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INTERFACIAL WAVES IN AN A/B/A PIEZOELECTRIC STRUCTURE WITH
ELECTRO-MECHANICAL IMPERFECT INTERFACES

M. A. REYES, J. A. OTERO AND R. PÉREZ-ÁLVAREZ

We study the propagation of shear horizontal (SH) waves in the interfaces of an A/B/A piezoelectric
structure with an electrical and mechanical imperfect contact, being modeled by means of a capacitor
and a spring, respectively. The analytical dispersion relations are obtained and some limit cases are
analyzed in detail, predicting the existence of interface waves. Based on numerical calculations, it can
be shown that the electrical and mechanical imperfections strongly influence the dispersion curves.

1. Introduction

The possibility of an elastic shear surface wave being guided by the free surface of a piezoelectric crystal
with 6 mm hexagonal symmetry has been studied in [Bleustein 1968].

Maerfeld and Tournois [1971] found that these kinds of waves can also be guided by the interface in
perfect contact between two semi-infinite media, where at least one of these is a piezoelectric medium.
Moreover, a shear horizontal (SH) wave propagating along an interface between a piezoelectric half-
space and piezomagnetic half-space was investigated in [Soh and Liu 2006]. In [Fan et al. 2006b],
imperfection was considered by means of a discontinuity of the displacement (spring model). An exact
solution for antiplane waves in a ceramic half-space including an imperfectly bonded layer was obtained
in [Fan et al. 2006a]. In [Chen et al. 2008], an exact solution for antiplane waves in a 6 mm crystal
between two piezoceramic half-spaces with imperfect interface bonding was obtained. Furthermore, the
effect of an electric field gradient on the SH interface waves was investigated in [Yang and Yang 2009].
The SH surface waves propagating in a layered piezoelectric half-space with an imperfectly bonded
interface were studied in [Liu et al. 2010]. In [Sun et al. 2011], the SH wave propagation was studied
in a cylindrical PE/PM structure with an imperfect interface and two exact dispersion relations were
obtained. Dispersion relations of SH waves in an A/B/A heterostructure (which has different magnetic,
electric and elastic properties with imperfect bonding at the surfaces) taking 6 mm hexagonal symmetry
into account have been studied in great detail by Otero et al. [2011], giving some dispersion curves
for different A/B/A heterostructures with magneto-electro-elastic properties and showing how strongly
the behavior of these curves depends on the spring constant material parameter ku (GPa/m). In [Otero
et al. 2012], propagation of SH waves between the interfaces of two piezoelectric materials with electro-
mechanical imperfect contacts modeled by means of a spring and a capacitor and the corresponding
dispersion relations for the imperfect contact was presented.

Several works have been presented in order to study the effects of interface bonding on acoustic wave
generation in elastic bodies using piezoelectric transducers driven electrically, as in [Li et al. 2013].
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A coupling model for interfacial imperfection is proposed in [Li et al. 2015a] in order to characterize
the imperfect interface in a bilayered multiferroic cylinder, and in [Li et al. 2016a] the SH wave propaga-
tion at the interface in a bilayered multiferroic is considered. In [Li and Jin 2015], the shear-lag interface
model is used to simulate the effect of an imperfect interface on SH wave propagation in a piezoelectric
composite structure. Trying to generalize the interfacial imperfection coupling model, Li et al. [2015b]
introduced a new model to describe the magneto-electro-mechanical imperfect interfacial region in a
multiferroic composite consisting of an FE layer and another FM layer. Xiong et al. [2015] proposed an
interfacial sliding prevention/promotion model in order to consider the effect of interfacial normal stress
on interfacial sliding and Li et al. [2015c; 2016b] proposed a generalization of the spring model while
including intercoupling effects. Some authors, like Kakar [2015], have investigated the existence of SH
waves in a fiber-reinforced layer placed over a heterogeneous elastic half-space. Kong et al. [2016] stud-
ied the propagation of SH waves in the layered structure consisting of a transversely isotropic FGPM layer
and a PMN-0.29PT substrate that is being poled along [011]c, finding that the dispersion characteristics
of the SH waves are dominated by the cut orientation of the PE substrate.

In the present work, different to the work of Otero et al. [2011], we consider the existence of two
imperfections at the interfaces on an A/B/A piezoelectric structure: electrical and mechanical. The
presence of electrical and mechanical imperfections are modeled by means of a capacitor and a spring,
respectively. The capacity of the capacitor is the measure of the electrical imperfection.

