
Journal of

Mechanics of
Materials and Structures

A NONLINEAR MICROMECHANICAL MODEL FOR PROGRESSIVE DAMAGE
OF VERTEBRAL TRABECULAR BONES

Eyass Massarwa, Jacob Aboudi, Fabio Galbusera, Hans-Joachim Wilke and Rami Haj-Ali

Volume 12, No. 4 July 2017

msp





JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 12, No. 4, 2017

dx.doi.org/10.2140/jomms.2017.12.407 msp

A NONLINEAR MICROMECHANICAL MODEL FOR PROGRESSIVE DAMAGE
OF VERTEBRAL TRABECULAR BONES

EYASS MASSARWA, JACOB ABOUDI, FABIO GALBUSERA,
HANS-JOACHIM WILKE AND RAMI HAJ-ALI

A new three-dimensional (3D) nonlinear micromechanical analysis is proposed to predict the overall
mechanical response to damage evolution of the vertebral trabecular bone (VTB) highly porous mi-
crostructure. Towards that goal, a nonlinear micromechanical model, based on the 3D parametric high
fidelity generalized method of cells (HFGMC) micromechanics, is extended to include progressive dam-
age. The damage is initiated at the local subcell and its evolution is carried out using a strain-softening
method. The nonlinear HFGMC behavior including damage evolution is first verified by examining
its ability to predict the experimental nonlinear compression stress-strain response of printed polymeric
VTB highly porous microstructure. Next, predicted HFGMC pre- and postultimate failure for native
VTB representative unit cells (RUCs) harvested from different vertebrae of human cadavers (n = 10)
are carried out. Some of the latter predictions were compared to reported values found in the literature.
The proposed nonlinear HFGMC micromechanical model with evolving damage can predict the overall
nonlinear behavior, including postultimate range.

1. Introduction

Osteoporosis is a bone disease state characterized by low bone strength and an increased fracture risk
of the bone walls. Although osteoporosis affects the entire skeleton, osteoporotic fractures commonly
occur in the spine vertebrae [Nevitt et al. 1999]. The vertebral bodies, primary structures located in the
spine, bear the compressive loads. Vertebrae are composed of an internal highly porous trabecular bone
core surrounded by a thin shell of dense material called cortical bone [Cowin 2001]. Studies have shown
that the trabecular bone carries a substantial proportion of the compressive loads applied to the vertebral
body [Rockoff et al. 1969]. The loss of trabecular bone density and strength throughout the osteoporotic
process leads to failure of the entire vertebra. Maquer et al. [2015] showed that osteoporotic vertebral
compression fractures strongly depend on bone volume fraction and trabecular bone microarchitecture.

Experimental studies with irreversible loading (overloading and damage) of the trabecular bone have
been conducted. A reduction of the elastic moduli, strength and accumulation of residual deformations
in the trabecular bone were the main consequences [Keaveny et al. 1994; 1999; Zysset 1994]. Another
extensive experimental outcome demonstrated that for postyield behavior, the yield strains over a limited
range of densities for human vertebral trabecular bones (VTBs) are independent of the apparent density
and have reasonably constant values [Kopperdahl and Keaveny 1998]. Another important study by Fyhrie
et al. [1994] microscopically examined the mechanisms of failure in human VTBs compressed by a large
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deformation. Microscopic cracking as the result of shear stresses in the trabeculae, complete fractures
of trabeculae occurring in those oriented transversely to the loading direction and residual compressive
strain formation were the main observations of this study. Based on other experimental studies [Fyhrie
and Schaffler 1994; Gibson and Ashby 1999; Hayes and Carter 1976], the load-displacement curves for
VTB specimens can include a sequence of several responses:

(1) an initial linear undamaged region;

(2) a material nonlinear response including strain-softening caused by damage accumulation;

(3) ultimate load peak region;

(4) postpeak unloading with increased strain and displacement; and

(5) a region where with increased displacements, the load is increased with very small values.

