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HOMOGENIZATION OF A VIERENDEEL GIRDER WITH ELASTIC JOINTS
INTO AN EQUIVALENT POLAR BEAM

ANTONIO GESUALDO, ANTONINO IANNUZZO, FRANCESCO PENTA AND GIOVANNI PIO PUCILLO

In this paper, a homogenization procedure of a Vierendeel girder with elastic joints is shown. The
method is based on the Stephen transfer matrix analysis and employs (as a substitute continuum) a polar
Timoshenko beam. The polar character of the equivalent beam arises quite naturally from the analysis
of the pure bending eigenvector components of the girder force transfer matrix. Through the girder unit
cell, two bending moments are transmitted: one is generated by the couple of axial forces acting on
each nodal section of the beam, and the other is produced by the moments applied at the nodes of every
section by the adjacent cells and is modeled as the resultant of the micropolar moments. Transfer force
eigenvector analysis reveals that the unit cell bends while maintaining undeformed webs, a property
that allows the evaluation of both the bending stiffnesses and the equivalent material micropolar scale
parameter by means of straightforward equations.

The accuracy of the proposed method is verified by comparing the predictions of the homogenized
model with literature data and with the results of the analysis of a series of girders carried out by the
finite element method.

1. Introduction

Recently, in order to achieve simultaneously safety, sustainability and environmental compatibility, an
increasing amount of attention has been paid to structural elements that are able to realize the optimal
trade-off between strength and stiffness on one side, and lightness, economy and manufacturing times
on the other.

A suitable example of a structural solution having these properties is the Vierendeel beam, which for
this reason is often employed both in civil and industrial builds and in naval and aerospace constructions
[Salmon et al. 2008; Tej and Tejová 2014; Nakayama 1985; Noor 1983; Cao et al. 2007]. The Vierendeel
beam finds applications in railway structures as well. In fact, to design against the thermal track buckling
phenomenon, rails, sleepers and fastenings are frequently modeled as a Vierendeel girder constrained to
the ground by nonlinear springs, representative of the ballast actions [Kerr and Zarembski 1981; Pucillo
2016; De Iorio et al. 2014a; 2014b; 2014c].

The response of this kind of lattice beam to the service loads is usually analyzed in a CAE environment.
The beam is reduced to a discrete system of finite elements and one of the solution methods for structural
framework problems is then applied to it. If a great number of bays or unit cells composes the beam, it
may be convenient to approximate its mechanical behavior by a continuum 1D model, whose properties
are derived from those of the unit cell by a suitable homogenization method. In many cases, this kind
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of approach offers the advantage of applying analytical solutions in closed form for the problem at hand.
Moreover, the continuous approximation may be employed as a means of transition to a coarser discrete
system with a smaller and more tractable set of kinematic and static unknowns.

However, the classical continuum theory does not provide an acceptable approximation and a micro-
polar theory has to be used in order to correctly analyze the in plane lattice bending. Several micropolar
equivalent models have been reported in literature for the analysis of planar lattices [Noor 1988; Bazant
and Christensen 1972; Kumar and McDowell 2004; Bakhvalov and Panasenko 1989; Hård af Segerstad
et al. 2009; Wang and Stronge 1999; Warren and Byskov 2002; Onck 2002; Martinsson and Babuška
2007; Liu and Su 2009; Dos Reis and Ganghoffer 2012; Trovalusci et al. 2015; Bacigalupo and Gam-
barotta 2014; Hasanyan and Waas 2016]. However, studies on the micropolar models for analyzing
beam-like lattices have not yet achieved the same advances. As far as the authors are aware, only
two papers have specifically addressed this topic. In [Noor and Nemeth 1980], a rational approach
was presented where stiffness parameters of the effective continuum model were obtained using energy
equivalence concepts. Nodal displacements of the unit cell were obtained in an approximated way by a
Taylor expansion of the kinematical model of the substitute continuum. Then, the equivalent stiffnesses
were derived by equating the potential and kinetic energies of a unit cell of the lattice beam to those of
the continuum. This approach leads to two questionable stiffness couplings: between the symmetric and
antisymmetric components of the shear stresses and between the bending and couple stress moments.
These make the solution of the equilibrium equations of the equivalent beam awkward for the simpler
loading and constraining conditions. Furthermore, a key limitation of this research is that it does not take
into account the girder joints elasticity.

More recently, Romanoff and Reddy [2014] used the modified couple stress Timoshenko beam theory
[Ma et al. 2008; Reddy 2011] to analyze the transversal bending of web-core sandwich panels. The
equivalent polar bending stiffness was determined by invoking the spring analogy criterion. According
to this rule, along the substitute beam, the ratio of the couple stress moment to the total bending moment
is given by the ratio of the chords’ bending moments caused by the thick face effect to the moment of
the couple of axial forces acting in the panels faces. As it will be shown, this assumption unfortunately
leads to overestimates of the polar bending stiffness.