This paper is organized as follows: in Section 2 the equations governing the SH wave propagating
in piezoelectric materials with 6 mm hexagonal symmetry and the constitutive relations are presented.
Section 3 is dedicated to the general formulation of the main problem, considering two types of imper-
fections at the interfaces. Symmetric and antisymmetric solutions are obtained for a specific system.
Section 4 is devoted to calculating the dispersion relations, and some limiting cases are analyzed. These
results are in agreement with known results from the literature. In Section 5 some numerical examples
are shown and analyzed. Finally, in Section 6 some conclusions are presented.

2. Governing equations for the SH mode

A system of two coupled partial differential equations with two unknowns: the z component of the elastic
displacement uz and the in-plane electric potential ϕ, describe SH waves in this type of material; that is,

c∇2u+ e∇2ϕ = ρ
∂2u
∂t2 , (2-1)

e∇2u− ε∇2ϕ = 0, (2-2)

where ∇2
≡ ∂2/∂x2

+ ∂2/∂y2 and u ≡ uz . Here, c ≡ c44, e ≡ e15, ε ≡ ε11 are the elastic, piezoelectric,
and dielectric permittivity coefficients, respectively. For the case of SH waves, both components ux

and u y are equal to zero. Equations (2-1)–(2-2), which depend only on (x, y, t), describe the motion of a
SH wave in a homogeneous material. Firstly, we have to rewrite (2-1)–(2-2) using an auxiliary potential
function φ defined by

φ = ϕ−
e
ε

u. (2-3)
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Then, (2-1) can be written as (
∇

2
−

1
v̄2

∂2

∂t2

)
u = 0, (2-4)

where v̄ =
√

c̄/ρ is the bulk shear wave speed within the piezoelectric and c̄ = c+ e2/ε is the electro-
elastically stiffened constant. Secondly, (2-2) can be written as

∇
2φ = 0. (2-5)

3. SH waves in piezoelectrics

Consider a piezoelectric material with 6 mm hexagonal symmetry exhibiting polarization in the z-axis
direction of an xyz Cartesian coordinate system and the xy plane is an isotropy plane. The planes
y =± 1

2 d are the interfaces. The spaces y <−1
2 d and y > 1

2 d are occupied by a piezoelectric of type A
and the region enclosed in the interval [−1

2 d, 1
2 d] by a piezoelectric of type B, as shown in Figure 1.

We want to find u and φ describing SH waves propagating along the positive x axis that satisfy (2-4)
and (2-5) at each interface of the piezoelectric structure. We are really interested in finding confined
modes, which is why the functions u and φ in media A should vanish as y goes to ±∞. This in turn
implies that at these interfaces the solutions of (2-4) and (2-5) must be of the form

us = ei(ξ x−ωt)


UAeηA y if y <− 1

2 d,
UB cos(ηB y) if |y| ≤ 1

2 d,
UAe−ηA y if y > 1

2 d,
(3-1)

for the symmetric modes in y, and

uas = ei(ξ x−ωt)


UA1eηA y if y <− 1

2 d,
UB1 sin(ηB y) if |y| ≤ 1

2 d,
−UA1e−ηA y if y > 1

2 d,
(3-2)

for the antisymmetric modes in y, where UA, UB , UA1, and UB1 are undetermined constants. Here, ω, ξ ,
and η are the frequency, the x-component of the wave vector, and the y-component of the wave vector,

A A

x

y

B

0-d/2 d/2

Figure 1. Scheme of a piezoelectric structure A/B/A.
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respectively, which are related to each other through the expressions

ηA = ξ

√
(1− v2/v̄2

A) > 0, |y|≥ 1
2 d,

ηB = ξ

√
(v2/v̄2

B − 1) > 0, |y|≤ 1
2 d,

(3-3)

where v = ω/ξ is the phase velocity. Using the above considerations, we obtain

φs = ei(ξ x−ωt)


8Aeξ y if y <−1

2 d,
8B cosh(ξ y) if |y| ≤ 1

2 d,
8Ae−ξ y if y > 1

2 d,
(3-4)

for the symmetric modes in y, and

φas = ei(ξ x−ωt)


8A1eξ y if y <−1

2 d,
8B1 sinh(ξ y) if |y| ≤ 1

2 d,
−8A1e−ξ y if y > 1

2 d,
(3-5)

for the antisymmetric modes in y, where 8A, 8B , 8A1, and 8B1 are undetermined constants.