Finite element models have been extensively used to study trabecular bone mechanical behavior due to
the anatomical complexity of the trabecular bone and limited availability of cadaveric specimens. A pre-
vious study [Niebur et al. 2000] presented a nonlinear high-resolution finite element analysis framework
to calibrate the effective elastic moduli, as well as tensile and compressive yield strains of the bovine tibia
trabecular bone. In another study, based on a voxel-based finite element analysis combined with physical
measurements of volume fraction, µCT reconstructions, uniaxial mechanical and nanoindentation tests
of trabecular bone extracted from cadaveric proximal femurs was demonstrated [Chevalier et al. 2007].
More recently, Hamed and Jasiuk [2013] introduced a multiscale computational finite element model
with dominant damage mechanisms to predict stiffness and bone strength at different structural scales
by using cohesive interface elements. Harrison et al. [2013] also developed a 3D high-resolution model
with fracture criteria and a large-deformation computational model predicting the full range of response
including the pre- and postultimate stress state, referred to as “ultimate strength” by the authors. The
damage and fracture processes were simulated at the local element by reducing the elastic modulus and
removing the element, respectively. This analysis model has successfully predicted ultimate strength
following the softening of the trabecular bone. In order to analyze human trabecular bone samples under
compressive loading, an isotropic µCT finite element model coupled to a damage law was developed
[Hambli 2013]. The element deletion technique was also adapted.

Goda et al. [2012] presented a micromechanical method to investigate the microstructural effects of
the macroscopic mechanical properties of trabecular bones. A Cosserat anisotropic continuum model
was modeled from the discrete homogenization of a quasiperiodical lattice model for the microstructural
trabecular bone where the effective mechanical properties of the trabecular bone were directly related
to the lattice microstructure and its elastic properties. In addition, the bone walls of the lattice were
modeled as linear elastic Timoshenko thick beams. Recently, Goda and Ganghoffer [2015] introduced
a three-dimensional model studying the multiaxial yield and failure response of trabecular bones and
established criteria for brittle and ductile collapse based on micromechanical methods. In this study, the
homogenization technique was used to create the plastic yield surfaces of two and three-dimensional
bending-dominated periodic lattices which demonstrate the topology of trabecular bones. More recently,
Goda et al. [2016] developed a numerical model to predict the effective properties of porous polymeric
biomaterials. Finite element models based on an accurate three-dimensional solid model from µCT data
were generated to quantify the effects of the porosity. In this study, the second gradient of deformation,
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which is expressed as in couples stress continuum theories, was used to address the size dependency in
porous structures.

The high fidelity generalized method of cells (HFGMC) is a micromechanical method used to analyze
2 and 3D multiphase composites. Global and local quadratic displacement fields (microvariables) within
a discretized representative volume element (RVE) divided into subcells are applied. The mechanical
formulation of the HFGMC is performed using traction and displacement continuity equations between
the interfaces of the subcells as well as the average volume equilibrium applied in the subcells [Haj-Ali
and Aboudi 2013, 2016]. The HFGMC method has been widely used for both linear and nonlinear
applications in order to analyze the behavior of multiphase composites such as viscoelastic, viscoplastic,
bond damage of fiber, smart composite materials and piezoresistive fiber-reinforced composites [Aboudi
et al. 2013; Haj-Ali et al. 2014]. The HFGMC method with damage evolution effects has also been
proposed [Haj-Ali and Aboudi 2009] using cohesive traction-separation between the subcells and cell
extinction damage (CED) approaches.

In the present study, to predict the overall nonlinear mechanical response with evolving damage of
VTB highly porous microstructures, a proposed nonlinear 3D parametric HFGMC with progressive
damage is presented. Verification of the model is performed by comparing the nonlinear stress-strain
predicted curve to one obtained from our own compression tests performed on a printed polymeric VTB-
RUC microstructure as well as curves reported in the literature for native VTBs.

2. Methods

A nonlinear micromodeling framework based on the 3D parametric HFGMC micromechanical method
was formulated to predict the nonlinear response including damage evolution of a VTB highly porous
microstructure deformed under a uniaxial compression stress state [Haj-Ali and Aboudi 2013, 2016].
A nonlinear elastic power-law model and postfailure approach were used. Three-dimensional µCT
HFGMC models were geometrically generated from scanned specimens. In addition, compression tests

Figure 1. Schematic illustration of a triply periodic multiphase composite material in
the global coordinate system with its HFGMC representative unit cell (RUC) comprising
general hexahedral subcells defined with respect to its local coordinate system, (a). A
general hexahedral subcell in its physical and parent coordinate systems, (b).



