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POLARIZATION APPROXIMATIONS FOR ELASTIC MODULI
OF ISOTROPIC MULTICOMPONENT MATERIALS

DUC CHINH PHAM, NGUYEN QUYET TRAN AND ANH BINH TRAN

Polarization approximations (PA) are proposed for the macroscopic elastic moduli of d-dimensional (d =
2 or 3) isotropic multicomponent materials. Specifically we use Hashin–Shtrikman-type polarization trial
fields, which were constructed earlier from the minimum energy principles to bound the effective moduli
of the composites, as the approximate solutions to the field equations. The approximations contain free
reference parameters, which can be found analytically, numerically, or experimentally, from the reference
effective moduli at dilute and/or finite volume proportions of the component materials. In the basic one-
point reference parameter version, the approximations should obey Hashin–Shtrikman (HS) bounds for
all the ranges of the volume proportions of the component materials. In the refined versions involving
variable reference parameters to improve the accuracy of the scheme, the approximations satisfy HS
bounds over the ranges of components’ volume proportions between the extreme reference points. We
provide numerous numerically and experimentally based examples to illustrate the applications of the
proposed approach.

1. Introduction

Many natural and industrial materials are multicomponent with complex and irregular microstructure.
Often only limited definite qualitative information about the composites, e.g., the properties and volume
proportions of the component materials, is available. Still, the measured macroscopic moduli of many
practical composites appear relatively definite (with small variation), and that encourages us to construct
simple estimations of the moduli for practical uses. A mathematically rigorous approach to the problem
is to construct the upper and lower bounds of the effective moduli using variational formulations [Hashin
and Shtrikman 1963; Walpole 1966; Willis 1977; Pham 1993; 2012; 2014; Milton 2002; Torquato
2002]. Narrowing the bounds requires multipoint correlation information about the microgeometries of
the composites that is difficult to collect and incorporate into the construction of the bounds. Alterna-
tively, effective medium approximation (EMA) schemes have been developed for practical estimates of
composites’ macroscopic moduli [Mori and Tanaka 1973; Christensen 1979; Norris 1989; Mura 1987;
Phan-Thien and Pham 2000; Torquato 2002; Nogales and Böhm 2008; Klusemann et al. 2012; Franciosi
et al. 2011; Mogilevskaya et al. 2012; Kushch et al. 2013; Sevostianov and Kachanov 2014] (among many
others). Many classical EMAs, such as the self-consistent, Mori–Tanaka, differential ones are based on
the dilute solutions for the inhomogeneities of some idealistic forms suspended in an infinite matrix (the
Eshelby problem [1957]) and are then developed into the forms that can predict the effective moduli of
the composites over a range of volume proportions of the inhomogeneities. All EMAs converge at the
dilute limit of the inclusions but diverge from each other at large volume proportions of the included
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phases. To get better approximations, additional information about a particular composite, such as the
effective moduli at some inclusions’ volume proportion points, if available, should be included into
an EMA. In this work we propose novel polarization approximations which can offer that flexibility.
The idea was first introduced in our work [Tran and Pham 2015] for practical uniaxial circular fiber
composites. We constructed certain polarization approximations for the effective elastic transverse (two-
dimensional) bulk and shear moduli, among other moduli, of the transverse-isotropic composites, with
numerical illustrations. In this work we generalize the idea as follows: polarization approximations
are derived for the elastic bulk and shear moduli of isotropic three-dimensional composites and given
in convenient forms valid for those in general d dimensions. General forms of the inhomogeneities
(not just the circular one), with both numerical and experimental references from various composites,
are considered. To improve the approximations, variable reference parameter for the approximation is
proposed to take into account more information about a composite.

In Section 2, the polarization trial fields that were constructed earlier from the minimum energy prin-
ciples to bound the effective elastic moduli will be used to derive the polarization approximations. Those
approximations depend on certain free reference parameters. Those free (generally variable) parameters
are determined analytically, numerically, or experimentally, using certain reference macroscopic moduli
in subsequent sections, which are then followed by the conclusion (Section 6).

