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OPTIMIZATION OF CHABOCHE KINEMATIC HARDENING PARAMETERS BY
USING AN ALGEBRAIC METHOD BASED ON INTEGRAL EQUATIONS

LIU SHIJIE AND LIANG GUOZHU

The current work is devoted to optimizing the Chaboche kinematic hardening parameters via an algebraic
method based on its integral equations, which is rarely investigated. An experimental test in strain range
of ±0.8% for 304 stainless steel (304SS) is applied to demonstrate this method. Firstly, the first quarter
tensile part, along with the Osgood–Ramberg equation, is used to estimate the initial parameters. Then,
optimizations are conducted based on the first quarter tensile part for the first and the 150th cyclic test.
Results indicate that:

(i) the value of initial yielding stress has a significant effect on the simulation. The optimized initial
yielding stress is roughly 181 MPa for 304SS, which corresponds to the test at strain range of ±0.8%
with a frequency of 0.25 Hz.

(ii) The experimental plastic strains in elastic loading/unloading segments in the proposed method are
unreasonable in calculating the stresses and should be removed before conducting an optimization.

A list of symbols can be found on page 453.

1. Introduction

It is well-known that metallic materials exhibit a gradual fatigue life consumption phenomenon under a
complicated cyclic loading. Indeed, the cyclic deformation, including ratcheting, of metallic structures
has been extensively studied in the last few decades, as it plays a very important role in safety assessments
and fatigue-life estimations.

Many experimental studies were conducted about mechanical behaviors subjected to cyclic load-
ing [Prager 1956; Benham 1965; Kamaya and Kawakubo 2015]. Along with those experimental studies,
many researchers have tried to develop appropriate constitutive models to better predict the response
of metallic materials subjected to cyclic loading, especially the Bauchinger effect and the strain accu-
mulation in unsymmetric uniaxial stress-controlled conditions. The first systematic literature in this
regard is [Prager 1956], in which the author proposed a linear hardening model capable of capturing
the Bauchinger effect; however, the model failed to simulate ratcheting strains in the presence of mean
stress due to its constant plastic hardening modulus. For this reason, in [Armstrong and Frederick 1966],
the authors modified Prager’s hardening rule by adding a nonlinear recall term to propose the so-called
Armstrong and Frederick hardening model. This new term could account for the fading memory effect of
the plastic strain path observed in experiments by making a difference in the plastic hardening modulus
between the forward and reverse parts in a typical unsymmetric stress cycle. Due to this initial work
of Armstrong and Frederick, the idea of describing the evolution of kinematic hardening variables in
terms of nonlinear differential equations has been followed in many other studies, such as [Chaboche

Keywords: Chaboche kinematic hardening, Ramberg–Osgood model, parameters optimization, integral equations.

439

http://msp.org/jomms
http://dx.doi.org/10.2140/jomms.2017.12-4
http://dx.doi.org/10.2140/jomms.2017.12.439
http://msp.org


440 LIU SHIJIE AND LIANG GUOZHU

et al. 1979; Chaboche 1991; 2008]. The Chaboche model is a decomposed nonlinear kinematic hardening
model (CHK-M, where M is the total number of AF rules in the Chaboche kinematic hardening model), in
which each of the backstress components plays a primary role in controlling the shape of σ -ε response at
different ranges of strain. The CHK-M model is rate-independent and able to account for the Bauschinger
effect. The advantage of this model is that it can be modified to solve for complex behaviors of the mate-
rials under various conditions. Besides the CHK-M model, many other evolution of kinematic hardening
models have been proposed; see, e.g., [Ohno and Wang 1994; Voyiadjis and Basuroychowdhury 1998;
Bari and Hassan 2000; Dafalias et al. 2008; Abdel-Karim 2010; Ahmadzadeh and Varvani-Farahani 2013;
Jiang et al. 2013]. Note that the multimechanism model has attracted attention in the last twenty years.
In [Velay et al. 2006], the authors proposed a nonunified elasto-plastic model for describing the TMF
behavior of AISI L6. Two integration methods, explicit Runge–Kutta method and implicit θ method, of
constitutive equations were developed for the numerical implementation of the 2-mechanisms −1 yield
criterion (2M1C) model. Based on the modification of 2M1C model, a new version of the multimech-
anism model for plasticity was proposed in [Taleb and Cailletaud 2010] for considering the nonpropor-
tional effect of the loading and the strain memory phenomenon. In the previous work, the kinematic hard-
ening parameters were identified by using optimization software included in the finite element method
(FEM) code ZeBuLoN. The optimization algorithms in the software are shown in [Besson et al. 1998].

