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HIGHLY ACCURATE NONCOMPATIBLE GENERALIZED MIXED
FINITE ELEMENT METHOD FOR 3D ELASTICITY PROBLEMS

GUANGHUI QING, JUNHUI MAO AND YANHONG LIU

Based on the generalized H–R mixed variational principle, the simple compatible and noncompatible
generalized mixed elements (CGME, NCGME) for 3D linear elasticity problems were derived by the C0

continuous polynomial shape functions used usually in the displacement methods. Two of main features
of the generalized mixed finite element methods corresponding to the CGME and NCGME are that the
coefficient matrix of system of equations are automatically symmetric and invertible. Without any extra
techniques of the traditional mixed methods, the displacement and stress results can be obtained directly
from the linear system of equations by introducing the stress and displacement boundary conditions
simultaneously. The numerical examples show that the displacement and stress variables converge stably.
The resulting stresses of NCGME have nearly the same accuracy as displacements and are certainly more
accurate than the common noncompatible displacement finite element methods.

1. Introduction

It is well known that the finite element minimum potential energy principle leads, as its Euler–Lagrange
(EL) equations, to not only equilibrium within the element but also interelement traction reciprocity. The
equilibrium finite element methods are also straightforward applications of the minimum complementary
energy principle. The finite element complementary energy principle leads, as its EL equations, to not
only kinematic compatibility within each element but also interelement displacement compatibility.

The above requirements of interelement displacement continuity and traction reciprocity on the admis-
sible displacement variables and stress variables (respectively) may not provide sufficient flexibility in the
finite element solution of several problems in linear elasticity, such as plate bending, shells, multilayered
composites, and problems with singularities found in fracture mechanics, among others [Pian 1964].

To gain this flexibility in application, one may relax the conditions of displacement continuity or trac-
tion reciprocity at interelement boundaries on the admissible displacement or stress fields, by introducing
these as a posteriori constraints into the respective finite element variational principles. This is the under-
lying concept in the hybrid finite element methods [Pian 1964] (the hybrid methods, in essence, belong
to the displacement methods [Tian and Pian 2011]) and the mixed finite element methods [Herrmann
1967; Dunham and Pister 1968]. The hybrid methods and mixed methods for the elasticity problem
are mostly based on the mixed variational principle, which is a form of the Hellinger–Reissner (H–R)
mixed variational principle [Reissner 1950]. Unlike the hybrid methods, where the element matrices
are condensed into a stiffness matrix on the element level, in the mixed methods the element matrix is
generally assembled to the global coefficient matrix by the usual superposition process. Consequently,

Keywords: H-R mixed variational principle, mixed element, generalized H-R mixed variational principle, compatible
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the mixed methods generally include two fields in the linear system of equations (e.g., displacement and
stress fields for linear elasticity problems). The solution of resulting governing equations immediately
also yields the static variables, which are of basic interest in the analysis and design of a structure.

It should be mentioned that the boundary nodal stresses obtained from the finite element analysis
are inconsistent with the prescribed stresses in the displacement methods [Tian and Pian 2011]. The
convergence rate of the displacement models for problems with large gradients of stresses is slow [Hoa
and Feng 1998]. The equilibrium methods are rarely used in practical computation due to the difficulty
of creating finite element spaces incorporating the necessary constraints. Thus the practical choice is
usually between the displacement methods and the mixed methods.

The early and classical contributions for the mixed methods are reviewed in [Oden 1973; Atluri
et al. 1983; Morley 1989; Arnold 1990]. More recent developments and extensions may be found in
[Belytschko et al. 2013; Bonet and Wood 1997; Zienkiewicz and Taylor 2000; Arnold 2002; Arnold and
Winther 2002; Adams and Cockburn 2005; Arnold et al. 2007; 2008; Gatica et al. 2008; Sinwel 2009;
Qiu and Demkowicz 2010; 2011; Gopalakrishnan and Guzmán 2011; Hu et al. 2016].

One of the most prominent advantages of the mixed methods is the avoidance of using C1 elements for
plate bending and other fourth-order problems. This is because the mixed functional for plate bending
involves no more than two derivatives in any term and hence, after a suitable integration by parts, may be
evaluated on the finite element spaces with merely continuous elements. The primal variational principles,
however, require the use of C1 elements [Atluri et al. 1983; Arnold 1990]. Hence, the mixed methods
are widely used in the linear and nonlinear applications of plate and shells for elasticity.

