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B-SPLINES COLLOCATION FOR PLATE BENDING EIGENANALYSIS

CHRISTOPHER G. PROVATIDIS

Following the recent encouraging findings in the area of 2-D acoustics, this paper investigates the per-
formance of a B-spline collocation method in the extraction of natural frequencies (eigenvalue analysis)
of thin plates in bending. Numerical formulation and associated results refer to uniformly discretized
rectangular and circular plates, for which closed-form analytical or approximate solutions are available in
the literature. The computational results show that the proposed B-spline collocation method is of higher
quality than the previously known cubic B-splines Galerkin–Ritz formulation; both of them converge
more rapidly to the accurate solution than what the conventional finite element method does for the same
mesh density.

1. Introduction

Engineering analysis of arbitrarily shaped or arbitrarily loaded structures is usually performed using the
well-known finite element method (FEM) [Bathe 1996]. Particularly in mechanical engineering, where
the structural components generally consist of free shaped boundaries produced by a CAD system, it is
more convenient to deal with their B-splines representation [de Boor 1972; Farin et al. 2002; Piegl and
Tiller 1995]. In addition to a CAD model, computational engineering analysis (CAE) can be performed
on the basis of either B-splines [Höllig 2003] or NURBS [Cottrell et al. 2009]. For a detailed review on
the CAD/CAE integration, the interested reader may consult [Provatidis 2013].

B-splines based finite elements have been extensively used in the finite element praxis. In more detail,
structural engineering applications cover static, dynamic and stability analyses [Peng-Cheng et al. 1987;
Akhras and Li 2011]; an older survey is [Grigorenko and Kryukov 1995]. A great number of papers
on B-splines finite element models applied to plates and shells have been published in the last twenty
years. These include isotropic [Antes 1974; Gupta et al. 1991; Fan and Luah 1995], orthotropic [Cheng
and Dade 1990], cross- and angle-ply multilayered laminated [Patlashenko and Weller 1995; Dawe and
Wang 1995; Kolli and Chandrashekhara 1997; Reddy and Palaninathan 1999; Park et al. 2008; Kapoor
and Kapania 2012; Golmakani and Mehrabian 2014], functional graded materials (FGM) [Valizadeh et al.
2013; Tran et al. 2013] and shell [Echter et al. 2013] structures, among others. A tendency of the last few
years is to combine B-splines with wavelet ideas [Han et al. 2007; Zhang et al. 2010; Li and Chen 2014].

Despite the aforementioned progress, it has been reported that the computer effort required to esti-
mate the matrices of these CAD-based macroelements (in potential and structural problems) is relatively
high [Provatidis 2004; 2012]. As a remedy to this shortcoming, in 2005 the author proposed preserving
the global CAD-based interpolation but substituting the Galerkin–Ritz formulation (which needs domain
integration to estimate the mass and stiffness matrices) by a global collocation scheme [Provatidis 2006,
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p. 6704]. Similar numerical results were later reported for the particular case of a (NURBS-based)
isogeometric analysis [Hughes et al. 2010].

So far, the above idea of global collocation has been successfully applied to the static analysis of 2-D
structures [Provatidis 2008b; 2009; Provatidis and Ioannou 2010], eigenvalue analysis of 1-D elastic
rods [Provatidis 2008a], as well as the eigenanalysis of 2-D acoustic cavities [Provatidis 2014] and 2-D
elastic structures [Filippatos 2010]. Later, isogeometric collocation methods were proposed [Auricchio
et al. 2010]. Nevertheless, an application of this idea to thin plate bending is still missing.

Within this context, this paper preserves the aforementioned idea of approximating the deflection
w(x, y) within the plate through a B-splines tensor product but replaces the Galerkin–Ritz computational
procedure with a global collocation method (GCM), thus avoiding domain integration. The cost of this
facility is the increase of the polynomial degree from p = 3 to higher values (p ≥ 5). The proposed
methodology is successfully tested in a square plate (simply supported, clamped), as well as in a clamped
circular plate.

2. Governing equations and numerical solution

The partial differential equation of motion for a plate in bending is given by

D∇4w(x, y, t)+ ρh
∂2w(x, y, t)

∂t2 = f (x, y, t), (1)

where D is the flexural rigidity, ρ is the mass density, h is the plate thickness, and f is the loading
towards the z-direction.

Following [Antes 1974; Höllig 2003], the deflection is expanded into a B-splines tensor product of
the form

w(x, y; t)=
n∑

i=1

m∑
j=1

Ni,pn (x) · N j,pm (y) · ai j (t), i = 1, . . . , n; j = 1, . . . ,m, (2)

where Ni,pn (x) and N j,pm (y) are the basis functions in the x- and y-direction, respectively. The afore-
mentioned basis functions (B-splines) are piecewise polynomials of pn-th and pm-th degree, respectively,
and are characterized by compact support [Piegl and Tiller 1995]. Further details are given in Section 3.1.

It is noted that the integers n and m in (2) represent the number of control points in the x- and y-
direction, respectively, whereas for the degrees of the corresponding polynomials, pn < n and pm < m
(see (8) below).

According to the global collocation method [Provatidis 2008a; 2008b; 2009; Provatidis and Ioannou
2010; Filippatos 2010], a certain number of nc collocation points (xc, yc) are chosen, at which the
governing equation is satisfied as follows:

D · ∇4
[ n∑

i=1

m∑
j=1

Ni,pn (xc) · N j,pm (yc)

]
· ai j (t)+ ρh ·

n∑
i=1

m∑
j=1

Ni,pn (xc) · N j,pm (yc) · äi j (t)= f (t). (3)

Setting

kc,i j = D · ∇4
[Ni,pn (xc) · N j,pm (yc)] (4)
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and

mc,i j = ρh · [Ni,pn (xc) · N j,pm (yc)], (5)

(3) obtains the matrix form

[M] · {ä(t)}+ [K ] · {a(t)} = { f (t)}. (6)

In this way, mass and stiffness matrices of dimensions nc× (nm) are produced.
In the general case, unlike the finite element method, the aforementioned matrices are not square

before the boundary conditions are imposed. Imposing the prescribed values (flexural displacements or
slopes) along the contour of the plate, we have to proceed so as to derive square matrices at the end. To
this purpose, the proper choice of collocation points is demanded.

3. Global approximation

3.1. One-dimensional B-spline approximation. For the sake of completeness, in the following text,
de Boor’s procedure is briefly exposed.

For a given polynomial degree p, the construction of a B-spline along a straight line segment is based
on a nondecreasing sequence of q + 1 breakpoints (x0, x1, . . . , xq−1, xq), i.e., the two ends (x0, xq) as
well as (q − 1) internal breakpoints (x1, . . . , xq−1). Assuming a certain multiplicity for the inner knots,
say µ, they compose the so-called knot vector,

V =

{
x0, . . . , x0︸ ︷︷ ︸

p+1

, x1, · · · , x1︸ ︷︷ ︸
µ

, . . . , xq−1, · · · , xq−1︸ ︷︷ ︸
µ

, xq , . . . , xq︸ ︷︷ ︸
p+1

}

= {v0, v1, . . . , vµ(q−1)+2p+1}.

(7)

The following facts are well known:

(1) The above µ(q − 1)+ 2(p+ 1) elements in the vector V are associated to

nCTRL = µ(q − 1)+ (p+ 1) (8)

control points [de Boor 1972; Farin et al. 2002; Piegl and Tiller 1995].

(2) The basis functions, Ni,p(x), have the partition of unity property,

q∑
j=0

N j,p(x)= 1. (9)

For a straight side (e.g., AB in the real domain �), the control points belong to the side while for a
curved side they do not, except for the first (P0) and last (Pn). In other words, the end segments of the
polygon P0 P1 . . . Pn−1 Pn (called the generator) are tangent to the curved side AB at end nodes P0 and
Pn . Details can be found elsewhere, for example, in [Farin et al. 2002].

The i-th B-spline function of p-degree, denoted by Ni,p(x), is defined as follows (see for example
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[Piegl and Tiller 1995, p. 50]):

Ni,0(x)=
{

1, if vi ≤ x < vi+1,

0, otherwise,
(10)

Ni,p(x)=
x − vi

vi+p − vi
Ni,p−1(x)+

vi+p+1− x
vi+p+1− vi+1

Ni+1,p−1(x). (11)

Similarly, the first derivative of Ni,p(x) can be effectively calculated by the recursion [Piegl and Tiller
1995, p. 59]

N ′i,p(x)=
p

vi+p − vi
Ni,p−1(x)−

p
vi+p+1− vi+1

Ni+1,p−1(x), (12)

whereas similar recursive expressions can be obtained for higher derivatives.

3.2. Two-dimensional B-spline approximation: tensor product. Let us consider a mapping from the
real xy-domain (ABCD) to the reference ξη-square (A′B′C′D′) in which 0≤ ξ, η ≤ 1. The axis origin
is chosen at the corner A (resp. A′), whereas the normalized axes ξ and η lie on the sides A′B′ and A′D′,
respectively. Without loss of generality, the sides (AB,CD) and (A′B′,C′D′) as well as (B′C′,D′A′)
and (BC,DA) are uniformly divided into nξ and nη segments, respectively, thus introducing a mesh of
(nξ + 1)× (nη+ 1) breakpoints (Figure 1).

Although the below illustrated B-spline macroelement reminds us of the classical Lagrangian type
element [Bathe 1996, pp. 344, 456], it highly differs from it for the following reasons. Based on the
aforementioned uniformly distributed breakpoints (ξ = 0, ξ1, . . . , 1; η = 0, η1, . . . , 1), each of the first
two opposite sides AB and CD (parallel to x-axis) are described through n control points fulfilling the
formula

n = µ(nξ − 1)+ (pn + 1), (13)

D' C'

A' B'

Boundary node

Internal node

η

ξ

η =1

η = η

η = 0

ξ = 0 ξ =1

2

η = η
1

ξ = ξ
1

ξ = ξ . . .
2

D
C

A

B

y

x

Figure 1. Uniformly arranged breakpoints of a B-splines plate-bending macroelement
in the normalized, left, and the real domain, right (only the breakpoints are shown).
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D' C'

A' B'

η

ξ

Figure 2. True position of the q̄ = n × m = 12× 12 control points that correspond
to the uniformly distributed breakpoints shown in Figure 1, left (number of segments
nξ = nη = 4; polynomial degree: p = 5).

while the other two opposite sides BC and DA (parallel to y-axis) are described through m control points

m = µ(nη− 1)+ (pm + 1). (14)

Concerning the normalized (reference) element shown in Figure 1, left, the n control points belong to
the straight line A′B′ and another set of n control points belong to the straight line D′C′. Similarly, the m
control points belong to the straight line B′C′ and another set of m control points belong to the straight
line A′D′. In contrast, in the real domain (let us consider, for example, the side AB: Figure 1, right) the
first and last control points coincide with the corner points A and B respectively (ends of curve AB);
however, the other control points may or may not belong to the curve AB (they may be found inside or
outside the domain ABCD).

Returning to the normalized reference element (Figure 2), the mesh required for the B-spline repre-
sentation of the patch geometry consists of q̄ = nm control points, produced as the tensor product of
n by m ones.

Each of the aforementioned control points, say the I -th, is associated with one global shape function
given by

φI,B-splines(ξ, η)= Ni,pn (ξ) · N j,pm (η),

{
I = 1, . . . , q̄ ≡ n×m,
i = 1, . . . , n; j = 1, . . . ,m.