2. Polarization approximations

Let us consider a representative volume element (RVE) V in d-dimensional Euclidean space (d = 2, 3) of
a macroscopically isotropic multicomponent. The material consists of n isotropic components occupying
regions Vα ⊂ V of volumes vα and having elastic moduli Kα and µα (α = 1, . . . , n and the volume of V
is assumed to be unity). The effective elastic moduli Ceff

= T (K eff, µeff) of the isotropic composite may
be defined via the minimum energy principle [Pham 1993; 2012; 2014]

ε0
: Ceff

: ε0
= inf
〈ε〉=ε0

∫
V
ε(x) : C(x) : ε(x) dx, (1)

for all macroscopic constant strain tensors ε0, where C(x) is the fourth-rank stiffness tensor, T is the
isotropic fourth-rank tensor with components

Ti jkl(K , µ)= K δi jδkl +µ

(
δikδ jl + δilδ jk −

2
d
δi jδkl

)
, (2)

the trial compatible strain field is expressed through the displacement field u(x) as

ε(x)= 1
2 [∇u(x)+ (∇u)T (x)], (3)

and 〈 · 〉 means the volume average on V .
The effective elastic moduli may also be defined via the minimum complementary energy principle

[Pham 1993; 2012; 2014]

σ 0
: (Ceff)−1

: σ 0
= inf
〈σ 〉=σ 0

∫
V
σ (x) : C−1(x) : σ (x) dx, (4)
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for all macroscopic constant stress tensors σ 0, where the trial stress field σ (x) should satisfy equilibrium
equations in V

∇ · σ (x)= 0. (5)

Note that the two-dimensional bulk modulus K here in the two-dimensional Cartesian coordinates
{x1, x2} is defined by σ11+ σ22 = 2K (ε11+ ε22). Hence, it is related to the usual three-dimensional bulk
modulus designated specifically here as K̃ : K = K̃+µ/3 in the plane strain case and K =9K̃µ/(3K+4µ)
in the plane stress case.

We consider the 3D case in the following equations, from (6) to (10). To find the upper correlation
bounds on K eff and µeff for isotropic three-dimensional composites, instead of directly optimizing the
energy expression of the complex problem (1), we [Pham 1993; 2014] have optimized a “principal part”
of it and came to a Hashin–Shtrikman-type polarization trial strain field

εi j = ε
0
i j +

3K0+µ0

µ0(3K0+ 4µ0)

n∑
α=1

pαklψ
α
,i jkl −

1
2µ0

n∑
α=1

(pαmiϕ
α
, jm + pαmjϕ

α
,im), (6)

where K0 and µ0 are some free positive parameters (called the elastic moduli of a reference material in
Hashin–Shtrikman approach); indices after a comma designate differentiation with respect to the corre-
sponding Cartesian coordinates; conventional summation on repeated indices (from 1 to 3) is assumed;
pαkl are the components of the second-order tensor pα, which is referred to as the polarization field in
the Hashin–Shtrikman (HS) approach

pα =
{

I − (Cα
+C∗)−1

:

[ n∑
β=1

vβ(Cβ
+C∗)−1

]−1}
: (C0

+C∗) : ε0,

C0
= T (K0, µ0), I = T

( 1
3 ,

1
2

)
, Cα

= T (Kα, µα),

C∗ = T (K∗, µ∗), K∗ = 4
3µ0, µ∗ = µ0

9K0+ 8µ0

6K0+ 12µ0
;

(7)

ϕα(x) and ψα(x) are harmonic and biharmonic potentials originated from the expression of the Green
function for the 3D elastic infinite medium (which satisfy equations ∇2ϕα(x)=∇4ψα(x)= δαβ for x ∈
Vβ , where δαβ is the usual Kronecker delta). Since the phases are assumed to be distributed isotropically
in the material space, one has [Walpole 1966; Christensen 1979; Pham 1993]

〈ϕ
β

,i j 〉α =
1
vα

∫
Vα
ϕ
β

,i j dx = 1
3δi jδαβ,

〈ψ
β

,i jkl〉α =
1
vα

∫
Vα
ψ
β

,i jkl dx = 1
15(δi jδkl + δilδ jk + δikδ jl)δαβ,

(8)

where 〈 · 〉α = (1/vα)
∫

Vα
· dx designates the volume average on Vα, while 〈 · 〉 =

∫
V · dx is the volume

average on the whole representative volume element V .
In Pham’s [1993; 2014] upper-bound approach, the upper correlation bounds on K eff and µeff obtained

from (1) with the trial field (6)–(7) contain the three-point correlation information about the microgeom-
etry of a composite, and K0 and µ0 should be chosen to minimize the upper bounds. K0 and µ0 should
lie within the extreme values of Kα and µα. The trial field of formal type (6) has also been obtained by
[Walpole 1966; Willis 1977; Christensen 1979], using other approaches.