410 EYASS MASSARWA, JACOB ABOUDI, FABIO GALBUSERA, HANS-JOACHIM WILKE AND RAMI HAJ-ALI

on 3D printed polymeric VTB-RUC microstructures were conducted to generate its stress-strain response
and verify the ability of the nonlinear HFGMC model to predict nonlinear VTB behavior.

2.1. Nonlinear HFGMC model. We present herein the mechanical formulation of the nonlinear para-
metric HFGMC based on Haj-Ali and Aboudi’s studies [2013; 2016]. The parametric HFGMC mi-
cromechanical method is based on the homogenization technique, in which a representative unit cell
(RUC) of a triply periodic multiphase composite can be identified. A multiphase composite of a triply
periodic microstructure defined with respect to the global coordinate system (X1, X2, X3) is schematically
described together with its parallelepiped RUC and defined with respect to the local material coordinate
system (y1, y2, y3) (Figure 1a). The RUC domain is discretized into a general assembly of hexahedral
subcells representing different phase geometries. A general hexahedral subcell is mapped to a uniform
parametric coordinate system (r, s, t) using a classical linear transformation (Figure 1b). The compact
quadratic form of the increment of the displacement vector 1u in each subcell is defined by

1u =1u0
+1W0+

1
2(1W4−1W6)r + 1

2(1W5−1W3)s+ 1
2(1W2−1W1)t

+
1
4(1W4+1W6− 2 ·1W0)(3r2

+ rs+ r t − 1)

+
1
4(1W3+1W5− 2 ·1W0)(3s2

+ rs+ st − 1)

+
1
4(1W1+1W2− 2 ·1W0)(3t2

+ r t + st − 1),

(1)

where the applied remote global increment of the displacement field is 1u0
≡1ε0

· X . Here, ε0 is the
applied remote second order strain tensor.

The components of vectors 1Wk , k = 1 . . . 6 and one additional internal displacement variable 1W0

are the increments of the fluctuating displacement microvariables. The strain vector

εT
≡ {ε11, ε22, ε33, 2ε23, 2ε13, 2ε12}

in a given subcell (β) is defined in an incremental form by

1ε
(β)

i j (y(r, s))=1ε0
i j +

1
2

(
∂(1ui )

∂y j
+
∂(1u j )

∂yi

)
, (2)

1ε(β) =1ε0
+ A(β)1W (β), (3)

where A(β) is the matrix relating to the incremental strain displacement microvariables. The nonzero
components of this matrix are found in Haj-Ali and Aboudi’s studies [2013; 2016]. The increment of
the displacement microvariables vector 1W (β) of the subcell (β) includes 21 components.

For a general nonlinear material filling a subcell (β), the incremental form of its constitutive relation-
ship is given by

1σ (β) = C t,(β)
:1ε(β), (4)

where C t,(β) is the proper instantaneous fourth-order tangential stiffness tensor that is computed based on
the considered nonlinear material response within the subcell. The incremental stress and strain vectors
of a subcell (β) are 1σ (β) and 1ε(β), respectively.
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The incremental surface-average traction vector on face number k of the hexahedral subcell (β) is then
obtained by the following equation:

1T (βk)
=

1
4 N (βk)1C t,(β)

[1ε0
+ Ā(βk)1W (β)

], (5)

where the N (βk) matrix is defined by

N (βk ) =

n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0


(βk )

. (6)

The (n1, n2, n3) are the components of the normal vector to the k-th face of subcell (β). Matrix Ā(βk) is
computed as

A(βk)
=

∫ 1

−1

∫ 1

−1
A(β) dr ds. (7)

Next, we impose traction and displacement interfacial continuity conditions within the inner subcells:

1T (βk)
=1T (γm)

,

1Wk
(β)
=1Wm

(γ ).
(8)

This is done using the incremental surface-average microvariables. In addition, equilibrium equations of
each subcell are applied in an incremental volumetric average form:∫

V
∇ · (1σ ) dV =

6∑
k=1

Ak1T (βk)
= 0. (9)

Here, (βk) denotes the k-th face of subcell (β), (γm) is the neighboring m-th face of subcell (γ ), vβ is
the volume of subcell (β) and Ak is the area of the k-th face.

The total number of unknown incremental displacement microvariables in the RUC is 21× Nc, where
Nc is the total number of subcells (each one having 21 displacement microvariables). The number of
continuity equations for incremental displacements is 3× 3Nc (for each subcell there are only three
independent interfaces). The number of incremental traction continuity equations is also 3× 3Nc. The
incremental volume average equilibrium equations in (9) present an additional 3Nc equations.