4. Dispersion relations

Now, the stress component T ≡ Tzy and the electric displacement D ≡ Dy are related to u and φ by

T = c∂u
∂y
+ e∂ϕ

∂y
, D = e∂u

∂y
− ε

∂ϕ

∂y
. (4-1)

It is convenient to express (4-1) using the potential function φ, which leads to the following expressions:

T = c̄∂u
∂y
+ e∂φ

∂y
, D =−ε ∂φ

∂y
. (4-2)

Substituting (3-1) and (3-4) into (2-3), the symmetric parts of the electric potential are written as

ϕs = ei(ξ x−ωt)


eA/εAUAeηA y

+8Aeξ y if y <−1
2 d,

eB/εBUB cos(ηB y)+8B cosh(ξ y) if |y| ≤ 1
2 d,

eA/εAUAe−ηA y
+8Ae−ξ y if y > 1

2 d.
(4-3)

Substituting (3-1) and (3-4) into (4-2), we get the following expressions for the symmetric part of T
and D:

Ts = ei(ξ x−ωt)


UAc̄AηAeηA y

+8Aξ eξ y if y <−1
2 d,

−UB c̄BηB sin(ηB y)+8BeBξ sinh(ξ y) if |y| ≤ 1
2 d,

−UAc̄AηAe−ηA y
−8AeAξ e−ξ y if y > 1

2 d,
(4-4)

Ds = ei(ξ x−ω t)


−8AεAξ eξ y if y <− 1

2 d,
−8BεBξ sinh(ξ y) if |y| ≤ 1

2 d,
8AεAξ e−ξ y if y > 1

2 d.
(4-5)
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Analogously, we get the following expressions for the antisymmetric part of T and D:

Tas = ei(ξ x−ωt)


UA1c̄AηAeηA y

+8A1ξ eξ y if y <− 1
2 d,

UB1c̄BηB cos(ηB y)+8B1eBξ cosh(ξ y) if |y| ≤ 1
2 d,

UA1c̄AηAe−ηA y
+8A1eAξ e−ξ y if y > 1

2 d,
(4-6)

Das = ei(ξ x−ωt)


−8A1εAξ eξ y if y <−1

2 d,
−8B1εBξ cosh(ξ y) if |y| ≤ 1

2 d,
8A1εAξ e−ξ y if y > 1

2 d.
(4-7)

4A. The symmetric part. Let us build the equations that satisfy the condition for the electro-mechanical
imperfect contact at y =− 1

2 d using the symmetric part of the solution. First,

TA = ku(u A− u B)

describes an elastic interface with spring constant material parameter ku > 0. Then, we get

UA(c̄AηA− ku)e−dηA/2+8AeAξ e−dξ/2
+UBku cos

(1
2 dηB

)
= 0, (4-8)

with the second condition

TB = ku(u A− u B),

therefore we get

−UAku e−dηA/2+UB
(
c̄BηB sin

( 1
2 dηB

)
+ ku cos

( 1
2 dηB

))
−8BeBξ sin

( 1
2 dξ

)
= 0. (4-9)

The third condition,

DA = kφ

(
φA+

eA

εA
u A−φB −

eB

εB
u B

)
,

describes an electric interface with electric capacitor parameter kϕ > 0, i.e., if the electric potential at the
interface is discontinuous, we get

−
eA

εA
UAkϕe−dηA/2−8A(εAξ + kϕ)e−dξ/2

+
eB

εB
UBkϕ cos

( 1
2 dηB

)
+8Bkϕ cos

(1
2 dξ

)
= 0. (4-10)

Using the fourth condition,

DB = kϕ

(
φA+

eA

εA
u A−φB −

eB

εB
u B

)
,

we obtain

−
eA

εA
UAkϕe−dηA/2−8Akϕe−dξ/2

+
eB

εB
UBkϕ cos

( 1
2 dηB

)
+8B

(
εBξ sinh

(1
2 dξ

)
+ kϕ cosh

( 1
2 dξ

))
= 0. (4-11)

