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COUPLED THERMALLY GENERAL IMPERFECT AND
MECHANICALLY COHERENT ENERGETIC INTERFACES

SUBJECT TO IN-PLANE DEGRADATION

ALI ESMAEILI, PAUL STEINMANN AND ALI JAVILI

To date, the effects of interface in-plane damage on the thermomechanical response of a thermally gen-
eral imperfect (GI) and mechanically coherent energetic interface are not taken into account. A thermally
GI interface allows for a discontinuity in temperature as well as in the normal heat flux across the
interface. A mechanically coherent energetic interface permits a discontinuity in the normal traction
but not in the displacement field across the interface. The temperature of a thermally GI interface is a
degree of freedom and is computed using a material parameter known as the sensitivity. The current
work is the continuation of the model developed by Esmaeili et al. (2016a) where a degrading highly
conductive (HC) and mechanically coherent energetic interface is considered. An HC interface only
allows for the jump in normal heat flux and not the jump in temperature across the interface. In this
contribution, a thermodynamically consistent theory for thermally GI and mechanically coherent ener-
getic interfaces subject to in-plane degradation is developed. A computational framework to model this
class of interfaces using the finite element method is established. In particular, the influence of the
interface in-plane degradation on the sensitivity is captured. To this end, the equations governing a fully
nonlinear transient problem are given. They are solved using the finite element method. The results are
illustrated through a series of three-dimensional numerical examples for various interfacial parameters.
In particular, a comparison is made between the results of the intact and the degraded thermally GI
interface formulation.

A list of symbols can be found on page 310.

1. Introduction

Interfaces possess different thermomechanical properties from those of the bulk. The interface properties
become dominating as the length scale reduces: the smaller the scale, the larger the interface area to bulk
volume ratio [Cammarata 1994; Dingreville et al. 2005; Duan et al. 2009]. This dominating influence
motivates one to devise a more realistic model to better capture the physics of interface materials. The
following are a few additional motivations to develop a more general interface model:

• increasing applications of thermal interfaces [Prasher 2006],

• unusual thermal behavior of surface and interfaces at the nanoscale [Berber et al. 2000; Che et al.
2000; Cahill et al. 2003; Prasher 2005],

• the study of interface mechanical characteristics by the vast majority of the literature is mainly based
on cohesive zone models.

Keywords: thermomechanically energetic interfaces, interface elasticity, general imperfect interfaces, nonlocal damage,
nanomaterials, finite element method.
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Therefore, in this contribution, we follow the work of Javili et al. [2014] and Kaessmair et al. [2014],
where the interface theory was extended to mechanically coherent energetic and thermally general imper-
fect (GI) interfaces. A thermally GI interface permits discontinuities in both temperature and normal heat
flux. The extreme cases of thermally GI interfaces are highly conductive (HC) and lowly conductive (LC)
interfaces, where the former allows a discontinuity in the normal heat flux but not in the temperature
across the interface, and the latter permits a discontinuity in the temperature but not in the normal heat
flux across the interface. Among the various thermal interfaces introduced above, an HC interface is
termed thermally coherent due to the vanishing temperature jump. We point out that the thermally GI
interface presented here may be specialized to all the other types of thermal interfaces. For further details
on the different types of thermal imperfections, see [Esmaeili et al. 2016a; 2016b; Kaessmair et al. 2014;
Javili et al. 2014] and references therein.

A mechanically coherent energetic interface is based on the interface elasticity theory proposed in
[Gurtin and Murdoch 1975; Murdoch 1976]. Note that the coherence of the interface refers to the
continuity in the displacement field across the interface. This manuscript is limited to mechanically
coherent energetic interfaces. For further details, see, for instance, [Moeckel 1975; Daher and Maugin
1986; dell’Isola and Romano 1987; Gurtin 1998; Steigmann and Ogden 1999; Fried and Todres 2005;
Fried and Gurtin 2007; Levitas and Javanbakht 2010; Javili and Steinmann 2010; Benveniste and Miloh
2001; Sharma et al. 2003; Dingreville et al. 2005; Duan et al. 2005a; 2005b; 2009; Benveniste 2013;
Huang and Sun 2007; Fischer and Svoboda 2010; Yvonnet et al. 2011; Altenbach et al. 2012; Davydov
et al. 2013] and the references therein. A restriction of the interface elasticity theory is that it only
captures elastic interface behavior.

The nucleation of microvoids and strong discontinuities, such as cracks, can act as shields or amplify
stress intensity in other regions of an interface. Consequently, this can influence the temperature distri-
bution and thus the thermomechanical response of a body. Noting that the interface elasticity theory can
only capture elastic behavior of energetic interfaces, the development of a more general interface model,
in which interface inelasticity is taken into account, seems necessary.

Very recently in [Esmaeili et al. 2016a] we have considered thermally highly conductive (HC) in-
terfaces in a thermomechanical body, whereby due to the highly conductive property the (otherwise
mechanically coherent) interfaces allow for jumps in the normal heat flux. Moreover, they are equipped
with interface stresses that are coupled to in-plane damage. In this contribution, we formulate a follow up
version of [Esmaeili et al. 2016a] that generalizes the thermal part of the above interfaces to the thermally
GI case, whereas the mechanical part is as before. Thereby this formulation embraces the two limiting
cases of the previous HC interfaces (jump in normal heat flux) and the lowly conductive (LC) Kapitza
interfaces, see [Esmaeili et al. 2016b], that allow for a jump in the temperature. Thus arbitrary combina-
tions of HC and LC (jump in normal heat flux and jump in the temperature) are analyzed numerically.

To take into account the in-plane damage, a nonlocal continuum damage approach is utilized. For
further details on this approach with application to bulk materials, see, for instance, [Kachanov 1958;
Rabotnov 1963; Chaboche 1981; de Souza Neto and Perić 1996; de Souza Neto et al. 1998; Steinmann
et al. 1994], among others. There are a few reasons to use a nonlocal damage model: first, mesh-objective
finite element simulation of strain softening materials; second, determining the growth of microcracks
by the energy release from the volume encompassing the microcrack [Bažant and Xi 1991]; third, the
influence of the presence of a microcrack on the stress level of other neighboring microcracks; and finally
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capturing size effects [Bažant and Jirásek 2002]. The nonlocality in this work is of integral-type, which
then requires the use of an interactive (cut-off) radius, capturing size effects. The interactive radius is a
function of the molecular structure of the intact material and the distribution and growth of the microc-
racks in the damaging material. It is not yet well-established how to determine the interactive radius from
experiments (see [Bažant and Jirásek 2002] for further details). The degradation of the interface material
here is measured using a tangential (in-plane) damage variable denoted by D‖. Consequently, as the
damage variable evolves, all the mechanical and in-plane thermal properties of the interface are reduced.
However, the out-of-plane thermal properties, i.e., the interface Kapitza resistance coefficient r̄ 0

Q and the
sensitivity s̄0, will increase as the damage evolves. The damage variable here is a function of the interface
effective (undamaged) free energy 90, which in turn depends on both the interface temperature 2 and
the interface deformation gradient F. Here, no distinction between thermal and mechanical damage
has been made for the sake of simplicity and the fact that such distinction has not yet been physically
motivated.

In summary, the key contributions of this work are as follows:

• To derive the governing equations of a thermomechanical solid possessing thermally GI and me-
chanically coherent energetic interface subject to in-plane degradation, within the fully nonlinear
three dimensional setting.

• To present a thermodynamically consistent formulation and derive the dissipation inequality on the
interface.

• To account for the effects of in-plane damage on the thermomechanical properties of the interface.

• To derive the thermal and mechanical weak forms.

• To derive the consistent tangent stiffness matrices in the bulk and on the interface.