The assembly of the derived 21Nc HFGMC governing equations of the RUC can be symbolically
expressed by

[1R] ≡

 1T (+)
−1T (−)

1W (+)
−1W (−)∫

V ∇ · (1σ ) dV

= 0, {D} ≡


DT

0
0

 , (10)

where [1R] is the incremental residual matrix expressing the incremental form of the displacement
continuity, traction continuity and subcells’ equilibrium, respectively.

The 21 unknown incremental displacement microvariables for each subcell (β) are obtained by solving
the system of linear equation resulting from the linearized incremental form of (10). In general, the
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governing incremental equations can symbolically be written as

{1W} = −[∂(1R)/∂(1W)]−1
· {D} · {1ε̄0

}. (11)

Then, the above system is solved for a given incremental remote applied strain vector 1ε̄0 in order
to obtain the incremental displacement microvariables of the subcells. Moreover, the incremental local
strain vectors can be readily obtained using (3), leading in turn to the spatial distribution of the incremen-
tal stresses in the RUC. Further discussion of the solution approach for the above equation system and
how to obtain the overall tangential stiffness matrix of a multiphase composite can be found in Haj-Ali
and Aboudi’s research [2013; 2016].

2.2. Material nonlinearity. A nonlinear elastic power-law model of the Ramberg–Osgood (R-O) strain-
stress relationship is used to reflect the softening of the bone wall tissue material [Hambli 2013; Keaveny
et al. 2003]. To this end, a nonlinear response of an isotropic and reversible material is modeled [Haj-Ali
and Aboudi 2009; Haj-Ali and Kilic 2003; Khan and Huang 1995] using the general multiaxial form of
the R-O representation as follows:

εi j = ε
e
i j + ε

p
i j =

(1+v
E
+

3α
2E

(
σe
σ0

)n−1)
· si j +

σkk

9K
δi j , (12)

where the Young’s modulus is E , Poisson’s ratio is v, K = E/[3(1− 2v)] and α, σ0, n are the material
constants and εi j is the total strain tensor, εe

i j is the elastic strain components, ε p
i j is the plastic strain

components and σi j , si j are the stress and stress deviatoric tensors, respectively. Kronecker’s delta tensor
is δi j and σe is the equivalent stress as follows:

σe =

√
3
2 · si j · si j . (13)

To this end, the incremental strain-stress relationship in vector notation is

1ε = (Se
+φ · P +αt ·φ · ŝ · ŝT )1σ = St1σ , (14)

where the linear elastic compliance matrix for an isotropic material is Se(6× 6), ŝ(6× 1) is the stress
deviatoric vector and St(6× 6) is the tangent compliance matrix. We also have:

φ =
3α
2E

(
σe

σ0

)n−1

,

αt =
3
2(n− 1) ·

1
σ 2

e
,

P = 1
3



2
−1 2 Symm.
−1 −1 2

0 0 0 6
0 0 0 0 6
0 0 0 0 0 6


.

(15)

To this end, the tangent stiffness matrix is derived by inverting the tangent compliance matrix. Once
the stress vector is given, the corresponding stain vector and the tangent stiffness matrix can be computed
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using (12). But when the strain vector is provided, it should initially determine the equivalent stress (σe)
by iteratively solving the following scalar nonlinear polynomial equation using the Newton–Raphson
method to obtain the corresponding stress vector and tangent stiffness matrix:

φ · σe+
1

2G
· σe− εe = 0. (16)

The shear modulus G = E/[2(1+ v)], where εe is defined as the equivalent strain and is related to the
deviatoric strain tensor (ei j ) as follows:

εe =

√
3
2 · ei j · ei j . (17)

2.3. Damage response. An isotropic damage model for postfailure stiffness degradation is used. When
failure is detected, the relevant subcell is extinct. This progressive damage model is coupled with the
HFGMC micromechanical model at the subcell level. To this end, the following isotropic damage model
is adopted and imposed:

σ (β) = (1− D(β))C t,(β)
: ε(β), (18)

where the current associated subcell damage variable is 0 ≤ D(β)
≤ 1 and C t,(β), σ (β), ε(β) are the in-

stantaneous tangent stiffness matrix, stress vector and strain vector of subcell (β), respectively. Damage
variable in a subcell is governed by the equivalent strain εe; see (17). A linear relationship between the
subcell damage variable D(β) and the equivalent strain ε(β)e is assumed as follows:

D(β)
= 0 if 0< ε(β)e < ε

(β),initial
e ,

D(β)
=

1
1−η

(
1−

ε
(β)
e

ε
(β),initial
e

)
if ε(β)e > ε

(β),initial
e ,

D(β)
= 1 if ε f = ηε

(β),initial
e ,

(19)

where the parameter η is used to relate the equivalent strain damage ε(β),initial
e to the final strain ε f when

the subcell is extinct (removed, no stiffness). Its limit values (η = 1,∞) correspond to highly brittle
and highly ductile states, respectively. Once the damage variable is initiated, a strain softening scheme
is imposed whereby the stiffness of the subcell is degraded. Herein, damage initiates at the subcell once
the failure is detected according to

σ (β)e ≥ X, (20)

where σ (β)e is the equivalent stress at subcell (β) and X is a calibrated value denoting the effective strength
value of the bone wall constituent.

2.4. Nonlinear implementation. To this end, an incremental solution algorithm using the 3D nonlinear
parametric HFGMC, a nonlinear material model and a damage approach is developed. The numerical
algorithm proceeds incrementally for a given number of increments ninc as shown on the next page. Once
given the history of total stress and strain vectors in the subcells (Step 2.1), the prior local tangent stiffness
matrices of the subcells C t,(β)

i−1 (Step 2.2) and the overall prior tangential stiffness matrix C t
i−1 (Step 2.3),

can be computed. Next, the current remote incremental average strain vector {1ε̄0
}i = {1ε̄a,1ε̄b}i
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Incremental solution algorithm

1 Initialize parameters: ninc, σ (β)0 = {0}, ε
(β)

0 = {0}, 1εa , X

2 WHILE i ≤ ninc DO
2.1 Recall prior total local stress σ (β)i−1, strain ε(β)i−1, and damage variable D(β)

i−1.
2.2 Compute prior tangent stiffness matrices C t,(β)

i−1 .
2.3 Compute prior global tangent stiffness matrix C t

i−1.
2.4 Using (21), get applied remote incremental average strain vector: {1ε̄0

}i

2.5 Solve Eq. (11), {1W}i = −[∂(1R)/∂(1W)]−1
i · {D}i · {1ε̄

0
}i , for the current incremental

displacement microvariables.
2.6 FOR β = 1, 2, 3, . . . , Nc DO

2.6.1 Get current total local strain vector {ε}(β)i = {ε̄
0
}i + A(β)i {1W}(β)i +{ε}

(β)

i−1.
2.6.2 Compute current tangent stiffness matrix C t,(β)

i .
2.6.3 Using (18), perform constitutive calculations for total local stress vector {σ }(β)i :

IF D(β)

i−1 ≤ 1 THEN
{σ }

(β)

i = (1− D(β)

i−1)C
t,(β)
i : {ε}

(β)

i

ELSE
{σ

(β)

i } = {0}, ε
(β)

i = {0}, subcell (β) extinct
2.6.4 Using (13), compute current total equivalent stress σ (β),ie .

IF σ (β),ie ≥ X and D(β)

i−1 = 0 THEN
Using (17), compute total equivalent strain for damage initiation: ε(β),initial

e

2.6.5 Using (17), compute current total equivalent strain: ε(β),ie

2.6.6 Using (19), update current damage variable: D(β)

i

2.7 Compute RUC current total stress and strain vectors:

{σ̄ }i =
1
V

∫
V
{σ }i dV = 1

V

Nc∑
β=1

vβ{σ }
(β)

i , {ε̄}i =
1
V

∫
V
{ε}i dV = 1

V

Nc∑
β=1

vβ{ε}
(β)

i .