It is well known that for nearly incompressible and incompressible materials, finite element compu-
tations based on a standard displacement formulation fail due to the onset of the locking phenomenon.
The traditional mixed formulations are a valid alternative to locking-affected methods, since they provide
mathematical models capable of treating both compressible and incompressible linear elasticity problems
under a unified framework [Atluri et al. 1983]. Of course, the mixed methods are also applied extensively
for the numerical analysis of fluid mechanics problems.

The stability of the numerical results refers to the invertibility of the system matrix representing the
discrete problem. Compared with the displacement methods, the mathematical properties of the mixed
methods are not simple. If the same polynomial interpolation functions applied in the displacement
methods are used to express the displacement and stress variables, the linear system of equations of mixed
methods based on the H–R mixed variational principle is symmetric but possesses zeros on the diagonal.
Thus, the coefficient matrix is usually indefinite and not invertible. The questions of convergence rate
and stability of the traditional mixed models have attracted many mathematicians [Babuška et al. 1977;
Oden and Reddy 1976; Talaslidis 1979].

Some representative researches on the mixed methods in recent years should be mentioned here.
Arnold and Winther [2002] suggested some stable elements for a two-dimensional problem; the cor-
responding method in three-dimensional space was first characterized by Adams and Cockburn [2005];
and thorough analyses of the finite elements were provided in [Arnold et al. 2008]. The construction of
these elements is not convenient for computer program, since they are of high polynomial order, which
implies large costs even for the lowest-order scheme. A mixed finite element method was constructed
by the tangential displacement-normal-normal-stress (TDNNS) formulation in [Sinwel 2009]. Thus, it
is applicable for both nearly incompressible materials and the discretization of the thin structures using



ACCURATE GENERALIZED MIXED FINITE ELEMENT METHOD FOR 3D ELASTICITY PROBLEMS 507

flat elements. However, the mathematical theory and process on the basis of the TDNNS formulation
are not simple and not suitable for engineers.

In a word, the above works show that it is not easy to construct a pair of finite elements for the
displacement vector and the symmetric stress tensor which satisfy the stability Brezzi’s conditions [1974].
There are still some open questions left in connection with the mixed methods for 2D and 3D problems.

2. Basic theory

2.1. Governing equations. Consider a body under static loading. The body occupies the volume V. S is
the surface of body. S= Su ∪Sσ , where Su and Sσ are the segments of S where displacements and surface
tractions are prescribed, respectively; the outward unit normal on S is denoted by n≡ ni . Let ∇ be the
gradient operator in the undeformed body which, under the assumption of infinitesimal deformation, is
indistinguishable from the deformed body.

We define the following: stress σ ≡ σi j and strain ε≡ εi j ; the surface traction T ≡ Ti and the prescribed
surface traction T ≡ T i on Sσ ; the prescribed displacement u ≡ ui on Su ; and b≡ bi is the body force
in V. Thus, the boundary value problems in linear elasticity can be stated as:

• The constitutive relations:

σ = Cε or σi j = Ci jklεkl or ε = Sσ in V, (1)

where C is symmetric stiffness matrix of material and S= C−1 is compliance matrix.

• The strain-displacement equations (the compatible equations):

ε =∇u or εi j =
1
2(ui, j + u j,i ) in V. (2)

• The equilibrium equations:

∇
Tσ + b̄= 0 or σi j, j + b̄i = 0 in V. (3)

• The surface tractions boundary conditions:

n · σ = T or T i = σi j n j on Sσ . (4)

• The displacement boundary conditions:

u = u or ui = ui on Su . (5)

2.2. H–R mixed variational principle and generalized H–R mixed variational principle. The H–R
mixed variational principle contains the displacement field and stress field. Satisfying the displacement
boundary conditions (5) a priori, such a principle takes the form

5HR =

∫
V

(
−

1
2σ

T Sσ + σT(∇u)− bTu
)

dV −
∫

sσ
T Tu dS. (6)

Like the H–R mixed variational principle, there are also both displacement and stress fields in the
generalized H–R mixed variational principle [Chien 1983]. This principle can be expressed as

5GHR =5HR+

∫
V
λ
( 1

2σ
T Sσ + 1

2(∇u)TC(∇u)− σT(∇u)
)

dV . (7)
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We should point out that Felippa [1989a; 1989b] constructed a one-parameter family of mixed varia-
tional principles for linear elasticity. This family includes the generalized H–R mixed and the minimum
potential energy principles as special cases. We expect to take 0≤ λ≤ 1 in (7). If the parameter λ < 0
or λ > 1, there does not exist practical interest.