The set of equations (4-8)–(4-11) is a homogeneous system of linear algebraic equations for UA, UB ,
8A, and 8B . In order to obtain nontrivial solutions, the determinant of the matrix formed by this system
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of equations should be zero, and it can be simplified to∣∣∣∣∣∣∣∣∣
eAξ 0 c̄AηA− ku ku cos

( 1
2 dηB

)
0 −eBξ sin

( 1
2 dξ

)
−ku c̄BηB sinh

( 1
2 dηB

)
+ ku cos

( 1
2 dηB

)
−εAξ − kϕ kϕ cosh

( 1
2 dξ

)
−eA/εA kϕ eB/εB kϕ cos

( 1
2 dηB

)
−kϕ εBξ sinh

( 1
2 dξ

)
+ kϕ cosh

( 1
2 dξ

)
−eA/εA kϕ eB/εB kϕ cos

( 1
2 dηB

)
∣∣∣∣∣∣∣∣∣ .

This determinant leads us to the following dispersion relations for the symmetric modes:

PA PB − Q2
+ ku(PA+ PB + 2Q)= 0,

where

PA =−c̄A

(
ηA− ξγφ

M2
A

εA

)
, PB = c̄B

(
ηB tan

(1
2 dηB

)
+ ξγφ

M2
B

εB

)
,

Q =−ξγφ

(
eAeB

εAεB

)
, γφ =

kϕ
ξ + kϕ

(
1/εA+ 1/εB coth

( 1
2 dξ

)) ,
M2

A =
e2

A

c̄AεA
, M2

B =
e2

B

c̄BεA
.

4B. The antisymmetric part. We now build the equations that satisfy the condition for the electro-
mechanical imperfect contact at y =− 1

2 d using the antisymmetric part of the solution.
The first condition,

TA = ku(u A− u B),

describes an elastic interface with spring constant material parameter ku > 0. Then, we get

UA1(c̄AηA− ku)e−dηA/2+8A1eAξ e−dξ/2
−UB1ku sin

( 1
2 dηB

)
= 0. (4-12)

With the second condition,
TB = ku(u A− u B),

we get

−UA1ku e−dηA/2+UB1
(
c̄BηB cos

( 1
2 dηB

)
− ku sin

( 1
2 dηB

))
+8B1eBξ cosh

( 1
2 dξ

)
= 0. (4-13)

The third condition,

DA = kϕ

(
φA+

eA

εA
u A−φB −

eB

εB
u B

)
,

describes an electric interface with an electric capacitor parameter kϕ > 0, i.e., the electric potential at
the interface must be discontinuous, so we obtain

−
eA

εA
UA1kϕe−dηA/2−8A1(εAξ + kϕ)e−dξ/2

−
eB

εB
UB1kϕ sin

( 1
2 dηB

)
−8B1kϕ sinh

( 1
2 dξ

)
= 0. (4-14)

Using the fourth condition,

DB = kϕ

(
φA+

eA

εA
u A−φB −

eB

εB
u B

)
,
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we obtain,
eA

εA
UA1kϕe−dηA/28A1kϕe−dξ/2

+
eB

εB
UB1kϕ sin

( 1
2 dηB

)
+8B1

(
εBξ cosh

(1
2 dξ

)
+ kϕ sinh

( 1
2 dξ

))
= 0. (4-15)

The set of equations (4-12)–(4-15) is a homogeneous system of linear algebraic equations for UA, UB ,
8A, and 8B . In order to obtain nontrivial solutions, the determinant of the matrix formed by this system
of equations should be zero, and it can be simplified to∣∣∣∣∣∣∣∣∣

eAξ 0 c̄AηA− ku −ku sin
( 1

2 dηB
)

0 eBξ cosh
( 1

2 dξ
)

−ku c̄BηB cos
( 1

2 dηB
)
− ku sin

( 1
2 dηB

)
−εAξ − kϕ −kϕ sinh

( 1
2 dξ

)
−eA/εA kϕ −eB/εB kϕ sin

( 1
2 dηB

)
−kϕ −εBξ cosh

( 1
2 dξ

)
− kϕ sinh

( 1
2 dξ

)
−eA/εA kϕ −eB/εB kϕ sin

( 1
2 dηB

)
∣∣∣∣∣∣∣∣∣.