Set i = i + 1.

for the RUC, deformed under a uniaxial stress state, is evaluated (Step 2.4) by solving the following
linearized equation system:

1σ̄a------
0
0
0
0
0


i

=


C t

aa-------------

{C t
ba}5×1

{C t
ab}1×5

----------------------

[C t
bb]5×5


i−1

·



1ε̄a
-----------

{1ε̄b}5×1


i

,

{1ε̄b}i =−[C
t
bb]
−1
i−1 · {C

t
ba}i−1 ·1ε̄a,

{1ε̄0
}i = {1ε̄a,1ε̄b}i ,

(21)
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where 1ε̄a is a given average strain increment in the axial direction (11) of the RUC. In Step 2.5, the
equation system (10) is established and solved with the current incremental {1ε̄0

}i evaluating the current
incremental microvariables {1W}i ; see (11). Then, for all the subcells in the given RUC, the current
total local strain vector (Step 2.6.1), tangent stiffness matrix (Step 2.6.2) and stress vector (Step 2.6.3) are
evaluated. Subsequently in Step 2.6.4, the equivalent stress is computed and compared with the calibrated
value denoting the effective strength value of the bone wall constituent. Once the equivalent stress is
greater than the calibrated effective strength value, the initial equivalent strain is computed and fixed.
Next, the current total equivalent strain is computed (Step 2.6.5) and in Step 2.6.6, the current damage
variable is updated according to the computed current total equivalent strain (19). The global stress and
strain vectors are obtained in Step 2.7 and the algorithm proceeds to the next increment. It should be
noted that there is no need to apply periodic boundary conditions in order to simulate the current axial
loading which is directly imposed on the RUC. This special case yields zero average traction on the
edges of the RUC. To that end, the microvariables at the edges are set to zero.

2.5. Microcomputed tomography imaging. Selected CT bone scans shown in Table 1 were acquired
from a larger database originally reported by Wolfram et al. [2011] which included 104 (50 males,
54 females) fresh frozen human vertebrae (T1–L3) obtained from 32 donors (21–94y, median = 65)
and stored at −20◦ after harvest. Surrounding soft tissue was removed from the vertebrae, and the
posterior structures were partially removed. Endplates were removed with a band saw. Subsequently,
251 cylindrical specimens (8 mm in diameter and 18–25 mm in height) were cored from the remaining
slices by a custom-made core drill. Marrow was removed from the top and bottom of the cylinders
using a pulsed waterjet (Braun Oral-B Professional Care 6500). The cylinders were submerged in water
containing 0.9% sodium chloride and scanned in a µCT (µCT 40, SCANCO Medical AG) at a resolution
of 12µm3.

2.6. Damage analysis of vertebral trabecular bones. 3D RUCs demonstrating the VTB highly porous
microstructure were studied for nonlinear with damage response. Figure 3a represents a human vertebral
body macroscale from which high resolution images of sequential and cylindrical cross sections of µCT
scans were generated. By stacking the cross-sectional images, the original VTB microstructure can
then be rebuilt as a 3D solid model (Figure 3b). The VTB-RUC has been arbitrarily selected with an
approximate length of l = w = h = 8.1± 0.3 mm. Then, the 3D solid model representing the bone
walls (Figure 3c) and the marrow (soft fatty substances in the cavities of bones) domain (Figure 3d)

vertebral vertebral
level gender age level gender age

T11 F 43 T11 M 37
T12 F 43 T12 M 44
T12 F 46 T12 M 56
T11 F 60 T11 M 84
T12 F 60 L2 M 84
L3 F 80

Table 1. Vertebrae scanned samples analyzed in this study reported in [Wolfram et al. 2011].
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Figure 3. Human vertebral body (macroscale), (a); a VTB-RUC microstructure, (b);
bone walls, (c), and marrow domain, (d).

Figure 4. A 3D discretized of VTB-RUC.

were converted to approximately 72,000 equally shaped brick elements (subcells); see Figure 4. In situ
material properties of each subcell representing bone wall were defined with the nonlinear R-O model
with the material parameters found in Table 2, while subcells representing the marrow domain were set
with very little stiffness. Then, the nonlinear with damage evolution response of the VTB-RUC was
predicted using the incremental solution algorithm described above with a strain increment finite-size of
5 · 10−4, presenting a sufficiently convergent criterion.