This article introduces an equivalent Timoshenko micropolar beam for the static analysis of Vierendeel
girders with compliant joints. The adopted homogenization method is based on the force transfer matrix
eigenanalysis presented in [Stephen and Wang 2000], where the homogenization of a truss made of hinged
rods is also carried out as a numerical example. When this method is applied to the analysis of the girder,
no approximations for the kinematical quantities nor subjective phenomenological assumptions on the
inner moments are needed. The polar nature of the substitute beam is a direct consequence of the pure
bending eigenvector structure of the force transfer matrix of the unit cell. Through the unit cell, two
bending moments are transferred. The first one is generated by the axial forces acting on the nodal cross
sections and corresponds to the Navier bending moment in the equivalent beam. The other one is due to
the moments applied on the joints of the unit cell and is modeled by the polar moments. Furthermore,
the ratio between the amplitudes of the two moments is such that the total moment is always transferred
without deformations of the girder webs. On the basis of this property, equivalent bending stiffness
and couple stress stiffness are expressed by means of a couple of surprisingly simple equations. These
stiffnesses are also independent of the web properties, the cell length and the stiffness of web-chord
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Figure 1. Kinematics of the Timoshenko beam.

joints, a result not yet reported in studies till now. Consequently, the polar material length scale ` is
independent from the cell sizes and is a function only of the chords cross section geometry and material.

Finally, results from a validation study of the proposed model are also presented. The study has been
carried out by means of both literature experimental data and the sensitivity analysis performed by finite
element models.

2. The equivalent continuum

As an equivalent continuum, the modified polar Timoshenko beam is adopted [Ma et al. 2008; Reddy
2011]. The displacements (U, V ) of a point P(x, y) of the beam (see Figure 1) are given by

U = u(x)− y ·ϕ(x), V = v(x),

where u(x) and v(x) denote respectively the longitudinal and transversal displacements of the beam axis
and ϕ(x) is the rotation of the cross section. The only nonzero strains at P are the normal strain in the
x direction,

εx =
du
dx
− y dϕ

dx
,

the shear strain associated with the directions x and y,

γxy =
dv
dx
−ϕ(x),

and the curvature,

χxy =
1
2

dω
dx
=

1
4

(dϕ
dx
+

d2v

dx2

)
,

where ω = 1
2(dv/dx +ϕ) is the rotation of an elementary neighborhood of P in the x-y plane.

Denoting by δ( · ) the kinematically admissible variations of the strain components and by σx , τxy and
mxy respectively the normal, tangential and the couple stress acting on the beam cross section, the virtual
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strain energy or internal work can be expressed as

δU =
∫

l

∫
A
(σxδεx + τxyδγxy + 2mxyδχxy) dA dx

=

∫
l

[
Nx

dδu
dx
+Mx

dδϕ
dx
+ Qx

(
δϕ−

dδv
dx

)
+

1
2

Pxy

(dδϕ
dx
+

d2δv

d2x

)]
dx,

where l is the beam length and A is the area of its cross section,

Nx =

∫
A
σx dA, Qx =−

∫
A
τxy dA, (1)

are the beam axial and shear forces, while

Mx =−

∫
A
σx y dA and Pxy =

∫
A

mxy dA (2)

are the Navier and polar bending moments, respectively. It is worth nothing that the dual shear deforma-
tion of Qx is

γ =−γxy = ϕ−
dv
dx
. (3)

Under the assumption of homogeneous and isotropic linear elastic material, the stress-strain relation-
ships are

σx = Eεx , τxy = Gγxy, mxy = 2G`2χxy,

with E being the Young modulus, G the tangential elasticity modulus and ` the material length scale
parameter. Substituting the previous constitutive relations into the expressions of the stress resultants (1)
and (2) gives

Nx = Axxεx , Qx = DQγ,

Mx = Dxx
dϕ
dX
, Pxy =

1
2 Sxyχxy,

(4)

where Axx and DQ are respectively the axial and shear beam stiffnesses, Dxx = E I is the bending
stiffness, with I the second order central moment of the beam cross section, and Sxy = 4G`2 A the
couple stress bending stiffness.

The beam equilibrium equations can be derived by equating the virtual internal work δU to the virtual
work of the external loads, integrating by parts and taking into account the beam boundary conditions. For
the simpler loading and constraint conditions, approximate solutions for these equations can be obtained
by the Fourier series method (see [Reddy 2011] for more details).