It is clear that, letting λ= 0, (7) is the H–R mixed variational principle, and letting λ= 1 yields the
minimum potential energy principle.

Letting λ= 1
2 leads to the simplest generalized H–R mixed variational principle:

5GHR =

∫
V

(
−

1
4σ

T Sσ + 1
2σ

T(∇u)+ 1
4(∇u)TC(∇u)− bTu

)
dV −

∫
sσ

T Tu dS. (8)

For principles (6)–(8), the only constraint conditions are given in (1), while the equilibrium equations
(3) and the traction boundary conditions (4) are satisfied a posteriori.

We assume that all equations in the following sections are for the same finite element model. For
clarity, the matrices or vectors with the same symbol in the following imply the identical expressions.

3. Compatible and noncompatible generalized mixed finite element formulations

3.1. Mixed finite element formulations based on H–R mixed variable principle. Without loss of gen-
erality, consider an n-node compatible linear element for 3D linear elasticity problems. Both displace-
ment u and stress σ are expressed by the same shape functions:

u = Nqqe, (9)

σ = Np pe. (10)

Here,

Diag(Nq)= [Ne, Ne, Ne]
T, Ne = [N1, N2, . . . , Nn], qe = [ue1, ue2, ue3]

T,

Diag(Np)= [Ne, Ne, Ne, Ne, Ne, Ne]
T, pe = [σe13, σe23, σe33, σe11, σe22, σe12]

T.

Let Ni =
1
8(1+ ζiζ )(1+ ηiη)(1+ ξiξ), i = 1, 2, 3, . . . , 8, in (9) and (10); thus Nq and Np are the 24

by 24 and 48 by 48 shape function matrices, respectively.
It is well known that by substituting (9) and (10) into (6) and performing the energy integration, one

obtains the discrete functional

5HR( pe, qe)=

n∑
i=1

(
−

1
2 pT

e K (i)
pp pe+ pT

e K (i)
pq qe− ( f (i)q )Tqe

)
, (11)

in which
∑

implies summation with respect to all individual elements; K (i)
pp =

∫
Vi

NT
p SNp dV is sym-

metric and positive definite matrix for each element; K (i)
pq =

∫
Vi

NT
p (∇Nq) dV is a rectangular matrix;

and f (i)q =
∫

Vi
NT

p b dV +
∫

Sσ i
NT

q T dS is the load vector of each element.
In the following, the superscript “(i)” of element submatrices will be dropped for clarity.
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Consider pe and qe as independent variables. Using δ5HR( pe, qe)= 0 yields the two Euler–Lagrange
(EL) equations

−Kpp pe+ Kpqqe = 0, (12a)

K T
pq pe = fq. (12b)

The summation of (12a) and (12b) on all elements gives a linear system of equations with respect to
both displacement and stress variables. It is well known as the mixed model:[

−K11 K12

K T
12 0

]{
p
q

}
=

{
0
f

}
. (13)

Here, submatrices K11 =
∑

Kpp, K12 =
∑

Kpq; the vectors p=
∑

pe, q =
∑

qe; and the whole load
vector f =

∑
fq.

The equation resulting from H–R mixed variational principles (6) of various physical problems is
symmetric but possesses zeros on the diagonal. Indeed, it can be seen that the coefficient matrix of (13)
is indefinite. For 2D or 3D problems, if the stable mixed element techniques [Adams and Cockburn
2005; Oden and Reddy 1976; Brezzi and Fortin 1991] are not employed, it is very difficult to obtain the
stable and reliable solutions by (13).