• To present details of the computation of solids possessing thermally GI and mechanically coherent
energetic interfaces within the three-dimensional, nonlinear and transient setting.

• To illustrate the theory with the help of numerical examples using the finite element method.

This paper is organized as follows. First the notation and certain key concepts are briefly introduced.
Section 2 summarizes the kinematics of nonlinear continuum mechanics. The local governing equations,
including the additional contributions from the interface, together with the constitutive relations are given
in Section 3. A numerical framework for the interface is established in Section 4. The framework includes
the weak formulation of the governing equations, the corresponding finite element implementation and
the derivation of the consistent stiffness matrices. A series of numerical examples, based on the finite
element approximation of the weak form, is presented in Section 5 to elucidate the theory. Section 6
concludes this work.

2. Problem definition

This section summarizes the kinematics of nonlinear continuum mechanics, including thermally general
imperfect and mechanically coherent energetic interfaces and introduces the notation adopted here. Fur-
ther details on the kinematics of deformable interfaces can be found in [Javili et al. 2013]. All over-lined
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Figure 1. Thermally general imperfect interface, left, and mechanically coherent ener-
getic interface, right. The interface in this work is mechanically coherent, thus no jump
in deformation is allowed across the interface, [[ϕ]] = 0, [[x]] = 0, and energetic, thus
the jump of the normal traction across the interface does not vanish, i.e., [[P]] · N 6= 0.
A thermally GI interface allows for the jump in temperature [[2]] 6= 0, and in normal
heat flux [[Q]] · N 6= 0 across the interface. The bulk and interface are denoted here
by B and I. The normal to the interface is denoted by N , see Figure 2. The in-plane
degradation of the interface causes the degradation of mechanical and thermal properties
of the interface through a tangential damage variable D‖.

quantities correspond to the interface.1 The List of symbols gathers a list of notations frequently used in
this manuscript.

Consider a continuum body B that takes the material configuration B0⊂ E3 at time t = 0, and the spatial
configuration Bt at t > 0, as depicted in Figure 1. The body B is partitioned into two disjoint subdomains,
B+0 and B−0 , by an interface I0, thus the bulk is defined by B0 := B+0

⋃
B−0 , with reference placements

of material particles labeled X. The two sides of the interface I0 are denoted I+0 := ∂B
+

0
⋂

I0 and
I− := ∂B−0

⋂
I0. The material particles on the interface are labeled X. The outward unit normal to ∂B0

is denoted N. The outward unit normal to the boundary of the interface ∂I0, tangent to the interface I0,
is denoted Ñ. The unit normal to I0 is denoted N, whose direction is conventionally taken to point from
the negative side of the interface to the positive side. The spatial counterparts of the various unit normals
are n, ñ and n, respectively. The deformation maps of the bulk, and the negative and positive sides of
the interface are denoted ϕ, ϕ− and ϕ+, respectively. The restriction of the motion ϕ to the interface is

1Direct notation is adopted throughout. Occasional use is made of index notation, the summation convention for repeated
indices being implied. The three-dimensional Euclidean space is denoted by E3. The scalar product of two vectors a and b is
denoted by a · b= [a]i [b]i . The scalar product of two second-order tensors A and B is denoted by A : B = [A]i j [B]i j . The
composition of two second-order tensors A and B, denoted by A · B, is a second-order tensor with coefficients [A · B]i j =
[A]im [B]mj . The nonstandard products of a fourth-order tensor C and a vector b is defined by [b ·C]ikl = [C]i jkl [b] j . The
action of a second-order tensor A on a vector a is given by [A · a]i = [A]i j [a] j . The standard product of a fourth-order tensor C

and a second-order tensor A is defined by [C : A]i j = [C]i jkl [A]kl . The dyadic product of two vectors a and b is a second-order
tensor D = a ⊗ b with [D]i j = [a]i [b] j . Two nonstandard dyadic products of two second-order tensors A and B are the
fourth-order tensors [A⊗ B]i jkl = [A]ik [B] jl and [A⊗ B]i jkl = [A]il [B] jk . The average and jump of a quantity {•} over an
interface are defined by {{{•}}} = 1

2 [{•}
+
+{•}

−
] and [[{•}]] = {•}+−{•}−, respectively.
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Figure 2. The bulk domain B0, the bulk subdomains B±0 , the interface I0, the two sides
of the interface I±0 and the unit normals to the surface N , the interface N , and boundary
of the interface Ñ , all defined in the material configuration. The bulk, interface and the
two sides of interface deformation maps, denoted as ϕ, ϕ and ϕ±, respectively, map the
material configuration to the spatial configuration at time t . The bulk domain Bt , the bulk
subdomains B±t , the interface It and its two sides I±t , the unit normals to the surface n,
interface n, and boundary of the interface ñ, all defined in the spatial configuration. The
bulk temperatures on plus and minus side of the interface and the interface temperature
are denoted by Θ+, Θ− and Θ , respectively. The interface unit normal is pointing
from the negative side of the interface to the positive side. The bulk and (rank-deficient)
interface deformation gradients are F and F, respectively. The interface is mechanically
coherent and thermally noncoherent.

defined by ϕ. The current placements of particles in the bulk and on the two sides of the interface are
denoted x and x∓ where the spatial placement of particles on the interface are designated as x. One
should note that ϕ+ = ϕ− = ϕ and x+ = x− = x for mechanically coherent interfaces. This means
the interface placement is always between the two lateral sides of the interface. The interface and bulk
temperature on two sides of the interface are denoted by Θ , Θ+ and Θ−, respectively.

Remark 1. Since the interface is thermally general imperfect, the bulk temperatures Θ+ and Θ− can
differ from each other. This is in contrast with a highly conductive interface where the jump of tempera-
ture across the interface vanishes and thus Θ =Θ+ =Θ−. Moreover, on a thermally general imperfect
interface, the relation between the bulk and the interface temperature Θ is (in general) unknown. In other
words, the interface temperature does not necessarily take a value between the bulk temperatures on the
two sides of the interface (for further details, see [Javili et al. 2014; Esmaeili et al. 2016a]).

The bulk and the (rank-deficient) interface deformation gradients F and F, together with the corre-
sponding velocities V and V are respectively defined by

F(X, t) :=Gradϕ(X, t), V :=Dtϕ(X, t) and F(X, t) :=Gradϕ(X, t), V :=Dtϕ(X, t). (1)

Thereby the interface gradient and divergence operators respectively read

Grad{•} := Grad{•} · I and Div{•} := Grad{•} : I with I := I − N ⊗ N, (2)
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where I and I denote the interface and bulk unit tensors. Their spatial counterparts are denoted ī and i .
Finally the bulk and interface Jacobians are denoted by

J := det F > 0 and J := det F > 0,

respectively, with det{•} denoting the area determinant [Steinmann 2008].

3. Governing equations

The local balance equations of force, energy and entropy in the bulk and on the interface together with
the associated boundary conditions are listed in Table 1 (for further details, see [Esmaeili et al. 2016a]).
The considered interface model deals with interfaces that are

• mechanically coherent, [[ϕ]] = 0,

• mechanically energetic, thus [[P]] · N 6= 0 and

• thermally general imperfect, [[Q]] · N 6= 0 and [[Θ]] 6= 0.

The third property, i.e., thermal general imperfection of the interface, is characterized by allowing a jump
both in the temperature and the normal heat flux ([[Θ]] 6= 0 and [[Q]] · N 6= 0, respectively) across the in-
terface. Also note that a thermally GI interface is fully dissipative. See Section 3 for further elaborations.