(15)

Although the values of pn and pm may be different from one another, henceforth we take the same
polynomial degree, that is pn = pm = p.

3.3. Collocation points. In order to determine the proper number of collocation points in each direction,
it is necessary to assign values first to the polynomial degree p and then to the multiplicity of inner knots µ.
It is well known that for every value of µ, the solution w(x, y) is characterized by C p−µ-continuity.
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According to (13), the number of control points towards a certain direction, say the ξ -direction, in
which nξ subdivisions exist is n = µ(nξ − 1)+ (p+ 1). The four boundary conditions (for example, two
fixed ends) reduce the number of total degrees of freedom by four, and therefore the remaining unknown
coefficients will be (n − 4). If within each of the nξ segments (defined between any two successive
breakpoints) a number of c collocation points are considered, one should obtain so many equations at
the c corresponding collocation points as the number of the unknowns, that is: cnξ = n− 4, whence

c = (n− 4)/nξ . (16)

Substituting (13) into (16), one finally obtains

c = µ+ (p−µ− 3)/nξ . (17)

Since c must be an integer, we select the nominator in the second adding term of (17) to vanish, whence
the multiplicity is given by

µ= p− 3, (18)

whence the number of collocation points in ξ -direction will be

c = p− 3. (19)

Since the partial differential equation (1) is of fourth order, the minimum acceptable polynomial degree
is p = 5, for which double knots (µ = 2) and also c = 2 collocation points per direction are needed.
Following previous studies in 1-D elliptic problems [de Boor and Swartz 1973], in the case of p = 5 the
position of the collocation points within any cell of neighboring breakpoints was taken to be identical
with those integration points used in a usual 2× 2 Gaussian quadrature scheme.

In general, for every p > 5, the knot vector is built using µ = p− 3 multiple inner knots, see (7),
whereas a Gaussian quadrature scheme of c× c= (p−3)× (p−3) collocation points per cell is adopted.

Remark. Due to (18), the above choice (p−µ= 3) ensures a numerical solution characterized by C3-
continuity. This means that the deflection w, slope w′, bending moment E Iw′′, and shear force E Iw′′′

are continuous at all inner breakpoints.

Except for the above-mentioned Gaussian points, as also reported in 2-D acoustics (see [Provatidis
2014]), other sets of collocation points such as Demko and Greville ones can be used as well. Neverthe-
less, despite the global character of these abscissae, no significant influence on the numerical solution
has been noticed so far (see Figure 5).

3.4. Isoparametric approximations. Tensor products of B-splines are based on the following series ex-
pansion (φ j = φI,B-splines):

x(ξ, η)=
q̄∑

j=1

φ j (ξ, η) · x j , y(ξ, η)=
q̄∑

j=1

φ j (ξ, η) · y j , w(ξ, η)=

q̄∑
j=1

φ j (ξ, η) · a j , (20)

where a j are generalized coefficients and not the nodal values of deflection w at the q̄ control points. Only
at the very ends of the boundary the extreme control points (P0 and Pn) coincide with the corresponding
ends of polygon curves (generator).
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4. Imposition of Neumann boundary conditions

In contrast to the Dirichlet boundary conditions (b.c.), i.e., w = 0, which are imposed merely by deleting
the columns that correspond to the restricted degree of freedom (DOF), the Neumann b.c. require a
special treatment. In order to demonstrate the procedure, it is more instructive to deal with a clamped
beam, and then extend the methodology to a real 2-D plate.

Within this context, let us assume a beam AB of length L , which is clamped at its left end (namely A)
whereas the other end (namely B) is free to vibrate. The beam is discretized by B-splines using a number
of breakpoints (like those arranged along the edge A′B′ of the square of Figure 2), which correspond
to n control points. These control points are associated to the following generalized coefficients: a0 =

w0 =w(0), a1, . . . , an−1, an =wn =w(L). It is efficient to apply the local support property, according
to which the basis function Ni,p(x) = 0 if x is outside the knot interval [xi , xi+p+1). After having
constructed the matrices (K , M), which initially are of size nc× n, the following boundary conditions
have to be considered.

Fixed point A:

w(0)= N0(0)a0 = 0 (21a)

and

w′(0)= N ′0(0)a0+ N ′1(0)a1 = 0. (21b)

Since N0(0)= 1 6= 0, (21a) implies

a0 = 0. (21c)

Substituting (21c) into (21b) by virtue of N ′1 6= (0) gives

a1 = 0. (21d)

Therefore, the first and second columns of the matrices (K , M) should be deleted, because their elements
are multiplied by the null values of the two restrained DOF at the end A (i.e., a0 = a1 = 0). Therefore,
the number of the so far remaining columns (and the associated coefficients ai ) becomes n− 2.

Furthermore, concerning the load-free end B, the zero values of the bending moment w′′(L)= 0 and
the shear force w′′′(L)= 0 have to be imposed. This is easily accomplished by taking into consideration
the local support property for the control point B at x = L:

w′′(L)= N ′′n−2(L)an−2+ N ′′n−1(L)an−1+ N ′′n (L)an, (21e)

w′′′(L)= N ′′′n−3(L)an−3+ N ′′′n−2(L)an−2+ N ′′′n−1(L)an−1+ N ′′′n (L)an. (21f)

Equations (21e) and (21f) induce two linear dependencies between the remaining (n− 2) generalized
coefficients of the vector a. As a result, the final size of the matrices will be nc× (n− 4), and (16)–(19)
ensure that (Kfinal, Mfinal) will be square.

For a uniform arrangement of the breakpoints, and for any polynomial degree p, after some symbolic
manipulation it is found that N ′′n−2(L)= N ′′n (L)=−2N ′′n−1(L); therefore (21e) implies

an−1 =
1
2(an−2+ an). (21g)
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Substituting (21g) into (21f) and then solving for an gives

an = γ an−3+ δan−2, (21h)

where

γ =−
N ′′′n−3(L)

1
2 N ′′′n−1(L)+ N ′′′n (L)

, δ =−
N ′′′n−2(L)+

1
2 N ′′′n−1(L)

1
2 N ′′′n−1(L)+ N ′′′n (L)

. (21i)

For each collocation point, by virtue of (21g) and (21h), the expression
∑n

j=1 ki j a j is finally written as

n∑
j=1

ki j a j = . . .+ki,n−4an−4+
(
ki,n−3+

1
2γ ki,n−1+γ ki,n

)︸ ︷︷ ︸
k̂i,n−3

an−3+
(
ki,n−2+

1
2(1+δ)ki,n−1+δki,n

)︸ ︷︷ ︸
k̂i,n−2

an−2. (22)

Equation (22) dictates the algorithm which has to be followed for imposing the natural b.c. at the free
end B. In brief, the last two columns of the initial matrices (K , M) should be deleted, but before per-
forming this task a linear combination of their elements should be added to the initial (n − 3)-th and
(n− 2)-th columns according to (22).

As an example, in the particular case of Bézier (Bernstein) polynomials Bi,n(x) =
(n

i

)
x i (1− x)n−1,

which is the simplest B-spline in the interval [0, 1], it is trivial to prove that

B ′′′n−3,n(1)=−α, B ′′′n−2,n(1)= 3α, B ′′′n−1,n(1)=−3α, B ′′′n,n(1)= α, with α = n(n− 1)(n− 2), (23a)

B ′′n−3,n(1)= 0, B ′′n−2,n(1)= β, B ′′n−1,n(1)=−2β, B ′′n,n(1)= β, with β = n(n− 1), (23b)

B ′n−3,n(1)= 0, B ′n−2,n(1)= 0, B ′n−1,n(1)=−n, B ′n,n(1)= n; (23c)

hence, γ =−2 and δ = 3.
Let us now leave beams and return to real plates. In the case of a clamped plate, those columns

of matrices (M, K ) that correspond to the two layers of control points, which are the closest ones to
the boundary, should be deleted. The explanation is the same as that for the clamped point A of the
above-mentioned cantilever beam (i.e., by virtue of (21c) and (21d), perpendicularly to the boundary).

In the particular case of a simply supported plate, first all columns that correspond to the outermost
control points will be deleted. Second, since the normal moment vanishes (Mn = 0), the current situation
is very similar to (21e), and the concept of (22) can be applied as is.

In the general case of a 2-D plate with arbitrary boundary conditions, the above procedure is general-
ized as follows. In compact form, the imposition of Neumann b.c. can be written in the form

[A22 A2i ]

{
a2

ai

}
= {0}, (24)

where the elements of the matrices A22 and A2i include second and third directional derivatives of the
basis functions. The vector a2 refers to the generalized coefficients that are related to the control points
on the Neumann boundary, whereas the vector ai refers to inner ones.

In the free vibration problem, (6) can be written as

[Mc2 Mci ]

{
ä2

äi

}
+ [Kc2 Kci ]

{
a2

ai

}
= {0}. (25)
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Solving (24) in a2 and then substituting into (25), one finally obtains the standard expression

M̄ äi + K̄ ai = 0 (26)

where
M̄ = Mci −Mc2(A22)

−1 A2i , K̄ = Kci − Kc2(A22)
−1 A2i . (27)

5. Handling the curved boundaries

The proposed method is based on isoparametric considerations. Therefore the tensor product, which
describes the flexure of the plate according to (2), is considered to describe the curved geometry as well.
As usual, natural coordinates (ξ, η) normalized in the interval [0, 1] have to be considered.

In general, the analyst has to choose the four corner points (i.e., A, B, C and D, shown in Figure 1,
right) on the real curvilinear boundary of the plate, and then define the number and the position of the
breakpoints along the four curvilinear parts AB, BC, CD and DA on the boundary, as well as the polyno-
mial degree p. Every collocation point corresponds to a specific pair (ξ, η), which is known in advance.

For the arbitrary curved plate with given collocation points, while the mass matrix continues to be
described by the simple product of (5), the fourth-order operator of a shape function (i.e., ∇4 N (x, y)=
∂4 N/∂x4

+ 2 ∂4 N/∂x2∂y2
+ ∂4 N/∂y4) is more difficult to compute. Concretely, the computation of the

stiffness matrix demands the transformation of ∇4 N (x, y) in ξ - and η-coordinates, as outlined in the
Appendix.

6. Numerical results

The proposed theory is thoroughly evaluated in two benchmark problems that concern a square thin plate
of dimensions a× a under two different boundary conditions. In addition, at the end of this section, the
applicability of the proposed method is shown for a circular plate as well. The first problem refers to
a simply supported square plate (SS) whereas the second to a clamped (CL) one. In both cases the
numerical solution is compared with:

(1) The previous cubic B-splines Galerkin–Ritz formulation [Antes 1974] implemented with a standard
4× 4 Gaussian quadrature scheme in an in-house computer code, and

(2) the conventional finite element method (FEM) using element SHELL63 of ANSYS version 14.5 on a
uniform mesh that coincides with the uniform mesh of breakpoints utilized in the global collocation
solution.

(3) The exact solution, which is given as [Leissa 1973]

fi j [Hz] =
λ2

i j

2πa2

[
Eh2

12ρ(1− v2)

]1/2

; i = 1, 2, 3 . . . ; j = 1, 2, 3 . . . , (28)

where i and j are the numbers of half-waves in mode shape along x and y axis, respectively, and
λ2

i j is a parameter that depends on the ratio (a/b) of the length over the width of the plate as well
as on the type of boundary conditions according to Table 1.

