) sin(φ)

 , (15)

where θ and φ are the two angular spherical coordinates.
In order to model a random orientation of CNTs, a volumetric average is applied to (12) to obtain

C = (vmCm Am + O1) · (vm I + O2)
−1, (16)

where

O1 =

N∑
i=1

vi

4π

∫ 2π

0

∫ π

0
Q̃ ·Ci · Q̃T

· Q̃ · Ai · Q̃T sinφ ∂φ ∂θ, (17a)

O2 =

N∑
i=1

vi

4π

∫ 2π

0

∫ π

0
Q̃ · Ai · Q̃T sinφ ∂φ ∂θ. (17b)

3. Results

3.1. Transversely isotropic elastic properties of pristine and defective CNTs.

3.1.1. Pristine CNTs. The five transversely isotropic elastic properties of CNTs predicted by atomistic
FEA are shown in Figure 9. The axial elastic modulus (ECNT

11 ) presents a linearly decreasing trend with
increased CNT’s radius. The radial elastic modulus (ECNT

22 ; see Figure 9, left) and both shear moduli
(µCNT

12 and µCNT
23 ; see Figure 9, right) present also a slightly decreasing trend with increased CNT radius.

This trend is produced as a consequence of the larger proportion of inner hollow area inside the CNT
as the radius increases, whereas all the considered carbon atoms are located at the outer ring. The
proportion between the hollow center and the outer ring is larger for CNTs with larger radii. The results
of ECNT

11 are within the range of previous predictions [Li and Chou 2003b; Lu 1997; Chang and Gao
2003; Xiao et al. 2005; Ávila and Lacerda 2008] and experiments [Treacy et al. 1996; Yu et al. 2000]
by other authors, and also agrees with a previous work [Domínguez-Rodríguez et al. 2014] where CNTs
were homogenized as hollow tubes. Those predictions of ECNT

11 are around 1 TPa and in the range of
our calculations for small radius CNTs, i.e., (3, 3) and (4, 4) CNTs, where the central hollow area is
much smaller than the tubular one. Using molecular mechanics, Shen and Li [2004] modeled the elastic
properties of CNTs homogenized as solid cylinders and found a similar decreasing trend of the axial
elastic modulus as a function of the CNT radius. However, some other authors have predicted higher
values of ECNT

11 (1− 7 TPa) [Tserpes and Papanikos 2005; Yakobson et al. 1996; Pantano et al. 2004] as
a consequence of the CNT transverse area, which was assumed smaller [Ávila and Lacerda 2008]. The
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Figure 9. Elastic properties of SWCNTs as a function of their radius: left, axial and radial
elastic moduli and transverse Poisson’s ratio; right, transverse and in-plane shear moduli.

Poisson’s ratio also presented a slight decreasing trend as a function of the CNT radius, but the difference
in ν12 (Figure 9, left) for the different CNTs investigated is less than 2%. The radial elastic modulus
of CNTs (ECNT

22 ) is two orders of magnitude smaller than ECNT
11 (see Figure 9, left) which has similarly

been observed experimentally [Palaci et al. 2005]. A possible explanation can be based on the loading
paths. During axial strain, the deformation requires the stretching of the C-C bonds, whereas for a radial
strain, most of the deformation is due to the more compliant bending of the C-C bonds.

3.1.2. Damaged CNTs. When the C-C bonds break, there is a probability for the CNT to become dis-
continuous, which renders singularities in the FEA displacement matrix. This probability is different if
the bonds are removed randomly or by using a clustering pattern. In order to investigate the maximum
fraction of broken bonds feasible in the CNT models, the bonds were removed following random and
clustering damage processes. The process was repeated 200 times for a (3, 3) CNT and the continuity
of the CNT structure was observed for each fraction of broken bonds. The fragmentation probability
was defined as the number of fragmented CNTs divided by the total number of evaluated CNTs (200).
According to Figure 10, this fragmentation probability resembles a sigmoid function of the fraction of
broken bonds, especially for clustered damage. For random damage — Figure 10, left — the plotted
interval (from 0 to 10%) only covers the first half of the sigmoid function. This phenomenon is markedly
more pronounced for clustered damage (Figure 10, right), whose fragmentation probability is ∼ 0.9 at a
fraction of broken bonds of 8%, in comparison to ∼ 0.25 for random damage at the same fraction of bro-
ken bonds. Fractions of defects higher than 8% render fragmentation probabilities for clustered damage
close to 1, which is inappropriate for modeling purposes. Therefore, the highest fraction of broken bonds
considered hereafter for clustered damage is 8%, whereas for random damage the maximum fraction of
broken bonds was 10%.