Remark 2. In what follows we briefly discuss different kinds of thermal interfaces:

force balance: DivP + Bp
= 0 in B0 B̂p

= P · N on ∂BN
0

Div P + Bp
=−[[P]] · N on I0 B̃p

= P · Ñ on ∂IN
0

energy: −P : GradV +Div Q− Qp
+DtE = 0 in B0 Q̂p

=−Q · N on ∂BN
0

−P : Grad V +Div Q− Qp
+DtE =−[[Q]] · N on I0

entropy: DivH − H p
+Dt4≥ 0 in B0 Ĥ p

=−H · N on ∂BN
0

Div H − H p
+Dt4≥−[[H]] · N on I0 H̃ p

=−H · Ñ on ∂IN
0

Bp force vector per unit volume B̂p surface traction per unit area
Bp force vector per unit area B̃p curve traction per unit length
Q bulk heat flux vector per unit area Q interface heat flux vector per unit length
H bulk entropy flux vector per unit area H interface entropy flux vector per unit length
Qp bulk heat source per unit volume Q̂p surface heat source per unit area
Qp interface heat source per unit area Q̃p curve heat source per unit length
H p bulk entropy source per unit volume Ĥ p surface entropy source per unit area
H p interface entropy source per unit area H̃ p curve entropy source per unit length
E bulk internal energy per unit volume E interface internal energy per unit area

Table 1. Localized force, energy and entropy balances in the bulk and on the interface in
the material configuration. The notation {•}p is to denote prescribed quantities. Balance
of angular momentum results in the symmetry of the bulk Cauchy stress, i.e., P · Ft

=

F · P t , and the interface Cauchy stress, i.e., P · Ft
= F · P t , in the material configuration.
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• A thermally perfect interface is recovered when [[Q]] · N = 0 and [[Θ]] = 0.

• A highly conductive interface imposes a vanishing temperature jump across the interface while
allowing for the jump of normal heat flux across the interface, i.e., [[Θ]] = 0 and [[Q]] · N 6= 0.
Note that a continuous temperature distribution across the interface does not necessary imply a HC
interface (see [Javili et al. 2014] for further details). Furthermore, an HC interface is nondissipative
due to the vanishing temperature jump across the interface, which results in the interface temperature
being identical to the bulk temperatures on the two sides of the interface.

• A lowly conductive (LC) interface allows for a temperature jump but not for a jump in the normal
heat flux across the interface, i.e., [[Θ]] 6= 0 and [[Q]] · N = 0. This model is subject to Kapitza’s
assumption of thermal resistance. Note that an LC interface is semidissipative (possessing only
one dissipation contribution, see Section 3 for further discussions). For this interface, a connection
between the interface and the bulk temperature (in general) can not be drawn.

• A semidissipative (SD) interface is a generalization of the LC interface so that the jump in both the
temperature and the normal heat flux is admissible, i.e., [[Q]] ·N 6= 0 and [[Θ]] 6= 0. Analogous to the
LC interface, the same dissipation contribution is nonvanishing for an SD interface. However, unlike
an LC interface, the SD interface imposes a relation between the interface and the bulk temperature,
or more precisely between what we call interface and bulk coldness. The coldness here is defined
as the inverse of the temperature.

• A fully dissipative (FD) interface is a GI interface similar to an SD interface in the sense that
both [[Q]] · N 6= 0 and [[Θ]] 6= 0 are admissible. Nonetheless, an FD interface is generalized to
possess two dissipation contributions. Consequently, a relation (in general) between interface and
bulk temperature cannot be established (analogously to an LC interface). Additionally, for an FD
interface, the interface temperature shall be considered as an independent degree of freedom.

Furthermore, both thermal and mechanical properties of the interface are affected by the interface in-
plane degradation. In doing so, a reduction factor [1− D‖] is introduced, which reduces the mechanical
and in-plane thermal properties of the interface as the damage D‖ evolves. The out-of-plane thermal
properties of the interface, the sensitivity s̄0 and the Kapitza thermal resistance r̄ 0

Q , are inversely affected
by the reduction factor, i.e., s̄ = s̄0/[1− D‖] and r̄Q = r̄ 0

Q/[1− D‖]. Note that in this work the damage
variable is a function of the nonlocal equivalent distortion Fnloc, which in turn depends on the interface
deformation gradient F and temperature Θ . The interface Piola stress P is a superficial tensor field
possessing the property P ·N = 0. It is noteworthy to mention that the interface is mechanically coherent
and, due to the interface energetics, a discontinuity in the traction across the interface is allowed and hence
[[P]] · N 6= 0.

Next are the bulk and interface free energies. The corresponding constitutive relations and temperature
evolution equations are given in Table 2. Note that 0 ≤ D‖(F,Θ) ≤ 1 and ϑ is an internal variable;
k and k̄0 denote the bulk and interface positive (semi) definite thermal conductivity tensors. For thermally
isotropic materials in the spatial configuration, k = k i and k̄0 = k̄0 ī , where the scalars k ≥ 0 and k̄0 ≥ 0
are the thermal conductivity coefficients in the bulk and on the interface, respectively. The heat capacity
coefficients in the bulk and on the interface are denoted by cF and c̄F = [1− D‖]c̄0

F
, where c̄0

F
is the

interface heat capacity coefficient associated with the undamaged (virgin) state of the interface material.
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free energy: 9 ≡9(F,Θ) in B0

9 ≡9(F,Θ, D‖, ϑ)= [1− D‖]90 on I0

constitutive relations: P := ∂9/∂F and 4 := −∂9/∂Θ in B0

P := ∂9/∂F = [1− D‖]P0 and 4 := −∂9/∂Θ = [1− D‖]40 on I0

Q =−J F−1
· k · F−t

·GradΘ in B0

Q =−J F−1
· [1− D‖]k̄0 · F−t

·GradΘ on I0

temperature evolution: cFDtΘ =−Div Q+Θ∂Θ P : Dt F+ Qp
in BN

0with cF := −Θ∂
29/∂Θ2

c̄FDtΘ =−Div Q+Θ∂Θ P : Dt F+ Qp
− [[Q]] · N on IN

0with c̄F := −[1− D‖]Θ∂290/∂Θ
2

Table 2. Bulk and interface free energies, the corresponding constitutive relations and
temperature evolution equations.

To proceed, a Helmholtz energy2 is considered for the interface containing the following arguments
[Esmaeili et al. 2016a]:

9(F,Θ, D, ϑ)= [1− D]90(F,Θ)+
∫ ϑ

0
H(ϑ∗) dϑ∗, (3)

where H(ϑ) denotes a monotonically increasing function depending on the internal variable ϑ . Now by
differentiating (3) with respect to time, particularizing the Clausius–Plank inequality and making use of
the constitutive relations, one expresses the interface reduced dissipation Dred as (for further details, see
[Esmaeili et al. 2016a])

Dred=Y ˙D‖−H(ϑ) ˙ϑ︸ ︷︷ ︸
D‖

+Θ
[
[[Θ−1

]]{{Q}}−
[
Θ
−1
−{{Θ−1

}}
]
[[Q]]

]
·N︸ ︷︷ ︸

D∦

≥0 with Y =90(F,Θ)=−
∂9

∂D‖
, (4)

where the quantity Y is the thermodynamic force conjugate to the interface damage variable D‖. Next,
together with satisfying D‖ ≥ 0, a damage condition ϒ is introduced as [Steinmann 1999]

ϒ(Y , H)= υ(Y )−H(ϑ)≤ 0, (5)

with υ being a monotonically increasing function. The damage evolution law and the Kuhn–Tucker
conditions can be obtained from the postulate of maximum dissipation using the Lagrange-multiplier
method. Now by choosing υ(•)=H(•), and defining the change of variables Fmax := f (ϑ) and Fnloc :=

f (Y ) and assuming f to be a monotonically increasing function with the property f (0)= 0, an alternative
damage condition to (5) takes the form extended to integral-type nonlocality [Esmaeili et al. 2016a]:

φ(Fnloc, Fmax)= Fnloc− Fmax ≤ 0, with Fnloc(xr)=

∫
I0

ω(xr, xs)F loc(xs) dA and F loc :=

√
2Y

E
, (6)

2The integral term in (3) is introduced in analogy with that of [Simo and Hughes 1998, §1.3.3] and is the energy storage in
the material due to the accumulation of microscopic defects.
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P D‖

F0 F f
Fnloc Fnloc

F0

Figure 3. Stress vs. nonlocal equivalent distortion with exponential softening on the in-
terface, left. Damage variable vs. nonlocal equivalent distortion associated with (8), right.
The parameters F0 and F f are the interface critical equivalent distortion and ductility
response.

where Fmax(t) = maxs∈[0, t]{F0, Fnloc|s}, F0 is the damage threshold, F loc is the local equivalent dis-
tortion, and E is the interface Young’s modulus. Note that the damage variable is eventually simply a
function of Fmax, i.e., D‖ = D‖(Fmax). In (6)2, ω(xr, xs) is a given nonlocal weight function depending
on the geodesic distance r̄ = ‖xr− xs‖I between the source point xs and the receiver point xr. On the
interface, the weight function ω here is defined as

ω(xr, xs)=
ω0(r̄)∫

I0
ω0(r̄) dA

with ω0(r̄)=
{
[1− r̄2/R2

]
2 if |r̄ | ≤ R,

0 if |r̄ | ≥ R,
(7)

where ω0(r̄) is a nonnegative and monotonically decreasing (for r̄ ≥ 0) piecewise polynomial bell-shaped
function. The interface interaction radius is denoted by R. The damage function, relating D‖ to the
history variable Fmax, is given as follows (see Figure 3, right):

D‖ = D‖(Fmax)=


0 if Fmax ≤ F0,

1−
F0

Fmax
exp

(
−

Fmax− F0

F f− F0

)
if Fmax ≥ F0,

(8)

where F f affects the ductility of the response. An illustration is depicted in Figure 3, left.
To satisfy D∦ ≥ 0 in (4)1, using the relation [[Θ−1

]] = −[[Θ]]{{Θ−1
}}{{Θ}}−1, we enforce the fulfillment

of the following two conditions:

1D∦ =−[[Θ]]{{Q}} · N ≥ 0 and 2D∦ =−[Θ
−1
−{{Θ−1

}}][[Q]] · N ≥ 0. (9)

Remark 3. For the interface considered here, both dissipation contributions in (9) are positive and hence
the interface is termed fully dissipative. For an HC interface, both of these dissipation contributions
vanish since [[Θ]] = 0. Both SD and LC interfaces allow for 1D∦ to be nonzero since [[Θ]] 6= 0. The
difference is that for an SD interface [[Q]] · N 6= 0 and [Θ

−1
−{{Θ−1

}}] = 0, whereas for an LC interface
[[Q]] · N = 0 and a relation between the interface and the bulk temperatures is (in general) unknown (see
also Remark 2).
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To this end, Fourier-like relations are introduced as follows:

[[Θ]] = −
r̄ 0

Q

[1− D‖]
{{Q}} · N and Θ

−1
−{{Θ−1

}} = −
s̄0

[1− D‖]
[[Q]] · N, (10)

where r̄ 0
Q ≥ 0 and s̄0 ≥ 0 are the undamaged (virgin) Kapitza resistance coefficient and the thermal

sensitivity, respectively. As the interface damage grows and thus the reduction factor [1− D‖] decreases,
one expects a more pronounced jump in the temperature across the interface and a less strong coupling
between the bulk and the interface temperatures due to r̄ 0

Q/[1− D‖] and s̄0/[1− D‖] taking higher values.
This observation is illustrated by the numerical results, which will be presented later.

4. Computational framework

Here we establish a numerical framework that encompasses thermohyperelasticity combined with a
nonlocal damage model on the thermally general imperfect (GI) and mechanically coherent energetic
interface. The weak form, together with its temporal and spatial discretizations, will be presented next.

The localized force balance equations in the bulk and on the interface given in Table 1 are tested with
vector valued test functions δϕ ∈H1(B0) and δϕ ∈H1(I0), respectively. By integrating the result over all
domains in the material configuration, using the bulk and interface divergence theorems and the superfi-
ciality properties of the interface Piola stress, the weak form of the balance of linear momentum reads∫
B0

P :Grad δϕ dV+
∫
I0

[1−D‖]P0 :Grad δϕ dA−
∫
B0

δϕ·Bp dV−
∫
I0

δϕ·Bp dA−
∫
∂BN

0

δϕ· B̂p
N dA

−

∫
∂IN

0

δϕ · B̃p
N dL = 0, ∀δϕ ∈H1(B0) and ∀δϕ ∈H1(I0) with δϕ= {{δϕ}}|I0 and [[δϕ]] = 0. (11)

Analogously, the thermal weak form is derived first by testing the local temperature evolutions (see
Table 2) in the bulk and on the interface with the scalar-valued test function δΘ ∈ H1

0(B0) and δΘ ∈
H1

0(I0), respectively. The result is then integrated over the corresponding domains in the material con-
figuration, resulting in the global weak form of the temperature evolution equation as follows:∫
B0

Q·Grad δΘ−δΘcFDtΘ+δΘQp
+δΘΘ∂Θ P : Dt FdV+

∫
∂BN

0

δΘ Q̂p
N dA

+

∫
I0

[1−D‖]Q0·Grad δΘ−δΘ[1−D‖]c̄0

FDtΘ+δΘQp
+δΘΘ

[
[1−D‖]∂Θ P0−∂ΘD‖P0

]
: Dt F dA

−

∫
I0

[[δΘ]][1−D‖]
1

r̄ 0
Q
[[Θ]]−[δΘ−{{δΘ}}][1−D‖]

1
s̄0

[Θ
−1
−{{Θ−1

}}] dA = 0,

∀δΘ ∈H1(B0) and ∀δΘ ∈H1(I0), (12)

where Q0 =−J F−1
· k̄0 · F−t

·GradΘ is the undamaged heat conduction along the interface.
It is of great importance to mention that the current model can be simplified into other interface

models. By setting the damage variable to zero, the model in [Kaessmair et al. 2014] is retrieved, where
a nondegrading thermally GI and mechanically coherent energetic interface is studied. A degrading HC
interface model is obtained as in [Esmaeili et al. 2016a] by setting [[Θ]] = 0, and consequently {{Θ}} =Θ ,
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bulk interface

Lamé constant: µ 80193.8 N/mm2 µ 2× 80193.8 N/mm
Lamé constant: λ 110743.5 N/mm2 λ 2× 110743.5 N/mm
compression modulus: κ 164206.03 N/mm2 κ 2× 190937.3 N/mm
specific heat capacity: cF 3.588 N/[mm2K] c̄0

F 3.588 N/[mmK]
heat conduction coeff.: k 45 N/[sK] k̄0 100× 45 Nmm/[sK]
heat expansion coeff.: α 10−5 1/K α [0− 1.5]× 10−5 1/K
initial temperature: Θ0 298 K Θ0 298 K

only interface

F0 0.005 F f 0.1
thermal resistance r̄ 0

Q 0.1 mm sK/N R 0.1 mm

Table 3. Material properties assumed in the numerical examples. Note that κ =λ+2/3µ
and κ = λ+µ.

which then results in the last integral in (12) to vanish. A degrading LC interface can be modeled as in
[Esmaeili et al. 2016b] by removing the second term in the last integral, due to the fact that the jump
of normal heat flux across interface vanishes (see relation (10)2). The finite element implementation is
given in Appendix A.