This determinant leads us to the following dispersion relations for the antisymmetric modes:

PA PB − Q2
+ ku(PA+ PB + 2Q)= 0,

where

PA =−c̄A

(
ηA− ξ Aγφ

M2
A

εA

)
, PB = c̄B

(
ηB tan

( 1
2 dηB

)
+ ξ Aγφ

M2
B

εB

)
,

Q =−ξ Aγφ

(
eAeB

εAεB

)
, Aγφ =

kϕ
ξ + kϕ

(
1/εA+ 1/εB tanh

( 1
2 dξ

)) ,
M2

A =
e2

A

c̄AεA
, M2

B =
e2

B

c̄BεA
.

5. Limit cases

Let us consider the following limit cases for the symmetric part:

(1) The interface has partial electrical interaction but has no mechanical interaction:

ku→ 0, 0< kϕ <∞,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
+ γφ

M2
B

εB

√
1− v2/v̄2

A

− γφ
M2

A

εA

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

(2) The interface has perfect electrical interaction but has no mechanical interaction:

ku→ 0, kϕ→∞,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
+

M2
B

εB/εA+ coth
( 1

2 dξ
)√1− v2/v̄2

A

−
M2

A

1+ εA/εB coth
(1

2 dξ
)√v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0.
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(3) The interface has neither mechanical nor electrical interaction:

ku→ 0, kϕ→ 0,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 tan
(1

2 dξ
√
v2/v̄2

B − 1
)
= 0→ sin

( 1
2 dξ

√
v2/v̄2

B − 1
)
= 0,

1
4 d2ξ 2(v2/v̄2

B − 1
)
= n2π2

; n ∈ Z.

(4) The interface has perfect mechanical interaction but partial electrical interaction:

ku→∞, 0< kϕ <∞,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
= γφ(eA/εA− eB/εB)

2.

(5) The interface has both perfect mechanical and electrical interactions:

ku→∞, kϕ→∞,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
=

(eA/εA− eB/εB)
2

1/εA+ 1/εB coth
( 1

2 dξ
) .

(6) The interface has perfect mechanical interaction but has no electrical interaction:

ku→∞, kϕ→ 0,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 tan
(1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

Let us consider the following limit cases for the antisymmetric part:

(1) The interface has partial electrical interaction but has no mechanical interaction:

ku→ 0, 0< kϕ <∞,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
− Aγφ

M2
B

εB

√
1− v2/v̄2

A

− Aγφ
M2

A

εA

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

(2) The interface has perfect electrical interaction but has no mechanical interaction:

ku→ 0, kϕ→∞,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
−

M2
B

εB/εA+ coth
( 1

2 dξ
)√1− v2/v̄2

A

−
M2

A

1+ εA/εB tanh
(1

2 dξ
)√v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

(3) The interface has neither mechanical nor electrical interaction:

ku→ 0, kϕ→ 0,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0→ cos

( 1
2 dξ

√
v2/v̄2

B − 1
)
= 0,

d2ξ 2(v2/v̄2
B − 1)= (2n+ 1)2π2

; n ∈ Z.
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(4) The interface has perfect mechanical interaction but partial electrical interaction:

ku→∞, 0< kϕ <∞,

c̄A

√
1− v2/v̄2

A+ c̄B

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
= Aγφ(eA/εA− eB/εB)

2.

(5) The interface has both perfect mechanical and electrical interactions:

ku→∞, kϕ→∞,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
=

(eA/εA− eB/εB)
2

1/εA+ 1/εB tanh
( 1

2 dξ
) .

(6) The interface has perfect mechanical interaction but has no electrical interaction:

ku→∞, kϕ→ 0,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 cot
(1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

6. Numerical examples

In order to show the effects of the imperfections within the interfaces, we present some dispersion curves.
We used two different piezoelectric materials: BaTiO3 as the piezoelectric A and PZT4 as the piezoelec-
tric B. The properties of the materials are summarized in Table 1.

In Figure 2, dispersion curves v = f (ωd) for the symmetric part for the fixed electrical imperfect
parameter kϕ = 0 F/m2 and different values of the mechanical imperfect parameter ku are shown. These
curves are nonmonotonic for small values of ku and strictly convex and decreasing for large values of ku .
As we can see, the dispersion curves are shifted to the right by increasing values of ku . This behavior
of the dispersion curves was shown by Otero et al. [2011, Figures 2(a) and 2(b)]. The value of ku has a
really strong influence on the dispersion curves and all the wave velocities tend to the wave velocity in
phase B as ωd goes to infinity. Nevertheless, for high frequencies, the wave propagation is not affected.
The wave velocities are between vA and vB , and both are shown in Figure 2.