394 DUC CHINH PHAM, NGUYEN QUYET TRAN AND ANH BINH TRAN

On the other side, to find the lower correlation bounds on the effective moduli, instead of directly
optimizing the complementary energy expression of (4), [Pham 1993; 2014] optimized a “principal part”
of it and obtained the polarization trial stress field

σ (x)= σ 0
−C0

: [ε′(x)+ q(x)], q̂α = C0
: qα,

ε′i j (x)=
3K0+µ0

µ0(3K0+ 4µ0)

n∑
α=1

q̂αklψ
α
,i jkl −

1
2µ0

n∑
α=1

(q̂αmiϕ
α
, jm + q̂αmjϕ

α
,im),

qα =
{

I − [(Cα)−1
+ (C∗)−1

]
−1
:

[ n∑
β=1

vβ[(Cβ)−1
+ (C∗)−1

]
−1
]−1}

: [(C0)−1
+ (C∗)−1

] : σ 0,

(9)

where q(x)= qα when x ∈ Vα; other notations are similar to those in (7) and (8). In the lower-bound
approach, K0 and µ0 should be chosen to maximize the lower bounds on K eff and µeff obtained from (4)
with the trial field (9). K0 and µ0 should lie within the extreme values of Kα and µα.

Extracting the correlation information on a particular composite’s microgeometry needed for the
three-point correlation bounds in [Pham 1993] is costly. To avoid this, we directly use the “optimal”
polarization trial fields (6) or (9) as the approximate solution fields on the RVE to construct the po-
larization approximations for the effective elastic moduli. Following the approach of [Tran and Pham
2015] in the two-dimensional case, one may use the polarization strain field (6)–(7), with (8), for our
three-dimensional composites to find

K eff
=
〈σi i 〉

3〈εi i 〉
=

∑n
α=1 vα〈σi i 〉α

3
∑n

α=1 vα〈εi i 〉α
=

∑n
α=1 vα3Kα〈εi i 〉α

3
∑n

α=1 vα〈εi i 〉α

=
1
ε0

i i

(
3

n∑
α=1

vαKα

Kα + K∗

( n∑
β=1

vβ

Kβ + K∗

)−1

ε0
i i

)
=

( n∑
α=1

vα

Kα + K∗

)−1

− K∗. (10)

Alternatively, instead of (6), one may use the polarization stress field (9) as the approximate field to
find the approximation identical to (10). This is quite interesting, as the upper and lower bounds found
in [Pham 1993] do not coincide. Indeed, the approximate fields (6) and (9) found from the upper- and
lower-bound approaches without submitting to the minimum energy principles still cannot provide the
precise information of whether they would help approximate the exact effective bulk modulus from
above or below. They themselves only give some rough approximations involving some free parameters.
Combining the two-dimensional case of [Tran and Pham 2015] and the three-dimensional case here, the
estimation can be given in the general form (in d-dimensional space with d = 2, 3)

K eff
= P (n)K (K∗)=

( n∑
α=1

vα

Kα + K∗

)−1

− K∗, K∗(µ0)=
2(d − 1)

d
µ0. (11)

The estimation (11) has a feature that the property function P (n)K (K∗) is a positive monotonously
increasing function with respect to the positive parameter K∗, and it falls within HS bounds

P (n)K (K∗min)≤ K eff
≤ P (n)K (K∗max),

K∗min = K∗(µmin), µmin =min{µ1, . . . , µn},

K∗max = K∗(µmax), µmax =max{µ1, . . . , µn},

(12)
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where K∗(µ0) is defined in (11), when

K∗min ≤ K∗ ≤ K∗max, (13)

and vice versa.
The remaining free parameter K∗ of the estimation (11) should be determined from a reference macro-

scopic bulk modulus of the composite at certain reference volume proportions vα of the component
materials. Should the reference macroscopic bulk modulus at some reference volume proportions of
the components satisfy HS bounds, the respective reference parameter K∗ would fall inside the interval
bounded by K∗min and K∗max. Then with that particular value K∗ the estimation (11) shall obey HS
bounds over all the volume proportions vα of the component materials. Equation (11) shall be formally
referred to as the polarization approximation (PA) for the effective elastic bulk modulus of the isotropic
n-component material in the d-dimensional space.

