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B-SPLINES COLLOCATION FOR PLATE BENDING EIGENANALYSIS

CHRISTOPHER G. PROVATIDIS

Following the recent encouraging findings in the area of 2-D acoustics, this paper investigates the per-
formance of a B-spline collocation method in the extraction of natural frequencies (eigenvalue analysis)
of thin plates in bending. Numerical formulation and associated results refer to uniformly discretized
rectangular and circular plates, for which closed-form analytical or approximate solutions are available in
the literature. The computational results show that the proposed B-spline collocation method is of higher
quality than the previously known cubic B-splines Galerkin–Ritz formulation; both of them converge
more rapidly to the accurate solution than what the conventional finite element method does for the same
mesh density.

1. Introduction

Engineering analysis of arbitrarily shaped or arbitrarily loaded structures is usually performed using the
well-known finite element method (FEM) [Bathe 1996]. Particularly in mechanical engineering, where
the structural components generally consist of free shaped boundaries produced by a CAD system, it is
more convenient to deal with their B-splines representation [de Boor 1972; Farin et al. 2002; Piegl and
Tiller 1995]. In addition to a CAD model, computational engineering analysis (CAE) can be performed
on the basis of either B-splines [Höllig 2003] or NURBS [Cottrell et al. 2009]. For a detailed review on
the CAD/CAE integration, the interested reader may consult [Provatidis 2013].

B-splines based finite elements have been extensively used in the finite element praxis. In more detail,
structural engineering applications cover static, dynamic and stability analyses [Peng-Cheng et al. 1987;
Akhras and Li 2011]; an older survey is [Grigorenko and Kryukov 1995]. A great number of papers
on B-splines finite element models applied to plates and shells have been published in the last twenty
years. These include isotropic [Antes 1974; Gupta et al. 1991; Fan and Luah 1995], orthotropic [Cheng
and Dade 1990], cross- and angle-ply multilayered laminated [Patlashenko and Weller 1995; Dawe and
Wang 1995; Kolli and Chandrashekhara 1997; Reddy and Palaninathan 1999; Park et al. 2008; Kapoor
and Kapania 2012; Golmakani and Mehrabian 2014], functional graded materials (FGM) [Valizadeh et al.
2013; Tran et al. 2013] and shell [Echter et al. 2013] structures, among others. A tendency of the last few
years is to combine B-splines with wavelet ideas [Han et al. 2007; Zhang et al. 2010; Li and Chen 2014].

Despite the aforementioned progress, it has been reported that the computer effort required to esti-
mate the matrices of these CAD-based macroelements (in potential and structural problems) is relatively
high [Provatidis 2004; 2012]. As a remedy to this shortcoming, in 2005 the author proposed preserving
the global CAD-based interpolation but substituting the Galerkin–Ritz formulation (which needs domain
integration to estimate the mass and stiffness matrices) by a global collocation scheme [Provatidis 2006,
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p. 6704]. Similar numerical results were later reported for the particular case of a (NURBS-based)
isogeometric analysis [Hughes et al. 2010].

So far, the above idea of global collocation has been successfully applied to the static analysis of 2-D
structures [Provatidis 2008b; 2009; Provatidis and Ioannou 2010], eigenvalue analysis of 1-D elastic
rods [Provatidis 2008a], as well as the eigenanalysis of 2-D acoustic cavities [Provatidis 2014] and 2-D
elastic structures [Filippatos 2010]. Later, isogeometric collocation methods were proposed [Auricchio
et al. 2010]. Nevertheless, an application of this idea to thin plate bending is still missing.

Within this context, this paper preserves the aforementioned idea of approximating the deflection
w(x, y) within the plate through a B-splines tensor product but replaces the Galerkin–Ritz computational
procedure with a global collocation method (GCM), thus avoiding domain integration. The cost of this
facility is the increase of the polynomial degree from p = 3 to higher values (p ≥ 5). The proposed
methodology is successfully tested in a square plate (simply supported, clamped), as well as in a clamped
circular plate.

2. Governing equations and numerical solution

The partial differential equation of motion for a plate in bending is given by

D∇4w(x, y, t)+ ρh
∂2w(x, y, t)

∂t2 = f (x, y, t), (1)

where D is the flexural rigidity, ρ is the mass density, h is the plate thickness, and f is the loading
towards the z-direction.

Following [Antes 1974; Höllig 2003], the deflection is expanded into a B-splines tensor product of
the form

w(x, y; t)=
n∑

i=1

m∑
j=1

Ni,pn (x) · N j,pm (y) · ai j (t), i = 1, . . . , n; j = 1, . . . ,m, (2)

where Ni,pn (x) and N j,pm (y) are the basis functions in the x- and y-direction, respectively. The afore-
mentioned basis functions (B-splines) are piecewise polynomials of pn-th and pm-th degree, respectively,
and are characterized by compact support [Piegl and Tiller 1995]. Further details are given in Section 3.1.

It is noted that the integers n and m in (2) represent the number of control points in the x- and y-
direction, respectively, whereas for the degrees of the corresponding polynomials, pn < n and pm < m
(see (8) below).