3. Girder transfer matrix analysis and homogenization

In this section, the equivalent beam properties are evaluated by employing the transfer matrix analysis
of a unit cell. So far, the transfer matrix methods have been applied mostly for the dynamic analysis of
repetitive or periodic structures [Mead 1970; Meirovitch and Engels 1977; Yong and Lin 1989; Zhong
and Williams 1995; Langley 1996]. Only recently have they also been used for the elasto-static analysis
of prismatic, curved and pretwisted repetitive beam-like lattices made of pin-jointed bars [Stephen and
Zhang 2004; 2006; Stephen and Ghosh 2005].
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Figure 2. Vierendeel girder (a), unit cell (b) and exploded view of the elements com-
posing the unit cell (c).

The main advantage of the method is that it allows evaluating both the Saint-Venant decay rates and
the load transmission modes by carrying out an eigenanalysis of the transmission matrix G of the unit
cell. Although it is conceptually simple, its practical implementation is problematic, since the G matrix is
ill-conditioned and defective. Consequently, the Jordan block structure of G is very difficult to determine
numerically. To overcome this problem, in this paper the force transfer matrix approach of Stephen and
Wang [2000] is adopted. This method suppresses the redundant decay vectors and makes the assessment
of the force transmission modes of the unit cell simpler.

In this study, the Vierendeel girder is modeled by assembling one-dimensional elements of Euler–
Bernoulli type as represented in Figure 2. It consists of two straight parallel chords connected to the
webs by means of torsional springs of stiffness kϑ . By these springs the elastic deformability of the
web-chords’ connections is taken into account. In Figure 2a the unit cell is depicted. Top and bottom
chords have the same section, whose area and second order central moment are Ac and Ic, respectively.
To respect the girder geometrical periodicity, cross sectional area and second order moment of the cell
vertical beams are equal to the half part of the area Aw and second order moment Iw of the girder webs,
while the stiffness of the unit cell torsional springs is 1

2 kϑ .
In the following, we use the subscript j to identify any static or kinematic quantity concerning the

nodal section j of the girder. Furthermore, to distinguish between the joints of a same section, we use
superscripts t and b depending on whether the top or the bottom chords are involved. Coherently with
this notation, the top and bottom joints of the section j are labeled j (t) and j (b).

For the sake of clarity, the nodal sections of the girder are numbered in such a way that sections i − 1
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Figure 3. Unit cell nodes numbering with girder inner forces and nodal displacements.

and i bound the i-th cell respectively from the left and the right side, as shown in Figure 3. Therefore,
the two extreme sections of a lattice beam of N cells are labeled correspondingly by 0 and N.

We denote with
st

j = [u
t
j , v

t
j , ϕ

t
j ]

T and sb
j = [u

b
j , v

b
j , ϕ

b
j ]

T

the displacement vectors of the joints j t and jb, where u(·)j and v(·)j are the displacement components
and ϕ(·)j the rotation of the joint j (·). Therefore, the displacement vector of the nodal section j is s j =

[stT
j , sbT

j ]
T.

Similarly, the nodal forces applied on the joints j t and jb of the cell j are

pt
j =

[
F t

j x , F t
j y,mt

j
]T and pb

j =
[
Fb

j x , Fb
jy,mb

j
]T
,

where F (·)j x and F (·)j y are respectively the axial and transversal components of the force and m(·)
j the couple

applied on the joint j (·). Thus, the vector of the nodal forces acting on the section at the left side of the
j-cell is

p j = [ ptT
j , pbT

j ]
T.

In order to construct the displacement and force transfer matrix, we consider the couple of adjacent
cells i and i + 1 sharing the nodal cross section i . By equilibrium, in absence of external loads on the
section, the nodal forces on the left sides of the cell i + 1 are equal to − pi .

The stiffness equations of the cells i and i + 1 in partitioned form are thus given by[
− pi−1

pi

]
=

[
KL L KL R

KRL KR R

]
·

[
s j−1

s j

]
, (5)[

− pi

pi+1

]
=

[
KL L KL R

KRL KR R

]
·

[
s j

s j+1

]
, (6)

in which subscripts L and R adopted for the subpartitions of the stiffness matrix refer to the left and
right side of the cell. For the problem at hand, the cell stiffness matrix has been obtained following the
standard method adopted in the finite element analyses, that is by assembling the stiffness matrix of the
chords and those of the elastic systems composed by a cell vertical beam and the couple of torsional
springs constraining it to the chords (see Figure 2c).
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Adding the second equation in (5) to the first equation within (6) eliminates the vector pi , since we
obtain

0= KRL si−1+ (KR R + KL L)si + KL R si+1. (7)

From the previous equation written for the section (N − 1) of the girder, taking into account the
boundary condition sN = 0, the following relationship between the displacement vector sN−1 and sN−2

is deduced:
sN−1 =−S−1

1 KRL sN−2,

where S1 = KR R + KL L .
Substituting this result within relation (7) specialized to the case of section (N − 2), we have

sN−2 =−S−1
2 KRL sN−3,

where S2 = KR R + KL L − KL R S−1
1 KRL .