The elastic properties of the defective CNTs were computed for the eight studied chiralities, varying
the fraction of broken bonds. Figure 11 shows normalized plots of the axial elastic modulus for the
studied SWCNTs with both random (Figure 11, left) or clustered (Figure 11, right) damage. ECNT

11
represents the axial elastic modulus of the defective CNT, while ECNT0

11 represents that of the pristine
(defect-free) one. The axial elastic modulus of all the investigated SWCNTs decreases drastically as the
fraction of broken bonds increases, which is in qualitative agreement with previous works [Sammalkorpi
et al. 2004; Talukdar and Mitra 2010; Fefey et al. 2011; Yuan and Liew 2009]. This decrement is as
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bonds for a (3, 3) SWCNT: left, random damage; right, clustered damage.
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Figure 11. Normalized axial elastic modulus of defective CNTs as a function of the
damage fraction: left, random damage; right, clustered damage.

high as ∼ 80% for a 10% fraction of randomly distributed broken bonds (Figure 11, left) and as high as
∼ 85% for a fraction of 8% clustered broken bonds (Figure 11, right). SWCNTs with smaller radii are
more affected by structural defects because their unit cells have less C-C bonds (18 bonds for a unit cell
of a (3, 3) SWCNT) than those of larger radii (60 bonds for a unit cell of a (10, 10) SWCNT).

The transverse Poisson’s ratio of SWCNTs presents an increasing trend with an increased fraction of
broken bonds (Figure 12). The value of νCNT

12 increases six times with respect to the value of pristine
CNTs for a fraction of 10% randomly distributed broken bonds (Figure 12, left). For clustered damage
(Figure 12, right) the effect is more severe, reaching seven times the pristine value for an 8% fraction of
broken bonds. This means that a defective CNT is significantly more compliant in the radial direction
by Poisson’s contraction than a pristine one. As for the case of the normalized axial elastic modulus, the
difference from the pristine property is more prominent for defective SWCNTs with small radii, whose
unit cells have less C-C bonds.

Similar to the case of ECNT
11 , the normalized radial elastic modulus (ECNT

22 ) of defective CNTs (Figure 13)
shows a linear decreasing trend with an increasing fraction of broken bonds. However, the reduction in
ECNT

22 with the fraction of broken bonds is less severe than for ECNT
11 for both kinds of damage considered
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Figure 13. Normalized radial elastic modulus of defective CNTs as a function of the
damage fraction: left, random damage; right, clustered damage.

herein. This is a consequence of the loading paths, because the probability of breaking a loading path is
higher in the axial direction than in the radial one. The maximum reduction in ECNT

22 is ∼ 15% for the
case of random damage (Figure 13, left) and ∼ 12% for the case of clustering damage (Figure 13, right).

The transverse shear modulus (µCNT
12 , Figure 14) and the in-plane shear modulus (µCNT

23 , Figure 15) of
defective CNTs also present a decreasing trend as a function of the fraction of broken bonds. The decrease
in the transverse shear modulus, Figure 14, is ∼ 14% for a fraction of broken bonds of 10% for random
damage, and ∼ 10% for a fraction of broken bonds of 8% for clustered damage. The maximum reduction
in the in-plane shear modulus, Figure 15, is ∼ 15% for random damage and ∼ 12% for clustered damage.
As seen from these figures, the influence of the fraction of broken bonds on the transverse and in-plane
elastic properties is smaller than on the axial elastic modulus, as a consequence of the loading paths.