Concerning the proposed global collocation method, we remind that, for a polynomial degree p = 5,
6 or 7, then 2× 2, 3× 3 or 4× 4 collocation points per cell (of breakpoints) are chosen, respectively.
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type of
boundary conditions

λ2
i j (mode)

1 2 3 4 5 6

simply supported 2π2 5π2 5π2 8π2 10π2 10π2

[Leissa 1973] (1, 1) (2, 1) (1, 2) (2, 2) (3, 1) (1, 3)

fully clamped 35.9852 73.3938 73.3938 108.2165 131.5808 132.2048
[Wieners 1997, p. 38] (1, 1) (2, 1) (1, 2) (2, 2) (3, 1) (1, 3)

Table 1. The values of parameter λ2
i j and the numbers (i, j) of half-waves for a square

plate in bending.

The computational results are presented in the form of errors (in percent, %) of the eigenvalue, ω2
i j =

(2π fi j )
2:

Error(%)=
‖ω2

calculated−ω
2
exact‖

ω2
exact

× 100. (29)

Example 1 (Simply supported rectangular plate). Depending on the polynomial degree, the results il-
lustrated in Figure 3 show an excellent convergence in terms of mesh density. It is noted that when
p = 5 (not shown), the global collocation method converges somewhat slower than the FEM solution. In
contrast, Figure 3 shows that when p = 6 or 7 the numerical solution becomes extremely accurate even
when treating the entire plate as a unique cell.

Example 2 (Clamped rectangular plate). Similar results were found in this example as well (see Figure 4).
It is noted that the exact solution was taken according to Wieners [1997], who presents more decimal
digits than Leissa [1973].

Finally, we show how the particular choice of collocation points affects the solution. Let the knot
vector, see (7), be written as V = {v1, . . . , vn+p+1}, where n is the number of control points. Except for
the above-mentioned Gaussian points, more sets were determined as follows:

(1) “Demko” abscissae were determined on the basis of “p-2” degree. We used the MATLAB command
chbpnt(knotsx(4:length(knotsx)-3),k-2). This way leads to the same number of collocation points as
obtained using Gaussian points. It is noted that neither the first abscissa is zero nor the last one is
equal to the unit.

(2) “Greville-1” abscissae were again determined on the basis of “p-2” degree. The first four knots
were not considered.

(3) “Greville-2” abscissae were now determined on the basis of “p” degree. The first three knots were
not considered, and all produced abscissae were used.

Concerning the two first sets (i.e., Demko and Greville-1), it is noted that unlike the second order prob-
lems (see [Auricchio et al. 2010; Provatidis 2014]), neither the first abscissa is zero nor the last one is
equal to the unit.

The performance of the above-mentioned abscissae as collocation points is shown in Figure 5. One
may observe that while for p= 6 the Gaussian points are competitive with Demko’s abscissae, in contrast
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Figure 3. Convergence quality of the first calculated eigenvalues for a simply supported
square plate.

to p = 7, these are rather superior. Between the two Greville-type abscissae, Greville-2 (based on p-th
degree) is superior.

Example 3 (Circular clamped plate). A circular clamped plate of radius R = 1 was analyzed and the
proposed collocation method was successfully compared with the exact solution [Zhou et al. 2011].
Table 2 presents the numerical results when the collocation points are taken at the location of the Gaussian
points. One may observe the excellent and rapid convergence towards the exact solution. It is noted that
the minor error that appears at the first natural frequency is probably due to the insufficient number of
digital points that literature presents, a matter that has been extensively discussed in [Zhou et al. 2011].
Moreover, the number of equations is shown at the bottom of Table 2.

Concerning conventional plate finite elements (structured mesh using three different types from AN-
SYS library), the convergence rate is very slow and the error of the first natural eigenfrequency is con-
siderably greater than that of the proposed collocation method (Table 2), as clearly shown in Table 3.
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Figure 4. Convergence quality of the first calculated eigenvalues for a clamped square plate.

Regarding the other nine modes, the error is practically maintained at the same level with the first one,
thus they are not shown.

7. Discussion

As previously reported in the case of 2-D acoustics [Provatidis 2014], the accuracy of the proposed
B-splines collocation method in plate-bending eigenvalue analysis is again excellent. An interesting
finding is that in the first two examples (square plate) of this study, the proposed global collocation
method converges from lower to higher values, exactly as the FEM (ANSYS) solution behaves. It is
noted that similar results with ANSYS (of slightly lower quality) were obtained using an in-house code
that implemented the shape functions of the well-known MZC 12-DOF finite element [Melosh 1963] in
conjunction with a consistent mass formulation. Therefore, the quality of the general purpose commercial
software (one of the most reliable worldwide) or the particular choice of the SHELL63 is not to be
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Figure 5. Influence of each particular set of collocation points on the first two eigenval-
ues for a clamped square plate.

blamed. The superiority of the proposed method is mainly due to the high polynomial degree of the
flexural approximation.

Tables 2 and 3 show that for the circular clamped plate, the pattern of convergence is not as clear as
it was for the square one, whereas even the three ANSYS types of elements tested also have different
convergence patterns, although they converge to very similar values.

The above-mentioned procedure leads to excellent results but is strictly related to the proposed number
of collocation points according to (16)–(19). In principle, an alternative could be to use a Lagrange
multiplier scheme according to which the boundary condition at the Neumann part of the boundary is
properly added to the equation related to the fulfillment of the partial differential equation. However,
the accuracy of this procedure is out of the scope of this paper. For an analog to in-plane elasticity, the
interested reader is referred to the Appendix of [Provatidis 2017].

Although this paper is restricted to B-spline collocation, which is a special case of the so-called
global collocation methods (GCM), a generalization is possible. In more detail, it is worthy to mention
that the high polynomial degree in the B-splines representation and the closely related high accuracy
in the obtained numerical results characterize all other CAD-based formulations as well. Specifically,
B-splines approximation is chronologically the fourth main “station” in CAD history [Provatidis 2014].
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p = 6 p = 7
mode λ2

i j number of knot spans number of knot spans
2 3 4 6 1 2 3 4

1 10.2158 0.91 −0.03 0.03 0.03 7.17 −0.02 0.04 0.03
2 21.2604 1.31 0.50 −0.03 0.01 −8.04 −0.23 −0.01 0.01
3 21.2604 1.33 0.52 −0.01 0.02 −8.02 −0.22 0.00 0.03
4 34.8770 −7.55 −0.07 −0.14 0.02 −21.83 −0.89 −0.03 −0.02
5 34.8770 4.32 0.96 0.62 0.02 277.49 3.34 0.03 0.02
6 39.7711 −6.96 −0.00 0.62 0.02 262.93 3.31 0.04 −0.02
7 51.0306 −1.49 0.74 0.32 0.01 217.25 1.91 −0.00 0.00
8 51.0306 −1.48 0.74 0.32 0.01 217.27 1.91 −0.00 0.00
9 60.8287 3.93 1.83 0.19 −0.03 191.31 2.25 −0.25 0.02

number of equations 36 81 144 324 16 64 144 256

Table 2. Errors (in %) of the calculated natural frequencies for a clamped circular plate
of unit radius. Natural frequencies were calculated using the proposed B-splines collo-
cation method based on the Gaussian points, for piecewise polynomial degrees p = 6
and 7. For the exact parameter λ2

i j , see (28).

number of circumferential uniform
element type (ANSYS) segments per quarter of the circle (nξ = nη)

8 16 32 64

SHELL43 6.55 4.13 3.57 3.43
SHELL63 2.44 3.14 3.34 3.39
SHELL181 10.02 4.97 3.77 3.47

number of unrestrained nodal points 49 225 961 3969

number of equations 147 675 2883 11907

Table 3. Errors (in %) of the calculated first natural frequency for a clamped circular
plate of unit radius. This demonstrates the quality of the calculated first natural fre-
quency using several types of finite elements (ANSYS library). Value for the exact
parameter λ2

i j , see (28), is 10.2158. For the number of equations, all equations have
unrestrained bending DOF, excepting the membrane behavior.

Taking the mid-1960s as a starting point, the five consecutive stations in CAD approximation theory are
(see, for example, [Farin et al. 2002]):

(1) Coons interpolation (in 1967),

(2) Gordon transfinite interpolation (in 1970),

(3) Bézier curves,
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(4) B-splines and

(5) NURBS.

In general, and independently on the governing partial differential equation, the boundary value or
the eigenvalue problem can be solved using one of the aforementioned five CAD-based approximations,
and one of the basic computational methods: Ritz–Galerkin, boundary element and collocation, among
others. These fifteen combinations increase by a factor equal to two when considering triangular patches
(Barnhill’s approximation: one more CAD-station) in addition to the quadrilateral ones.

Let us examine the above-mentioned four interpolations, one-by-one:

(1) Concerning the boundary-only Coons interpolation (first CAD-station), the GCM is not applicable at
all. The reason is due to the elimination of all boundary DOF, a matter discussed in detail elsewhere
[Provatidis 2014]. In contrast, the same interpolation performs well in the static plate analysis in
conjunction with the Ritz–Galerkin formulation [Provatidis and Angelidis 2014].

(2) Although numerical results were not presented, the GCM performs well in conjunction with the
transfinite interpolation (second CAD-station). Similarly, transfinite interpolation performs well in
conjunction with the Ritz–Galerkin formulation [Provatidis 2008c]. This is due to the existence of
internal nodes that raise the accuracy of the approximation.

(3) Although not mentioned so far, the numerical results of this paper include the Bézier interpolation
(third CAD-station) as well. This happens because when using one subdivision of each side (shown
by the left extreme points in Figures 3 and 4), B-spline degenerates to Bernstein polynomials.

(4) B-splines collocation performed well (see Figures 3 and 4). Similarly, when B-splines approxima-
tion is applied in conjunction with the Ritz–Galerkin formulation (not presented), the quality of the
numerical solution is high, as summarized in [Höllig 2003].

8. Conclusions

It was shown that the proposed global collocation method has excellent performance in the eigenvalue
analysis of simply supported and clamped plates. For a specified number of uniformly arranged break-
points, the procedure is more accurate than the conventional finite element method as well as the cubic
B-splines Galerkin–Ritz formulation. Although results were presented for only the eigenvalue problem,
the static analysis shows a similar behavior. When the structure is of complex shape, it is suggested to
subdivide it into large macroelements of regular shape and apply compatibility and equilibrium conditions
along the interfaces. A similar behavior is anticipated for shell structures.