5. Numerical examples

In this section we study the computational aspects of thermally GI and mechanically coherent energetic
interfaces subject to in-plane degradation and their effects on the overall response of the body. The
in- and out-of-plane thermomechanical response of the interface is affected by the interface in-plane
degradation. In particular, we focus on the influence of interface damage on the out-of-plane thermal
properties of the interface, i.e., s̄0 and r̄ 0

Q . It is important to point out that the solution procedure is
robust and shows the asymptotically quadratic rate of convergence associated with the Newton–Raphson
scheme. The computational domain is discretized using 1600 trilinear hexahedral elements.

The reversible material behavior in the bulk and on the interface is characterized by a thermohypere-
lastic Helmholtz energy functions. The damage affects the interface response by reducing the interface
stiffness, heat capacity and heat conduction coefficient, and increasing the Kapitza coefficient r̄ 0

Q and
thermal sensitivity s̄0. Appendix B gathers the effective (undamaged) Helmholtz energy functions to-
gether with their corresponding derivatives both in the bulk and on the interface. The corresponding
material parameters for the bulk and interface are given in Table 3.

Consider now the strip shown in Figure 4, where a constant displacement is prescribed at the two
opposite faces. The strip is partitioned into two homogeneous domains by an interface. The width and
the thickness of the strip are kept constant. The thermal boundary condition is globally adiabatic, i.e.,
Q̂p
= Q̃p

= 0. The thermal initial condition is a uniformly distributed temperature Θ0 = 298 K. In order
to better understand the influence of a thermomechanical GI interface on the overall response of the
body, all thermomechanical properties of the bulk are fixed. Similar examples of intact (nondegrading)
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r = 1/
√

2

1 1

Q̂ p
= Q̃ p

= 0
Θ0 = 298 (K)

z

x y

0.5× d p
max

−0.5× d p
max

dp
max: maximum displacement

4 side surfaces fixed in y-direction
top and bottom surfaces fixed in z-direction

Figure 4. Strip with curved interface: geometry, left, and applied boundary conditions,
right. Dimensions are in mm. The thickness is 0.05.
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k = 100

Figure 5. The bulk temperature distribution of the strip stretched up to 100% of its original
length for µ/µ= λ/λ= 2 mm, r̄ 0

Q = 0.1 and k̄0/k = 100 mm. Results a–d correspond to
the intact interface, whereas results e–h correspond to the degrading interface.

LC, HC and GI interfaces can be found respectively in [Javili et al. 2012; 2013; Kaessmair et al. 2014].
Degrading HC and LC interfaces are studied in the recent contributions [Esmaeili et al. 2016a; 2016b],
respectively. It is mentioned that to obtain an HC interface behavior from the current model, one can
assign infinitesimal values to s̄0 and r̄ 0

Q , which causes both dissipation contributions in (9) to vanish. An
LC interface is obtained by setting only s̄0 ≈ 0, while r̄ 0

Q is assigned a finite value. Note that we use
Fourier-like relations (10) to fulfill the inequalities in (9).

In the first example we focus on the conductivity of a degrading interface. The domain is stretched up
to 100% of its initial length in 40 equal steps where the total time is 10 ms. Note that for this example,
c0

F
= α = 0 and k̄0/k = 100 mm, r̄ 0

Q = 0.1, and s̄0 varies from 10−5 to 10−10. The results of the
two cases, undamaged and damaged interface, are compared and depicted in Figure 5. It is observed
that the temperature distribution along the intact interface is more uniform (see Figure 5a–d) than the
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Figure 6. The bulk temperature distribution of the strip stretched up to 30% of its original
length for µ/µ = λ/λ = 2 mm, r̄ 0

Q = 0.1 and c0

F
/cF = 1 mm. Results a–d correspond to

the intact interface, whereas results e–h correspond to the degrading interface.
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Figure 7. The interface temperature distribution of the strip stretched up to 30% of its
original length for µ/µ = λ/λ = 2 mm, r̄ 0

Q = 0.1 and c0

F
/cF = 1 mm. Results a–d

correspond to the intact interface, whereas results e–h correspond to the degrading interface.

one along the damaging interface (see Figure 5e–h). Moreover, a degrading interface causes a higher
temperature jump across the interface due to the fact that r̄ 0

Q/[1− D‖] assumes higher values as damage
evolves. One should note that the simplified interface evolution equation of this example takes the form
Div([1− D‖]Q) = −[[Θ]], thus a jump in the normal heat flux shall be observed. We point out that
since the interface here is fully dissipative, in contrast to an HC interface, it allows for a jump in the
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Figure 8. The bulk temperature distribution of the strip stretched up to 100% of its original
length for µ/µ = λ/λ = 2 mm, r̄ 0

Q = 0.1 and s̄0 = 10−10. Results a–d correspond to the
intact interface, whereas results e–h correspond to the degrading interface.
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Figure 9. The bulk temperature distribution of the strip stretched up to 100% of its
original length for µ/µ = λ/λ = 2 mm. Results a–d correspond to the intact highly
conductive interface, whereas results e–h correspond to the degrading highly conductive
interface. See [Esmaeili et al. 2016a] for further details.

temperature across the interface. Also, along a nondegrading HC interface with a high enough value
for the interface conduction coefficient (such as k̄0/k = 100 mm), a uniform temperature distribution is
achieved. This observation cannot be made for either an intact or a degrading GI interface (see Figure 5d
and h, respectively).
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Figure 10. The interface temperature distribution of the strip stretched up to 100% of its
original length for µ/µ= λ/λ= 2 mm, r̄ 0

Q = 0.1 and s̄0= 10−10. Results a–d correspond
to the intact interface, whereas results e–h correspond to the degrading interface.

In the second example the effects of the interface heat capacity are studied. The domain here is
stretched up to 30% of its initial length in 15 equal steps where the total time is 10 ms. Note that for
this example, k̄0 = α = 0 and c̄0

F
/cF = 1 mm, and s̄0 ranges from 10−5 to 10−10. Analogous to the

previous example, two cases of intact and damaged interface are considered here and shown in Figure 6
and Figure 7. From Figure 6 one finds that the intact interface is more capable of maintaining its initial
temperature (also see Figure 7a–d). On the other hand, the domain cools down due to the Gough–
Joule effect. These two different responses create the nonuniform temperature distribution in the domain
containing the intact interface, as depicted in Figure 6a–d. On the contrary, a degrading interface can
not retain its initial temperature (see Figure 7e–h), causing (in general) a more uniform temperature
distribution in the domain as shown in Figure 6e–h. Note that for this example, the interface temperature
evolution simplifies to [1−D‖]c̄0

F
DtΘ=−[[Q]]·N , meaning that a jump in the normal heat flux across the

interface is present. Here we draw our attention to the difference between a thermally GI and HC interface.
As mentioned before, an HC interface implies no temperature jump across the interface, and consequently
the interface temperature becomes the average of the bulk temperatures on the two sides of the interface.
Observing Figure 6 and Figure 7, one concludes that a jump in the temperature is clearly present across
the interface, and the interface temperature is not the average of the surrounding bulk temperatures.

In the final example we turn our attention to the interface Gough–Joule effect by setting k̄0 = c̄0

F
= 0

and s̄0 = 10−10 and ranging α/α from 0 to 1.5. The domain here is stretched up to 100% of its initial
length in 40 equal steps where the total time is 10 ms. The temperature evolution equation in this case
simplifies to

[[Q]] · N =Θ∂Θ([1− D‖]P0) : Dt F =
[
Θ[1− D‖]∂Θ P0−Θ∂ΘD‖P0

]
: Dt F.