3.2. Influence of CNT fraction of broken bonds on the transversely isotropic elastic properties of
axially oriented CNT/polymer composites. The transversely isotropic elastic properties of CNT/polymer
composites containing axially oriented (aligned) CNTs were first obtained by the CCM for each dam-
aged SWCNT investigated. The computations were also conducted using the MT method to simulate
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Figure 15. Normalized in-plane shear modulus of defective CNTs as a function of the
damage fraction: left, random damage; right, clustered damage.

a CNT/polymer composite containing a full variety of axially oriented SWCNTs, including the eight
studied chiralities and all different fractions of broken bonds, as could be expected in an experimental
situation. For the MT method, the volume fraction of each chirality and fraction of broken bonds was
calculated by sampling a random number from 0 to 1 following a uniform distribution of probability, and
then weighted by the summation of volume fractions.

The influence of the fraction of broken bonds on the elastic properties of aligned CNT/polymer com-
posites with a fixed CNT volume fraction of 1% was investigated for both random and clustered damage.
The elastic properties reported in Figures 16–18 are normalized by the elastic property of the composite
containing pristine CNTs (without defects), which are labeled with a superscript “0”. The normalized
axial elastic modulus of the composite (E11/E0

11) is plotted in Figure 16. E11 decreases linearly with
increased fraction of broken bonds, regardless of the CNT size/chirality. The composite containing (3, 3)
SWCNTs shows a more pronounced influence of the fraction of broken bonds as a consequence of the
higher elastic properties of the (3, 3) CNT. For a fraction of SWCNT defects of 8%, the composite
presents a knockdown in E11 of ∼ 60% for random damage (Figure 16, left) and ∼ 80% for clustered
damage (Figure 16, right).
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The normalized transverse Poisson’s ratio (ν12/ν
0
12) of the composite as a function of the fraction of

broken bonds is shown in Figure 18 for composites with axially oriented CNTs and a volume fraction
of 1%. The value of ν12 increases as the fraction of CNT broken bonds increases due to lost of radial
rigidity caused by the breakage of C-C bonds. This increase in ν12 is more pronounced for composites
containing SWCNTs with smaller radii and clustered damage. However, the increments of ν12 are less
than 5% for the maximum clustered fraction broken bonds investigated herein (8%).

The radial elastic modulus (E22), the in-plane shear modulus (µ23), and the transverse shear modulus
(µ12) were not significantly affected by the fraction of broken bonds for composites with axially oriented
CNTs and therefore are not shown. This is because the in-plane and transverse elastic properties of
unidirectional composites are matrix dominated, which also applies for the case of aligned CNTs.

3.3. Elastic properties of randomly oriented CNT/polymer composites. The elastic properties of CNT/
polymer composites were also computed for SWCNTs with a variety of random orientations considering
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Figure 18. Normalized transverse Poisson’s ratio of CNT/polymer composites as a func-
tion of CNT fraction of broken bonds for composites containing axially oriented CNTs:
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pristine and defective CNTs and a fixed CNT volume fraction of 1% (v f = 0.01). The MT formulation
and (16) are used to average the elastic properties of CNT/polymer composites for all angle orientations,
chirality, and fraction of defects. The normalized axial elastic modulus of CNT/polymer composites
(E11/E0

11) as a function of the fraction of broken bonds is shown in Figure 17, left, for composites
with axially and randomly oriented CNTs. Both random and clustered damage presented similar results;
therefore, only plots for random damage are shown. The decreasing rate of E11/E0

11 for composites
with axially oriented SWCNTs is larger, which is a consequence of the higher SWCNT influence on the
composite elastic properties when the CNTs are axially oriented in the (unidirectional) composite.