In Figure 3, dispersion curves for the symmetric part for kϕ = 5 F/m2 and different values of the
mechanical imperfect parameter ku are shown. In Figure 4, dispersion curves for the symmetric part for
kϕ = 107 F/m2 and different values of mechanical imperfect parameter ku are shown.

The behavior in Figures 3 and 4 are quite similar for the case kϕ = 0 F/m2, but there is a slight difference,
which is shown in Figure 5, if we compare the dispersion curves for ku = 0.3 GPa/m in all cases. As we

properties BaTiO3 PZT4

c (GPa) 43 26
e (C/m2) 11.6 10.5

ε (10−9 C2/Nm2) 11.2 7.124
ρ (103 kg/m3) 5 7.5
v̄ (103 m/s) 3.07981 2.35162

Table 1. Material properties.
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Figure 2. Dispersion curve for the symmetric part for kϕ = 0 F/m2 and different values of ku .
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Figure 3. Dispersion curve for the symmetric part for kϕ = 5 F/m2 and different values of ku .
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Figure 4. Dispersion curves for the symmetric part for kϕ = 107 F/m2 and different
values of ku .
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Figure 5. Dispersion curve for the symmetric part for ku = 0.3 GPa/m and different
values of kϕ .
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Figure 6. Dispersion curve for the antisymmetric part for kϕ = 10 F/m2 and different
values of ku .

can see in Figure 5, there is a notable displacement in both the frequency and the wave velocity axes.
If kϕ is increased, the dispersion curves are shifted to the left and the wave velocity is decreased. This
conclusion is really important because the dispersion curves are strongly dependent on the mechanical
imperfect parameter (ku) and depend weakly on the electrical parameter (kϕ).

In Figure 6, dispersion curves for the antisymmetric part for the fixed electrical imperfect parameter
kϕ = 10 F/m2 and different values of mechanical imperfect parameter ku are shown. These curves are
strictly convex and have the same nonmonotonic behavior for small values for ku and large values of ku ,
similar to that of dispersion curves for the symmetric part. The visual difference between these curves
and the symmetric ones is that dispersion curves for the antisymmetric part are shifted to the right. This
behavior of the dispersion curves was shown in [Otero et al. 2011, Figures 8(a) and 8(b)]. The value of
ku has a really strong influence in the dispersion curves and all the wave velocities approach to the wave
velocity in phase B as ωd goes to infinity. Nevertheless, for high frequencies, the wave propagation is
not affected. The wave velocities are between vA and vB , and both are shown in Figure 6.
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Figure 7. Dispersion curve for the antisymmetric part for kϕ = 107 F/m2 and different
values of ku .
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Figure 8. Dispersion curve for the antisymmetric part for ku = 0.5 GPa/m and different
values of kϕ .

In Figure 7, dispersion curves for the antisymmetric part for kϕ = 107 F/m2 and different values of
the mechanical imperfect parameter ku are shown. The behavior in Figures 6 and 7 are quite similar,
but there is a slight difference, which is shown in Figure 8, if we compare the dispersion curves for
ku = 0.5 GPa/m in both cases. As we can see in Figure 8, there is a notable displacement in both the
frequency and wave velocity axes, which is the same behavior as in the symmetric part.

7. Conclusions

Dispersion relations for the propagation of an interfacial shear wave in an A/B/A piezoelectric structure
for symmetric and antisymmetric parts have been studied by considering the existence of electrical and
mechanical imperfections at the interfaces, which are modeled by means a capacitor and a spring, respec-
tively. Analytical expressions for dispersion relations are obtained and different limit cases are studied,
showing a good agreement with [Otero et al. 2011]. Numerical examples are presented by using two
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piezoelectric materials (PZT4 and BaTiO3), and dispersion curves for different values of the material
parameters (ku and kϕ) are shown. Some conclusions about dispersion curves have been obtained:

• they are confined within the velocity of media A and B for the symmetric and antisymmetric parts,

• they never intersect each other for the symmetric and antisymmetric parts,

• they go to vB as ωd goes to infinity for all values of ku , and possible values of kφ ,

• they are nonmonotonic for small values for ku , strictly convex and decreasing for large values of ku ,

• the smaller the value of the imperfect bounding parameter (kφ), the more shift to the right.
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