According to the global collocation method [Provatidis 2008a; 2008b; 2009; Provatidis and Ioannou
2010; Filippatos 2010], a certain number of nc collocation points (xc, yc) are chosen, at which the
governing equation is satisfied as follows:

D · ∇4
[ n∑

i=1

m∑
j=1

Ni,pn (xc) · N j,pm (yc)

]
· ai j (t)+ ρh ·

n∑
i=1

m∑
j=1

Ni,pn (xc) · N j,pm (yc) · äi j (t)= f (t). (3)

Setting

kc,i j = D · ∇4
[Ni,pn (xc) · N j,pm (yc)] (4)
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and

mc,i j = ρh · [Ni,pn (xc) · N j,pm (yc)], (5)

(3) obtains the matrix form

[M] · {ä(t)}+ [K ] · {a(t)} = { f (t)}. (6)

In this way, mass and stiffness matrices of dimensions nc× (nm) are produced.
In the general case, unlike the finite element method, the aforementioned matrices are not square

before the boundary conditions are imposed. Imposing the prescribed values (flexural displacements or
slopes) along the contour of the plate, we have to proceed so as to derive square matrices at the end. To
this purpose, the proper choice of collocation points is demanded.

3. Global approximation

3.1. One-dimensional B-spline approximation. For the sake of completeness, in the following text,
de Boor’s procedure is briefly exposed.

For a given polynomial degree p, the construction of a B-spline along a straight line segment is based
on a nondecreasing sequence of q + 1 breakpoints (x0, x1, . . . , xq−1, xq), i.e., the two ends (x0, xq) as
well as (q − 1) internal breakpoints (x1, . . . , xq−1). Assuming a certain multiplicity for the inner knots,
say µ, they compose the so-called knot vector,

V =

{
x0, . . . , x0︸ ︷︷ ︸

p+1

, x1, · · · , x1︸ ︷︷ ︸
µ

, . . . , xq−1, · · · , xq−1︸ ︷︷ ︸
µ

, xq , . . . , xq︸ ︷︷ ︸
p+1

}

= {v0, v1, . . . , vµ(q−1)+2p+1}.

(7)

The following facts are well known:

(1) The above µ(q − 1)+ 2(p+ 1) elements in the vector V are associated to

nCTRL = µ(q − 1)+ (p+ 1) (8)

control points [de Boor 1972; Farin et al. 2002; Piegl and Tiller 1995].

(2) The basis functions, Ni,p(x), have the partition of unity property,

q∑
j=0

N j,p(x)= 1. (9)

For a straight side (e.g., AB in the real domain �), the control points belong to the side while for a
curved side they do not, except for the first (P0) and last (Pn). In other words, the end segments of the
polygon P0 P1 . . . Pn−1 Pn (called the generator) are tangent to the curved side AB at end nodes P0 and
Pn . Details can be found elsewhere, for example, in [Farin et al. 2002].

The i-th B-spline function of p-degree, denoted by Ni,p(x), is defined as follows (see for example
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[Piegl and Tiller 1995, p. 50]):

Ni,0(x)=
{

1, if vi ≤ x < vi+1,

0, otherwise,
(10)

Ni,p(x)=
x − vi

vi+p − vi
Ni,p−1(x)+

vi+p+1− x
vi+p+1− vi+1

Ni+1,p−1(x). (11)

Similarly, the first derivative of Ni,p(x) can be effectively calculated by the recursion [Piegl and Tiller
1995, p. 59]

N ′i,p(x)=
p

vi+p − vi
Ni,p−1(x)−

p
vi+p+1− vi+1

Ni+1,p−1(x), (12)

whereas similar recursive expressions can be obtained for higher derivatives.

3.2. Two-dimensional B-spline approximation: tensor product. Let us consider a mapping from the
real xy-domain (ABCD) to the reference ξη-square (A′B′C′D′) in which 0≤ ξ, η ≤ 1. The axis origin
is chosen at the corner A (resp. A′), whereas the normalized axes ξ and η lie on the sides A′B′ and A′D′,
respectively. Without loss of generality, the sides (AB,CD) and (A′B′,C′D′) as well as (B′C′,D′A′)
and (BC,DA) are uniformly divided into nξ and nη segments, respectively, thus introducing a mesh of
(nξ + 1)× (nη+ 1) breakpoints (Figure 1).

Although the below illustrated B-spline macroelement reminds us of the classical Lagrangian type
element [Bathe 1996, pp. 344, 456], it highly differs from it for the following reasons. Based on the
aforementioned uniformly distributed breakpoints (ξ = 0, ξ1, . . . , 1; η = 0, η1, . . . , 1), each of the first
two opposite sides AB and CD (parallel to x-axis) are described through n control points fulfilling the
formula

n = µ(nξ − 1)+ (pn + 1), (13)

D' C'

A' B'

Boundary node

Internal node

η

ξ

η =1

η = η

η = 0

ξ = 0 ξ =1

2

η = η
1

ξ = ξ
1

ξ = ξ . . .
2

D
C

A

B

y

x

Figure 1. Uniformly arranged breakpoints of a B-splines plate-bending macroelement
in the normalized, left, and the real domain, right (only the breakpoints are shown).
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D' C'

A' B'

η

ξ

Figure 2. True position of the q̄ = n × m = 12× 12 control points that correspond
to the uniformly distributed breakpoints shown in Figure 1, left (number of segments
nξ = nη = 4; polynomial degree: p = 5).

while the other two opposite sides BC and DA (parallel to y-axis) are described through m control points

m = µ(nη− 1)+ (pm + 1). (14)

Concerning the normalized (reference) element shown in Figure 1, left, the n control points belong to
the straight line A′B′ and another set of n control points belong to the straight line D′C′. Similarly, the m
control points belong to the straight line B′C′ and another set of m control points belong to the straight
line A′D′. In contrast, in the real domain (let us consider, for example, the side AB: Figure 1, right) the
first and last control points coincide with the corner points A and B respectively (ends of curve AB);
however, the other control points may or may not belong to the curve AB (they may be found inside or
outside the domain ABCD).