3.2. Compatible generalized mixed finite element formulations. By the same way, using (9) and (10),
the discrete form of the generalized H–R mixed variational principle is

5GHR( pe, qe)=
∑(
−

1
4 pT

e Kpp pe+
1
2 pT

e Kpqqe+
1
4 qT

e Kqqqe− f T
q qe

)
. (14)

In (14), Kqq =
∫

Vi
(∇Nq)

TC(∇Nq) dV is a full rank, symmetric, and positive definite matrix and undoubt-
edly it is equivalent to the expression derived from the minimum potential energy principle.

Similarly, the following 8-node compatible generalized mixed element (CGME) with 8 nodes for 3D
problems can be derived from (14):

−Kpp pe+ Kpqqe = 0, (15a)

K T
pq pe+ Kqqqe = 2 fq. (15b)

It is of interest to see that (15) can also be obtained by combining the EL equations of the finite
element potential energy principle and the finite element H–R mixed variational principle.

The summation of (15) on all elements gives a novel algebraic system[
−K11 K12

K T
12 K22

]{
p
q

}
=

{
0

2 f

}
, (16)

where K11 and K22 (=
∑

Kqq) are symmetric and positive definite.
It is clear that the coefficient matrix of the above equation is indefinite because of submatrix −K11.

However, it is characterized by symmetry and all elements on the leading diagonal are nonzero.
Comparing (16) and (13), the main difference is the values of elements on the diagonal.
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3.3. Noncompatible generalized mixed finite element formulations. On the basis of [Chen 1982; Taylor
et al. 1976], for a noncompatible element weak discontinuity, the element displacements can be expressed
as a sum of the compatible part Nqqe and the noncompatible part Nrre:

u = Nqqe+ Nrre. (17)

Here, the expression of Nr can be found in [Chen 1982]; Nr are the shape functions with respect to points
within elements; re is the displacement vector corresponding to points within elements.

In a similar way, by (17) and (10), the finite element functional of the generalized mixed variational
principle is given by

5GHR( pe, qe, re)=

n∑
i=1

(
−

1
4 pT

e Kpp pe+
1
2 pT

e Kpqqe+
1
2 pT

e Kprre+
1
4 qT

e Kqqqe

+
1
2 qT

e Kqrre+
1
4 rT

e Krrre− f T
q qe− f T

r re
)
. (18)

In (18),

Kpr = K T
rp =

∫
Vi

NT
p (∇Nr) dV, Kqr = K T

rq =

∫
Vi

(∇Nq)
TC(∇Nr) dV,

Krr = K T
rr =

∫
Vi

(∇Nr)
TC(∇Nr) dV, fr =

∫
Vi

NT
r b dV +

∫
Sσi

NT
r T dS.

Taking the variation of (18) with respect to re results in

Krrre+ K T
pr pe+ K T

qrqe = 2 fr. (19)

Krr in the above equations is identical to the corresponding expression obtained from the minimum
potential energy principle for noncompatible displacement elements [Chen 1982; Taylor et al. 1976], and
Krr is an invertible matrix. Thus, one has

re = 2K−1
rr fr− K−1

rr K T
pr pe− K−1

rr K T
qrqe. (20)

Finding the extrema of (18) with respect to pe and qe leads to two EL equations:

−Kpp pe+ Kpqqe+ Kprre = 0, (21)

K T
pq pe+ Kqqqe+ K T

prre = 2 fq. (22)

On substituting (20) into (21) and (22), one obtains

−Kpp pe+Kpqqe =−2Kpr K−1
rr fr, (23a)

KT
pq pe+Kqqqe = 2 fq− 2Kqr K−1

rr fr, (23b)

in which

Kpp = Kpp+ Kpr K−1
rr K T

pr, Kpq = Kpq− Kpr K−1
rr K T

qr, Kqq = Kqq− Kqr K−1
rr K T

qr.