Among various constitutive models mentioned above, the CHK-M model was widely used [Abdel-
Karim 2010; Jiang et al. 2009; Djimli et al. 2010]. As suggested in [Chaboche et al. 1979; Chaboche
1986], at least three AF rules should be incorporated in the model. Because of its simplicity and efficiency,
this model was implemented into different kinds of finite element software (e.g., ABAQUS and ANSYS).

The CHK-M model has been applied for decades and the metal-related fatigue literature are numerous,
for example, [Egner and Egner 2014; Pereira and Jesus 2011; Chaboche 1988; Jiang et al. 2009]. Indeed,
higher accuracy of the predicted material cyclic mechanical behavior accompanies higher accuracy of
fatigue life estimation. Consequently, in order to get an accurate description of fatigue material behavior
and its properties [Chaboche et al. 2012; Djimli et al. 2010; Li et al. 2014], it is necessary to choose or
develop a suitable constitutive model that will accurately describe its mechanical behavior of materials.
While the identification of material parameters in various hardening models is always one of the principal
difficulties to be handled prior to the fatigue life estimation, the parameters of CHK-M model can be
identified by using the finite element method with the return-mapping algorithm through a trial-and-error
approach. However, this method is difficult to implement, especially for practical applications, because
the test data are mainly being used to validate the parameters, not to identify them (which is rather time
consuming). In this case, an algebraic approach simulating the stress with the integral equations was
developed to predict and optimize the CHK-M model parameters, which directly identifies the model
parameters based on the test data. The current work is to determine the CHK-M model parameters in
the cyclic experimental tests under strain-controlled conditions, but isotropic hardening/softening and
ratcheting are not taken into account.

2. Optimization method of model parameters identification

There exist a lot of yield criteria for determining the yield condition, among which the von Mises criterion
is widely used. The yield surface, regarding the plasticity criterion, of a purely kinematic hardening von
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Mises material can be written as
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where M is the total number of decomposed AF rules utilized. The main reason for the superposition
of several AF rules in the Chaboche model is to improve its accuracy at different ranges of strain; as
stated in Section 1, the goal cannot be achieved using only one AF rule. Chaboche [1986] first used the
superposition of three AF rules (M = 3) to simulate the three critical segments of monotonic stress-strain
curves and this method is also adopted in the current study.

In the case of uniaxial loading, each of the decomposed rules takes the form

dXx =

M∑
i=1

dX i x , dX i x =
2
3Ci dεp,x − γi X i x |dεp,x |, (3)

where the subscript x stands for the direction of applied load. Now, it can be easily shown that the
following equation holds between the uniaxial stress, the backstress, and the initial yielding stress:∣∣σx −

3
2 Xx

∣∣= k. (4)

For simplicity, the subscript x was omitted for deducing the integral equation for (3) in uniaxial
state. Furthermore, combining (3) and (4), the decomposed component equation in (3) will be dX i =

Ci dεp − γi X i |dεp|.
In the first quarter tensile part, v= sign ε̇p = 1 and starts from the initial virgin state (εp,0= 0, X i,0= 0).

Integrating (3), we have

X i, j =
Ci

γi
[1− exp(γiεp, j )] (i = 1, 2, . . . ,M), (5)

where the subscript j denotes the serial number of plastic strain used. In (5), for εp, j →∞, the stress
asymptotically approaches a limit value Ci/γi . This means that the kinematic hardening process becomes
saturated and the backstress cannot exceed X i,∞ = Ci/γi .

If the loading direction is reversed at plastic strain εp,N1 and the corresponding backstress at εp,N1 is
X i,N1 = X i,∞[1− exp(−γiεp,N1)], the subsequent evolution of backstress is given by

X i, j =−
Ci

γi
+

(
X i,N1 +

Ci

γ1

)
exp[γ1(εp, j − εp,N1)]

= −X i,∞+ (X i,N1 + X i,∞) exp[γi (εp, j − εp,N1)].