Appendix: The biharmonic function in the (ξ, η)-space

For each collocation point P(ξ, η), which is known in the unit square of a reference (ξ, η)-plane, the
proposed method needs to handle the Cartesian coordinates in the form x(ξ, η) and y(ξ, η). Since the
global shape functions N (x, y), which appear in (3), are tensor products of univariate basis functions
(here, B-splines) that are known in the (ξ, η)-space, the biharmonic operator

∇
4 N (x, y)=

∂4 N (x, y)
∂x4 + 2

∂4 N (x, y)
∂x2∂y2 +

∂4 N (x, y)
∂y4 , (A.1)
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has to be transformed from x and y into ξ and η.
This is accomplished first by calculating the Jacobian matrix J =

[
∂x/∂ξ
∂x/∂η

∂y/∂ξ
∂y/∂η

]
at the collocation point

P(x(ξ, η), y(ξ, η)). Then, by numerical inversion, the four terms of its inverse J−1 are found:

J−1
=

∂ξ∂x
∂η

∂x
∂ξ

∂y
∂η

∂y

 . (A.2)

Second, every term that appears in (A.1) is processed in a systematic way as follows. The chain rule is
successively applied on an arbitrary continuous and differentiable function F(x, y), whence the following
three principal formulas are derived:

∂2 F
∂x2 =

∂2 F
∂ξ 2

(
∂ξ

∂x

)2

+ 2
∂2 F
∂ξ∂η

∂ξ

∂x
∂η

∂x
+
∂2 F
∂η2

(
∂η

∂x

)2

+
∂F
∂ξ

∂2ξ

∂x2 +
∂F
∂η

∂2η

∂x2 , (A.3)

∂2 F
∂x∂y

=
∂2 F
∂ξ 2

∂ξ

∂x
∂ξ

∂y
+
∂2 F
∂ξ∂η

(
∂ξ

∂x
∂η

∂y
+
∂ξ

∂y
∂η

∂x

)
+
∂2 F
∂η2

∂η

∂x
∂η

∂y
+
∂F
∂ξ

∂2ξ

∂x∂y
+
∂F
∂η

∂2η

∂x∂y
, (A.4)

∂2 F
∂y2 =

∂2 F
∂ξ 2

(
∂ξ

∂y

)2

+ 2
∂2 F
∂ξ∂η

∂ξ

∂y
∂η

∂y
+
∂2 F
∂η2

(
∂η

∂y

)2

+
∂F
∂ξ

∂2ξ

∂y2 +
∂F
∂η

∂2η

∂y2 . (A.5)

It is noted that (A.3) and (A.5) have previously assisted the implementation of the collocation method in
potential (Laplace and Poisson) type problems [Provatidis 2009].

As a third step in the above equations (A.3), (A.4), and (A.5), the arbitrary function F is replaced by
the shape function N , thus respectively yielding

∂2 N
∂x2 =

∂2 N
∂ξ 2

(
∂ξ

∂x

)2

+ 2
∂2 N
∂ξ∂η

∂ξ

∂x
∂η

∂x
+
∂2 N
∂η2

(
∂η

∂x

)2

+
∂N
∂ξ

∂2ξ

∂x2 +
∂N
∂η

∂2η

∂x2 , (A.6)

∂2 N
∂x∂y

=
∂2 N
∂ξ 2

∂ξ

∂x
∂ξ

∂y
+
∂2 N
∂ξ∂η

(
∂ξ

∂x
∂η

∂y
+
∂ξ

∂y
∂η

∂x

)
+
∂2 N
∂η2

∂η

∂x
∂η

∂y
+
∂N
∂ξ

∂2ξ

∂x∂y
+
∂N
∂η

∂2η

∂x∂y
, (A.7)

∂2 N
∂y2 =

∂2 N
∂ξ 2

(
∂ξ

∂y

)2

+ 2
∂2 N
∂ξ∂η

∂ξ

∂y
∂η

∂y
+
∂2 N
∂η2

(
∂η

∂y

)2

+
∂N
∂ξ

∂2ξ

∂y2 +
∂N
∂η

∂2η

∂y2 . (A.8)

As a fourth step, the function F in (A.3) is replaced by ∂2 N/∂x2 in the form of (A.6); in this way the
term ∂4 N/∂x4 is produced. Similarly, the function F in (A.4) is replaced by ∂2 N/∂x∂y in the form of
(A.7), thus the term ∂4 N/∂x2∂y2 is produced. Finally, the function F in (A.5) is replaced by ∂2 N/∂y2

in the form of (A.8), thus the final desired term ∂4 N/∂y4 is produced.
Since each of (A.3) to (A.5) consists of five terms, the above procedure leads to 5×5= 25 fundamental

terms. But since all the aforementioned 25 fundamental terms are partial derivatives of rather complicated
terms, which are multiples of up to three secondary functions, the further procedure is highly facilitated
by systematically adopting the following identity (generalized chain rule):

∂2

∂ξ∂η
( f · g · h)= ∂2 f

∂ξ∂η
· g · h+ f · ∂

2g
∂ξ∂η

· h+ f · g · ∂
2h

∂ξ∂η

+

(
∂ f
∂η
·
∂g
∂ξ
+
∂ f
∂ξ
·
∂g
∂η

)
· h+

(
∂ f
∂η
·
∂h
∂ξ
+
∂ f
∂ξ
·
∂h
∂η

)
· g+

(
∂g
∂η
·
∂h
∂ξ
+
∂g
∂ξ
·
∂h
∂η

)
· f. (A.9)
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Obviously, (A.9) covers all necessary cases. For example, when dealing with ∂2/∂ξ 2( f gh), one can
easily consider that η = ξ . Also, when dealing with any partial derivative of ( f g), one can easily apply
(A.9) and taking h = 1.

Following the above procedure, rather lengthy expressions are derived. For example, the final result
for the first term of (A.1) is given by

∂4 N
∂x4 =

∂4 N
∂ξ 4 ·

(
∂ξ

∂x

)4

+
∂4 N
∂η4 ·

(
∂η

∂x

)4

+
∂4 N
∂ξ 3∂η

·

[
4
(
∂ξ

∂x

)3(
∂η

∂x

)]
+

∂4 N
∂ξ 2∂η2 ·

[
6
(
∂ξ

∂x

)2(
∂η

∂x

)2]

+
∂4 N
∂ξ∂η3 ·

[
4
(
∂ξ

∂x

)(
∂η

∂x

)3]
+
∂3 N
∂ξ 3 ·

[
6
(
∂ξ

∂x

)2(
∂2ξ

∂x2

)]
+
∂3 N
∂η3 ·

[
6
(
∂η

∂x

)2(
∂2η

∂x2

)]

+
∂3 N
∂ξ 2∂η

·

[
12
(
∂ξ

∂x

)(
∂η

∂x

)(
∂2ξ

∂x2

)
+6
(
∂ξ

∂x

)2(
∂2η

∂x2

)]

+
∂3 N
∂ξ∂η2 ·

[
12
(
∂ξ

∂x

)(
∂η

∂x

)(
∂2η

∂x2

)
+6
(
∂η

∂x

)2(
∂2ξ

∂x2

)]

+
∂2 N
∂ξ 2 ·

[
4
(
∂ξ

∂x

)(
∂3ξ

∂x3

)
+3
(
∂2ξ

∂x2

)2]
+
∂2 N
∂η2 ·

[
4
(
∂η

∂x

)(
∂3η

∂x3

)
+3
(
∂2η

∂x2

)2]
+
∂2 N
∂ξ∂η

·

[
4
(
∂ξ

∂x

)(
∂3η

∂x3

)
+4
(
∂η

∂x

)(
∂3ξ

∂x3

)
+6
(
∂2ξ

∂x2

)(
∂2η

∂x2

)]
+
∂N
∂ξ
·

(
∂4ξ

∂x4

)
+
∂N
∂η
·

(
∂4η

∂x4

)
.

(A.10)

One may observe that the right part of (A.10) includes all partial derivatives of the shape function N,
starting from the fourth derivative, ∂4 N/∂ξ 4, and finishing with the first one, ∂N/∂η.
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SHEAR CAPACITY
OF T-SHAPED DIAPHRAGM-THROUGH JOINTS

OF CFST COLUMNS

BIN RONG, RUI LIU, RUOYU ZHANG, SHUAI LIU AND APOSTOLOS FAFITIS

Diaphragm-through joints between rectangular concrete-filled steel tubular (CFST) columns and steel
beams have been widely used in engineering design. In order to investigate the shear capacity of T-shaped
diaphragm-through joints, three such joints were tested under seismic cyclic loading. The test results
showed that the main contributors to the shear capacity of the joint are the core concrete and the steel
tube. However, the flanges of the steel tube have little effect on the shear capacity. In addition, based
on the principle of deformation coordination, a calculation method of shear force-deformation skeleton
curve for T-shaped diaphragm-through joints is proposed. The theoretical predictions of the method are
well fitted with the experimental results.

1. Introduction

In recent years, concrete-filled steel tubular (CFST) columns have been widely used in practical ap-
plications due to their benefits of excellent mechanical behavior and pleasing architectural advantages
over conventional columns, particularly in terms of their high strength-to-weight ratio, high flexural
stiffness, and aesthetic appearance. Beam to column joints are the main components that transmit
loads in the whole structure. Diaphragm-through joints between rectangular CFST columns and steel
H-shaped beams have concise form, a clear force transmission mechanism and are easy to install. Thus
the diaphragm-through joint has become increasingly popular in high-rise buildings.

A large amount of experimental research and number of theoretical analyses have been conducted
on the diaphragm-through joints between CFST columns and steel H-shaped beams [Zhang et al. 2012;
Sheet et al. 2013; Qin et al. 2014]. The calculation formula in the AIJ specification [AIJ 1987] proposed
by the Architectural Institute of Japan took into account the shear capacity of both the steel tube and the
core concrete. The formula was derived directly by superposing the shear capacity of steel and concrete.
Fujimoto [2000], Fukumoto and Morita [2005] conducted a series of experiments on the panel zone of
internal-diaphragm joints and diaphragm-through joints between CFST columns and steel beams. They
proposed the constrained compression truss model of the concrete core. Based on the superposition of
shear force-deformation relations for the steel tube and concrete core, a practical calculation method was
provided as a trilinear model with a yield strength and an ultimate strength for the panel zone. Lu and
Yu [2000] conducted an experiment on five internal-diaphragm joints. The researchers also proposed a
formula for the prediction of the yield strength of the joint by superposing the yield strength of each
member in the joint, which is derived from the yield line theory. Wu, Chung, Tsai, Lu, and Huang
[Wu et al. 2006] conducted a series of cyclic loading experiments on bidirectional bolted beams to CFST

Keywords: CFST column, diaphragm-through joint, shear capacity, experimental research.
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column connections. They established a mechanical model to derive theoretical equations for calculating
the stiffness, the yielding shear capacity and the ultimate shear capacity of the panel zone. Nie, Qin, and
Cai [Nie et al. 2008] conducted a series of cyclic loading experiments on three types of connections
inside the frame. Based on the experimental studies, the researchers proposed a calculation method of
shear force-deformation skeleton curves by superposition.

Liu et al. [Liu et al. 2014] compared three main calculation methods for the shear capacity of joints
between CFST columns and steel beams. The theoretical results were verified with test data. It was found
that the applicability of the calculation methods was different between interior and exterior joints. The
yield load of exterior joints was significantly nonconservative and the ultimate loads presented scattered
results for the existent specimens. The number of exterior joint specimens was small. So further research
is needed to develop procedures for accurate assessment of the panel zone shear capacity for exterior
joints.

In order to investigate the shear capacity of exterior diaphragm-through joints, three T-shaped joints
were tested under seismic cyclic loading in this study. The specimens were designed based on the
principle of “strong members and weak joints” to ensure the shear failure in the panel zone of joints.
Based on the test results, a nonlinear shear force-deformation model is proposed for the panel zone of
exterior diaphragm-through joints between CFST columns and steel beams. This model is verified by
experimental results based on various parameters.