By iterating the previous algebraic operations until considering the section j − 1, the displacement
vector s j of the inner section j can be expressed as function of the displacement vector s j−1 of the
adjacent nodal section by means of the equation

s j = S s j−1,

where S is the j-cell displacement transfer matrix given by

S=−S−1
N− j KRL , (8)

with SN− j = KR R + KL L − KL R S−1
(N− j+1) KRL .

By expanding the stiffness matrix equation of the j-th cell and substituting in it the previous results,
one obtains

p j−1 =−KL L s j−1− KL R s j =−(KL L + KL R S)s j−1, (9a)

p j = KRL s j−1+ KR R s j = (KRL + KR R S)s j−1. (9b)

Eliminating the displacement vector s j−1 in (9) gives

p j = M p j−1,

where M =−(KRL + KR R S)(KL L + KL R S)−1 is the force transfer matrix of the cell j .
Notice that the matrix M depends on the recurrence index j . It must have three unity eigenvalues

corresponding to the force transmission modes and three nonunitary eigenvalues corresponding instead
to the decay rates of self-equilibrated loadings [Stephen and Wang 2000]. However, when the j-index is
not sufficiently high, numerical determination of the unitary eigenvector may be difficult or impossible.
For the present analysis, a value of j equal to 100 has allowed the detection of the unit eigenvalues and
the related eigenvectors with a precision of four decimal digits, at least.

Eigenspaces of M associated to unit eigenvalues have dimensions 1 and 2. The one-dimensional
eigenspace is related to the transmission of the beam axial force. Pure bending eigenvectors Eb of the
matrix M belong instead to the eigenspace of dimension 2, since they may be coupled with the shear
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Figure 4. Unit cell under pure bending loading.

forces vector S f . The latter is given by the chain rule defining the principal vector associated to the
bending eigenvector Eb:

M · Eb = Eb, M · S f = Eb+ S f . (10)

However, for the considered problem S f can be obtained directly on the basis of very simple equilib-
rium considerations, without solving the algebraic problem defined by (10). In fact, it is worth noting
that (9b) is the equilibrium relationship between the bending moments and the shear forces acting on a
single cell.

The homogenized beam stiffnesses can be determined by averaging over the unit cell length s the cell
responses under the load conditions defined by the unitary eigen- and principal vectors.

The eigenvector of the axial force Ea is

Ea = [n, 0, 0, n, 0, 0]T.

Due to the symmetry of the cell, the two axial forces n are transmitted without bending; consequently
only the chords deform with the axial elongations ns/E Ac. Thus, the equivalent axial stiffness of the
homogenized beam is

Axx = 2E Ac.

The pure bending eigenvector Eb has components

Eb = [−nb, 0,mb,+nb, 0,mb]
T,

where m and ±nb are respectively the moments and the axial forces acting on the joints of the right side
of the unit cell. The m moments correspond to the polar bending moment while the axial forces ±nb

generate the bending couple associated to the Navier moment in the Timoshenko polar beam.
To evaluate the equivalent bending stiffnesses, the cell displacements and rotations were calculated

solving the elastic scheme of Figure 4. Denoting the upper and lower chords elongations respectively as
1ub = ub

j − ub
j−1 and 1ut = ut

j − ut
j−1, the mean curvature of the cell can be written in the form

1
R
=
1ub−1ut

hs
.
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Therefore, the equivalent bending stiffness Dxx is given by

Dxx = nbh · R = nbh2s
1ub−1ut

. (11)

Polar bending stiffness can be evaluated by observing that when the shear force is zero, from (3) and (4)
it follows that

dϕ
dX
=

d2v

dX2 .

Hence, the polar and Navier moment of the homogenized beam make work by the same generalized
strain, namely the beam curvature dϕ/dX . For this reason, we evaluate the polar bending stiffness as

Sxy = 2mb R = 2mbsh
1ub−1ut

. (12)

The principal vector of the shear forces is

S f =
[
0, 1

2 T, 0, 0, 1
2 T, 0

]T
,

where the shear resultant force T is obtained by the in plane rotation equilibrium of the unit cell

−T s+ nbh+ 2mb = 0.