(6)

Similarly denoting X i,N2 and εp,N2 as the final values of X i, j and εp, j for (6), the backstress at εp,N2 is

X i,N2 =−X i,∞+ (X i,N1 + X i,∞) exp[γi (εp,N2 − εp,N1)].
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The evolution of the backstress from compression to tension is given as

X i, j =
Ci

γi
+

(
X i,N2 −

Ci

γi

)
exp[−γi (εp, j − εp,N2)]

= X i,∞+ (X i,N2 − X i,∞) exp[−γi (εp, j − εp,N2)].

(7)

By means of (7), the backstress from the compressive tip εp,N2 to the tensile endpoint εp,N3 can be
calculated. Then, the backstress-strain response is determined with equations (5)–(7). Substituting the
total backstress X j =

∑M
i=1 X i, j into (4), the total simulated stress σ sim

j can be identified. Thus, the
simulated stresses can all be calculated with equations (4)–(7). It is convenient to obtain the backstress-
strain curve because only algebraic calculations exist in the above-mentioned method.

It is difficult identifying a set of reasonable CHK-M model parameters when using the traditional trial-
and-error method. The well-known L-M nonlinear least square algorithm is a good tool in determining
optimal model parameters, especially for the nonlinear system employed in the current work.

In the optimization, the differences between the stress values from the numerical simulated stress σ sim
j

and experimental measured stress σ exp
j are represented in the following objective function F :

F = 1
2

N∑
j=1

(σ sim
j − σ

exp
j )2,

where N is the total number of the data points used in the optimization. The optimum values can be
determined when the objective function reaches the specified convergence criterion, which is set to 1 ·10−6

in the current work. Referring to the rules suggested in [Bari and Hassan 2000], parameters C1, C2, and
C3 are all constrained within the range of 100 to 1 · 108. In addition, γ1 and γ2 are in the range of 1 to
1 · 104, and then the constraint interval for γ3 is [0.1, 6].

3. Study procedures

For the material 304SS, three groups of strain-controlled fatigue tests were performed at the material
level, and the fatigue test at 0.8% strain amplitude was employed so as to identify the CHK-3 model
parameters. Figure 1 is the detailed flow chart of the study procedures.

In Figure 1, the Ramberg–Osgood equation is applied to approximately represent the first quarter
tensile part by using the L-M algorithm. After determining the parameters in the Ramberg–Osgood
equation, the Chaboche kinematic hardening parameter Ci can be obtained by taking the derivative of
the Ramberg–Osgood equation with plastic strain. Subsequently, the other relevant parameters γi can be
predicted through allocating contribution percentages for every AF rule.

As indicated in [Dafalias et al. 2008], if the first quarter tensile segment includes a yield plateau that is
significantly different from the hysteresis curve, then it is impossible to attempt to simulate all the curves
by using one set of parameters. Conveniently, the first quarter tensile segment is used for estimating the
initial parameters because p = εp in the region and further optimizations can be performed to obtain
more reasonable ones. Note that a reasonable initial yielding stress is beneficial for the stress-strain
simulation. So the initial yielding stress and the hardening parameters for the first quarter tensile part
was optimized in the current work. In order to verify the feasibility of these parameters for cyclic tests,
the stress-strain response for the first cycle was simulated. Poor accuracy causes further optimization of
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Figure 1. Study procedures of identifying CHK-3 model parameters.

parameters for the first cyclic test. Then, an investigation for the stabilized hysteresis loop was executed.
As pointed out in previous literature [Bari and Hassan 2000; Ahmadzadeh and Varvani-Farahani 2013],
the ratcheting parameter γ3 in the third AF hardening rule should be constrained to a small range, such
as [0.5, 10]. First, in order to verify the feasibility of the approach for the ratcheting simulation, the
ratcheting parameter γ3 was constrained within the interval from 0.1 to 6. Then, in order to improve the
simulation accuracy for the stabilized hysteresis loop, the ratcheting parameter γ3 was set to whatever
the ratcheting strain is. Although the ratcheting issue was not included in the investigation, the ratcheting
actually exists when using the parameters to perform a simulation.