The transverse shear modulus (µ12), in-plane shear modulus (µ23), and radial elastic modulus (E22)
are dominated by the matrix properties. As such, the contribution of the SWCNT (defective or not) is
negligible when the SWCNTs are axially oriented, as shown in Figure 17, right, for the normalized trans-
verse shear modulus. The in-plane shear modulus (µ23) and the radial elastic modulus (E22) as functions
of the fraction of broken bonds present a similar trend to µ12 and therefore are not plotted. When the
SWCNTs are randomly oriented, some of them reinforce the transverse direction and some others the
axial one. Therefore, for a random orientation of SWCNTs, µ12, µ23, and E22 are significantly affected.

4. Conclusions

A multiscale hierarchical (sequential) approach was carried out to predict the influence of CNT structural
defects on the elastic properties of CNT/polymer composites. As the initial step, the elastic properties of
armchair SWCNTs were modeled using atomistic finite element analysis. Structural defects were gener-
ated in the SWCNTs by removing carbon-carbon bonds. SWCNT damage was produced progressively by
randomly selecting the bonds to eliminate and also as a clustered (coalesced) damage by removing only
bonds that are adjacent to the already eliminated bonds. The next step was the computation of the elastic
properties of CNT/polymer composites, which was performed through the composite cylinder and Mori–
Tanaka methods. The composite cylinder method was used to model the elastic properties of a composite
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material containing axially oriented (aligned) CNTs surrounded by an interphase and matrix. The Mori–
Tanaka method was used to model composite materials containing axially and randomly oriented CNTs
with a random combination of chiralities and fractions of broken bonds. Regarding the elastic properties
of CNTs, the knockdown in the axial elastic modulus of CNTs is on the order of ∼ 60% with an 8% frac-
tion of randomly broken bonds, whereas the knockdown with an 8% fraction of clustered broken bonds
is ∼ 80%. The transverse Poisson’s ratio of CNTs increases ∼ 7 times with an 8% fraction of randomly
or clustered broken bonds with respect to its pristine value. The radial elastic modulus, transverse shear
modulus, and in-plane shear modulus of CNTs present a knockdown of about 10% for an 8% fraction
of broken bonds. Regarding the elastic properties of CNT/polymer composites reinforced with axially
oriented CNTs, the axial elastic modulus and the transverse Poisson’s ratio are the elastic properties
most influenced by the SWCNTs, and as such those properties are more affected by CNT defects. The
knockdown in the axial elastic modulus for CNT/polymer composites containing a 1% volume fraction
of randomly oriented CNTs with a fraction of broken bonds of 8% is on the order of ∼ 50%. The
radial elastic modulus, the axial shear and the in-plane shear moduli of the CNT/polymer composites are
only influenced by structural defects when the CNTs are randomly oriented. The knockdown in those
properties are on the order of ∼ 30% with a 1% CNT volume fraction and 8% fraction of defects. For
randomly oriented CNTs, the five studied elastic properties are strongly influenced by the fraction of
broken bonds. In comparison to random damage, clustered damage showed a larger influence of defects
on the axial elastic modulus and transverse Poisson’s ratio of CNTs (especially for those with smaller
radius) and therefore, their polymer composites.

Appendix: Loading cases in the composite cylinder method

This appendix provides explicit equations concerning displacement fields, boundary conditions and con-
tinuity equations for the four loading cases used in the composite cylinder method.

A.1. Axial elastic modulus and transverse Poisson’s ratio. For the axial elastic modulus (E11), the
radial (ui

r ), axial (ui
z), and angular (ui

θ ) displacements of each phase (i) are defined in the interval ri−1 ≤

r ≤ ri as
ui

r = Bi
1r + Bi

2/r, ui
θ = 0, ui

z = εzz, (A.1)

where Bi
1 and Bi

2 are constants.
The outer surface of the composite at r = rN is free from radial stress, i.e.,

σ N
rr |r=rN = 0. (A.2)

In order to avoid a mathematical singularity, B(1)2 is set to 0 for the first layer.
The continuity equations for stresses and displacements of each layer are

ui
r |r=ri = ui+1

r |r=ri , (A.3a)

σ i
rr |r=ri = σ

i+1
rr |r=ri . (A.3b)