The equivalent shear stiffness is determined by analyzing the scheme in Figure 5. In it, the transversal
load components of the principal vector S f act on the left section of the unit cell, while on the right
section, the axial forces vectors ± nb and the moments mb, given by the pure bending eigenvector Eb,
are applied. Recalling the expression of the shear angle γ and denoting by

ϕ̂ = 1
4(ϕ

(t)
i−1+ϕ

(b)
i−1+ϕ

(t)
i +ϕ

(b)
i )

the average rotation angle of the cell and by

1v

s
=
−v

(t)
i−1− v

(b)
i−1

2s

the mean slope of the cell center-line, the shear stiffness can be expressed as

DQ =
T

1v/s− ϕ̂
. (13)

Equations (11), (12) and (13) completely define the elastic behavior of the equivalent Timoshenko
beam. The range of validity of these homogenized equations is analyzed in the next section on the basis
of both literature experimental data and the numerical results of a sensitivity analysis.

4. Validation study

To verify the accuracy of the proposed micropolar beam, we use the experimental data from [Jutila and
Romanoff 2007; Romanoff et al. 2007; 2009] as reported in [Romanoff and Reddy 2014]. They were
obtained from specimens extracted from web-core sandwich panels. The specimens had unit cell length
s = 120 mm, web height hw = 40 mm, nominal web thickness tw = 4 mm and were made of a steel
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Figure 5. Unit cell under shear and bending loading.

having Young modulus E = 200–220 GPa and Poisson ratio ν = 0.3. Top and bottom panels face plates
had the same thickness t = 2.5–3 mm. A three point bending test was carried out on a beam of only 4
unit cells. Four point bending tests were executed on beams made of 9 and 15 unit cells. In these tests,
the loads were applied at 1

3 and at 2
3 of the beam span L .

Only the deflection of the half-span section was measured for the 4 cell beam tested under the three
points loading condition. For the 9 cell beam tested under the four points loading, the deflection was
measured at the abscissas X = 360 mm. For the 15 cell beam having span L = 1800 mm, the deflections
were instead measured at the abscissas X = 200 mm, X = 400 mm, X = 600 mm and X = 1200 mm.
The measured deflections are listed in Table 1, together with the stiffnesses and the deflections obtained
under the assumption of plane strain by both the theory of Reddy–Romanoff and the model we propose.
As it can be seen, the deflections predicted by the latter are in good agreement with the experimental data.
It is worth noting that the bending and shear stiffnesses from the Reddy–Romanoff theory are very close
to those of our model while the Reddy–Romanoff polar stiffness results are at least four times greater
than the results obtained by the present method.

To study the accuracy of the predictions from the equivalent beam defined in Section 3 in greater detail,
it is essential to consider a wider data set than [Romanoff and Reddy 2014], including information on the
effects of all the geometrical parameters influencing the girder response. To this end, a series of girder
finite element models under the three points bending condition has been developed by assembling beam
elements of Euler–Bernoulli type.

Given the properties of the chords and web cross-sections, as a first approximation the height h of
the girder determines the relative importance of the two bending moments acting on its cross section.
For this reason, in the first set of finite element analyses, the effects of different values of h for several
values of the cell aspect ratio α = s/h and girder aspect ratio β = L/h have been considered, under the
assumption that the joints between chords and webs are rigid and that both chords and webs have the
same cross section, specifically HEA100.

The results from these analysis are reported in Figure 5 where the joints vertical displacements vi of
the girder finite element models having h = 300, 600, 1200 mm, α = 0.5, 1, 2 and β = 6, 12, 24, 48 are
compared with the elastic curves v(x) of the corresponding homogenized beams. Previous values of h,
α and β as well as the cross section properties were chosen in order to obtain a girder geometry similar
to those encountered in the practice of structural design. The stiffnesses of the homogenized beams of
Figure 5 are listed in Table 2 together with the corresponding values of the following nondimensional
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Unit 4 unit cells specimen 9 unit cells specimen 15 unit cell specimen
[Jutila and Romanoff 2007] [Romanoff et al. 2009] [Romanoff et al. 2007]

F [N/m] 2000 4000 1000
E [GPa] 212 221 221
ν − − 0.3
B [mm] 50 50 1000
s [mm] 120 120 120
α − 2.79 2.82 2.8
β − 4 9 15
Ac [mm2] 152 126 2860
Ic [mm3] 117 66.7 1950
Iw [mm3] 273 261 5210
kJ [kN] 107 113 107

Dxx [kN m] 657 / 656 554 / 553 613 / 612
DQ [kN/m] 388 / 500 304 / 368 355 / 447
Sxy [kN m] 4.33 / 1.09 2.57 / 0.648 3.61 / 0.908

x/L = 1
2

1
3

1
9

2
9

1
3

1
2

0.487 4.69 0.675 1.33 1.9 2.02
v(x/L) [mm]