2. Experimental design

2.1. Specimen design. Three full-sized T-shaped specimens have been designed to investigate the shear
capacity of exterior diaphragm-through joints subjected to seismic cyclic loading. Under seismic actions,
story drift occurs in the structure, and the inflection points of beam and column are assumed to occur
at the mid-point. The panel zone of the joint is the center of the specimens, and the midpoints of the
columns and beams are the boundaries of the specimens. In this T-shaped substructure, three hinges are
used to simulate the upper, lower, left or right inflection points to perform the simulation. In order to
evaluate the shear capacity of the panel zone, the specimens were designed to be “strong members and
weak joints” to ensure the shear failure in the panel zone. This was achieved by making the thickness of
the steel tube wall of the panel zone thinner than the ones used in practical engineering.

The thickness of the steel tube wall of the panel zone and diaphragm-through, and the strength of
concrete in steel tube are changed for comparison. The dimensions of each specimen are listed in Table 1.
Details of panel zone are shown in Figure 1.

Column Section Beam Section Column Section in Thickness of
Specimen (mm) (mm) Panel Zone (mm) Diaphragm (mm) Concrete

TDTC-1 200× 200× 6 16 C30

TDTC-2 200× 200× 12 H250× 200× 8× 12 200× 200× 6 14 C40

TDTC-3 200× 200× 8 14 C30

Table 1. Dimensions of specimens.
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Figure 1. Details of panel zone

Thickness
of steel (mm) fy(N/mm2) fu(N/mm2)

6 268.9 387.9
8 249.6 373.1

12 313.8 439.8
14 252.2 414.6
16 250.1 407.3

Table 2. Material properties of steel ( fy is the yield strength and fu is the tensile strength).

The steel tubes of the specimens were made of cold-formed square steel tube. The beams of the spec-
imens were made of H-shaped steel. The steel tubes were discontinuous at the position of diaphragms,
and the diaphragms went through the steel tubes. All the steel components of the joint connected to each
other by full penetration butt welds with backing bars. They were processed and welded together in the
factory in advance. Then the steel tube was filled with concrete. The specimens were transported to the
laboratory after the curing of concrete was completed in the factory.

The strength grade of steel of all the specimens was Q235B. According to the “metallic materials
at room temperature tensile test method” (GB/T228-2002), standard tensile pieces of steel from steel
tubes and beams of the specimens were cut. The dimension of the tension bar was 180 mm× 40 mm.
The material properties of the steel were tested on the universal testing machine, as shown in Figure 2.
The stress-strain curves of all thicknesses of steel are shown in Figure 3. The material properties of the
steel are listed in Table 2. The grades of concrete in the steel tubes were C30 and C40. According to
the “concrete strength inspection and evaluation standards” (GB/T50107-2010), standard concrete test
cubes were made when concrete was cast into steel tubes. The dimension of the concrete cubes was
150 mm×150 mm×150 mm. The concrete cubes were cured under the same conditions with specimens
for 28 days. Compression strength of the concrete cubes was tested on the electrohydraulic universal
testing machine, as shown in Figure 2. The stress-strain curves of the two grades of concrete are shown
in Figure 3. The material properties of the concrete are listed in Table 3.
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Tensile test of steel specimen Concrete cube test

Figure 2. Material property test.

Stress-strain curves of steel Stress-strain curves of concrete

Figure 3. Stress-strain curves of material test results.

Grade of
concrete fcu(N/mm2) f ′c(N/mm2)

C30 34.63 27.36
C40 43.55 34.40

Table 3. Grade of concrete ( fcu is the cube compressive strength of concrete and f ′c is
the cylinder compressive strength of concrete).

2.2. Test setup and loading procedure. There are two kinds of common loading methods in the joint test,
which are loading at the column end and loading at the beam end, respectively. When the research would
be affected by the second order effects of gravity on the displacement of the column under horizontal
load, the loading at the column end method should be adopted. Since the mechanical properties in the



SHEAR CAPACITY OF T-SHAPED DIAPHRAGM-THROUGH JOINTS OF CFST COLUMNS 377

Schematic drawing of test setup Photo of test setup

Figure 4. Test setup.

panel zone of the joint will not be influenced by the second order effect of gravity, the beam end loading
scheme was adopted in this study. Figure 4 shows the schematic drawing and the photo of the test setup.
The T-shaped specimens were placed horizontally on the testing frame first. To simulate the inflection
points of the columns and the beams, the T-shaped specimens were fixed on the testing frame by three
hinged supports. The displacement of three directions was constrained at the bottom of the column. The
top of the column was restricted by the displacement in two directions. The displacement in the direction
of the column axis was relaxed, which was achieved by the long hole of the hinged support.

Before the actual experiment, the specimens were preloaded to ensure good contact with the test
device. The relationship between load and deformation was stable. The entire test device was reliable.
Furthermore, observation equipment worked properly. During the experiment, the horizontal cyclic load
at the beam end was controlled by a force-displacement hybrid control loading system. That is, force-
control was used before the yielding of the specimen. Displacement-control was employed after the
yielding of the specimen. Stepwise force load was applied to the beam end and repeated one time at
each step before yielding. After that, the specimen would be controlled by a multiple of the horizontal
displacement of the beam end when specimens yielded. This was repeated three times for each step.
During the loading process, in order to get the stable deformation data of the joint, the experimental
data were collected after keeping the load for 5 minutes per level. The controlled displacement in the
loading process was measured by LVDT1 (Linear Variable Differential Transformer), which was placed
at the end of the beam corresponding to the location of a horizontal actuator. In addition, the diagonal
displacement of the shear panels was measured by LVDT2 and LVDT3, as shown in Figure 4. The
measured data were collected by the computer automatically.

2.3. Observations. For the specimen TDTC-1, the thickness of diaphragm was 16 mm. Before yielding,
the load-displacement curve was linear. At the load of 139 kN, the joint yielded, while the deformation
of the panel zone was so insignificant that no major phenomenon was observed. Beyond this point, the
loading continued to increase with the displacement control method. The applied displacements were
equal to multiples of yield displacement at the beam end, and the slope of the load-displacement curve
became smaller. Local buckling occurred in the steel tube webs of the panel zone during the second cycle
in one time of yield displacement. With the increasing displacement of the beam end, the horizontal load
kept increasing. The internal force of the specimen was redistributed. The beam flanges began to bear
more load transferred from the beam end. Then some local buckling took place on the beam flanges,
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Local buckling of beam flange Weld failure

Figure 5. Experimental phenomena of TDTC-1.

as shown in Figure 5. As the load increased, the weld between the steel beam and diaphragm started
to fail, as shown in Figure 5. The load reached its peak value of 185.2 kN, corresponding to 50.2 mm
displacement. The specimen was then unloaded and the test was terminated. It can be seen that the
column web of panel zone bulged outward at the end of the test.

For the specimen of TDTC-2, the grade of filled concrete was C40. At the load of 138 kN, the panel
zone yielded and the slope of load-displacement curve became smaller. Then the loading entered into the
displacement control stage. TDTC-2 reached its maximum capacity of 199 kN and the corresponding
displacement value was 61.1 mm. At four times the yield displacement, some local buckling on the
column web of the panel zone became obvious. With the cyclic load at the beam end, the bulging
outward of the column web along the two diagonals took place alternately with a characteristic sound.
After that, the bearing capacity decreased slowly. At five times the yield displacement, a crack appeared
near the weld on the tensile side of the diaphragm. At six times the yield displacement, the crack in
diaphragm became bigger, as shown in Figure 6; the bulge outward of column web is shown in Figure 6.
The load at the beam end dropped to 163 kN, smaller than 85% of the maximum load, and the test was
terminated.

For the specimen of TDTC-3, the thickness of the steel tube in the panel zone was 8 mm. At the
load of 160 kN, the panel zone yielded. The rectangular panel zone started to become rhombus at two
times of yield displacement. There was a clear deflection of the steel beam due to the deformation of the
panel zone, as shown in Figure 7. After the yielding of the panel zone, the internal force of the specimen
was redistributed and the beam flanges began to bear more load transferred from the beam end. The
TDTC-3 reached its maximum value of 179.3 kN with the corresponding displacement of 37.8 mm. At
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Crack of diaphragm Bulged outward of column web

Figure 6. Experimental phenomena of TDTC-2.

the same time, the weld between the steel beam and diaphragm failed, as shown in Figure 7. The test
was terminated.

3. Slitting test of concrete

The steel tube walls at the panel zone of TDTC-2 and TDTC-3 were removed to examine the failure
mode of the concrete core of the CFST columns. The distribution of the concrete cracks of TDTC-3
after the panel zone yielded is shown in Figure 8. The severe deformation of the concrete core in the
column of TDTC-2 is shown in Figure 8. Under the cyclic load at the beam end, the corner of the panel
zone was subjected to tension and pressure transformed from the moment, which was transferred from
the beam end and column end. It can be seen from Figure 8 that diagonal cracks appeared and concrete
diagonal compression struts formed. According to the test results, it can be found that the width of the
diagonal compression strut is about 1/3 of the diagonal length of panel zone.

4. Discussion of test results

4.1. Relationships between the shear forces and deformations of panel zone. Shear force-deformation
hysteretic curves and skeleton curves of three specimens are shown in Figures 9–11. In these figures, Q
is the shear force and γ is the shear deformation of the panel zone. The shape of hysteretic curves of
all specimens is smooth and full, which indicates that the specimens have a sound ductile behavior with
large energy absorption. The strength decreases gradually after it reaches the maximum point. The slopes
of the loading curves of the joints decrease with the increase of the cyclic load. However, the slopes of
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Deflection of steel beam Weld failure

Figure 7. Experimental phenomena of TDTC-3.

Concrete cracks in early stage Concrete compression strut crushed

Figure 8. Concrete at panel zone.

the unloading curves are almost unchanged, which indicates bigger loading stiffness degradation and
smaller unloading stiffness degradation.

The skeleton curves of hysteretic relations, which are obtained through connecting the displacement
peaks of all cycles, are shown in Figures 9–11. All the skeleton curves are S-shaped, which indicates
that all the specimens have elastic, yielding and hardening stages during the test. In the elastic stage of
the joints, shear force-deformation curves are almost straight up. The steel tubes and the concrete are all
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Hysteretic curve Skeleton curve

Figure 9. Shear force-deformation of TDTC-1.

in the elastic stage. There are no cracks in the concrete core and the steel tube walls. The concrete and
the steel tubes are bonded together effectively. The steel tubes and the concrete can be regarded as an
integral part of this stage. The shear stiffness is bigger due to the cooperative working mechanism and
deformation joints. In the yielding stage of the joints, the shear deformation increases with the increasing
load. The concrete cracks and the web of the steel tube yields. The concrete is separated from the steel
tube walls. The slope of shear force-deformation curves declines. Then the web of steel tube enters the
hardening phase until it buckles.

After the web of steel tube buckles, the shear resistance of the concrete compression strut increases
gradually due to the confinement provided by the steel tube and upper and lower diaphragms. Thus the
joints exhibit good ductility. For TDTC-1 and TDTC-3, after the shear yield of the panel zone, the internal
forces of the specimen are redistributed, and the beam flanges began to bear more load transferred from
beam end. This will lead to the premature failure of the weld between the steel beam and diaphragm.
Therefore, the development of shear deformation of the panel zone is insufficient after yielding. The
energy dissipation capacity of the panel zone is not fully developed.