From Figure 8 and Figure 10 we observe that the intact interface cools down under the increasing load
due to the Gough–Joule effect more than the degrading interface. Moreover, it is shown that higher



304 ALI ESMAEILI, PAUL STEINMANN AND ALI JAVILI

temperature jumps and less strong coupling between the interface and bulk temperatures are achieved
when the interface is allowed to degrade since

r̄ 0
Q/[1− D‖] and s̄0/[1− D‖]

assume higher values as damage evolves (compare Figure 8f–h to Figure 8a–d). Finally, the highest
level of interface deformation is observed in this example due to the presence of the thermomechanical
coupling term (α 6= 0) in the interface effective Helmholtz energy. A comparison is also made between a
thermally GI and HC interface in Figure 9, which illustrates an HC interface under the same conditions
as the thermally GI interface shown in Figure 8. The first observation, as expected, is the vanishing
temperature jump across the HC interface. One can also notice that the HC interface (in general) retains to
a larger extent its initial temperature. Although the intact thermally GI and HC interfaces have the lowest
temperatures in the middle of the interface (see Figure 10a–d and Figure 9), the thermally GI interface
temperature, unlike the HC interface temperature, is not coupled to its surrounding bulk temperatures.
This means a thermally GI interface is allowed to be colder or warmer than the bulk (see Figure 10h and
Figure 8h, where the interface is colder than the bulk). Note that for an HC interface the temperature is
strongly coupled to that of the bulk by being the average of the adjacent bulk temperatures. Finally, the
difference between a thermally GI and an HC interface becomes even more pronounced when in-plane
degradation is allowed to initiate. Now, a degrading thermally GI interface loses its initial temperature at
its two ends more drastically, while on an HC interface the coldest region is the middle of the interface.

6. Summary and conclusion

A theoretical and computational framework for continua containing thermally general imperfect and
mechanically coherent energetic interfaces was outlined. The corresponding mechanical and thermal
weak forms of the balance equations were given. The balance equations were fully discretized using
the finite element method in space. The effects of the in-plane degradation on the in- and out-of-plane
thermomechanical properties of the interface and the overall response of the body were also taken into ac-
count by introducing a tangential reduction factor. With the evolution of damage, the in-plane properties,
i.e., interface stiffness, heat expansion coefficient, conduction coefficient and heat capacity coefficient,
are reduced, whereas the out-of-plane properties, i.e., the Kapitza resistance coefficient and sensitivity,
are increased. The increase of the out-of-plane thermal properties results in a higher temperature jump
and a weaker coupling between interface and bulk temperatures. The tangential damage variable is a
function of the equivalent distortion, which is nonlocalized using integral-type averaging.

A series of numerical examples served to elucidate the theory presented in this work. It was shown
that the degraded interface undergoes more deformation. In addition, as the heat conduction coefficient
is reduced while the damage evolves, higher temperature gradients along the interface were observed. It
was also illustrated that an interface retains its initial temperature to a larger extent due to the reduced
heat expansion coefficient. The degrading interface was shown to be less capable of being resistant to
temperature changes as a result of the reduced specific heat capacity. We also observed that (in general)
in all the examples higher temperature jumps across the interface and less strong coupling between the
interface and bulk temperatures are attributed to the damage of the interface. Finally, in all the examples,
asymptotically quadratic convergence associated with the Newton–Raphson scheme was achieved.
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One consequent extension to this work is to study the role of the out-of-plane degradation of the
interface material (cohesive damage) on the thermomechanical response of a thermally general imperfect
and mechanically energetic interface. This includes introducing noncoherent deformation into the current
formulation by allowing a displacement jump across the interface, which requires the use of a cohesive
zone model. Such an extension shall be discussed in later contributions.

Appendix A: Finite element implementation

In order to apply the finite element method to the present problem, the weak forms (11) and (12) are
discretized in space and time. The time interval T is subdivided into a set of intervals 1t := tτ+1− tτ with

T =
nts⋃
τ=0

[tτ , tτ+1], (A.1)

where nts denotes the number of time steps. The spatial discretization is performed using the Bubnov–
Galerkin finite element method. The geometry and temperature of the bulk and interface together with
the jump and average of temperature over the interface are approximated as a function of the natural
coordinates ξ ∈ [−1, 1]3 and ξ̄ ∈ [−1, 1]2 assigned to the bulk and the interface, respectively. Using
standard interpolations according to the isoparametric concepts, we obtain

X|Bβ0 ≈ Xh(ξ)=

nnB∑
i=1

N i (ξ)X i, X|Iγ0 ≈ Xh(ξ)=

nnI∑
i=1

N i (ξ)X i,

ϕ|Bβ0
≈ ϕh(ξ)=

nnB∑
i=1

N i (ξ)ϕi , ϕ|Iγ0
≈ ϕh(ξ)=

nnI∑
i=1

N i (ξ)ϕi ,

Θ|Bβ0
≈Θh(ξ)=

nnB∑
i=1

N i (ξ)Θ i , Θ|Iγ0
≈Θ

h
(ξ)=

nnI∑
i=1

N i (ξ)Θ
i
,

[[Θ]]|Iγ0
≈ [[Θ]]h(ξ)=

nnI∑
i=1

N i (ξ)[[Θ]]i , {{Θ}}|Iγ0
≈ {{Θ}}h(ξ)=

nnI∑
i=1

N i (ξ){{Θ}}i ,

(A.2)

where Bβ0 and Iγ0 are the β th and γ th element in the bulk and on the interface, respectively. The shape
functions of the bulk and interface elements at a local node i are denoted by N i and N i, respectively.
Every bulk and interface element consists of nnB and nnI nodes, respectively.

For the sake of brevity, homogeneous Neumann boundary conditions are assumed and hence some
integrals vanish. The integrals are standard and require no additional care. Now, the fully discrete
(spatially and temporally) form of mechanical and thermal residuals associated with the global node I
are defined by

[
tot R I

ϕ]τ+1 =

∫
B0

Pτ+1 ·Grad N I dV −
∫
B0

N I Bp
τ+1 dV

+

∫
I0

[
[1− D‖]P0

]
τ+1 ·Grad N I dA−

∫
I0

N I Bp
τ+1 dA, (A.3)
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and

[
totRI

Θ ]τ+1 =−

∫
B0

Qτ+1 ·Grad N I
+Qp

τ+1 N I dV−
∫
I0

[
[1−D‖]Q0

]
τ+1 ·Grad N I

+Qp
τ+1 N I dA

−

∫
B0

Θτ+1[∂Θ P]τ+1 :
1
1t
[Fτ+1−Fτ ]N I

−cF
1
1t
[Θτ+1−Θτ ]N I dV

−

∫
I0

Θτ+1[∂Θ([1−D‖]P0)]τ+1 :
1
1t
[Fτ+1−Fτ ]N I

−[1−D‖]c̄0

F
1
1t
[Θτ+1−Θτ ]N I dA

−

∫
I0

[1−D‖]
1
s̄0

[Θ
−1
−{{Θ−1

}}]N I dA

−

∫
I−0
[1−D‖]

1
r̄ 0

Q
N I
[[Θ]]τ+1 dA+

∫
I+0
[1−D‖]

1
r̄ 0

Q
N I
[[Θ]]τ+1 dA. (A.4)

Note that mechanical and thermal residuals are composed of contributions from both the bulk and inter-
face. Moreover, although the integrands of the last two integrals in (A.4) are identical, the domains over
which these integrals are taken are different. This is due to the fact that the interface is thermally general
imperfect. The global mechanical and thermal residual vectors take the form

tot R = [tot Rϕ RΘ tot RΘ ]T with tot Rϕ = [R1
ϕ · · · R

I
ϕ · · · R

nBn
ϕ ]

T
+ [R1

ϕ · · · R
I
ϕ · · · R

nIn
ϕ ]

T ,

RΘ = [R1
Θ · · ·R

I
Θ · · ·R

nBn
Θ ]

T and tot RΘ = [R1
Θ · · ·R

I
Θ · · ·R

nIn
Θ ]

T︸ ︷︷ ︸
RΘ

+ [R1±
Θ · · ·R

I±
Θ · · ·R

n±In
Θ ]

T︸ ︷︷ ︸
RΘ±

, (A.5)

where nBn and nIn denote the number of bulk and interface nodes. The summation operator implies
the (conventional) residual assembly of the finite element method. Note that total interface thermal
residual tot RΘ is composed of contributions from interface residuals corresponding to the degrees of
freedomΘ andΘ±, respectively denoted by RΘ and RΘ± . Both of the above thermal residuals contribute
to the total thermal residual, i.e., tot RΘ = RΘ +tot RΘ .