A.2. In-plane bulk modulus. The in-plane bulk modulus (K23) is calculated by using displacement
equations for the interval ri−1 ≤ r ≤ ri , which are similar to those of (A.1) except for the condition in uz ,
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i.e.,

ui
r = Di

1r + Di
2/r, ui

θ = 0, ui
z = 0, (A.4)

where Di
1 and Di

2 are constants.
The boundary conditions state that maximum radial displacement occurs at the outer surface (r = rN ),

i.e.,

uN
r |r=rN= εrrN . (A.5)

D(1)
2 is again set to 0 to avoid singularities.
The continuity conditions for stresses and displacements are those stated in (A.3).

A.3. Transverse shear modulus. The transverse shear modulus is calculated by applying an axial dis-
placement field as function of θ for the interval ri−1 ≤ r ≤ ri :

ui
r = 0, ui

θ = 0, ui
z = (F

i
1r + F i

2/r) cos θ. (A.6)

This displacement field produces a pure transverse shear strain (εzθ 6= 0, εzz = εrr = εθθ = εrθ = 0).
The boundary conditions require that the maximum radial deformation occurs at r = rN (see Figure 7c),

i.e.,

uN
z |r=rN= 2εzθrN cos θ, (A.7)

where F (1)2 is set to 0 for the first layer.
The continuity equation for displacements is represented by (A.3a), while that for stresses is

µi
∂ui

z

∂r

∣∣∣∣
r=ri

= µi+1
∂ui+1

z

∂r

∣∣∣∣
r=ri

. (A.8)

A.4. In-plane shear modulus. The displacement conditions used in the in-plane shear strain loading
case are [Christensen and Lo 1979]

ui
r =

[
H i

1r + H i
2r3
(

νi
zr

3− 2νi
zr

)
− H i

3
1
r3 + 2H i

4
1
r

(
νi

zr − 1
2νi

zr − 1

)]
sin(2θ), (A.9a)

ui
θ =

(
H i

1r + H i
2r3
+ H i

3
1
r3 + 2H i

4
1
r

)
cos(2θ), (A.9b)

ui
z = 0. (A.9c)

Both H (1)
3 and H (1)

4 are set to 0 in order to avoid a mathematical singularity at the first layer.
The generalized self-consistent composite cylinder model includes an extra (N + 1) layer of material

which does not represent one of the N phases of the composite cylinder but the homogenized composite
material. This layer explicitly includes the in-plane shear modulus of the composite material (µeff

23 ) instead
of the shear modulus of a specific layer. The displacement fields for this layer are defined as [Seidel and
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Lagoudas 2006]

uN+1
r =

rN+1

4µeff
23

[
2r

rN+1
+ H5

(
rN+1

r

)3

+ 4(1− νeff
23 )H6

rN+1

r

]
sin(2θ), (A.10a)

uN+1
θ =

−rN+1

4µeff
23

[
−

2r
rN+1

+ H5

(
rN+1

r

)3

− 2(1− 2νeff
23 )H6

rN+1

r

]
cos(2θ), (A.10b)

uN+1
z = 0. (A.10c)

The continuity equations for ur , uθ , σrr , and σrθ are similar to those stated in (A.3).
In order to achieve an energetic homogenization, the whole composite is considered an effective

homogeneous solid cylinder whose displacements are

u∗r =
rN+1

4µeff
23

(
2r

rN+1

)
sin(2θ), (A.11a)

u∗θ =
−rN+1

4µeff
23

(
−

2r
rN+1

)
cos(2θ), (A.11b)

u∗z = 0. (A.11c)

The composite cylinder and the homogenized solid cylinder are energetically equated through the use
of the Eshelby [1957; 1959] formula∫ 2π

0

[
σ N+1

rr u∗r + σ
N+1

rθ u∗θ − (σ
∗

rr uN+1
r + σ ∗rθu

N+1
θ )

]
r=rN

dθ = 0. (A.12)

Then the system of equations from (A.9) to (A.12) is solved and µeff
23 corresponds to the reported value

for µ23.
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