Returning to the normalized reference element (Figure 2), the mesh required for the B-spline repre-
sentation of the patch geometry consists of q̄ = nm control points, produced as the tensor product of
n by m ones.

Each of the aforementioned control points, say the I -th, is associated with one global shape function
given by

φI,B-splines(ξ, η)= Ni,pn (ξ) · N j,pm (η),

{
I = 1, . . . , q̄ ≡ n×m,
i = 1, . . . , n; j = 1, . . . ,m.

(15)

Although the values of pn and pm may be different from one another, henceforth we take the same
polynomial degree, that is pn = pm = p.

3.3. Collocation points. In order to determine the proper number of collocation points in each direction,
it is necessary to assign values first to the polynomial degree p and then to the multiplicity of inner knots µ.
It is well known that for every value of µ, the solution w(x, y) is characterized by C p−µ-continuity.
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According to (13), the number of control points towards a certain direction, say the ξ -direction, in
which nξ subdivisions exist is n = µ(nξ − 1)+ (p+ 1). The four boundary conditions (for example, two
fixed ends) reduce the number of total degrees of freedom by four, and therefore the remaining unknown
coefficients will be (n − 4). If within each of the nξ segments (defined between any two successive
breakpoints) a number of c collocation points are considered, one should obtain so many equations at
the c corresponding collocation points as the number of the unknowns, that is: cnξ = n− 4, whence

c = (n− 4)/nξ . (16)

Substituting (13) into (16), one finally obtains

c = µ+ (p−µ− 3)/nξ . (17)

Since c must be an integer, we select the nominator in the second adding term of (17) to vanish, whence
the multiplicity is given by

µ= p− 3, (18)

whence the number of collocation points in ξ -direction will be

c = p− 3. (19)

Since the partial differential equation (1) is of fourth order, the minimum acceptable polynomial degree
is p = 5, for which double knots (µ = 2) and also c = 2 collocation points per direction are needed.
Following previous studies in 1-D elliptic problems [de Boor and Swartz 1973], in the case of p = 5 the
position of the collocation points within any cell of neighboring breakpoints was taken to be identical
with those integration points used in a usual 2× 2 Gaussian quadrature scheme.

In general, for every p > 5, the knot vector is built using µ = p− 3 multiple inner knots, see (7),
whereas a Gaussian quadrature scheme of c× c= (p−3)× (p−3) collocation points per cell is adopted.

Remark. Due to (18), the above choice (p−µ= 3) ensures a numerical solution characterized by C3-
continuity. This means that the deflection w, slope w′, bending moment E Iw′′, and shear force E Iw′′′

are continuous at all inner breakpoints.

Except for the above-mentioned Gaussian points, as also reported in 2-D acoustics (see [Provatidis
2014]), other sets of collocation points such as Demko and Greville ones can be used as well. Neverthe-
less, despite the global character of these abscissae, no significant influence on the numerical solution
has been noticed so far (see Figure 5).

3.4. Isoparametric approximations. Tensor products of B-splines are based on the following series ex-
pansion (φ j = φI,B-splines):

x(ξ, η)=
q̄∑

j=1

φ j (ξ, η) · x j , y(ξ, η)=
q̄∑

j=1

φ j (ξ, η) · y j , w(ξ, η)=

q̄∑
j=1

φ j (ξ, η) · a j , (20)

where a j are generalized coefficients and not the nodal values of deflection w at the q̄ control points. Only
at the very ends of the boundary the extreme control points (P0 and Pn) coincide with the corresponding
ends of polygon curves (generator).
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4. Imposition of Neumann boundary conditions

In contrast to the Dirichlet boundary conditions (b.c.), i.e., w = 0, which are imposed merely by deleting
the columns that correspond to the restricted degree of freedom (DOF), the Neumann b.c. require a
special treatment. In order to demonstrate the procedure, it is more instructive to deal with a clamped
beam, and then extend the methodology to a real 2-D plate.

Within this context, let us assume a beam AB of length L , which is clamped at its left end (namely A)
whereas the other end (namely B) is free to vibrate. The beam is discretized by B-splines using a number
of breakpoints (like those arranged along the edge A′B′ of the square of Figure 2), which correspond
to n control points. These control points are associated to the following generalized coefficients: a0 =

w0 =w(0), a1, . . . , an−1, an =wn =w(L). It is efficient to apply the local support property, according
to which the basis function Ni,p(x) = 0 if x is outside the knot interval [xi , xi+p+1). After having
constructed the matrices (K , M), which initially are of size nc× n, the following boundary conditions
have to be considered.