4. Experimental testing

4.1. Test specimen. 304SS was chosen to verify the general method because it is cheap and it has exten-
sive applications in industry. Table 1 shows the chemical composition of 304SS. In order to homogenize
the 304SS material to obtain the expected mechanical properties, the steel ingots were forged into bars
at 1160 ◦C. Then, an annealing treatment was performed by heating the bars up to 720 ◦C and cooling
very slowly to room temperature. All experimental tests were conducted by using round-bar specimens.
Figure 2 shows the test specimen.

4.2. Test program. Three groups of strain-controlled LCF tests were conducted, which were controlled
by using the triangular waveform at a constant frequency of 0.25 Hz with a strain ratio Rε =−1 and strain
amplitude εa of 0.4%, 0.6%, and 0.8%. A 25 mm gauge extensometer was used for measuring and con-
trolling the strain in the specimen and all tests were carried out according to the ASTM standard [ASTM

C Si Mn P S C Ni Mo

≤ 0.08 ≤ 1 ≤ 2 ≤ 0.045 ≤ 0.03 > 17.03 > 8.01 > 0.02

Table 1. Chemical compositions of the 304 stainless steel (wt%).
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Figure 2. Specimen geometry used for strain-controlled fatigue test.

E606/E606M 2012]. The experiments were conducted on multiple specimens; namely, each test was
carried out at a constant strain amplitude until failure occurred at room temperature.

4.3. Experimental results. First, we should determine which hysteresis loop could be suitably used for
this study. Typical cyclic tests at different strain amplitudes are shown in Figure 3, left. It can be seen
from Figure 3, left, that the reasonable strain range for identifying the CHK-3 model parameters is
±0.8%, which ensures that the first and the second AF rules get stabilized within the strain limit, while
the third one does not. Therefore, the experimental test at a strain range of ±0.8% was used to obtain
the CHK-3 model parameters.

The Chaboche kinematic hardening model is closely related to the plasticity. So, determining the
plastic stress-strain response becomes a critical step in identifying its parameters.

Conveniently, the initial tensile curve (the first quarter cycle), OA, was used to estimate the parameters.
Equation (3) is readily dealt with because of the relationship p = εp in this segment.

The aforementioned first cyclic test at strain amplitude of 0.8%, together with its plastic stress-strain
curve is displayed in Figure 3, right. As shown in this figure, the Young’s modulus E is taken as the
slope of the initial linear region. After performing a regression analysis for segment OP, the Young’s
modulus E is approximately 183500 MPa with the correlation efficient of 0.99887.
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Some unreasonable problems exist, assuming all the plastic strain points are used to calculate the
stress. The details are illustrated in the schematic diagram Figure 4. The Young’s modulus E is the slope
of the initial elastic loading segment OI. Theoretically, the plastic strain in OI is nearly equal to zero
because of the relationship

εp = εT− εe = εT− σ/E = εT− εT = 0.

In addition, the test strain is portioned as

εT = εth+ εfl.

In practice, the plastic strain in this region is not absolutely identical to zero due to the fluctuation. For
example, the plastic strain in point B, εB

p , is negative because

εB
p = εT−

σB

E
= εT− εth = (εth+ εfl)− εth = εfl < 0,

which leads to an unacceptable value when using (5) to simulate the backstress. This fact can be explained
as follows:

X i,B =
Ci

γi
[1− exp(γiε

B
p )]< 0,

where X i,B is the backstress at point B. It is impossible that X i,B has a negative sign in the first quarter
tensile part. Although the plastic strain in point A is positive, the simulated total stress at this point
nearly equals the initial yielding stress, which will never approach the test stress. Therefore, points like
A and B are called abnormal data in this investigation. In the elastic unloading part II-III, the ratio of
εfl to εT is relatively small, which means the experimental plastic strain is very close to the theoretical.
The theoretical plastic strain in II-III remains unchanged, as well-known. Thus, the simulated stress
in II-III equals the stress at point II because such a small plastic strain fluctuation has little effect on
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Figure 4. Schematic diagram of the cyclic stress-strain test response.
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Figure 5. The effective first (left) and 150th (right) cyclic test data used for optimization.

the simulation. However, the experimental stress in II-III is gradually decreasing. In all, the simulated
stresses in the elastic loading/unloading segments are not appropriate for use in the proposed method.
Note that although the plastic strain fluctuation occurs in I-II, the calculated stress is acceptable. This
fact can be partly explained by the analysis for II-III, and the simulated stress has a good tendency toward
the experimental in this region.