2.7. Compression tests of printed polymeric VTB-RUC. In order to generate the overall compression
stress-strain response of a VTB-RUC manufactured from a polymeric material using a 3D-printer, com-
pression tests were performed. The aim was to verify the ability of the calibrated nonlinear HFGMC to
predict the tested response of a VTB-RUC behavior. Towards that goal, a 3D VTB-RUC solid model
obtained from a µCT scan of a human cadaveric VTB (37 years old) was generated. Three printed
polymeric VTB-RUC samples with a scale factor of 5:1 of the last 3D VTB-RUC with bottom and upper
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parameters notation polymeric material bone wall

elastic modulus E (GPa) 2.56 11.00
Poisson ratio v 0.35 0.3
material parameter σ0 (GPa) 0.060 0.110
material parameter α 1 1
material parameter n 5 5
strain-softening parameter η 1–∞ 1.001
effective strength value X (GPa) 0.060 0.110

Table 2. Material properties and model parameters for tested polymeric material and
bone wall, calibrated and used in the analysis of the one-dimensional R-O relation: ε =
σ/E +α(σ0/E)(σ/σ0)

n .

caps were produced by a 3D printer. The volume fraction of the polymeric material in the VTB-RUC was
24.71%. In addition, three “dog-bone” specimens of the polymeric material were produced to measure
the polymeric material response under tension. The experimental study was performed as follows: the
“dog-bone” specimens were stretched using the Instron 5582 machine. Subsequently, compression tests
were performed on the three polymeric 3D printed VTB-RUC samples. Initially, the VTB-RUC samples
were cycled between two polished steel plates under reversed compression, three times nondestructively,
between a 0 and 0.7% strain at a rate of 0.1 mm/min, followed by 10 minutes of relaxation. Subsequently,
the samples were destructively compressed to a ∼3% strain at a rate of 0.1 mm/min (Figure 5a). The
axial deformation (Figure 5b) was measured using the digital-image-correlation (DIC) method. The axial
stress was defined as an instantaneous applied load divided by the cross-sectional area of the VTB-RUC.
Strain was defined as an instantaneous deformation divided by the effective initial length between the steel
plates. Subsequently, the measured results were compared with the nonlinear HFGMC model including
a progressive damage analysis.

Figure 5. Experimental study: a compressed polymeric VTB-RUC highly porous mi-
crostructure, (a). An axial deformation gauge, (b).
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3. Results and discussion

Figure 6 presents the experimental tension mechanical responses of the polymeric material used in this
study. The material parameters of the R-O stress-strain relationship describing the nonlinear response of
the polymeric material were calibrated (Table 2) and used in the analysis of the polymeric VTB-RUC
samples to predict its nonlinear response with damage evolution.

The compression test results and the predicted HFGMC mechanical response with evolving damage
of the polymeric VTB-RUC samples are shown in Figure 7. The effective strength value X of the
polymeric material was calibrated at 0.06 GPa, while different values for the strain-softening parameter
η were used to examine the ability to simulate energy dissipation rates. The above results provide an
excellent agreement between the predicted and experimentally obtained nonlinear mechanical response of
the polymeric VTB-RUC samples which began with an elastic region, followed by a nonlinear reversible
response and continued with a nonlinear softening region caused by both the nonlinear elastic and damage.
The experiments ceased after detecting the ultimate load. The predicted nonlinear response included
postpeak strain-softening degradation behavior. This degradation was related to the strain-softening
parameter η that controls the energy dissipation rate.

The predicted nonlinear with evolving damage responses of the available native VTB-RUCs compared
with compression overloading tests available in the literature [Keaveny et al. 1999; Kopperdahl and
Keaveny 1998] are shown in Figure 8. Bone volume fraction of the VTB-RUCs are also presented. The
material parameters of the R-O constitutive relationship, effective strength value and parameter η were
calibrated (Table 2) and used as the in situ nonlinear behavior of the bone wall phase in the VTB-RUCs.

The obtained mechanical responses were typical of the curves reported for the trabecular bone [Hayes
and Carter 1976] and other natural and synthetic porous materials, such as cellular foams [Gibson and
Ashby 1999]. Moreover, the predicted mechanical responses after the softening region presented another
region of stiffening. When high compression closes the pores and cavities in the material, thus causing
material stiffening, the consolidation region emerges [Gibson and Ashby 1999; Gibson et al. 2010].

Figure 6. Mechanical response of the polymeric material used by the 3D printer.
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Figure 7. Experimental results of compressive loading and a predicted HFGMC me-
chanical responses with softening and evolving damage of a polymeric VTB-RUC highly
porous microstructure.

Figure 8. Predicted HFGMC mechanical responses vs. compression overloading tests
of native VTBs available in the literature.