Similarly, to find the approximation for the effective elastic shear modulus µeff, we again use the
polarization strain field (6) to obtain

µeff
=
〈σ12〉

2〈ε12〉
=

∑n
α=1 vα2µα〈ε12〉α

2
∑n

α=1 vα〈ε12〉α

=
1
ε0

12

( n∑
α=1

2vαµα
µα +µ∗

( n∑
β=1

vβ

µβ +µ∗

)−1

ε0
12

)
=

( n∑
α=1

vα

µα +µ∗

)−1

−µ∗. (14)

Alternatively, the same estimation (14) can also be obtained starting from the polarization stress field (9).
Combining the two-dimensional case of [Tran and Pham 2015] and the three-dimensional case here,

generally, in d-dimensional space (d = 2, 3), the estimation for µeff can be given in the form

µeff
= P (n)µ (µ∗)=

( n∑
α=1

vα

µα +µ∗

)−1

−µ∗,

µ∗(K0, µ0)= µ0
d2K0+ 2(d + 1)(d − 2)µ0

2d K0+ 4dµ0
,

(15)

which falls inside HS bounds

P (n)µ (µ∗min)≤ µ
eff
≤ P (n)µ (µ∗max),

µ∗min = µ∗(Kmin, µmin), Kmin =min{K1, . . . , Kn},

µ∗max = µ∗(Kmax, µmax), Kmax =max{K1, . . . , Kn},

(16)

where µ∗(K0, µ0) is defined in (15) and µmin and µmax are defined in (12), when

µ∗min ≤ µ∗ ≤ µ∗max. (17)

Similarly as in the case of the bulk modulus, the remaining free parameter µ∗ of estimation (15)
should be determined from a reference macroscopic shear modulus of the composite at certain reference
volume proportions vα of the component materials. Should the reference macroscopic shear modulus
at some reference volume proportions of the components satisfy HS bounds, the respective reference
parameter µ∗ would fall inside the interval bounded by µ∗min and µ∗max. Then with that particular
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value µ∗ the estimation (15) shall obey HS bounds over all the volume proportions vα of the component
materials. Equation (15) shall be referred to as the PA for the effective elastic shear modulus of the
isotropic n-component material in d-dimensional space.

3. Reference at dilute suspension of the inclusions

Many EMAs are based on analytical Eshelby theoretical dilute solution results for an ellipsoidal inclusion
suspended in an infinite matrix. So firstly, we construct a polarization approximation using the dilute
solution reference. Let us consider the n-component matrix composite that is composed of the matrix
component with v1 = vM , K1 = KM , and µ1 = µM and the inclusion components with vα, Kα, and µα
(α = 2, . . . , n). We may take the reference model for the composite as that at dilute suspensions of the
same-geometry inclusions with the moduli Kα and µα and volume fractions tvα (α = 2, . . . , n and t� 1)
in the matrix of moduli KM and µM . Let the respective dilute solution results have the forms

K eff
= KM +

n∑
α=2

tvα(Kα − KM)DKα(Kα, µα, KM , µM), t � 1, (18)

µeff
= µM +

n∑
α=2

tvα(µα −µM)Dµα(Kα, µα, KM , µM), t � 1, (19)

where DKα and Dµα are inclusion functions depending on the α-inclusion component’s geometry; their
values can be found analytically, numerically, or even experimentally. At that dilute limit, our polarization
approximations (11) and (15) have the respective asymptotic expressions

K eff
= KM +

n∑
α=2

tvα(Kα − KM)
KM + K∗
Kα + K∗

, t � 1, (20)

µeff
= µM +

n∑
α=2

tvα(µα −µM)
µM +µ∗

µα +µ∗
, t � 1. (21)

Equalizing (18) with (20) and (19) with (21), respectively, one obtains the equations determining the
reference parameters K∗ and µ∗ separately:

n∑
α=2

vα(Kα − KM)

[
KM + K∗
Kα + K∗

− DKα(Kα, µα, KM , µM)

]
= 0, (22)

n∑
α=2

vα(µα −µM)

[
µM +µ∗

µα +µ∗
− Dµα(Kα, µα, KM , µM)

]
= 0. (23)

Equation (11), with K∗ determined from (22), and (15), with µ∗ determined from (23), are our polar-
ization approximations for the effective moduli of the matrix composite, using the dilute solution result
reference (denoted further as PA0).
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In the two-component case, with inclusion functions DK = DK (K I , µI , KM , µM) and Dµ = Dµ(K I ,

µI , KM , µM), (22) and (23) are solved explicitly:

K∗ =
DK (K I , µI , KM , µM)K I − KM

1− DK (K I , µI , KM , µM)
, (24)