Fortunately, the L-M algorithm is excellent for identifying the model parameters by using the sub-
sequence extracted from the original test data. So, the elastic segments are removed in the following
optimization.

Figure 5 shows the effective test data used for optimization, which are extracted from the original first
and the 150th cyclic test curves.

5. Estimation of the initial values for the model parameters

As discussed in Section 2, the CHK-M model is a superposition of different AF rules; namely, the total
back stress is the summation of backstress components. The AF hardening rule follows a series of
successive specific slopes which are defined by the derivatives of backstress plastic strain curve, and the
slope of the curve of AF rule gradually approaches zero with increasing plastic strain. Thus, a certain
AF rule in the CHK-M model has a primary role in a special strain range, which means the other rules
have a slight effect on the shape of the σ -ε curve in this range. For example, provided that the shape of
σ -ε curve in strain range [0, 0.01%] is determined by the first AF rule, the influence by other AF rules
can be ignored. Similarly, the second AF rule influences the shape of the σ -ε curve in the strain range
[0.01%, 0.03%]. As a result, we can differentiate the first quarter tensile curve with respect to the plastic
strain at different strain points to estimate the parameters Ci .

In order to efficiently and conveniently calculate parameters Ci , the Ramberg–Osgood equation is
applied for approximating the first quarter tensile curve:

εT
ε0
=
σ

σ0
+

(
σ

σ0

)n0
. (8)

The reason for using (8) to fit the first quarter tensile part is that the segment is similar to the mono-
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tonic tensile curve. We use the following values for the Ramberg–Osgood constants of 304SS in the
segment OA (strain amplitude of 0.8%):

n0 = 5.3390, ε0 = 0.171%, σ0 = 356MPa.

In order to verify the feasibility of these constants, the simulated stress-strain relationship was obtained
by using the Ramberg–Osgood equation and shown in Figure 6 together with the first cyclic experimental
test curve.

As shown in Figure 6, there exists a slight deviation between the simulation and the experimental test,
particularly at the knee part. This may be ascribed to the quick hardening behavior of 304SS. However,
the simulated curve has a good tendency for the real stress-strain curve, so the Ramberg–Osgood curve
can be applied to predict the initial values of CHK-3 model parameters.

After obtaining the Ramberg–Osgood constants, the relationship of ε0 = σ0/E can be substituted into
(8) to give

EεT
σ0
=
σ

σ0
+

(
σ

σ0

)n0
, (9)

which can then be differentiated with respect to εT to give

dσ
dεT
=

σ0

ε0(1+ n0(σ/σ0)n0−1)
. (10)

The calculation of dσ/dεp is more complicated. First, dσ/dεp must be changed into the form

dσ
dεp
=

dσ
dεT

dεT

dεp
=

dσ
dεT

dεT/dt
dεp/dt

=
dσ
dεT

1
ε̇p
ε̇T. (11)

Using Hooke’s law and the total strain relationship, dεp/dt can be given as

dεp

dt
=

dεT

dt
−

dσ
dt

1
E
. (12)
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C1 1249658.623 γ1 42102.530
C2 129813.037 γ2 874.712
C3 23817.112 γ3 200.607

Table 2. Initial values of CHK-3 model parameters.

Then, (12) can be reformulated as

dεp

dt
=

dεT

dt
−

dσ
dt

1
E

dεT

dεT
=

dεT

dt
−

dσ
dεT

1
E

dεT

dt
=

dεT

dt

(
1−

dσ
dεT

1
E

)
. (13)

So ε̇p = ε̇T
(
1− (dσ/dεT)(1/E)

)
, which means ε̇T/ε̇p = 1/

(
1− (dσ/dεT)(1/E)

)
.