Figures 9 and 10 show the mechanical responses with yield points of the available native VTB-RUCs
of the six VTB µCT scans of females and four scans of males with different vertebral levels (T11,
T12, L3, and L4), respectively. The yield points were determined using a similar protocol proposed by
Kopperdahl and Keaveny [1998]. In this study, the elastic modulus for each curve was computed based
on all points up to 0.2% strain. The elastic slope was then used to construct 0.2% strain offset lines as
shown in Figures 9 and 10. The intersections of the offset lines with the damage curves define the yield
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Figure 9. Predicted HFGMC mechanical responses for native female vertebral bones.

Figure 10. Predicted HFGMC mechanical responses for native male vertebral bones.

points. To this end, we present in Figures 11 and 12, respectively, the predicted yield stress and strain of
the available native VTB-RUCs and compare these with the results found in the literature [Kopperdahl
and Keaveny 1998]. Unlike the yield stresses for human VTBs, which demonstrated strong correlations
with the bone volume fraction (BV/TV), the results of the yield strains were significantly independent
of BV/TV. The above results strongly correspond with the previous outcomes indicating that for over-
yielding behavior, the yield strains are independent of the apparent density and have reasonably constant
values [Kopperdahl and Keaveny 1998]. Studies examining the independency of the compressive yield
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Figure 11. Predicted HFGMC yield stress vs. bone volume fraction of native VTBs.

Figure 12. Predicted HFGMC yield strain vs. bone volume fraction of native VTBs.

strains to bone volume fractions have suggested that the failure of the highly porous trabecular bone
microstructure is based on the strain [Gibson et al. 2010; Turner 1989].

4. Limitations

There are several limitations to the proposed approach seeking to generate a VTB nonlinear mechanical
response. The first limitation is related to the acquisition accuracy of the µCT images. The relative
Hounsfield Units (HUs) are associated with the full range of bone density all the way through the mar-
row medium. Thus, a threshold is used to determine whether a voxel is considered a bone wall or void.
Therefore, we assumed that the µCT scans can represent the VTB microstructure and its porosity. The
accuracy of these scans is a challenging problem, leading to errors in computing the microstructure
and its bone volume fraction. Ultimately, this error in the RUC geometry can influence the computed
mechanical response. Secondly, random bone variations and end fixtures may result in several errors and
variation measurements resulting from in-vitro bone compression tests. These errors can be associated
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with end-artifacts in the platen compression tests for trabecular bones [Keaveny et al. 1997]. Despite such
limitations, we have adopted the same mechanical testing for the current polymeric VTB-RUC samples
representing the microstructure of the VTB. Thirdly, periodic conditions of traction and displacement
that may be imposed on the edges of the RUC can affect the predicted nonlinear behavior. In the current
HFGMC model, the last periodic conditions were not applied. Fourthly, the porous media representing
the marrow phase of the VTB was modeled with very little stiffness which might cause errors, especially
for large cavities. Fifthly, small increments have to be used in the current nonlinear HFGMC incre-
mental solution algorithm, which may be computationally expensive. A correction-algorithm suited
for the micromechanical formulation can be developed to enhance computational efficiency. Sixthly,
because of the limited availability of the experimental study for native human VTBs, it was difficult
to calibrate the strain-softening parameter η that controls the energy dissipation rate of the native hu-
man VTB microstructure. More experimental and anisotropic damage modeling is needed to further
develop the proposed progressive damage and better tailor it to different failure modes, such as local
microbuckling and combined shear-compression modes, among others. The current damage parameter
is isotropic with one damage parameter combining all these modes. Seventhly, this study concentrated on
the compression analysis of the VTBs which mostly feature VTB failure; therefore, the characterization
of tension-compression asymmetry [Kopperdahl and Keaveny 1998] is not investigated herein. Finally,
the softening postpeak behavior will always be affected by mesh size unless a nonlocal interpolated
solution variable and failure criteria are applied.

5. Conclusions

The parametric HFGMC micromechanics has been extended to include progressive damage of a highly
porous microstructure such as VTB. The 3D nonlinear micromechanical modeling approach can predict
the compression response of tested highly porous polymeric RUC. The proposed nonlinear HFGMC
progressive damage micromodel was used to simulate compression failure of native VTB microstruc-
tures. Good predictive ability was shown for the compression yield stresses and strains compared to
results reported in the literature. The proposed HFGMC VTB micromechanical damage analysis can be
employed in future multiscale FE models of the macroscale vertebral bodies.
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