µ∗ =
Dµ(K I , µI , KM , µM)µI −µM

1− Dµ(K I , µI , KM , µM)
. (25)

Analytical expressions of the inclusion-associated functions DK (K I , µI , KM , µM) and Dµ(K I , µI ,

KM , µM) for 3D ellipsoidal and 2D elliptic inclusions have been constructed by Eshelby. They can be
given in the form [Mura 1987; Torquato 2002]

DK =
1
d

D0
i i j j , Dµ =

d
d2+ d − 2

(
D0

i j i j −
1
d

D0
i i j j

)
, (26)

where

D0
= [I + P : C−1

M : (CI −CM)]
−1, CI = T (K I , µI ), CM = T (KM , µM) (27)

and P is the fourth-rank Eshelby tensor. Particular expressions of the components of the tensors in two-
and three-dimensional spaces are given in [Mura 1987].

The expressions of the inclusion-associated functions DK (K I , µI , KM , µM) and Dµ = Dµ(K I , µI ,

KM , µM) for spherical (or circular) inclusions in general d-dimensional space are simply

DK =
KM + K∗M
K I + K∗M

, K∗M = K∗(µM), (28)

Dµ =
µM +µ∗M

µI +µ∗M
, µ∗M = µ∗(KM , µM), (29)

where K∗(µ0) and µ∗(K0, µ0) are defined in (11) and (15), respectively. Then the solution of (20)
with (28) and that of (21) with (29) should be K∗ = K∗M and µ∗ = µ∗M , respectively (correspondingly,
K0 = KM and µ0 = µM ). Thus, we obtain the polarization approximation using the dilute solution
result reference (PA0) for the n-component matrix composites with spherical inclusions in general d-
dimensional space:

K eff
= P (n)K (K∗M), µeff

= P (n)µ (µ∗M), (30)

which coincide with the Maxwell and Mori–Tanaka approximations [Torquato 2002] in that specific case.
Later we shall apply, among others, PA0 from (20)–(27) to matrix composites with noncircular inclu-

sions. It appears that the results of PA0 for the two-component matrix composites with elliptic inclusions
also coincide with those of the Mori–Tanaka approximation (as in the case of Figure 3). However, they
generally differ for n-component matrix composites if n ≥ 3 (as in the three-component case of Figure 4),
except for the specific pure spherical-circular inclusion composites (30). That is expected, since the Mori–
Tanaka approximation for three-component composites may violate Hashin–Shtrikman bounds [Norris
1989], while our polarization approximations, including PA0, by their construction, always obey the
bounds.
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4. Reference at finite volume proportions of the component materials

The reference parameters K∗ and µ∗ can be found from the dilute suspension results for the inclusions
as was done in the previous section. Otherwise, the reference parameters can be determined, once the
respective reference macroscopic moduli of a composite are available numerically or experimentally at
any finite volume proportions of the component materials, for the approximations (11) and (15) to fit
those reference macroscopic moduli. The resulting polarization approximations are called PA1.

For numerical illustrations, we consider some simple two-dimensional hexagonal-symmetry periodic
microstructures, which have macroscopically isotropic elastic moduli, in Figures 1–4. Highly accurate
numerical boundary element results used in Figure 1 have been taken from [Eischen and Torquato 1993],
where K1 = KM = 1, µ1 = µM = 0.3, K2 = K I = 67.5, and µ2 = µI = 40.5. Standard periodic
boundary conditions with finite element realizations have been used in Figures 2–4. Three periodic cells
are indicated at the top of Figures 1–4.

For two-component composites of Figures 2–3, we take K1= KM = 1, µ1=µM = 0.4, K2= K I = 20,
and µ2 = µI = 12 (KM is normalized to be unity). Figures 1 and 2 involve circular-inclusion composites,
while the elliptic inclusions of Figures 3 and 4 have the aspect ratio a1 : a2 = 2.