The yield shear capacity of specimens is presented in Table 4. From the figures combined with the
data of Table 4, it can be seen that the yield shear capacity of TDTC-1 is significantly smaller than
that of TDTC-2 and TDTC-3, which indicates that the influence of diaphragm thickness on the shear
capacity of the joints is smaller than that of the steel tube wall thickness and the concrete strength. The
comparison of TDTC-2 and TDTC-3 demonstrates that the influence of the thickness of steel tube on the
shear capacity of the joint is larger.

4.2. Comparison of test results and existing calculation results. In order to evaluate the applicability of
the existing calculation methods for the exterior diaphragm-through joints, the results obtained through
existing calculation methods are compared with the test results. Three main methods for computing the
panel zone shear capacity of composite CFST connections are briefly reproduced here.

4.2.1. Calculation method in [AIJ 1987]. The formula of the method incorporated in AIJ specification
is shown in (1). It is derived directly by superposing the shear capacity of the concrete core and the steel
tube, where Vc is the volume of the concrete core, f J S is the concrete compression strength (in MPa),
βJ is the coefficient for column cross sections, Vs is the volume of the web of the steel tube, and fy is
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Hysteretic curve Skeleton curve

Figure 10. Shear force-deformation of TDTC-2.

Hysteretic curve Skeleton curve

Figure 11. Shear force-deformation of TDTC-3.

the yield tensile strength of the web of steel tube (in MPa).

Q = Vc FJSβJ +
1.2
√

3
Vs fy . (1)

4.2.2. Calculation method proposed by Lu Xilin (2000). The formula of Lu’s method [Lu and Yu 2000]
for computing composite panel zone strength is shown in (2), where Ny is the shear capacity of the weld
or tube web in the corner, hc is the width of the cross-section of the concrete core, Mpw is the moment of
the tube web, Mpj is the moment of the inner diaphragm, Ncv is the compressive strength of the concrete
constrained compression truss, and Hb is the height of the steel beam:

Q =
(
2 Ny hc+ 4 Mpw + 4Mpj + Ncv hc/2

) /
Hb. (2)

4.2.3. Calculation method proposed by Fukumoto and Morita (2005). The formula of Fukumoto’s method
[Fujimoto et al. 2000] for computing composite panel zone strength is shown in (3), where Vsy is the
contribution of the shear capacity of the steel tube, Vcu is the contribution of the concrete core which is
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Figure 12. General yield point method.

derived from a constrained compression truss model, and β is the ratio of the shear yield load to shear
ultimate load of the concrete core. The shear capacity of the joint is obtained by directly superposing of
the contribution of the steel tube and concrete core:

Q = Vsy +βVcu . (3)

The comparison of the test results and the existing calculation results of the three T-shaped diaphragm-
through joints are shown in Table 4. The yield shear capacity can be obtained by the general yield point
method [Park et al. 2010], as shown in Figure 12. The yield point is the intersection point of the two
lines, whose slopes are the initial stiffness (K ) of the specimen and one-third of the specimen (K/3).

It can be seen from Table 4 that the shear capacity of the panel zone increases with the increase of
the thickness of the steel tube and the concrete grade. The thickness of diaphragm-through has little
influence on the shear capacity of the panel zone. The ratios of the test results and results calculated
by AIJ, Lu Xilin, and Fukumoto range from 0.79 to 0.91, 0.70 to 0.77, and 0.97 to 1.17, respectively.
They cannot reflect the shear capacity of T-shaped diaphragm-through joints accurately. That is to say,
these calculation methods for calculating the shear capacity of panel zone are not suitable for T-shaped
diaphragm-through joints. Thus, it is necessary to develop a new shear force-deformation model to
estimate the shear capacity of T-shaped diaphragm-through joints accurately.

5. Models for shear force-deformation

5.1. Shear force-deformation of steel tube flange. The rectangular steel tube consists of column flanges
and webs. When the beam end is subjected to the horizontal load, shear force is generated in the panel
zone. This shear force causes shear deformation at the column web, and flexural deformation at the
column flanges, as shown in Figure 13. The shear stiffness and shear capacity of the panel zone are
influenced by the shear behavior of the webs and the flexural behavior of the flanges. The shear force
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Test result AIJ Lui Xilin Fukumoto

Specimen Qe Q y Q y/Qe Q y Q y/Qe Qe Q y/Qe

TDTC-1 580.65 680.67 0.85 776.53 0.75 529.68 1.09

TDTC-2 638.62 701.78 0.91 828.68 0.77 547.48 1.17

TDTC-3 601.88 763.66 0.79 876.83 0.70 617.39 0.97

Average 0.85 0.74 1.08

Standard deviation 0.049 0.029 0.082

Table 4. Comparison of test and existing calculation results, where Qe is the shear
capacity of the test result and Q y is the shear capacity calculated with the existing
method.

affected by the flexural behavior of the column flanges (Vf ) is

Vf = K f γ f , (4)

K f = 2×
12Es I

hb− 2tb f
, (5)

where γ f is shear strain of the column flanges when it’s deformed, Es is the Young’s modulus of steel,
hb is the depth of the H-shaped beam, tb f is the thickness of the diaphragm-through, bc is the width of
the column, tc is the thickness of the beam flange, K f is the shear stiffness of the two column flanges
due to flexural deformation and I = bc t3

c /12 is the moment of inertia of the column flange.
When the column flanges reach the yielding point, the shear capacity (V f y) is

Vf y =
4M f y

hb− tb f
, (6)

where M f y = bc t2
c fy/6 is the yield flexural strength of the column flanges, and fy is the yielding tensile

stress of the steel. The corresponding shear strain (γ f y) is

γ f y =
Vf y

K f
. (7)

5.2. Shear force-deformation of steel tube web. The shear force contributed by the shear behavior of
the column webs (Vw) is

Vw = Kw γw, (8)

where the shear stiffness of column webs before yielding (Kw1) is

Kw1 = 2AwGs = 2(bc− tc)tc Gs . (9)
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Figure 13. Schematic diagram for deformation of steel tube

When the column webs yield, the strength of the two column webs (Vwy) is

Vwy = 2Aw fyv. (10)

The corresponding shear strain of column web (γwy) is

γwy = κ
Vwy

Kwl
= κ

2Aw fyv

2AwGs
= κ

fyv

Gs
, (11)

where Aw is the web area of steel tube in the panel zone, Gs = 79G Pa is the shear modulus for the steel
tube and κ is the section coefficient for shear deformation. After reaching the yielding point, the shear
stress-strain curve extends continuously at smaller stiffness until the strain is four times the yielding
strain due to strain hardening of the material and restraint of the surrounding components [Krawinkler
1978]. Hence, the shear stiffness of the two column webs after yield is

Kw2 =

(
β−1

3

)
Kw1, (12)

where β is the strain hardening factor, which is the ratio of the ultimate tensile stress to the yield tensile
stress.

When the external loads increase continuously, the stress of the column webs subsequently reaches
the ultimate point and the strength (Vwu) is

Vwu = 2tc(bc− 2tc)
fu
√

3
, (13)

where fu is the ultimate tensile stress of the steel.
The corresponding shear strain of column web (γwu) is

γwu =
Vwu − Vwy

Kw2
. (14)

5.3. Shear force-deformation of concrete. For diaphragm-through joints, the concrete compression
strut mechanism is activated by the restricting effect of the through-diaphragms and the steel tube wall on
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Figure 14. Schematic diagram for concrete compression strut.

the adjacent concrete. The schematic diagram for the concrete compression strut is shown in Figure 14.
Based on the analysis in slitting tests of concrete, the concrete compression strut is along the diagonal
direction of the panel zone. It is assumed that the width of the compression strut ds is about 1/3 length
of the panel zone diagonal:

ds =
1
3

√
(bc− 2tc)2+ (hb− 2tb f )2. (15)

The angle between the compression strut and the longitudinal beam axis θ is calculated as follows:

θ = tan−1 bc−2tc
hb−2tb f

. (16)

The shear force contributed by the concrete compression strut (Vc) is

Vc = f (bc− 2tc) cos θ, (17)

where f is the compression stress of the concrete compression strut.
The stress-strain model for uniaxial and confined concrete under compression, proposed by Samani

and Attard [2012], is utilized for the concrete in steel tube columns. This stress-strain model predicts the
behavior of normal strength concrete, as well as high strength concrete accounting for the size effects.
The complete stress-strain curve is divided into two regions: ascending and descending branches. For
the ascending branch,

f
f0
=

A · X + B · X2

1+ (A− 2)X + (B+ 1)X2 , where X = ε

ε0
and 0≤ ε ≤ ε0, 0≤ f ≤ f0. (18)
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The characteristic values A and B are

A =
Ecε0

f0
and B =

(A− 1)2

0.55
− 1. (19)

For the softening descending branch, a power function is used on the condition that the stress-strain
curve passes through a point on the softening branch, here taken as the so-called inflection point. The
proposed post-peak softening function is

f
f0
=

fr

f0
+

(
1−

fr

f0

)(
fic

fc

)( ε−ε0
εi−ε0

)2

. (20)

The inflection point strain ratio is

εi

ε0
=

(
fr

f0

)(
1.26+

2.89√
f ′c

)
+

(
1−

fr

f0

)(
εic

εc

)
. (21)

In the above equations, f0 is the compression strength of confined concrete, ε0 is the corresponding
stain, Ec is the secant modulus of concrete, fr is the residual stress, fic is the stress level at the inflection
point on descending branch of confined concrete, εic is the corresponding strain and f ′c is the uniaxial
compression strength of concrete. Details of the procedure to compute these parameters are described
by Samani and Attard [2012].

Actually, compression stress is in one direction diagonally while there is tensile stress acting in the
perpendicular direction. This effect should be considered by means of the concrete softening parameter β
[Parra-Montesinos and Wight 2001]. The effect of transverse tensile strains on the softening parameter β
is a function of the ratio ktc given by β = 1/(0.85+ 0.27ktc), where ktc is related to the principle tensile
and compression strains, with ktc =−εt/εc.

When the concrete core is subjected to the resultant pressure along the diagonal direction, it will
deform as Figure 15 shows. According to the relationship between each dimension in the figure, the
shear deformation of concrete γc can be obtained by the law of cosines through the compression strain ε:

γc =
(bc− 2tc)2+ (hb− 2tb f )

2

(bc− 2tc)(hb− 2tb f )
ε. (22)

Therefore, the relationship of shear force and deformation for concrete in the panel zone can be deter-
mined.

5.4. Models for shear force-deformation of the panel zone. According to the principle of coordination
of shear deformation, the shear force-deformation model of the diaphragm-through joints can be obtained
through the superposition of models for the steel tube and concrete, given by (23).

Vj = Vf + Vw + Vc (23)

5.5. Comparison of test and theoretical results. The accuracy of the proposed model to predict the
shear force-deformation of T-shaped diaphragm-through joints is evaluated by comparing the predicted
versus experimental results, as shown in Figure 16. As these figures show, the proposed model closely
predicts the behavior of the joints for all levels of the shear force-deformation curve.
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Figure 15. Deformation of concrete core.

TDTC-1 TDTC-2

TDTC-3

Figure 16. Predicted versus experimental shear force-deformation curves.
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Specimen Qe Q y Q y/Qe

TDTC-1 580.65 609.46 0.953
TDTC-2 638.62 661.54 0.965
TDTC-3 601.88 653.13 0.922

Table 5. Comparison of experimental and theoretical results, where Qe is the shear
capacity of the test result and Q y is the shear capacity calculated with proposed method.