The expression for dσ/dεp can then be obtained expressed in terms of the derivative dσ/dεT by sub-
stituting ε̇T/ε̇p into (11):

dσ
dεp
=

dσ
dεT

1
1− (1/E)(dσ/dεT)

. (14)

Since the Young’s modulus has been confirmed, the plastic stress-strain response can be determined with
the relationship εp = εT− σ/E . Meanwhile, the slopes of the plastic stress-strain curve can also be given
by (14). As a consequence, the tangent lines of the σ -εp curve can be identified, which are shown in
Figure 6, right.

The AF rules contribution method, as described in [Rahman 2006], is applied for determining the
parameters γi , which control the rate of the hardening modulus, which decreases with increasing plastic
strain. In the tensile part, the total stress σx could be denoted by adding the summation of the backstresses
of AF rules and the yield stress k, so the following relationship provides the reference for assigning the
contribution fractions:

C1

γ1
+

C2

γ2
+

[
C3

γ3

]
= σx − k. (15)

Equation (15) indicates that the first and the second AF rule reach the saturated values before the testing
strain attains its peak, while the third AF rule (embraced in a bracket) denotes that this component may
not be up to its saturation value. The advantage of this strategy is that the first and the second AF rule
respectively determine the shape of the initial and the knee part for the stress-strain curve; the third
unsaturated AF rule controls the end part of the curve and the ratcheting strain evolution. Obviously, the
right side of (15) can be readily determined. As a result, if the backstress contributions from each of the
three AF rules in the left side of (15) can be determined, then the initial values of γ1, γ2, and γ3 can be
estimated. Following the data applied in [Rahman 2006], contribution fractions of 0.1, 0.5, and 0.3 are
also applied for each of the three AF rules, respectively, in the current study.

Table 2 shows the initial values of CHK-3 model parameters estimated for the first quarter tensile part.
As illustrated above, the CHK-3 model parameters have been estimated successfully for the first

quarter tensile segment, but in general, these parameters have poor accuracy for simulating the stabilized
hysteresis loop, especially when the first quarter tensile segment includes a yield plateau. As depicted in
Figure 3, right, one set of model parameters cannot be used to simultaneously simulate the first quarter
tensile part and the hysteresis loops with high precision. Thus, the above model parameters can only be
used as initial values for further optimization for the stabilized hysteresis loop.
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6. Optimization of the model parameters

Two important factors, the kinematic hardening parameters and the initial yielding stress, have significant
effects on the simulation. Based on the first quarter cycle, the initial yielding stress can be optimized
with the CHK-3 model. It is well-known that the isotropic hardening rule will change the yield surface,
which influences the shapes of the hysteresis loops. To identify the influence of the isotropic hardening
on the model parameters, both the 150th cyclic test (the stabilized hysteresis loop) and the first cyclic
test will be used for optimizing the CHK-3 model parameters, Ci , γi , and k.

6.1. Optimization based on the first quarter tensile part. The initial yielding stress definition, as pointed
out by some authors [Facheris and Janssens 2014; Guijuan et al. 2014], has significant influence on the
yield surface and the plastic flow directions. However, an exact definition for the yielding stress is not very
clear at present. In [Abdel-Karim 2010], the author applied a smaller plastic strain offset (0.0025%) to
determine the initial yielding stress. In the current work, the initial yielding stress (defined with a 0.02%
plastic strain offset from the origin, where the initial yield stress is 232.251 MPa), serves as an initial
value for optimization.

Because the CHK-3 model parameters will change with the alteration of the initial yielding stress, the
following two steps are adopted in the optimization of the initial yielding stress:

(1) fixing Ci and γi to optimize k;

(2) fixing k to optimize Ci and γi .

Table 3 gives the optimal CHK-3 model parameters for the first quarter tensile curve. The optimized
initial yielding stress is 181.392 MPa. Figure 7, left, shows the plastic stress strain response simulated
by using the CHK-3 model with parameters before and after optimization. As a comparison, the first
quarter tensile segment is also plotted in the figure.

Obviously, the simulated plastic stress-strain response produces a good agreement with the first tensile
segment. In Figure 7, left, the calculated stress is always identical to zero when the plastic strain is
substantially small and then it suddenly grows to the initial yielding stress k due to the large value of γ1.
This result proves that the aforementioned method is feasible.