The fully discrete coupled nonlinear system of governing equations can be stated as follows:

tot R(totd) != 0 with totd = [dϕ dΘ dΘ ]
T , (A.6)

where totd is the unknown global vector of spatial coordinates dϕ and temperature dΘ and dΘ . To solve
(A.6)1, a Newton–Raphson scheme is utilized. Thus, the consistent linearization of the resulting system
of equations yields the total (algorithmic) tangent stiffness matrix for every pair of global nodes I and J as

tot K IJ
:=
∂ tot R I

∂ totd J where tot K IJ
=

K IJ
ϕϕ K IJ

ϕΘ 0

K IJ
Θϕ KIJ

ΘΘ 0

0 0 0

+


tot K IJ
ϕϕ

tot K IJ
ϕΘ

tot K IJ
ϕΘ

tot K IJ
Θϕ

totKIJ
ΘΘ

totKIJ
ΘΘ

tot K IJ
Θϕ

totKIJ
ΘΘ

totKIJ
ΘΘ


︸ ︷︷ ︸

tot K IJ

, (A.7)

with tot K IJ being defined as
tot K IJ

ϕϕ = K IJ
ϕϕ

tot K IJ
ϕΘ = K IJ

ϕΘ+
+K IJ

ϕΘ−
tot K IJ

ϕΘ
= K IJ

ϕΘ
tot K IJ

Θϕ = K IJ
Θ+ϕ
+K IJ

Θ−ϕ
totKIJ

ΘΘ = KIJ
Θ+Θ+

+KIJ
Θ+Θ−

+KIJ
Θ−Θ+

+KIJ
Θ−Θ−

totKIJ
ΘΘ
= KIJ

Θ+Θ
+KIJ

Θ−Θ
tot K IJ

Θϕ
= K IJ

Θϕ

totKIJ
ΘΘ
= KIJ

ΘΘ+
+KIJ

ΘΘ−
totKIJ

ΘΘ
= KIJ

ΘΘ

 . (A.8)
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Note that tot K is also decomposed into contributions from the bulk and the interface. The bulk contribu-
tions to the total stiffness matrix are given as

K IJ
ϕϕ =

∂R I
ϕ

∂ϕ J =

∫
B0

Grad N I
·[∂F P]·Grad N J dV, K IJ

ϕΘ =
∂R I

ϕ

∂Θ J =

∫
B0

N J
[∂Θ P]·Grad N I dV,

K IJ
Θϕ =

∂RI
Θ

∂ϕ J =

∫
B0

−N I
[
∂(Θ∂Θ P : Dt F)

∂F

]
·Grad N J

−Grad N I
·[∂F Q]·Grad N J dV,

KIJ
ΘΘ =

∂RI
Θ

∂Θ J =

∫
B0

−Grad N I
·

[
∂ Q

∂ GradΘ

]
·Grad N J

+N I
[

cF

1t
−

[
∂(Θ∂Θ P : Dt F)

∂Θ

]]
N J dV .

(A.9)

The interface contributions to the total stiffness matrix consist of local (loc K ) and nonlocal (nloc K )
contributions. The local contributions loc K , uniquely derived for a GI interface, are as follows:

locKIJ
Θ±Θ
=
∂RI±

Θ

∂Θ
J =

∫
I±0
[1− D‖(xr)]

1
2s̄0

1

Θ
2 N I N J dAr,

locKIJ
ΘΘ±
=
∂RI

Θ

∂Θ J±
=

∫
I0

[1− D‖(xr)]
1

2s̄0

1
[Θ±]2

N I N J dAr,

locKIJ
Θ±Θ± =

∂RI±
Θ

∂Θ J±
=

∫
I±0
[1− D‖(xr)]

1
4s̄0

1
[Θ±±]2

N I N J dAr±±

∫
I±0
[1− D‖(xr)]

1
r̄ 0

Q
N I N J dAr,

(A.10)

where dAr = dA(xr). The rest of interface local contributions to the total stiffness matrix are given as

loc K IJ
ϕϕ =

∂R I
ϕ

∂ϕ J =

∫
I0

Grad N I
·[1− D‖(xr)]∂F P0(xr) ·Grad N J dAr,

loc K IJ
ϕΘ
=
∂R I

ϕ

∂Θ
J =

∫
I0

N J
[1− D‖(xr)]∂Θ P0(xr) ·Grad N I dAr,

loc K IJ
Θϕ
=
∂RI

Θ

∂ϕ J =

∫
I0

−N I
[1− D‖(xr)]

[
∂(Θ∂Θ P0(xr) : Dt F)

∂F

]
·Grad N J dAr

−

∫
I0

N I
[−∂ΘD‖(xr)]

[
∂(Θ P0(xr) : Dt F)

∂F

]
·Grad N J dAr

−

∫
I0

Grad N I
· [1− D‖(xr)][∂F Q0(xr)] ·Grad N J dAr,

locKIJ
ΘΘ
=
∂RI

Θ

∂Θ
J =

∫
I0

−Grad N I
· [1− D‖(xr)]

[
∂ Q0(xr)

∂ GradΘ

]
·Grad N J dAr

+

∫
I0

N I
[1− D‖(xr)]

[ c̄0

F
1t
+

1

s̄0Θ
2 −

[
∂(Θ∂Θ P0(xr) : Dt F)

∂Θ

]]
N J dAr

−

∫
I0

N I
[−∂ΘD‖(xr)]

[
∂(Θ P0(xr) : Dt F)

∂Θ

]
N J dAr,

(A.11)
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where ∂ΘD‖, and using (6)2, 3, is computed as

∂ΘD‖(xr)= D′
‖
∂ΘFnloc⇒ ∂ΘFnloc(xr)=

∫
I0

ω(xr, xs)
1

E Floc(xs)
∂Θ9

0(xs) dAs (A.12)

with D′
‖
= ∂FnlocD‖.