The predicted results of yield shear capacity for T-shaped diaphragm joints obtained through the
proposed model are compared with the experimental results, as shown in Table 5. It can be seen that
the theoretical results are in good agreement with the experimental data, the deviation of the prediction
results is less than 10%. Because of the premature failure of the weld between the steel beam and
diaphragm, the experimental result of TDTC-3 is significantly smaller than the predicted value. The
shear force-deformation model proposed in this paper is a valuable tool for predicting the shear capacity
of T-shaped diaphragm-through joints.

6. Conclusions

Three T-shaped diaphragm-through joints were tested under seismic cyclic loading to investigate the
shear capacity of T-shaped diaphragm-through joints between rectangular CFST columns and H-shaped
steel beams. Based on the test results, the following main conclusions are obtained:

• The shear capacity of the T-shaped diaphragm-through joint is contributed by the concrete core and
the steel tube, which is composed of webs and flanges. The flanges of the steel tube have little effect
on the shear capacity of the joint.

• From the slitting test of the concrete, it is apparent that the concrete compression strut is along the
panel zone diagonal direction, and the width of the compression strut is about 1/3 length of the panel
zone diagonal.

A model for the shear force-deformation skeleton curve for T-shaped diaphragm-through joints is
proposed. The model is developed by superposition of models for steel tubes and the concrete cores
based on the principle of deformation coordination. The predictions of the proposed model are in good
agreement with the test results.
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POLARIZATION APPROXIMATIONS FOR ELASTIC MODULI
OF ISOTROPIC MULTICOMPONENT MATERIALS

DUC CHINH PHAM, NGUYEN QUYET TRAN AND ANH BINH TRAN

Polarization approximations (PA) are proposed for the macroscopic elastic moduli of d-dimensional (d =
2 or 3) isotropic multicomponent materials. Specifically we use Hashin–Shtrikman-type polarization trial
fields, which were constructed earlier from the minimum energy principles to bound the effective moduli
of the composites, as the approximate solutions to the field equations. The approximations contain free
reference parameters, which can be found analytically, numerically, or experimentally, from the reference
effective moduli at dilute and/or finite volume proportions of the component materials. In the basic one-
point reference parameter version, the approximations should obey Hashin–Shtrikman (HS) bounds for
all the ranges of the volume proportions of the component materials. In the refined versions involving
variable reference parameters to improve the accuracy of the scheme, the approximations satisfy HS
bounds over the ranges of components’ volume proportions between the extreme reference points. We
provide numerous numerically and experimentally based examples to illustrate the applications of the
proposed approach.

1. Introduction

Many natural and industrial materials are multicomponent with complex and irregular microstructure.
Often only limited definite qualitative information about the composites, e.g., the properties and volume
proportions of the component materials, is available. Still, the measured macroscopic moduli of many
practical composites appear relatively definite (with small variation), and that encourages us to construct
simple estimations of the moduli for practical uses. A mathematically rigorous approach to the problem
is to construct the upper and lower bounds of the effective moduli using variational formulations [Hashin
and Shtrikman 1963; Walpole 1966; Willis 1977; Pham 1993; 2012; 2014; Milton 2002; Torquato
2002]. Narrowing the bounds requires multipoint correlation information about the microgeometries of
the composites that is difficult to collect and incorporate into the construction of the bounds. Alterna-
tively, effective medium approximation (EMA) schemes have been developed for practical estimates of
composites’ macroscopic moduli [Mori and Tanaka 1973; Christensen 1979; Norris 1989; Mura 1987;
Phan-Thien and Pham 2000; Torquato 2002; Nogales and Böhm 2008; Klusemann et al. 2012; Franciosi
et al. 2011; Mogilevskaya et al. 2012; Kushch et al. 2013; Sevostianov and Kachanov 2014] (among many
others). Many classical EMAs, such as the self-consistent, Mori–Tanaka, differential ones are based on
the dilute solutions for the inhomogeneities of some idealistic forms suspended in an infinite matrix (the
Eshelby problem [1957]) and are then developed into the forms that can predict the effective moduli of
the composites over a range of volume proportions of the inhomogeneities. All EMAs converge at the
dilute limit of the inclusions but diverge from each other at large volume proportions of the included

Keywords: isotropic composite material, macroscopic elastic moduli, polarization approximation, reference parameter.
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phases. To get better approximations, additional information about a particular composite, such as the
effective moduli at some inclusions’ volume proportion points, if available, should be included into
an EMA. In this work we propose novel polarization approximations which can offer that flexibility.
The idea was first introduced in our work [Tran and Pham 2015] for practical uniaxial circular fiber
composites. We constructed certain polarization approximations for the effective elastic transverse (two-
dimensional) bulk and shear moduli, among other moduli, of the transverse-isotropic composites, with
numerical illustrations. In this work we generalize the idea as follows: polarization approximations
are derived for the elastic bulk and shear moduli of isotropic three-dimensional composites and given
in convenient forms valid for those in general d dimensions. General forms of the inhomogeneities
(not just the circular one), with both numerical and experimental references from various composites,
are considered. To improve the approximations, variable reference parameter for the approximation is
proposed to take into account more information about a composite.

In Section 2, the polarization trial fields that were constructed earlier from the minimum energy prin-
ciples to bound the effective elastic moduli will be used to derive the polarization approximations. Those
approximations depend on certain free reference parameters. Those free (generally variable) parameters
are determined analytically, numerically, or experimentally, using certain reference macroscopic moduli
in subsequent sections, which are then followed by the conclusion (Section 6).

2. Polarization approximations

Let us consider a representative volume element (RVE) V in d-dimensional Euclidean space (d = 2, 3) of
a macroscopically isotropic multicomponent. The material consists of n isotropic components occupying
regions Vα ⊂ V of volumes vα and having elastic moduli Kα and µα (α = 1, . . . , n and the volume of V
is assumed to be unity). The effective elastic moduli Ceff

= T (K eff, µeff) of the isotropic composite may
be defined via the minimum energy principle [Pham 1993; 2012; 2014]

ε0
: Ceff

: ε0
= inf
〈ε〉=ε0

∫
V
ε(x) : C(x) : ε(x) dx, (1)

for all macroscopic constant strain tensors ε0, where C(x) is the fourth-rank stiffness tensor, T is the
isotropic fourth-rank tensor with components

Ti jkl(K , µ)= K δi jδkl +µ

(
δikδ jl + δilδ jk −

2
d
δi jδkl

)
, (2)

the trial compatible strain field is expressed through the displacement field u(x) as

ε(x)= 1
2 [∇u(x)+ (∇u)T (x)], (3)

and 〈 · 〉 means the volume average on V .
The effective elastic moduli may also be defined via the minimum complementary energy principle

[Pham 1993; 2012; 2014]

σ 0
: (Ceff)−1

: σ 0
= inf
〈σ 〉=σ 0

∫
V
σ (x) : C−1(x) : σ (x) dx, (4)
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for all macroscopic constant stress tensors σ 0, where the trial stress field σ (x) should satisfy equilibrium
equations in V

∇ · σ (x)= 0. (5)

Note that the two-dimensional bulk modulus K here in the two-dimensional Cartesian coordinates
{x1, x2} is defined by σ11+ σ22 = 2K (ε11+ ε22). Hence, it is related to the usual three-dimensional bulk
modulus designated specifically here as K̃ : K = K̃+µ/3 in the plane strain case and K =9K̃µ/(3K+4µ)
in the plane stress case.

We consider the 3D case in the following equations, from (6) to (10). To find the upper correlation
bounds on K eff and µeff for isotropic three-dimensional composites, instead of directly optimizing the
energy expression of the complex problem (1), we [Pham 1993; 2014] have optimized a “principal part”
of it and came to a Hashin–Shtrikman-type polarization trial strain field

εi j = ε
0
i j +

3K0+µ0

µ0(3K0+ 4µ0)

n∑
α=1

pαklψ
α
,i jkl −

1
2µ0

n∑
α=1

(pαmiϕ
α
, jm + pαmjϕ

α
,im), (6)

where K0 and µ0 are some free positive parameters (called the elastic moduli of a reference material in
Hashin–Shtrikman approach); indices after a comma designate differentiation with respect to the corre-
sponding Cartesian coordinates; conventional summation on repeated indices (from 1 to 3) is assumed;
pαkl are the components of the second-order tensor pα, which is referred to as the polarization field in
the Hashin–Shtrikman (HS) approach

pα =
{

I − (Cα
+C∗)−1

:

[ n∑
β=1

vβ(Cβ
+C∗)−1

]−1}
: (C0

+C∗) : ε0,

C0
= T (K0, µ0), I = T

( 1
3 ,

1
2

)
, Cα

= T (Kα, µα),

C∗ = T (K∗, µ∗), K∗ = 4
3µ0, µ∗ = µ0

9K0+ 8µ0

6K0+ 12µ0
;

(7)

ϕα(x) and ψα(x) are harmonic and biharmonic potentials originated from the expression of the Green
function for the 3D elastic infinite medium (which satisfy equations ∇2ϕα(x)=∇4ψα(x)= δαβ for x ∈
Vβ , where δαβ is the usual Kronecker delta). Since the phases are assumed to be distributed isotropically
in the material space, one has [Walpole 1966; Christensen 1979; Pham 1993]

〈ϕ
β

,i j 〉α =
1
vα

∫
Vα
ϕ
β

,i j dx = 1
3δi jδαβ,

〈ψ
β

,i jkl〉α =
1
vα

∫
Vα
ψ
β

,i jkl dx = 1
15(δi jδkl + δilδ jk + δikδ jl)δαβ,

(8)

where 〈 · 〉α = (1/vα)
∫

Vα
· dx designates the volume average on Vα, while 〈 · 〉 =

∫
V · dx is the volume

average on the whole representative volume element V .
In Pham’s [1993; 2014] upper-bound approach, the upper correlation bounds on K eff and µeff obtained

from (1) with the trial field (6)–(7) contain the three-point correlation information about the microgeom-
etry of a composite, and K0 and µ0 should be chosen to minimize the upper bounds. K0 and µ0 should
lie within the extreme values of Kα and µα. The trial field of formal type (6) has also been obtained by
[Walpole 1966; Willis 1977; Christensen 1979], using other approaches.
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On the other side, to find the lower correlation bounds on the effective moduli, instead of directly
optimizing the complementary energy expression of (4), [Pham 1993; 2014] optimized a “principal part”
of it and obtained the polarization trial stress field

σ (x)= σ 0
−C0

: [ε′(x)+ q(x)], q̂α = C0
: qα,

ε′i j (x)=
3K0+µ0

µ0(3K0+ 4µ0)

n∑
α=1

q̂αklψ
α
,i jkl −

1
2µ0

n∑
α=1

(q̂αmiϕ
α
, jm + q̂αmjϕ

α
,im),

qα =
{

I − [(Cα)−1
+ (C∗)−1

]
−1
:

[ n∑
β=1

vβ[(Cβ)−1
+ (C∗)−1

]
−1
]−1}

: [(C0)−1
+ (C∗)−1

] : σ 0,

(9)

where q(x)= qα when x ∈ Vα; other notations are similar to those in (7) and (8). In the lower-bound
approach, K0 and µ0 should be chosen to maximize the lower bounds on K eff and µeff obtained from (4)
with the trial field (9). K0 and µ0 should lie within the extreme values of Kα and µα.