In Figures 1–3 we compare graphics of effective elastic moduli of the respective two-component
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Figure 1. Effective elastic moduli of a 2D periodic circular-inclusion composite at a
range of inclusion volumes vI , with KM = 1, µM = 0.3, K I = 135, and µI = 81:
numerical results (NUM) are compared with HS upper (HSU) and lower (HSL) bounds
and polarization approximations PA0 using dilute solution reference, PA1(0.7) using the
reference at vI = 0.7, PA02(0.6, 0.8) using dilute solution reference and two references at
vI 1 = 0.6 and vI 2 = 0.8, and PA01(0.8) using dilute solution reference and the reference
at vI = 0.8. Top: microstructure. Left: bulk modulus. Right: shear modulus.
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Figure 2. The moduli of another 2D periodic circular-inclusion composite (the data
and notation as in Figure 1): FE are compared with HSU and HSL, PA0, PA1(0.5),
PA02(0.5, 0.6), and PA01(0.6). Top: microstructure. Left: bulk modulus. Right: shear
modulus.

composites calculated numerically (NUM or FE) with the Hashin–Shtrikman upper (HSU) and lower
(HSL) bounds and our polarization approximations PA0, using the dilute suspension reference results,
and PA1, using the reference at some finite volume proportions of the inclusion component, over large
ranges of the inclusion phase v1 = vI . PA1(0.7), for example, indicates PA1 using the reference at
vI = v

ref
I = 0.7.

In Figures 1 and 2 with circular inclusions, PA0 coincides with HSL, Maxwell, and Mori–Tanaka ap-
proximations, as noted in the previous section. However, PA0 using the dilute elliptic-inclusion reference
results from (22)–(23) and (26)–(27) in Figure 3 (as well as PA0 of Figure 4) differs from HS bounds.

One may observe that all PA0 and PA1 fall within HS bounds as expected. PA1, using the reference at
finite volume proportion of the included phases, approximates the numerical results better than PA0, using
the dilute suspension reference results, over certain finite volume ranges of the included phases (especially
near the reference points). The results also reveal that, for the two-component matrix composites, PA0
seems to give lower estimates of the effective moduli, while PA1 provides lower estimates at vI > v

ref
I

and upper estimates at vI < v
ref
I if the inclusion phase is stiffer than the matrix phase and vice versa if the

matrix phase is stiffer (we do not show the respective graphs in the case that the matrix phase is stiffer,
because the differences between the curves NUM, FE, HSU, PA0, and PA1 are much less significant
there, and we do not want to overload the paper with additional figures).

Our approximations apply to general multicomponent materials. In Figure 4 a three-component
composite is considered. Again K1 = KM = 1 and µ1 = µM = 0.4, and we take K2 = 10 and µ2 = 6
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(dark elliptic inclusions) and K3 = 0.2 and µ3 = 0.1 (gray circular inclusions). FE, HSU, HSL, PA0,
and PA1 results are compared in Figure 4 over a range of volume proportions of the included phases
vI = v2+ v3 (presume v2 = v3).

Experimentally measured values of the macroscopic elastic moduli of a composite at certain vol-
ume fractions of the component materials can also serve as the reference moduli for our polarization
approximation for the composite over all the ranges of volume fractions of the component materials.
Experimental data on the compressibility (elastic bulk modulus) of the porous glass over a range of
porosity vI reported in [Walsh et al. 1965] is displayed in Figure 5. The elastic moduli of the glass
are KM = 46.3 GPa and µM = 30.5 GPa. PA1 for the macroscopic bulk modulus corresponding to
an experimental reference point and the HS upper bound are given in the figure for comparisons (HS
lower bound is identically zero in this case). The notation PA1(6) denotes PA1 corresponding to the
experimental reference point 6 in the graph.

Experimental data on the macroscopic elastic Young’s modulus Eeff and Poisson’s ratio νeff of a
particulate-filled glassy polymer [Smith 1976] is displayed in Figure 6, top row. The elastic constants of
the polymer matrix are EM = 3.01 GPa and νM = 0.394, while those for the glass are E I = 76 GPa and
νI = 0.23. The relations between the 3D elastic constants E , ν, K , and µ are

K =
E

3(1− 2ν)
, µ=

E
2(1+ ν)

, E =
9Kµ

3K +µ
, ν =

3K − 2µ
6K + 2µ

. (31)

Figure 6 shows PAs for the macroscopic elastic constants corresponding to various experimental reference
points and HS bounds.
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HS bounds, PA0, PA1(0.6), PA02(0.6, 0.7), and PA01(0.7). Top: microstructure. Left:
bulk modulus. Right: shear modulus.
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Figure 6. Macroscopic elastic constants of a particulate-filled glassy polymer over a
range of inclusion volumes vI ; the elastic constants of the polymer matrix are EM =

3.01 GPa and νM = 0.394, while those for the glass are E I = 76 GPa and νI = 0.23.
Experimental data (EXP) are compared with HS bounds, PA1, PA02, and PA01 using
the references at the indicated reference experimental points. Top left: Young’s modulus.
Top right: Poisson’s ratio. Bottom left: bulk modulus. Bottom right: shear modulus.