Note that, for general numerical examples, if the body force is ignored, the vectors 2Kpr K−1
rr fr and

2Kqr K−1
rr fr on the right-hand side of (21) are close to zero. Such a property is the same as the non-

compatible displacement element formulations [Tian and Pian 2011]. Therefore, the following 8-node
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noncompatible generalized mixed element (NCGME) problems is of the form[
−Kpp Kpq

KT
pq Kqq

]{
pe

qe

}
=

{
0

2 fq

}
. (24)

Similarly, the noncompatible generalized mixed model corresponding to (24) is as follows:[
−K11 K12

KT
12 K22

]{
p
q

}
=

{
0

2 f

}
, (25)

where submatrices K11 =
∑

Kpp, K12 =
∑

Kpq, K22 =
∑

Kqq; the vectors p =
∑

pe, q =
∑

qe,
and the whole load vector f =

∑
fq.

It is obvious that the main difference between (25) and (16) is their coefficient matrices.

3.4. A unified approach for imposing stress and displacement boundary conditions. Assume that sym-
bol a refers to the known value vector with respect to nodes on the surface or edges, whose values are
determined by the prescribed surface traction T on Sσ and the prescribed displacement u on Su .

Interchanging the rows and columns of (25), it can be recast into the form−K̂11 K̂12 K̂13

K̂
T
12 K̂22 K̂23

K̂
T
13 K̂

T
23 K̂33




p̂
q̂
a

=


f1

f2

f3

 , (26)

where p̂ and q̂ are the unknown parameter vectors of the nodal stresses and displacements, respectively.
Therefore,

−K̂11 p̂+ K̂12q̂ = f1− K̂13a, (27a)

K̂
T
12 p̂+ K̂22q̂ = f2− K̂23a, (27b)

K̂
T
13 p̂+ K̂

T
23q̂ = f3− K̂33a. (27c)

Of course, (27c) is redundant. Consequently, the final system of equations for the finite element
solutions is [

−K̂11 K̂12

K̂
T
12 K̂22

]{
p̂
q̂

}
=

{
f1− K̂13a
f2− K̂23a

}
. (28)

The above unified approach for imposing stress and displacement boundary conditions is employed in
our program. In the next section, one of the numerical examples indicates that boundary nodal stresses
are consistent with the prescribed stresses.

4. Numerical examples and discussions

4.1. A thick rectangular plate with simply supported edges. As shown in Figure 1, consider a thick
rectangular plate with in-plane dimensions a = b = 1.0 and thickness h = 0.10. The material properties
are E11 = 10E22 = 10E33, G12 = G13 = 0.6E33, G23 = 0.5E33, and ν12 = ν13 = ν23 = 0.25. The
boundary conditions are σ11 = u2 = u3 = 0 on x1 = 0 and x1 = a; and σ22 = u1 = u3 = 0 on x2 = 0 and
x2 = b. The uniform normal load 0.1 is on the upper surface of the plate [Fan 1996].
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x1

x2x3

a

b

o

h

x1

x2

o

coordinates and dimensions one-quarter model

Figure 1. Coordinates and dimensions of a thick rectangular plate.

Using the symmetry about the x1 and x2-axes, only one-quarter of plate (see Figure 1, right) is analyzed
with uniform meshes. The convergence rate and accuracy of displacements and stresses at special loca-
tions are depicted in Figures 2–12. The notation l ×m× n mesh denotes l subdivisions along the x1-axis
and m subdivisions along the x2-axis with the same type of elements, while n denotes the element number
in the x3 direction. The nodal stresses of the 8-node noncompatible displacement element (NCDE) for
3D problems in the commercially available software ABAQUS are obtained from the stresses of Gauss
quadrature points by the extrapolation method. On the basis of the results of the 12×12×4 mesh, errors,
which are illustrated in the legends in Figures 2–10, are computed by the formulation

exact solution−solution of element
exact solution

× 100%.

In our computer program, two Gauss quadrature points in each direction are used for both CGME and
NCGME.

As far as displacements u1
(1

8a, 1
2 b, h

)
, u2

( 1
2a, 1

8 b, h
)

and u3
( 1

2a, 1
2 b, 1

2 h
)

are concerned (see Figures
2, 3, and 4), there is no significant difference between NCGME and NCDE for the convergence rate and
accuracy. Certainly, it is clear that when the element mesh is relatively fine, the results of NCGME and
NCDE are more accurate than those of CGME.