6.2. Optimization based on the first cyclic test. In order to study the simulation capability of the initial
values of the CHK-3 model parameters listed in Table 3 for the hysteresis loops, the cyclic plastic stress-
strain response for the first cycle was calculated. Figure 7, right, shows the simulated plastic stress-strain
response and the experimental test curve.

As illustrated in Figure 7, right, the shape of simulated plastic stress-strain response is remarkably
different from the first cyclic test, especially at the transient portion. This can be attributed to the fact
that the strain cycling leads to a decrease in the subsequent yielding stress when the first reverse occurs.

C1 1444579.469 γ1 21051.266
C2 184230.879 γ2 1749.424
C3 22817.112 γ3 278.154

Table 3. Optimum CHK-3 model parameters for the first quarter tensile curve.
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first cyclic test and the simulated plastic stress-strain response.

Because the values in Table 3 are determined from the uniaxial tensile part, there inevitably exists an
overestimation when using them to simulate the first cycle.

To reduce the overestimation, another optimization was conducted based on the initial values for the
first cycle. The plastic strain used in equations (5)–(7) was calculated based on the effective data shown
in Figure 5, left, and the initial yielding stress is set to 181 MPa. Table 4 shows the optimal values of the
CHK-3 model parameters for the first cyclic test. The simulated σ -εp response as well as the first cyclic
test curve is plotted in Figure 8, left.

As seen in that graph, the simulation is in a good agreement with the first cyclic test except at the first
quarter tensile segment. This suggests that the first quarter tensile curve and the cyclic test curves may
not possess the same set of kinematic parameters if they exhibit a significant difference in shape.
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The isotropic hardening could change the radius of the yield surface, causing the hysteresis loop to
continuously change till it becomes the stabilized one. As a result, the kinematic hardening parame-
ters will be different when respectively using the stable and unstable hysteresis loops to perform the
parameter’s optimization. To investigate these differences, a further optimization was executed with the
stabilized hysteresis loop (the 150th cyclic test curve).

6.3. Optimization based on the stabilized hysteresis loop. The model parameters shown in Table 4 were
used to simulate the stress-strain response for the stabilized hysteresis loop (the 150th cycle). Figure 8,
right, gives the experimental σ -εp curve for the stabilized hysteresis loop and the σ -εp response simulated
using the CHK-3 model with parameters listed in Table 4.

As shown in Figure 8, right, the simulated σ -εp curve exhibits a poor agreement with the 150th cyclic
test. Qualitatively, the hardening overestimation in Figure 8, right, may be caused by the isotropic harden-
ing. As analyzed in Section 6.2, the hysteresis loop continuously changes till it becomes a stabilized one
due to the isotropic hardening effect. Consequently, the values of CHK-3 model parameters determined
in Section 6.2 are not suitable for the stabilized hysteresis loop. Note that the cyclic softening occurs in
the test. It is well-known, however, that 304SS should exhibit cyclic hardening under cyclic loading. The
abnormal phenomenon may be ascribed to the high experimental frequency because an additional test at
a frequency of 0.1 Hz exhibits the cyclic hardening effect; the additional test is displayed in Figure 9, left.

We thus draw the significant conclusion that the cyclic hardening behavior is rate-dependent. However,
the method developed in this paper is feasible whatever the real material cyclic behavior.

C1 122733.002 γ1 3121.596
C2 18641.186 γ2 785.931
C3 12127.629 γ3 5.563

C1 165362.400 γ1 2372.604
C2 80140.956 γ2 834.633
C3 18322.853 γ3 0.111

Table 4. Optimal results of the CHK-3 model parameters for the first (left) and 150th
(right) cyclic tests.
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C1 46318.993 γ1 1501.795
C2 80426.735 γ2 1501.940
C3 42612.671 γ3 219.000

Table 5. CHK-3 model parameters optimized by fixing γ3 = 219.

In the following optimization, the ratcheting parameter γ3 was constrained to the range of 0.1 to 6 so as
to meet the requirement for ratcheting simulation. Indeed, the reasonable value for γ3 should be adjusted
according to the ratcheting test, which has a slight effect on the hysteresis loop simulation. Table 4 also
gives the optimized CHK-3 model parameters for the 150th experimental response.