{
0.439 4.07 0.561 1.109 1.606 1.676
0.446 4.14 0.750 1.37 1.88 2.02

Table 1. Top: geometrical details of 4, 9 and 15 unit cell specimens. Middle: values
of Dxx , DQ and Sxy obtained from the Reddy–Romanoff theory (before the slash) and
with the present model (bold, after the slash). Bottom: Values of v for various x/L ,
obtained from the Reddy–Romanoff theory (first of three rows of results), the present
theory (middle row, bold), and experiment (bottom row, slanted). Experimental and
Reddy–Romanoff data are from [Romanoff and Reddy 2014].

measure of the homogenization error:

e =
{

1
n̄
·

∑
i∈N

[
v(xi )− vi

vi

]2}1/2

,

where N is the set of n̄ nodes belonging to the inner model cross section of the girder and xi is the
abscissas of these nodes.

For all the girder aspect ratio considered, the homogenization error quickly decreases as the cell aspect
ratio decreases or equivalently as the number of cell per beam unit length increases. This behavior is
expected since the adopted method of homogenization is asymptotically exact; that is, e→ 0 when
α/β = s/L→ 0. The highest values of the homogenization error in Table 2 are attained when the girder
aspect ratio β is equal to 6, namely when the girder is very stout and its behavior can be approximated
only roughly by any beam model. Instead, the homogenization errors in Table 2 are much smaller for
the more slender girders.
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α [–] DQ [Nmm−1] Sxy [Nmm] Dxx [Nmm] eave [–]

h = 300 mm 0.50 1.579 ·108 1.481 ·1012 2.026 ·1013 8.233 ·10−3

β = 24 1.00 6.580 ·107 ” ” 5.312 ·10−3

2.00 2.468 ·107 ” ” 1.107 ·10−2

h = 600 mm 0.50 3.948 ·107 1.481 ·1012 8.105 ·1013 1.760 ·10−2

β = 12 1.00 1.645 ·107 ” ” 4.188 ·10−2

2.00 6.169 ·106 ” ” 6.877 ·10−2

h = 1200 mm 0.50 9.871 ·106 1.481 ·1012 3.242 ·1014 9.880 ·10−2

β = 6 1.00 4.113 ·106 ” ” 1.532 ·10−1

2.00 1.542 ·106 ” ” 3.350 ·10−1

Table 2. Equivalent stiffnesses and homogenization errors for Vierendeel girders with
various heights H (span L = 7600 mm, chords and web sections: HEA100).

webs [–] DQ [Nmm−1] Sxy [Nmm] Dxx [Nmm] eave [–]

h = 300 mm HEA100 3.131 ·107 2.570 ·1012 2.417 ·1013 8.465 ·10−3

α = 0.5 HEA120 4.284 ·107 ” ” 1.739 ·10−3

β = 24 HEA140 5.399 ·107 ” ” 1.553 ·10−3

HEA160 6.289 ·107 ” ” 2.283 ·10−3

h = 600 mm HEA100 1.955 ·107 2.570 ·1012 9.670 ·1013 4.456 ·10−2

α = 1.0 HEA120 2.906 ·107 ” ” 3.145 ·10−2

β = 12 HEA140 3.997 ·107 ” ” 1.810 ·10−2

HEA160 5.719 ·107 ” ” 2.623 ·10−2

Table 3. Equivalent stiffnesses and homogenization errors for Vierendeel girders with
webs of various cross section (span L = 7600 mm, chords’ sections: HEA120).

In Figure 6 and in Table 3 the effects of the variations of the web bending stiffness on the accuracy of
the proposed beam model are analyzed for two values of the girder aspect ratio β. It is evident that the
homogenization error follows the same trend for both values of β, attaining the greater values when the
webs have the lower shear stiffness. However, in both cases, the errors are negligible and are acceptable
for engineering purposes, being less than or equal to 5%.

In Figure 6 the elastic lines of the homogenized beam models by Noor–Nemeth [1980] and Romanoff–
Reddy [2014] are also reported for comparison purposes. As it can be seen, the Reddy–Romanoff theory
in all the examined cases underestimates the finite element model’s displacements while the predictions
of the proposed approach are affected by an error of the same order of magnitude as the error of the
Noor–Nemeth theory.

Also when the joints between webs and chords are elastically compliant, the predictions from our beam
model are in excellent agreement with the finite element method results for a wide range of values of the
joint compliance. This is evident from results reported in Figure 7, where the vertical displacements of
a series of girder finite element models having various stiffnesses of the torsional springs are compared
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Figure 6. Vertical deflections of Vierendeel girders finite element models and elastic
lines of the equivalent Timoshenko beams: effects of girder height H (span L = 7600
mm, chords and web sections HEA100).

with the elastic lines of the corresponding homogenized polar beam. The spring stiffness values of these
girders have been chosen in order to realize, starting from the ideal case of perfectly rigid chord-webs
joints, percent increments χ equal to 1, 5, 25, 50, 100, 400 and 2000 for the bending compliance of the
elastic systems of Figure 2c. As schematically shown in Figure 7, the systems are composed by a web
in series with the corresponding springs constraining it to the chords. In Table 4, the stiffnesses and the
homogenization errors of the equivalent beam of Figure 7 are listed.