Fixed point A:

w(0)= N0(0)a0 = 0 (21a)

and

w′(0)= N ′0(0)a0+ N ′1(0)a1 = 0. (21b)

Since N0(0)= 1 6= 0, (21a) implies

a0 = 0. (21c)

Substituting (21c) into (21b) by virtue of N ′1 6= (0) gives

a1 = 0. (21d)

Therefore, the first and second columns of the matrices (K , M) should be deleted, because their elements
are multiplied by the null values of the two restrained DOF at the end A (i.e., a0 = a1 = 0). Therefore,
the number of the so far remaining columns (and the associated coefficients ai ) becomes n− 2.

Furthermore, concerning the load-free end B, the zero values of the bending moment w′′(L)= 0 and
the shear force w′′′(L)= 0 have to be imposed. This is easily accomplished by taking into consideration
the local support property for the control point B at x = L:

w′′(L)= N ′′n−2(L)an−2+ N ′′n−1(L)an−1+ N ′′n (L)an, (21e)

w′′′(L)= N ′′′n−3(L)an−3+ N ′′′n−2(L)an−2+ N ′′′n−1(L)an−1+ N ′′′n (L)an. (21f)

Equations (21e) and (21f) induce two linear dependencies between the remaining (n− 2) generalized
coefficients of the vector a. As a result, the final size of the matrices will be nc× (n− 4), and (16)–(19)
ensure that (Kfinal, Mfinal) will be square.

For a uniform arrangement of the breakpoints, and for any polynomial degree p, after some symbolic
manipulation it is found that N ′′n−2(L)= N ′′n (L)=−2N ′′n−1(L); therefore (21e) implies

an−1 =
1
2(an−2+ an). (21g)
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Substituting (21g) into (21f) and then solving for an gives

an = γ an−3+ δan−2, (21h)

where

γ =−
N ′′′n−3(L)

1
2 N ′′′n−1(L)+ N ′′′n (L)

, δ =−
N ′′′n−2(L)+

1
2 N ′′′n−1(L)

1
2 N ′′′n−1(L)+ N ′′′n (L)

. (21i)

For each collocation point, by virtue of (21g) and (21h), the expression
∑n

j=1 ki j a j is finally written as

n∑
j=1

ki j a j = . . .+ki,n−4an−4+
(
ki,n−3+

1
2γ ki,n−1+γ ki,n

)︸ ︷︷ ︸
k̂i,n−3

an−3+
(
ki,n−2+

1
2(1+δ)ki,n−1+δki,n

)︸ ︷︷ ︸
k̂i,n−2

an−2. (22)

Equation (22) dictates the algorithm which has to be followed for imposing the natural b.c. at the free
end B. In brief, the last two columns of the initial matrices (K , M) should be deleted, but before per-
forming this task a linear combination of their elements should be added to the initial (n − 3)-th and
(n− 2)-th columns according to (22).

As an example, in the particular case of Bézier (Bernstein) polynomials Bi,n(x) =
(n

i

)
x i (1− x)n−1,

which is the simplest B-spline in the interval [0, 1], it is trivial to prove that

B ′′′n−3,n(1)=−α, B ′′′n−2,n(1)= 3α, B ′′′n−1,n(1)=−3α, B ′′′n,n(1)= α, with α = n(n− 1)(n− 2), (23a)

B ′′n−3,n(1)= 0, B ′′n−2,n(1)= β, B ′′n−1,n(1)=−2β, B ′′n,n(1)= β, with β = n(n− 1), (23b)

B ′n−3,n(1)= 0, B ′n−2,n(1)= 0, B ′n−1,n(1)=−n, B ′n,n(1)= n; (23c)

hence, γ =−2 and δ = 3.
Let us now leave beams and return to real plates. In the case of a clamped plate, those columns

of matrices (M, K ) that correspond to the two layers of control points, which are the closest ones to
the boundary, should be deleted. The explanation is the same as that for the clamped point A of the
above-mentioned cantilever beam (i.e., by virtue of (21c) and (21d), perpendicularly to the boundary).

In the particular case of a simply supported plate, first all columns that correspond to the outermost
control points will be deleted. Second, since the normal moment vanishes (Mn = 0), the current situation
is very similar to (21e), and the concept of (22) can be applied as is.

In the general case of a 2-D plate with arbitrary boundary conditions, the above procedure is general-
ized as follows. In compact form, the imposition of Neumann b.c. can be written in the form

[A22 A2i ]

{
a2

ai

}
= {0}, (24)

where the elements of the matrices A22 and A2i include second and third directional derivatives of the
basis functions. The vector a2 refers to the generalized coefficients that are related to the control points
on the Neumann boundary, whereas the vector ai refers to inner ones.

In the free vibration problem, (6) can be written as

[Mc2 Mci ]

{
ä2

äi

}
+ [Kc2 Kci ]

{
a2

ai

}
= {0}. (25)
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Solving (24) in a2 and then substituting into (25), one finally obtains the standard expression

M̄ äi + K̄ ai = 0 (26)

where
M̄ = Mci −Mc2(A22)

−1 A2i , K̄ = Kci − Kc2(A22)
−1 A2i . (27)

5. Handling the curved boundaries

The proposed method is based on isoparametric considerations. Therefore the tensor product, which
describes the flexure of the plate according to (2), is considered to describe the curved geometry as well.
As usual, natural coordinates (ξ, η) normalized in the interval [0, 1] have to be considered.