Next, the nonlocal corrections to the interface stiffness matrix are given as

nloc K IJ
ϕϕ =

∂R I
ϕ

∂ϕ J =

∫
I0

Grad N I
· P0(xr)⊗[−∂ϕ J D‖(xr)] dAr,

nloc K IJ
ϕΘ
=
∂R I

ϕ

∂Θ
J =

∫
I0

[−∂
Θ

J D‖(xr)]P0(xr) ·Grad N I dAr,

nloc K IJ
Θϕ
=
∂RI

Θ

∂ϕ J =

∫
I0

−N IΘDt F : [−∂Θ P0⊗ ∂ϕ J D‖− P0⊗ ∂ϕ JΘD‖]xr dAr

−

∫
I0

Grad N I
· Q0(xr)⊗[−∂ϕ J D‖(xr)]

+ N I
[−∂ϕ J D‖(xr)]

[
c̄0

FDtΘ −
1
s̄0

[Θ
−1
−{{Θ}}−1

]

]
xr

dAr,

nloc K IJ
Θ±ϕ =

∂RI±
Θ

∂ϕ J =

∫
I±0

N I
[−∂ϕ J D‖(xr)]

[
1

2s̄0
[Θ
−1
−{{Θ}}−1

] ±
1

r̄ 0
Q
[[Θ]]

]
xr

dAr,

nlocKIJ
ΘΘ
=
∂RI

Θ

∂Θ
J =

∫
I0

−Grad N I
· [−∂

Θ
J D‖(xr)]Q0(xr)

− N IΘ[−∂
Θ

J D‖∂Θ P0− ∂Θ J
Θ

D‖P0]xr : Dt F(xr) dAr

+

∫
I0

N I
[−∂

Θ
J D‖(xr)]

[
c̄0

FDtΘ −
1
s̄0

[Θ
−1
−{{Θ−1

}}]

]
xr

dAr,

(A.13)

where

Dt F =
[Fτ+1− Fτ ]

1t
and DtΘ =

[Θτ+1−Θτ ]

1t
.

The notation [{•}]xr means that the quantity {•} is evaluated at point xr. In the derivation of the nonlocal
corrections to the interface stiffness matrix, the first and second derivatives of the damage variable with
respect to the nodal coordinates and temperature ϕ J and Θ J at an arbitrary point xr on the interface
using (6)2,3 are calculated as follows:

∂
Θ

J D‖(xr)= D′
‖
∂
Θ

J Fnloc⇒ ∂
Θ

J Fnloc(xr)=

∫
I0

ω(xr, xs)
1

E Floc(xs)
∂Θ9

0(xs)N J(xs) dAs, (A.14)

∂ϕ J D‖(xr)= D′
‖
∂ϕ J Fnloc⇒ ∂ϕ J Fnloc(xr)=

∫
I0

ω(xr, xs)
1

E Floc(xs)
∂F9

0(xs) ·Grad N J(xs) dAs, (A.15)

∂ϕ JΘD‖(xr)= D′′
‖
∂ΘFnloc∂ϕ J Fnloc+D′

‖
∂ϕ JΘFnloc and

∂
Θ

J
Θ

D‖(xr)= D′′
‖
∂
Θ

J Fnloc∂ΘFnloc+D′
‖
∂
Θ

J
Θ

Fnloc,
(A.16)
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where D′′
‖
= ∂FnlocD′

‖
and dAs = dA(xs) and

∂ϕ JΘFnloc(xr)=

∫
I0

ω(xr, xs)

[
−1

E2 F3
loc

∂F9
0∂Θ9

0
+

1

E Floc
∂FΘ9

0
]

xs

·Grad N J (xs) dAs, (A.17)

∂
Θ

J
Θ

Fnloc(xr)=

∫
I0

ω(xr, xs)

[
−1

E2 F3
loc

[∂Θ9
0
]
2
+

1

E Floc
∂ΘΘ9

0
]

xs

N J (xs) dAs. (A.18)

Similarly the notation [{•}]xs means that the quantity {•} is evaluated at point xs. Note that by using the
derivatives (A.14)−(A.18) in the nonlocal corrections (A.13), the double integrals are introduced into the
formulation due to nonlocality of the damage model. Furthermore, during unloading we set D′ =D′′ = 0.

Appendix B: Constitutive relations in the bulk and on the interface

bulk

9 = 1
2λ ln2 J+ 1

2µ[F : F−3−2 ln J ]−3ακ[Θ−Θ0]J−1 ln J+cF[Θ−Θ0−Θ ln(Θ/Θ0)]−40[Θ−Θ0]

P = λ ln J F−t
+µ[F− F−t

] − 3ακ J−1
[Θ −Θ0][1− ln J ]F−t

4= 3ακ J−1ln J + cF ln(Θ/Θ0)+40

∂F P = λ[F−t
⊗ F−t

+ ln J D] +µ[I−D] + 3ακ[Θ −Θ0][J−1
[2− ln J ]F−t

⊗ F−t
− J−1

[1− ln J ]D]

∂Θ P =−3ακ J−1
[1− ln J ]F−t

∂Θ(Θ∂Θ P : Dt F)=−3ακ J−1
[1− ln J ] div V

∂F(Θ∂Θ P : Dt F)=−3ακΘ[J−1
[ln J − 2] div V F−t

+ J−1
[1− ln J ][Dt F : D+ [1/1t]F−t

: I]]

∂F Q =−Jk[F−1
· F−t

⊗ F−t
+B] ·GradΘ, ∂GradΘ Q =−JkG

D= ∂F F−t
=−F−t

⊗ F−1, I= ∂F F = i ⊗ I

B= ∂F(F−1
· F−t)=−[F−1

⊗ F−1
] · F−t

− F−1
· [F−t

⊗ F−t
], G = F−1

· F−t

interface

90
=

1
2λ ln2 J+ 1

2µ[F : F−2−2 ln J ]−2ακ[Θ−Θ0]J−1 ln J+c̄0
F[Θ−Θ0−Θ ln(Θ/Θ0)]−4s[Θ−Θ0]

P0 = ∂F9
0
= λ ln J F−t

+µ[F− F−t
] − 2ακ J−1

[Θ −Θ0][1− ln J ]F−t

40 = 2ακ J−1ln J + c̄0
F ln(Θ/Θ0)+4s, ∂Θ9

0
=−40

∂F P0 = λ[F−t
⊗F−t

+ln JD]+µ[I−D]+2ακ[Θ−Θ0][J−1
[2−ln J ]F−t

⊗F−t
−J−1

[1−ln J ]D]

∂Θ P0 = ∂FΘ9
0
=−2ακ J

−1
[1− ln J ]F−t, ∂ΘΘ9

0
=−c̄0

FΘ
−1

∂Θ(Θ∂Θ P0 : Dt F)=−2ακ J−1
[1− ln J ] div V

∂F(Θ∂Θ P0 : Dt F)=−2ακΘ[J−1
[ln J − 2] div V F−t

+ J−1
[1− ln J ][Dt F : D+ [1/1t]F−t

: I]]

∂F Q0 =−J k̄0[F−1
· F−t

⊗ F−t
+B] ·GradΘ, ∂GradΘ Q0 =−J k̄0G

D= ∂F F−t
=−F−t

⊗ F−1
+ [i − ī]⊗ F−1

· F−t, I= ∂F F = i ⊗ I

B= ∂F(F−1
· F−t)=t

[F−1
·D] + F−1

·D, G = F−1
· F−t
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List of symbols

F bulk material deformation gradient F interface material deformation gradient
ϕ bulk deformation map ϕ interface deformation map
X bulk material coordinates X interface material coordinates
x bulk spatial coordinates x interface spatial coordinates
Θ bulk temperature Θ interface temperature
Θ0 bulk initial temperature Θ0 interface initial temperature
N bulk material normal to surface N interface material normal to interface
n bulk spatial normal to surface n interface spatial normal to interface
9 bulk Helmholtz energy 9 interface nominal Helmholtz energy
4s bulk specific entropy 4s interface specific entropy
4 bulk entropy 4 interface nominal entropy
P bulk Piola stress P interface nominal Piola stress

only interface

ϕ± deformation maps of ± side x± spatial coordinates of ± side
ñ spatial normal to interface boundary Ñ material normal to interface boundary
90 undamaged Helmholtz energy D‖ damage variable
P0 undamaged Piola stress tensor 40 undamaged entropy
F loc local equivalent distortion Fnloc nonlocal equivalent distortion
F0 elastic limit Fmax maximum attained Fnloc

s̄0 undamaged sensitivity r̄ 0
Q undamaged Kapitza resistance coefficient
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