The influence that both web shear and joint stiffnesses have on the homogenization error can be
explained as follows: recall that in a Vierendeel girder the bending constraint action that the chords exert
on each other depends on these stiffnesses, being the Vierendeel effect directly proportional to them. In
other words, for lower values of the web shear and joint stiffnesses, the jumps in the chords’ axial forces
at the girder joints become smaller; as a result, when either E Iw or kϑ decrease, the girder behavior tends
toward an Euler–Bernoulli beam, having infinite shear stiffness and bending stiffness equal to the one
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Figure 7. Vertical deflections of Vierendeel girders finite element models and elastic
lines of the equivalent Timoshenko beams: effects of the girder webs cross sections.

χ% [–] kϑ [Nmm] DQ [Nmm−1] Sxy [Nmm] Dxx [Nmm] eave [–]

h = 300 mm 1.0 7.403 ·1011 2.530 ·107 1.481 ·1012 2.026 ·1013 4.681 ·10−3

α = 2.0 5.0 1.481 ·1011 2.437 ·107 ” ” 5.925 ·10−3

β = 24 25.0 2.961 ·1010 2.058 ·107 ” ” 1.067 ·10−2

chords= HEA100 50.0 1.481 ·1010 1.724 ·107 ” ” 1.360 ·10−2

webs= HEA100 100.0 7.403 ·109 1.300 ·107 ” ” 1.558 ·10−2

400.0 1.851 ·109 5.258 ·106 ” ” 5.639 ·10−2

2000.0 3.702 ·108 1.259 ·106 ” ” 1.881 ·10−1

h = 1200 mm 1.0 8.867 ·1011 4.655 ·107 7.094 ·1012 5.918 ·1014 2.266 ·10−2

α = 0.5 5.0 1.773 ·1011 4.379 ·107 ” ” 2.317 ·10−2

β = 12 25.0 3.547 ·1010 3.378 ·107 ” ” 3.196 ·10−2

chords= HEA160 50.0 1.773 ·1010 2.627 ·107 ” ” 4.158 ·10−2

webs= HEA160 100.0 8.867 ·109 1.819 ·107 ” ” 5.035 ·10−2

400.0 2.217 ·109 6.392 ·106 ” ” 9.207 ·10−2

2000.0 4.433 ·108 1.433 ·106 ” ” 2.144 ·10−1

Table 4. Equivalent stiffnesses and homogenization errors for Vierendeel girders with
elastic joints: effects of the joints stiffness (span L = 7600 mm).
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of the two chords acting in parallel. However, when E Iw or kϑ become very small, the shear stiffness
of the unit cell tends to the minimum value 3E Ic/s3 and consequently the Timoshenko beam model
over-estimates the real displacements.

5. Analysis of results

Results listed in Tables 2, 3 and 4 clearly show that the bending and polar stiffnesses evaluated by
the present method appear to be independent from the web bending stiffness and the stiffness kϑ of the
torsional springs. For fixed values of the girder aspect ratio β, Dxx and Sxy are insensitive to any changes
of the cell aspect ratio α. Moreover, given the girder span L , these stiffnesses do not change for changes
in the ratio α/β = s/L . This is in marked contrast to results of previous theories for homogenizing
toward a polar beam, whose equivalent stiffnesses have the expressions reported in Table 5.

Indeed, the aforementioned property of Dxx and Sxy are a consequence of the deformation mode by
which the cell transfers the bending moment to the neighboring cells. Actually, the cell bends while
maintaining its webs in the straight configuration, a fact that allows the determination of the equivalent
bending stiffnesses without executing the eigenanalysis of the transfer matrix M.