With a one-point reference parameter reflecting the feature of the microgeometry of a particular com-
posite, as with many other EMAs, the polarization approximations PA0 and PA1 have inevitable limita-
tions. For high-contrast-component-property composites, at finite volume proportions of the inclusions,
the approximations yield good results only near the reference point and the results become poorer with
increasing distance from the reference point. Even so, they should obey HS bounds over all the ranges
of component proportions, once the reference model satisfies HS bounds at the reference point.

5. Multipoint polarization approximations

By assuming K∗ and µ∗ are functions of volume proportions of the component materials, we are able to
use more reference points to obtain better approximations of the effective moduli. The variable reference
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parameters K∗ and µ∗ should lie within the intervals (13) and (17), respectively, for the approximations
to obey HS bounds.

Further, in the remaining part of this paper, we shall restrict ourselves to two-component materials
and assume the variable reference parameters K∗ and µ∗ of the polarization approximations (11) and
(15), respectively, to be of the form

K∗ = K ∗(c+ avb
2), b > 0, (32)

µ∗ = µ∗(c′+ a′vb′
2 ), b′ > 0, (33)

where K ∗ and µ∗ are some fixed values of elastic moduli dimension; three dimensionless parameters
a, b, c or a′, b′, c′ should be found from appropriate available references. Presume we have three
numerical or experimental reference values of the effective elasticity K eff

= K eff
ref 1, K eff

ref 2, K eff
ref 3 and

µeff
= µeff

ref 1, µ
eff
ref 2, µ

eff
ref 3 at the volume proportions v2 = v21, v22, v23, respectively. Solving (11) in

the two-component case, one finds

K ref
∗
=

K eff
ref(v1K2+ v2K1)− K1K2

v1K1+ v2K2− K eff
ref

(34)

and the respective values of the reference parameter K ref
∗1 , K ref

∗2 , K ref
∗3 corresponding to K eff

ref 1, K eff
ref 2, K eff

ref 3.
Now with (32) one derives three dimensionless equations for three dimensionless parameters a, b, c:

(c+ avb
21)= k1, (c+ avb

22)= k2, (c+ avb
23)= k3, (35)

where
k1 = K ref

∗1 /K ∗, k2 = K ref
∗2 /K ∗, k3 = K ref

∗3 /K ∗. (36)

Equation (35) leads to the unique equation determining b

vb
21− v

b
22

vb
21− v

b
23
=

k1− k2

k1− k3
, (37)

and explicit expressions for a and c

a =
k1− k2

vb
21− v

b
22
, c = k1− avb

21. (38)

The polarization approximations (11) and (32) for K eff with the parameters a, b, c determined from
(37)–(38) shall be referred to as three-point polarization approximation PA3. Since K∗ in (32) is a
monotonous function of v2, if the reference macroscopic moduli K eff

ref 1, K eff
ref 2, K eff

ref 3 satisfy HS bounds,
the approximations (11) and (38) also obey HS bounds, at least, over the range min{v21, v22, v23} ≤ v2 ≤

max{v21, v22, v23}. Independently, a similar three-point polarization approximation for µeff from (15)
and (33) is obtained. The respective equations (34)–(38) keep the same forms, except that one has to
substitute notations µ, a′, b′, c′ for K , a, b, c.

In the case of two-component matrix composites, with the notation v1 = vM , K1 = KM , µ1 =µM , and
v2 = vI , K2 = K I , µ2 = µI , if dilute solution results (18)–(19) are available, one can use them to find c
and c′ independently as was done in Section 3 and suggest simpler two-point polarization approximations
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(11) for K eff and (15) for µeff with variable reference parameters involving just two free parameters a
and b (and a′ and b′):

K∗ = K ∗(1+ avb
2), K ∗ =

DK K I − KM

1− DK
, (39)

µ∗ = µ∗(1+ a′vb′
2 ), µ∗ =

DµµI −µM

1− Dµ

, (40)

where DK and Dµ are the functions from the dilute solution results (27)–(28) which have the expres-
sions (26)–(27) for ellipsoidal (elliptic) inclusion cases. Now one needs just two reference equations
determining a and b:

1+ avb
21 = k1, 1+ avb

22 = k2. (41)

Equation (41) can be solved explicitly to give

b = logv21/v22

k1− 1
k2− 1

= ln
k1− 1
k2− 1

/
ln
v21

v22
, a =

k1− 1
vb

21
. (42)

Polarization approximations (11), (39), (41), and (42) using the dilute solution reference and two refer-
ences at v2 = v21, v22 is referred to as PA02. Independently, a similar polarization approximation PA02
for µeff from (15) and (40) is obtained. The respective equations (41)–(42) keep the same forms, with
the only change being the substitution of the notations µ, a′, b′, c′ for K , a, b, c. One observes that the
approximations obey HS bounds, at least, over the range 0≤ v2 ≤max{v21, v22}.