Figure 9, right, shows the σ -εp response simulated with the CHK-3 model parameters from Table 4,
right. For comparison, the 150th cyclic test curve is also plotted. We see that the simulation is in good
agreement with experiments except at the regions near the peak of tension and the valley of compression.
The fact is that the first and the second AF rule reach their saturated values before the relative plastic
strain increases to a certain value, but the third AF rule does not. Thus, the hardening overestimation
was closely associated with the third AF hardening rule.

The ratcheting parameter γ3 has a significant effect on the ratcheting. As such, a reasonable value for
γ3 should be verified by the ratcheting test. In this investigation, we just want to verify the effect of γ3

on the hysteresis loop. Accordingly, the reasonable ratcheting parameter for 304SS was not considered
in a further optimization. Next, a special consideration for γ3 was taken for obtaining a better simulation
for the stabilized hysteresis loop.

As shown in Figure 9, right, hardening overestimation is ascribed to the fact that there exists a slow
increasing/decreasing tendency in the third AF hardening rule. So, a larger value of γ3 should be ap-
plied to increase its changing rate. To lower the effect of the third AF hardening rule on the hardening
overestimation, a trial value of γ3 = 219 was applied for an in-depth optimization.

The optimized values are given in Table 5. Figure 10 gives the σ -εp result calculated using the CHK-3
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model with the parameters given in Table 5. The 150th cyclic test is also plotted in the figure.
By comparing Figure 9, right, with Figure 10, we find that the simulation accuracy has been greatly

improved by fixing the value of γ3= 219 to perform a new parameter optimization. As a consequence, the
ratcheting parameter γ3 actually has an effect on the hysteresis loop. Generally, however, a small change
of γ3 is enough to simulate the ratcheting evolution. Thus, the value of γ3 for ratcheting is always
assigned to a small value. The ratcheting parameter γ3 in this work is not appropriate for ratcheting
simulation, because a reasonable γ3 should be verified through a further ratcheting test [Bari and Hassan
2000; Facheris and Janssens 2014]. Qualitatively, however, the parameters shown in Table 4, right, will
be recommended for the ratcheting simulation, although they lead to a hardening overestimation.

7. Conclusions

The current work is devoted to identifying the CHK-3 model parameters with an algebraic calculation
method based on its integral equations. The experimental test at strain range of ±0.8% was selected for
optimizing the CHK-3 model parameters. The main conclusions for this paper are these:

(1) One same set of CHK-3 model parameters cannot ensure a same high precision when they are used
simultaneously to simulate the stress-strain responses for both the first quarter tensile segment and
the stabilized hysteresis loop.

(2) It is recommended removing the elastic loading/unloading segments from the experimental stress-
strain curves before conducting an optimization of CHK-3 mode parameters.

(3) The initial yielding stress definition should be treated carefully for obtaining a good simulation. In
this work, 232.251 MPa corresponding to 0.02% plastic strain offset was taken as the initial yielding
stress, but after optimization, the reasonable initial yielding stress became around 181 MPa.

(4) The optimization procedure proposed can be applied generally to identify the CHK-3 model param-
eters for other similar metallic materials.

List of symbols

LCF low cyclic fatigue
AF rule Armstrong and Frederick kinematic hardening rule
LM algorithm Levenberg–Marquardt algorithm
304SS 304 stainless steel
X i the i-th kinematic hardening rule
Ci γi the i th Chaboche kinematic hardening parameters
E Young’s modulus
p accumulated plastic strain
dp accumulated plastic strain rate
ε
≈T

total strain tensor
ε̇
≈T

total strain rate
ε
≈ p

plastic strain tensor
ε
≈ px

plastic x-axial strain
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ε̇
≈ p

plastic strain rate
ε
≈e

elastic strain tensor
ε
≈a

strain amplitude
X
≈

backstress tensor
S
≈

deviatoric stress tensor
k initial yielding stress
σx x-axial stress
Xx x-axial backstress
σ0 ε0 n0 Ramberg–Osgood constants
σ sim

i the i-th simulated stress
σ

exp
i the i-th experimental stress
εth theoretical strain
εfl fluctuating strain
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