For this aim, we first observe that the unit cell is symmetric with respect to the vertical and horizontal
centroidal axes; see Figure 2b. Under the loading condition defined by the pure bending eigenvector
(see Figure 4), the bending moments at the ends of the chords and webs have the same amplitudes,
respectively mc and mw. Hence, the corresponding cell equilibrium configuration (Figure 9) is defined
by equilibrium equations of the joints having the form

mb = mc−mw (14)

and by the inner compatibility conditions

ϕ
q
j (w) = ϕ

q
j (c), with q = t, b, (15)

where ϕq
j (w) and ϕq

j (c) are respectively the rotations of the web and chord end sections at the joint jq.
These rotations have expressions given by

ϕ
(q)
j (c) =±

mcs
2E Ic

, ϕ
(q)
j (w) =±

(
ψ −

mws
6E Iw

)
, (16)

where the angles

ψ =±
1ub−1ut

2h
=±

nbs
E Ach

(17)

Dxx Sxy

Reddy–Romanoff theory
[Romanoff and Reddy 2014]

1
2 E Ach2

+ 2E Ic,
8
(
Ic Dxx

)( 1
2 E Ach2+ δE Iw

) , δ =

(
Iw
2Ic
+ 12

E Iw
kϑs
+

h
s

)−1

Noor–Nemeth theory
[Noor and Nemeth 1980]

1
2 E Ach2

+ 3 E Iw
s
h

2E Ic+ 3E Iw
s
h

Table 5. Equivalent bending and polar stiffnesses of a Vierendeel girder.
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Figure 8. Vertical deflections of Vierendeel girders fe models and elastic lines of the
equivalent Timoshenko beams: effects of joint elasticity.

are the web’s rigid rotations that would occur as a consequence of the chords elongations if the webs
were simply hinged to the chords. According to the sign convention of Figure 9, the choice of +/− in
the previous equations depends on whether joints on the right or on the left side of the cell are considered.
Through (14)–(16), it can be recognized that the cell equilibrium can be attained without deformations
of the webs, that is with mw = 0, only if

ϕ
q
j (w) = ϕ

q
j (c) = ψ and mb = mc =

2nb Ic
Ach

. (18)

When previous conditions are met, the curvature of the chords is given by

1
R
=

2ψ
s
=

2 nb
E Ac h

.

Substituting this result into (11) and (12) and taking into account (18), we obtain the following ex-
pressions of the bending and polar stiffnesses of the equivalent beam:

Dxx =
nbhs
2ψ
=

1
2 E Ach2,

Sxy =
2mbs
2ψ
= 2E Ic.

(19)

The stiffnesses evaluated by previous formulas perfectly match those listed in Tables 1–4, which were
obtained by the numerical procedure in Section 4.
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Figure 9. Unit cell deformed shape under pure bending loads.

Finally, equating the expression of Sxy given in (19) to the polar stiffness of a Timoshenko beam, the
following expression for the material length scale ` is derived:

`= ρc
√

1+ ν,

where ρc is the central (inertial) radius of gyration of the chord cross section. According to this latter
result, the severity of the polar effect in the equivalent Timoshenko beam appears to be totally independent
from the cell sizes and is a function only of the chords cross section geometry and the girder material.

6. Conclusions

The homogenization of a Vierendeel girder having elastic joints has been performed by adopting a Timo-
shenko polar beam as substitute medium. The equivalent stiffnesses were determined by a numerical
procedure based on the analysis of the eigen- and principal vectors of the force transfer matrix of the unit
cell. While previous approaches proposed that the polar character of the beam is deduced by kinematical
conjectures or is inspired by the microstructure, in the present study it is a direct consequence of the
pattern of the inner forces acting in the lattice when the pure bending mode of the cell is active.

The method we proposed has been validated on the basis of some experimental data from literature
and the results of a series of finite element models. In almost all the examined cases, the predictions of
our model were in good agreement with numerical and experimental outcomes. Furthermore, from the
validation study, we found that the bending and polar stiffnesses are independent from the web bending
stiffness and do not change with either the unit cell length s or the stiffness kϑ of the torsional springs.
In addition, the bending moment is transferred by the unit cell without deformation of the webs; during
bending, the webs maintain their initial straight configuration. From this result, two simple formulas for
the bending and polar stiffness were derived.

The presented beam model has great potential for analyzing the behavior of any beam-like repetitive
structures with elastic or rigid joints. More specifically, it appears to be a serious candidate for analyzing
the buckling and postbuckling response of infinitely long periodic beams, such as the railway track
under thermal load. Its range of validity is bounded by the bending stiffness of the webs and the stiffness
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of the web-chord connections. As these stiffnesses decrease, from the presented theory a family of
Timoshenko beams having increasing shear flexibility are obtained. However, in real girders, the smaller
these stiffnesses are, the weaker the Vierendeel effect results. As a consequence, the girder behavior
tends toward an Euler–Bernoulli beam having bending stiffness equal to twice the chord bending stiffness.
However, the extension of the proposed approach to girders with weak Vierendeel effects needs a deeper
analysis and probably will be the object of future research.

Similarly, further research will be needed to apply the proposed model in the girder elasto-plastic
range, where the response of the unit cell has to be analyzed by approximated methods, as presented in
[Fraldi et al. 2010; 2014].
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