Graphs of PA02 from (11), (15), (39)–(42), and (26) for the suspension of elliptic inclusions of the
configuration of Figure 3, top, using the dilute solution result and two numerical references at vI 1 = 0.6
and vI 2 = 0.7, are presented with a = 27.6 and b = 9.75 (Figure 3, left) and a′ = 8.17 and b′ = 6.11
(Figure 3, right). One can observe that PA02 fits well with the numerical data.

In the case of composites with sphere-like (circular-like) inclusions, DK and Dµ have simple expres-
sions (28)–(29), and K ∗ = K∗(µM) and µ∗ = µ∗(KM , µM) in (39) and (40). Applications of PA02 are
presented with numerical references at vI 1 = 0.6 and vI 2 = 0.8 and a = 3.17 and b = 9.43 (Figure 1,
left) and a′ = 3.18 and b′ = 3.60 (Figure 1, right). Similarly PA02 is given with numerical references at
vI 1 = 0.5 and vI 2 = 0.6 and a = 32.5 and b = 5.72 (Figure 2, left) and a′ = 19 and b′ = 4.08 (Figure 2,
right). PA02 with experimental references at the experimental points 8 and 10 are shown with a = 10.5
and b = 2.34 (Figure 6, top left) and a′ = 12.5 and b′ = 2.9 (Figure 6, bottom right). In all the cases,
PA02 fits the numerical or experimental data much better than PA0 or PA1, as expected.

If only one numerical or experimental value of the effective moduli of the matrix composite at a finite
volume proportion point v2 = vI = vI 1 is available for reference (in addition to the dilute solution one),
one has to fix an additional parameter, for instance b or b′, and obtains just one equation (the first one of
(41)) which determines the remaining parameter a or a′, according to the second equation of (42). The
resulted approximation is called PA01. It should obey HS bounds, at least, over the range 0≤ vI ≤ vI 1.

PA01 with b = b′ = 4 is projected using numerical reference at vI 1 = 0.6 and a = 13.5 (Figure 2,
left) or a′ = 18.2 (Figure 2, right) and at vI 1 = 0.7 and a = 3.55 (Figure 3, left) or a′ = 3.85 (Figure 3,
right). PA01 with b = b′ = 2 is applied using numerical reference at vI 1 = 0.8 and a = 0.606 (Figure 1,
left) and a′ = 0.227 (Figure 1, right) and with experimental reference at the experimental point 10 and
a = 8.31 (Figure 6, top left) or a′ = 6.68 (Figure 6, bottom right). Though b and b′ for PA01 in those
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figures are chosen to be not quite close to the respective b and b′ for PA02, the approximations appear
relatively good.

6. Conclusion

Unlike other EMAs (such as the self-consistent, differential, Maxwell, and Mori–Tanaka ones), which are
constructed from the field equations, our PAs are based on the approximate field solutions which come
from minimum energy principles. The “optimal” polarization trial fields constructed earlier to bound the
effective elastic moduli of isotropic multicomponent materials have been implemented to derive the PAs
for the moduli in three and generally d dimensions. The approximations are separate functions for the
effective bulk and shear moduli and contain, in addition to the moduli and volume proportions of the
components, certain free parameters, which should be determined from some reference effective moduli
at certain volume proportions of the component materials analytically, numerically, or experimentally.
Specifically, PA0 using the dilute solution reference (similar to other EMAs) as well as PA1 using the
reference at a component’s finite volume proportion point should obey HS bounds over all the ranges
of volume proportions of the component materials. Refined approximations with variable reference
parameters incorporating more available information about a particular composite should improve the
accuracy of the estimations. Specifically, PA02 using dilute solution reference and two references at
components’ finite volume proportion points and PA01 using dilute solution reference and one reference
at a component’s finite volume proportion point can yield good approximations. The approximations
satisfy HS bounds, at least, over the volume proportion range between the extreme reference points.
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