In general, the analyst has to choose the four corner points (i.e., A, B, C and D, shown in Figure 1,
right) on the real curvilinear boundary of the plate, and then define the number and the position of the
breakpoints along the four curvilinear parts AB, BC, CD and DA on the boundary, as well as the polyno-
mial degree p. Every collocation point corresponds to a specific pair (ξ, η), which is known in advance.

For the arbitrary curved plate with given collocation points, while the mass matrix continues to be
described by the simple product of (5), the fourth-order operator of a shape function (i.e., ∇4 N (x, y)=
∂4 N/∂x4

+ 2 ∂4 N/∂x2∂y2
+ ∂4 N/∂y4) is more difficult to compute. Concretely, the computation of the

stiffness matrix demands the transformation of ∇4 N (x, y) in ξ - and η-coordinates, as outlined in the
Appendix.

6. Numerical results

The proposed theory is thoroughly evaluated in two benchmark problems that concern a square thin plate
of dimensions a× a under two different boundary conditions. In addition, at the end of this section, the
applicability of the proposed method is shown for a circular plate as well. The first problem refers to
a simply supported square plate (SS) whereas the second to a clamped (CL) one. In both cases the
numerical solution is compared with:

(1) The previous cubic B-splines Galerkin–Ritz formulation [Antes 1974] implemented with a standard
4× 4 Gaussian quadrature scheme in an in-house computer code, and

(2) the conventional finite element method (FEM) using element SHELL63 of ANSYS version 14.5 on a
uniform mesh that coincides with the uniform mesh of breakpoints utilized in the global collocation
solution.

(3) The exact solution, which is given as [Leissa 1973]

fi j [Hz] =
λ2

i j

2πa2

[
Eh2

12ρ(1− v2)

]1/2

; i = 1, 2, 3 . . . ; j = 1, 2, 3 . . . , (28)

where i and j are the numbers of half-waves in mode shape along x and y axis, respectively, and
λ2

i j is a parameter that depends on the ratio (a/b) of the length over the width of the plate as well
as on the type of boundary conditions according to Table 1.

Concerning the proposed global collocation method, we remind that, for a polynomial degree p = 5,
6 or 7, then 2× 2, 3× 3 or 4× 4 collocation points per cell (of breakpoints) are chosen, respectively.
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type of
boundary conditions

λ2
i j (mode)

1 2 3 4 5 6

simply supported 2π2 5π2 5π2 8π2 10π2 10π2

[Leissa 1973] (1, 1) (2, 1) (1, 2) (2, 2) (3, 1) (1, 3)

fully clamped 35.9852 73.3938 73.3938 108.2165 131.5808 132.2048
[Wieners 1997, p. 38] (1, 1) (2, 1) (1, 2) (2, 2) (3, 1) (1, 3)

Table 1. The values of parameter λ2
i j and the numbers (i, j) of half-waves for a square

plate in bending.

The computational results are presented in the form of errors (in percent, %) of the eigenvalue, ω2
i j =

(2π fi j )
2:

Error(%)=
‖ω2

calculated−ω
2
exact‖

ω2
exact

× 100. (29)

Example 1 (Simply supported rectangular plate). Depending on the polynomial degree, the results il-
lustrated in Figure 3 show an excellent convergence in terms of mesh density. It is noted that when
p = 5 (not shown), the global collocation method converges somewhat slower than the FEM solution. In
contrast, Figure 3 shows that when p = 6 or 7 the numerical solution becomes extremely accurate even
when treating the entire plate as a unique cell.

Example 2 (Clamped rectangular plate). Similar results were found in this example as well (see Figure 4).
It is noted that the exact solution was taken according to Wieners [1997], who presents more decimal
digits than Leissa [1973].

Finally, we show how the particular choice of collocation points affects the solution. Let the knot
vector, see (7), be written as V = {v1, . . . , vn+p+1}, where n is the number of control points. Except for
the above-mentioned Gaussian points, more sets were determined as follows:

(1) “Demko” abscissae were determined on the basis of “p-2” degree. We used the MATLAB command
chbpnt(knotsx(4:length(knotsx)-3),k-2). This way leads to the same number of collocation points as
obtained using Gaussian points. It is noted that neither the first abscissa is zero nor the last one is
equal to the unit.

(2) “Greville-1” abscissae were again determined on the basis of “p-2” degree. The first four knots
were not considered.

(3) “Greville-2” abscissae were now determined on the basis of “p” degree. The first three knots were
not considered, and all produced abscissae were used.

Concerning the two first sets (i.e., Demko and Greville-1), it is noted that unlike the second order prob-
lems (see [Auricchio et al. 2010; Provatidis 2014]), neither the first abscissa is zero nor the last one is
equal to the unit.

The performance of the above-mentioned abscissae as collocation points is shown in Figure 5. One
may observe that while for p= 6 the Gaussian points are competitive with Demko’s abscissae, in contrast
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Figure 3. Convergence quality of the first calculated eigenvalues for a simply supported
square plate.

to p = 7, these are rather superior. Between the two Greville-type abscissae, Greville-2 (based on p-th
degree) is superior.