Figures 5 and 6 show that the results σ13
( 1

8a, 1
2 b, 1

2 h
)

and σ23
( 1

2a, 1
8 b, 1

2 h
)

of NCGME are in good
agreement with the exact solution for even coarse meshes. It can also be observed that the accuracy of the
σ13
( 1

8a, 1
2 b, 1

2 h
)

and σ23
( 1

2a, 1
8 b, 1

2 h
)

of the compatible element CGME are greatly superior to NCDE.

u 1
( 1 8

a,
1 2
b,

h)

Figure 2. Comparison of displacement u1
( 1

8a, 1
2 b, h

)
.
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u 2
( 1 2

a,
1 8
b,

h)

Figure 3. Comparison of displacement u2
( 1

2a, 1
8 b, h

)
.

u 3
( 1 2

a,
1 2
b,

1 2
h)

Figure 4. Comparison of displacement u3
( 1

2a, 1
2 b, 1

2 h
)
.

σ
13
( 1 8

a,
1 2
b,

1 2
h)

Figure 5. Comparison of stress σ13
( 1

8a, 1
2 b, 1

2 h
)
.

σ
23
( 1 2

a,
1 8
b,

1 2
h)

Figure 6. Comparison of stress σ23
( 1

2a, 1
8 b, 1

2 h
)
.
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σ
33
( 1 2

a,
1 2
b,

h)

Figure 7. Comparison of stress σ33
( 1

2a, 1
2 b, h

)
.

σ
11
( 1 2

a,
1 2
b,

0)

Figure 8. Comparison of stress σ11
( 1

2a, 1
2 b, 0

)
.

σ
22
( 1 2

a,
1 2
b,

0)

Figure 9. Comparison of stress σ22
( 1

2a, 1
2 b, 0

)
.

σ
12
( 1 8

a,
1 8
b,

h)

Figure 10. Comparison of stress σ12
( 1

8a, 1
8 b, h

)
.
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H
=

x 3
/

h

σ13
( 1

8 a, 1
2 b, x3

)
Figure 11. Comparison of stress σ13

(1
8a, 1

2 b, x3
)

distribution along thickness of NCGME.

H
=

x 3
/

h

σ23
( 1

2 a, 1
8 b, x3

)
Figure 12. Comparison of stress σ23

(1
2a, 1

8 b, x3
)

distribution along thickness of NCGME.

In this example, NCDE can not predict accurately the transversal stresses with respect to the geomet-
rical neutral plane of plate, since the distribution of σ13 and σ23 along the thickness is nonlinear (see
Figures 11 and 12), and the maximum or minimum values on the neutral plane is near to the neutral
plane.

Figure 7 indicates that the accuracy of σ33
( 1

2a, 1
2 b, h

)
of NCDE is very poor. As mentioned above, it

is difficult to introduce the traction boundary conditions when the stress variables are computed by the
constitutive relations (1) on the element level. Hence, the stress results of NCDE on the boundary are
inconsistent with the prescribed stresses. However, the stress results of CGMCE8 and NCGMCE8 on
the boundary are fully consistent with the prescribed stresses.

The in-plane stress σ22
( 1

2a, 1
2 b, 0

)
of NCGME is characterized by rapid convergence. The accuracy of

σ11
( 1

2a, 1
2 b, 0

)
, σ22

( 1
2a, 1

2 b, 0
)

and σ12
( 1

8a, 1
8 b, h

)
of NCGME is slightly better than NCDE (see Figures

8–10).
On the basis of the mesh 12× 12× 4, the distribution of both σ13

( 1
8a, 1

2 b, x3
)

and σ23
( 1

2a, 1
8 b, x3

)
along the thickness of NCGME are depicted by Figures 11 and 12, respectively. They indicate further
that the σ13 and σ23 can approximate to the exact solutions.

4.2. A classical cantilever beam problem. The effect of element geometric distortions on the accuracy
of CGME and NCGME are investigated in this example.
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150

150

150

x1

x2

x3
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A

B

1 = 0 1= 3 = 0 1= = 0= 32
u u u u u u

pure bending shear forces

Figure 13. A cantilever beam under pure bending or acted upon by shear forces at the
tip [Cheung and Chen 1988].