Example 3 (Circular clamped plate). A circular clamped plate of radius R = 1 was analyzed and the
proposed collocation method was successfully compared with the exact solution [Zhou et al. 2011].
Table 2 presents the numerical results when the collocation points are taken at the location of the Gaussian
points. One may observe the excellent and rapid convergence towards the exact solution. It is noted that
the minor error that appears at the first natural frequency is probably due to the insufficient number of
digital points that literature presents, a matter that has been extensively discussed in [Zhou et al. 2011].
Moreover, the number of equations is shown at the bottom of Table 2.

Concerning conventional plate finite elements (structured mesh using three different types from AN-
SYS library), the convergence rate is very slow and the error of the first natural eigenfrequency is con-
siderably greater than that of the proposed collocation method (Table 2), as clearly shown in Table 3.
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Figure 4. Convergence quality of the first calculated eigenvalues for a clamped square plate.

Regarding the other nine modes, the error is practically maintained at the same level with the first one,
thus they are not shown.

7. Discussion

As previously reported in the case of 2-D acoustics [Provatidis 2014], the accuracy of the proposed
B-splines collocation method in plate-bending eigenvalue analysis is again excellent. An interesting
finding is that in the first two examples (square plate) of this study, the proposed global collocation
method converges from lower to higher values, exactly as the FEM (ANSYS) solution behaves. It is
noted that similar results with ANSYS (of slightly lower quality) were obtained using an in-house code
that implemented the shape functions of the well-known MZC 12-DOF finite element [Melosh 1963] in
conjunction with a consistent mass formulation. Therefore, the quality of the general purpose commercial
software (one of the most reliable worldwide) or the particular choice of the SHELL63 is not to be



B-SPLINES COLLOCATION FOR PLATE BENDING EIGENANALYSIS 365

101

100

10−1

10−2

10−3

10−4

103

102

101

100

10−1

10−2

10−3

10−4

101

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7

102

101

100

10−1

10−2

10−3

10−4

10−5

Figure 5. Influence of each particular set of collocation points on the first two eigenval-
ues for a clamped square plate.

blamed. The superiority of the proposed method is mainly due to the high polynomial degree of the
flexural approximation.

Tables 2 and 3 show that for the circular clamped plate, the pattern of convergence is not as clear as
it was for the square one, whereas even the three ANSYS types of elements tested also have different
convergence patterns, although they converge to very similar values.

The above-mentioned procedure leads to excellent results but is strictly related to the proposed number
of collocation points according to (16)–(19). In principle, an alternative could be to use a Lagrange
multiplier scheme according to which the boundary condition at the Neumann part of the boundary is
properly added to the equation related to the fulfillment of the partial differential equation. However,
the accuracy of this procedure is out of the scope of this paper. For an analog to in-plane elasticity, the
interested reader is referred to the Appendix of [Provatidis 2017].

Although this paper is restricted to B-spline collocation, which is a special case of the so-called
global collocation methods (GCM), a generalization is possible. In more detail, it is worthy to mention
that the high polynomial degree in the B-splines representation and the closely related high accuracy
in the obtained numerical results characterize all other CAD-based formulations as well. Specifically,
B-splines approximation is chronologically the fourth main “station” in CAD history [Provatidis 2014].



366 CHRISTOPHER G. PROVATIDIS

p = 6 p = 7
mode λ2

i j number of knot spans number of knot spans
2 3 4 6 1 2 3 4

1 10.2158 0.91 −0.03 0.03 0.03 7.17 −0.02 0.04 0.03
2 21.2604 1.31 0.50 −0.03 0.01 −8.04 −0.23 −0.01 0.01
3 21.2604 1.33 0.52 −0.01 0.02 −8.02 −0.22 0.00 0.03
4 34.8770 −7.55 −0.07 −0.14 0.02 −21.83 −0.89 −0.03 −0.02
5 34.8770 4.32 0.96 0.62 0.02 277.49 3.34 0.03 0.02
6 39.7711 −6.96 −0.00 0.62 0.02 262.93 3.31 0.04 −0.02
7 51.0306 −1.49 0.74 0.32 0.01 217.25 1.91 −0.00 0.00
8 51.0306 −1.48 0.74 0.32 0.01 217.27 1.91 −0.00 0.00
9 60.8287 3.93 1.83 0.19 −0.03 191.31 2.25 −0.25 0.02

number of equations 36 81 144 324 16 64 144 256

Table 2. Errors (in %) of the calculated natural frequencies for a clamped circular plate
of unit radius. Natural frequencies were calculated using the proposed B-splines collo-
cation method based on the Gaussian points, for piecewise polynomial degrees p = 6
and 7. For the exact parameter λ2

i j , see (28).

number of circumferential uniform
element type (ANSYS) segments per quarter of the circle (nξ = nη)

8 16 32 64

SHELL43 6.55 4.13 3.57 3.43
SHELL63 2.44 3.14 3.34 3.39
SHELL181 10.02 4.97 3.77 3.47

number of unrestrained nodal points 49 225 961 3969

number of equations 147 675 2883 11907

Table 3. Errors (in %) of the calculated first natural frequency for a clamped circular
plate of unit radius. This demonstrates the quality of the calculated first natural fre-
quency using several types of finite elements (ANSYS library). Value for the exact
parameter λ2

i j , see (28), is 10.2158. For the number of equations, all equations have
unrestrained bending DOF, excepting the membrane behavior.

Taking the mid-1960s as a starting point, the five consecutive stations in CAD approximation theory are
(see, for example, [Farin et al. 2002]):

(1) Coons interpolation (in 1967),

(2) Gordon transfinite interpolation (in 1970),

(3) Bézier curves,
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(4) B-splines and

(5) NURBS.

In general, and independently on the governing partial differential equation, the boundary value or
the eigenvalue problem can be solved using one of the aforementioned five CAD-based approximations,
and one of the basic computational methods: Ritz–Galerkin, boundary element and collocation, among
others. These fifteen combinations increase by a factor equal to two when considering triangular patches
(Barnhill’s approximation: one more CAD-station) in addition to the quadrilateral ones.

Let us examine the above-mentioned four interpolations, one-by-one:

(1) Concerning the boundary-only Coons interpolation (first CAD-station), the GCM is not applicable at
all. The reason is due to the elimination of all boundary DOF, a matter discussed in detail elsewhere
[Provatidis 2014]. In contrast, the same interpolation performs well in the static plate analysis in
conjunction with the Ritz–Galerkin formulation [Provatidis and Angelidis 2014].

(2) Although numerical results were not presented, the GCM performs well in conjunction with the
transfinite interpolation (second CAD-station). Similarly, transfinite interpolation performs well in
conjunction with the Ritz–Galerkin formulation [Provatidis 2008c]. This is due to the existence of
internal nodes that raise the accuracy of the approximation.

(3) Although not mentioned so far, the numerical results of this paper include the Bézier interpolation
(third CAD-station) as well. This happens because when using one subdivision of each side (shown
by the left extreme points in Figures 3 and 4), B-spline degenerates to Bernstein polynomials.

(4) B-splines collocation performed well (see Figures 3 and 4). Similarly, when B-splines approxima-
tion is applied in conjunction with the Ritz–Galerkin formulation (not presented), the quality of the
numerical solution is high, as summarized in [Höllig 2003].

8. Conclusions

It was shown that the proposed global collocation method has excellent performance in the eigenvalue
analysis of simply supported and clamped plates. For a specified number of uniformly arranged break-
points, the procedure is more accurate than the conventional finite element method as well as the cubic
B-splines Galerkin–Ritz formulation. Although results were presented for only the eigenvalue problem,
the static analysis shows a similar behavior. When the structure is of complex shape, it is suggested to
subdivide it into large macroelements of regular shape and apply compatibility and equilibrium conditions
along the interfaces. A similar behavior is anticipated for shell structures.

Appendix: The biharmonic function in the (ξ, η)-space

For each collocation point P(ξ, η), which is known in the unit square of a reference (ξ, η)-plane, the
proposed method needs to handle the Cartesian coordinates in the form x(ξ, η) and y(ξ, η). Since the
global shape functions N (x, y), which appear in (3), are tensor products of univariate basis functions
(here, B-splines) that are known in the (ξ, η)-space, the biharmonic operator

∇
4 N (x, y)=

∂4 N (x, y)
∂x4 + 2

∂4 N (x, y)
∂x2∂y2 +

∂4 N (x, y)
∂y4 , (A.1)
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has to be transformed from x and y into ξ and η.
This is accomplished first by calculating the Jacobian matrix J =

[
∂x/∂ξ
∂x/∂η

∂y/∂ξ
∂y/∂η

]
at the collocation point

P(x(ξ, η), y(ξ, η)). Then, by numerical inversion, the four terms of its inverse J−1 are found:

J−1
=

∂ξ∂x
∂η

∂x
∂ξ

∂y
∂η

∂y

 . (A.2)

Second, every term that appears in (A.1) is processed in a systematic way as follows. The chain rule is
successively applied on an arbitrary continuous and differentiable function F(x, y), whence the following
three principal formulas are derived:

∂2 F
∂x2 =

∂2 F
∂ξ 2

(
∂ξ

∂x

)2

+ 2
∂2 F
∂ξ∂η

∂ξ

∂x
∂η

∂x
+
∂2 F
∂η2

(
∂η

∂x

)2

+
∂F
∂ξ

∂2ξ

∂x2 +
∂F
∂η

∂2η

∂x2 , (A.3)

∂2 F
∂x∂y

=
∂2 F
∂ξ 2

∂ξ

∂x
∂ξ

∂y
+
∂2 F
∂ξ∂η

(
∂ξ

∂x
∂η

∂y
+
∂ξ

∂y
∂η

∂x

)
+
∂2 F
∂η2

∂η

∂x
∂η

∂y
+
∂F
∂ξ

∂2ξ

∂x∂y
+
∂F
∂η

∂2η

∂x∂y
, (A.4)

∂2 F
∂y2 =

∂2 F
∂ξ 2

(
∂ξ

∂y

)2

+ 2
∂2 F
∂ξ∂η

∂ξ

∂y
∂η

∂y
+
∂2 F
∂η2

(
∂η

∂y

)2

+
∂F
∂ξ

∂2ξ

∂y2 +
∂F
∂η

∂2η

∂y2 . (A.5)

It is noted that (A.3) and (A.5) have previously assisted the implementation of the collocation method in
potential (Laplace and Poisson) type problems [Provatidis 2009].