2

2

2

x1

x2

x3 8

A

B

8

2

Coordination of point B is (4.0,1.0,2.0)

2

2

2
1 1 2 3 3

2 1 1

x1

x2

x3 4

A

B

Coordination of point B is (1.0,1.0,2.0)

model a model b

Figure 14. Models of element geometric distortion.

load cases QS11−1 QS11−2 CGME NCGME exact

pure bending 31.2 37.5 15.0 75.1 100.0
shear forces 37.4 45.1 22.6 81.8 102.6

Table 1. Vertical displacements u3 at point A of model a.

load cases QS11−1 QS11−2 CGME NCGME exact

pure bending −1162.4 −1350.9 −423.8 −2549.1 −3000.0
shear forces −1623.2 −1953.6 −573.3 −2642.9 −2700.0

Table 2. The stresses σ11 at point B(4.0,1.0,2.0) of model a

Consider a cantilever beam [Cheung and Chen 1988] under pure bending or acted upon by shear
forces at the tip (see Figure 13). The geometry dimensions are 2× 2× 10, and the material properties are
E = 1500 and ν = 0.25. The vertical displacements at point A and the bending stress σ11 at point B for
two finite element models (as shown in Figure 14) are presented in Tables 1–4, and they are compared
with QS11−1 [Cheung and Chen 1988], QS11−2 [Cheung and Chen 1988] and the exact solutions.

From the results listed in Tables 1–4, it can be concluded that:

(1) The displacement and stress results of NCGME appear to be more accurate than those of the hybrid
stress elements QS11−1 and QS11−2 .
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load cases QS11−1 QS11−2 CGME NCGME exact

pure bending 92.2 92.9 22.7 99.6 100.0
shear forces 94.05 94.9 67.6 103.6 102.6

Table 3. Vertical displacements u3 at point A of model b.

load cases QS11−1 QS11−2 CGME NCGME exact

pure bending −3006.6 −3015.1 −2294.9 −2996.5 −3000.0
shear forces −4125.3 −4138.2 −3155.8 −4076.2 −4050.0

Table 4. The stresses σ11 at point B(1.0,1.0,2.0) of model b.

(2) Obviously, NCGME is less sensitive to geometric distortions (see Figure 14) in cases where elements
are distorted. It is also observed that the accuracy of u3 and σ11 from CGME is very poor due to
the geometric distortions of elements.

5. Conclusions

For the generalized mixed finite elements presented in this work, both conditions of displacement conti-
nuity and traction reciprocity at interelement boundaries are relaxed by including them in the generalized
mixed variational principle itself. Hence, the generalized H–R mixed variational principle is crucial to
ensure that the generalized mixed elements are effective in obtaining the displacements and stresses
directly in the mixed finite element computations. As mentioned in Section 3, two of the most prominent
advantages of the compatible and noncompatible generalized mixed elements are that the symmetry with
respect to both displacement and stress variables are guaranteed, and the coefficient matrix is invertible.
The generalized mixed models seem to be preferable for introducing the displacement and traction bound-
ary conditions simultaneously. The numerical results of the compatible and noncompatible generalized
mixed elements are stable and the displacement and stress results of noncompatible generalized mixed
elements are characterized by high-precision.

Certainly, like in the traditional mixed methods, a drawback of the generalized mixed methods is a
larger number of unknown parameters in the linear system of equations for the finite element analysis.
The added number of stress variables means that generally larger size algebraic problems have to be
handled. But with the present computer technologies, it is not a problem. In fact, the power of the
present computers will always be suitable for a large-scale finite element system. We emphasize that
conveniently obtaining stable and highly accurate numerical results is the first priority for the design of
engineering structures.

We believe the generalized mixed methods are simple and will be useful, especially as the methods are
developed further. For wide engineering structures, some important applications of the noncompatible
generalized mixed method should be extended, such as the treatment of the combination with other
structural members, the evolution of the possible advantages in stress singularity problems, and nonlinear
applications which may result from special structures. The pertinent theories of the generalized mixed
elements should also be explored deeply; for instance, investigations of the local error bounds or practical
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estimates for the variables should be done. On the other hand, the stresses and the displacements are
interpolated with the same interpolation order in this work. Does this choice of interpolation order satisfy
the inf-sup Ladyzhenskaya–Babuška–Breezi (LBB) condition? This work should be discussed in the next
paper.

The task of developing high-performance finite element methods for complex engineering problems
never seems to be completed.
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