As a third step in the above equations (A.3), (A.4), and (A.5), the arbitrary function F is replaced by
the shape function N , thus respectively yielding

∂2 N
∂x2 =

∂2 N
∂ξ 2

(
∂ξ

∂x

)2

+ 2
∂2 N
∂ξ∂η

∂ξ

∂x
∂η

∂x
+
∂2 N
∂η2

(
∂η

∂x

)2

+
∂N
∂ξ

∂2ξ

∂x2 +
∂N
∂η

∂2η

∂x2 , (A.6)

∂2 N
∂x∂y

=
∂2 N
∂ξ 2

∂ξ

∂x
∂ξ

∂y
+
∂2 N
∂ξ∂η

(
∂ξ

∂x
∂η

∂y
+
∂ξ

∂y
∂η

∂x

)
+
∂2 N
∂η2

∂η

∂x
∂η

∂y
+
∂N
∂ξ

∂2ξ

∂x∂y
+
∂N
∂η

∂2η

∂x∂y
, (A.7)

∂2 N
∂y2 =

∂2 N
∂ξ 2

(
∂ξ

∂y

)2

+ 2
∂2 N
∂ξ∂η

∂ξ

∂y
∂η

∂y
+
∂2 N
∂η2

(
∂η

∂y

)2

+
∂N
∂ξ

∂2ξ

∂y2 +
∂N
∂η

∂2η

∂y2 . (A.8)

As a fourth step, the function F in (A.3) is replaced by ∂2 N/∂x2 in the form of (A.6); in this way the
term ∂4 N/∂x4 is produced. Similarly, the function F in (A.4) is replaced by ∂2 N/∂x∂y in the form of
(A.7), thus the term ∂4 N/∂x2∂y2 is produced. Finally, the function F in (A.5) is replaced by ∂2 N/∂y2

in the form of (A.8), thus the final desired term ∂4 N/∂y4 is produced.
Since each of (A.3) to (A.5) consists of five terms, the above procedure leads to 5×5= 25 fundamental

terms. But since all the aforementioned 25 fundamental terms are partial derivatives of rather complicated
terms, which are multiples of up to three secondary functions, the further procedure is highly facilitated
by systematically adopting the following identity (generalized chain rule):

∂2

∂ξ∂η
( f · g · h)= ∂2 f

∂ξ∂η
· g · h+ f · ∂

2g
∂ξ∂η

· h+ f · g · ∂
2h

∂ξ∂η

+

(
∂ f
∂η
·
∂g
∂ξ
+
∂ f
∂ξ
·
∂g
∂η

)
· h+

(
∂ f
∂η
·
∂h
∂ξ
+
∂ f
∂ξ
·
∂h
∂η

)
· g+

(
∂g
∂η
·
∂h
∂ξ
+
∂g
∂ξ
·
∂h
∂η

)
· f. (A.9)
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Obviously, (A.9) covers all necessary cases. For example, when dealing with ∂2/∂ξ 2( f gh), one can
easily consider that η = ξ . Also, when dealing with any partial derivative of ( f g), one can easily apply
(A.9) and taking h = 1.

Following the above procedure, rather lengthy expressions are derived. For example, the final result
for the first term of (A.1) is given by

∂4 N
∂x4 =

∂4 N
∂ξ 4 ·

(
∂ξ

∂x

)4

+
∂4 N
∂η4 ·

(
∂η

∂x

)4

+
∂4 N
∂ξ 3∂η

·

[
4
(
∂ξ

∂x

)3(
∂η

∂x

)]
+

∂4 N
∂ξ 2∂η2 ·

[
6
(
∂ξ

∂x

)2(
∂η

∂x

)2]

+
∂4 N
∂ξ∂η3 ·

[
4
(
∂ξ

∂x

)(
∂η

∂x

)3]
+
∂3 N
∂ξ 3 ·

[
6
(
∂ξ

∂x

)2(
∂2ξ

∂x2

)]
+
∂3 N
∂η3 ·

[
6
(
∂η

∂x

)2(
∂2η

∂x2

)]

+
∂3 N
∂ξ 2∂η

·

[
12
(
∂ξ

∂x

)(
∂η

∂x

)(
∂2ξ

∂x2

)
+6
(
∂ξ

∂x

)2(
∂2η

∂x2

)]

+
∂3 N
∂ξ∂η2 ·

[
12
(
∂ξ

∂x

)(
∂η

∂x

)(
∂2η

∂x2

)
+6
(
∂η

∂x

)2(
∂2ξ

∂x2

)]

+
∂2 N
∂ξ 2 ·

[
4
(
∂ξ

∂x

)(
∂3ξ

∂x3

)
+3
(
∂2ξ

∂x2

)2]
+
∂2 N
∂η2 ·

[
4
(
∂η

∂x

)(
∂3η

∂x3

)
+3
(
∂2η

∂x2

)2]
+
∂2 N
∂ξ∂η

·

[
4
(
∂ξ

∂x

)(
∂3η

∂x3

)
+4
(
∂η

∂x

)(
∂3ξ

∂x3

)
+6
(
∂2ξ

∂x2

)(
∂2η

∂x2

)]
+
∂N
∂ξ
·

(
∂4ξ

∂x4

)
+
∂N
∂η
·

(
∂4η

∂x4

)
.

(A.10)

One may observe that the right part of (A.10) includes all partial derivatives of the shape function N,
starting from the fourth derivative, ∂4 N/∂ξ 4, and finishing with the first one, ∂N/∂η.
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