Extracting the correlation information on a particular composite’s microgeometry needed for the
three-point correlation bounds in [Pham 1993] is costly. To avoid this, we directly use the “optimal”
polarization trial fields (6) or (9) as the approximate solution fields on the RVE to construct the po-
larization approximations for the effective elastic moduli. Following the approach of [Tran and Pham
2015] in the two-dimensional case, one may use the polarization strain field (6)–(7), with (8), for our
three-dimensional composites to find

K eff
=
〈σi i 〉

3〈εi i 〉
=

∑n
α=1 vα〈σi i 〉α

3
∑n

α=1 vα〈εi i 〉α
=

∑n
α=1 vα3Kα〈εi i 〉α

3
∑n

α=1 vα〈εi i 〉α

=
1
ε0

i i

(
3

n∑
α=1

vαKα

Kα + K∗

( n∑
β=1

vβ

Kβ + K∗

)−1

ε0
i i

)
=

( n∑
α=1

vα

Kα + K∗

)−1

− K∗. (10)

Alternatively, instead of (6), one may use the polarization stress field (9) as the approximate field to
find the approximation identical to (10). This is quite interesting, as the upper and lower bounds found
in [Pham 1993] do not coincide. Indeed, the approximate fields (6) and (9) found from the upper- and
lower-bound approaches without submitting to the minimum energy principles still cannot provide the
precise information of whether they would help approximate the exact effective bulk modulus from
above or below. They themselves only give some rough approximations involving some free parameters.
Combining the two-dimensional case of [Tran and Pham 2015] and the three-dimensional case here, the
estimation can be given in the general form (in d-dimensional space with d = 2, 3)

K eff
= P (n)K (K∗)=

( n∑
α=1

vα

Kα + K∗

)−1

− K∗, K∗(µ0)=
2(d − 1)

d
µ0. (11)

The estimation (11) has a feature that the property function P (n)K (K∗) is a positive monotonously
increasing function with respect to the positive parameter K∗, and it falls within HS bounds

P (n)K (K∗min)≤ K eff
≤ P (n)K (K∗max),

K∗min = K∗(µmin), µmin =min{µ1, . . . , µn},

K∗max = K∗(µmax), µmax =max{µ1, . . . , µn},

(12)
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where K∗(µ0) is defined in (11), when

K∗min ≤ K∗ ≤ K∗max, (13)

and vice versa.
The remaining free parameter K∗ of the estimation (11) should be determined from a reference macro-

scopic bulk modulus of the composite at certain reference volume proportions vα of the component
materials. Should the reference macroscopic bulk modulus at some reference volume proportions of
the components satisfy HS bounds, the respective reference parameter K∗ would fall inside the interval
bounded by K∗min and K∗max. Then with that particular value K∗ the estimation (11) shall obey HS
bounds over all the volume proportions vα of the component materials. Equation (11) shall be formally
referred to as the polarization approximation (PA) for the effective elastic bulk modulus of the isotropic
n-component material in the d-dimensional space.

Similarly, to find the approximation for the effective elastic shear modulus µeff, we again use the
polarization strain field (6) to obtain

µeff
=
〈σ12〉

2〈ε12〉
=

∑n
α=1 vα2µα〈ε12〉α

2
∑n

α=1 vα〈ε12〉α

=
1
ε0

12

( n∑
α=1

2vαµα
µα +µ∗

( n∑
β=1

vβ

µβ +µ∗

)−1

ε0
12

)
=

( n∑
α=1

vα

µα +µ∗

)−1

−µ∗. (14)

Alternatively, the same estimation (14) can also be obtained starting from the polarization stress field (9).
Combining the two-dimensional case of [Tran and Pham 2015] and the three-dimensional case here,

generally, in d-dimensional space (d = 2, 3), the estimation for µeff can be given in the form

µeff
= P (n)µ (µ∗)=

( n∑
α=1

vα

µα +µ∗

)−1

−µ∗,

µ∗(K0, µ0)= µ0
d2K0+ 2(d + 1)(d − 2)µ0

2d K0+ 4dµ0
,

(15)

which falls inside HS bounds

P (n)µ (µ∗min)≤ µ
eff
≤ P (n)µ (µ∗max),

µ∗min = µ∗(Kmin, µmin), Kmin =min{K1, . . . , Kn},

µ∗max = µ∗(Kmax, µmax), Kmax =max{K1, . . . , Kn},

(16)

where µ∗(K0, µ0) is defined in (15) and µmin and µmax are defined in (12), when

µ∗min ≤ µ∗ ≤ µ∗max. (17)

Similarly as in the case of the bulk modulus, the remaining free parameter µ∗ of estimation (15)
should be determined from a reference macroscopic shear modulus of the composite at certain reference
volume proportions vα of the component materials. Should the reference macroscopic shear modulus
at some reference volume proportions of the components satisfy HS bounds, the respective reference
parameter µ∗ would fall inside the interval bounded by µ∗min and µ∗max. Then with that particular
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value µ∗ the estimation (15) shall obey HS bounds over all the volume proportions vα of the component
materials. Equation (15) shall be referred to as the PA for the effective elastic shear modulus of the
isotropic n-component material in d-dimensional space.

3. Reference at dilute suspension of the inclusions

Many EMAs are based on analytical Eshelby theoretical dilute solution results for an ellipsoidal inclusion
suspended in an infinite matrix. So firstly, we construct a polarization approximation using the dilute
solution reference. Let us consider the n-component matrix composite that is composed of the matrix
component with v1 = vM , K1 = KM , and µ1 = µM and the inclusion components with vα, Kα, and µα
(α = 2, . . . , n). We may take the reference model for the composite as that at dilute suspensions of the
same-geometry inclusions with the moduli Kα and µα and volume fractions tvα (α = 2, . . . , n and t� 1)
in the matrix of moduli KM and µM . Let the respective dilute solution results have the forms

K eff
= KM +

n∑
α=2

tvα(Kα − KM)DKα(Kα, µα, KM , µM), t � 1, (18)

µeff
= µM +

n∑
α=2

tvα(µα −µM)Dµα(Kα, µα, KM , µM), t � 1, (19)

where DKα and Dµα are inclusion functions depending on the α-inclusion component’s geometry; their
values can be found analytically, numerically, or even experimentally. At that dilute limit, our polarization
approximations (11) and (15) have the respective asymptotic expressions

K eff
= KM +

n∑
α=2

tvα(Kα − KM)
KM + K∗
Kα + K∗

, t � 1, (20)

µeff
= µM +

n∑
α=2

tvα(µα −µM)
µM +µ∗

µα +µ∗
, t � 1. (21)

Equalizing (18) with (20) and (19) with (21), respectively, one obtains the equations determining the
reference parameters K∗ and µ∗ separately:

n∑
α=2

vα(Kα − KM)

[
KM + K∗
Kα + K∗

− DKα(Kα, µα, KM , µM)

]
= 0, (22)

n∑
α=2

vα(µα −µM)

[
µM +µ∗

µα +µ∗
− Dµα(Kα, µα, KM , µM)

]
= 0. (23)

Equation (11), with K∗ determined from (22), and (15), with µ∗ determined from (23), are our polar-
ization approximations for the effective moduli of the matrix composite, using the dilute solution result
reference (denoted further as PA0).



POLARIZATION APPROXIMATIONS FOR ELASTIC MODULI OF ISOTROPIC MULTICOMPONENT MATERIALS 397

In the two-component case, with inclusion functions DK = DK (K I , µI , KM , µM) and Dµ = Dµ(K I ,

µI , KM , µM), (22) and (23) are solved explicitly:

K∗ =
DK (K I , µI , KM , µM)K I − KM

1− DK (K I , µI , KM , µM)
, (24)

µ∗ =
Dµ(K I , µI , KM , µM)µI −µM

1− Dµ(K I , µI , KM , µM)
. (25)

Analytical expressions of the inclusion-associated functions DK (K I , µI , KM , µM) and Dµ(K I , µI ,

KM , µM) for 3D ellipsoidal and 2D elliptic inclusions have been constructed by Eshelby. They can be
given in the form [Mura 1987; Torquato 2002]

DK =
1
d

D0
i i j j , Dµ =

d
d2+ d − 2

(
D0

i j i j −
1
d

D0
i i j j

)
, (26)

where

D0
= [I + P : C−1

M : (CI −CM)]
−1, CI = T (K I , µI ), CM = T (KM , µM) (27)

and P is the fourth-rank Eshelby tensor. Particular expressions of the components of the tensors in two-
and three-dimensional spaces are given in [Mura 1987].

The expressions of the inclusion-associated functions DK (K I , µI , KM , µM) and Dµ = Dµ(K I , µI ,

KM , µM) for spherical (or circular) inclusions in general d-dimensional space are simply

DK =
KM + K∗M
K I + K∗M

, K∗M = K∗(µM), (28)

Dµ =
µM +µ∗M

µI +µ∗M
, µ∗M = µ∗(KM , µM), (29)

where K∗(µ0) and µ∗(K0, µ0) are defined in (11) and (15), respectively. Then the solution of (20)
with (28) and that of (21) with (29) should be K∗ = K∗M and µ∗ = µ∗M , respectively (correspondingly,
K0 = KM and µ0 = µM ). Thus, we obtain the polarization approximation using the dilute solution
result reference (PA0) for the n-component matrix composites with spherical inclusions in general d-
dimensional space:

K eff
= P (n)K (K∗M), µeff

= P (n)µ (µ∗M), (30)

which coincide with the Maxwell and Mori–Tanaka approximations [Torquato 2002] in that specific case.
Later we shall apply, among others, PA0 from (20)–(27) to matrix composites with noncircular inclu-

sions. It appears that the results of PA0 for the two-component matrix composites with elliptic inclusions
also coincide with those of the Mori–Tanaka approximation (as in the case of Figure 3). However, they
generally differ for n-component matrix composites if n ≥ 3 (as in the three-component case of Figure 4),
except for the specific pure spherical-circular inclusion composites (30). That is expected, since the Mori–
Tanaka approximation for three-component composites may violate Hashin–Shtrikman bounds [Norris
1989], while our polarization approximations, including PA0, by their construction, always obey the
bounds.
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4. Reference at finite volume proportions of the component materials

The reference parameters K∗ and µ∗ can be found from the dilute suspension results for the inclusions
as was done in the previous section. Otherwise, the reference parameters can be determined, once the
respective reference macroscopic moduli of a composite are available numerically or experimentally at
any finite volume proportions of the component materials, for the approximations (11) and (15) to fit
those reference macroscopic moduli. The resulting polarization approximations are called PA1.

For numerical illustrations, we consider some simple two-dimensional hexagonal-symmetry periodic
microstructures, which have macroscopically isotropic elastic moduli, in Figures 1–4. Highly accurate
numerical boundary element results used in Figure 1 have been taken from [Eischen and Torquato 1993],
where K1 = KM = 1, µ1 = µM = 0.3, K2 = K I = 67.5, and µ2 = µI = 40.5. Standard periodic
boundary conditions with finite element realizations have been used in Figures 2–4. Three periodic cells
are indicated at the top of Figures 1–4.

For two-component composites of Figures 2–3, we take K1= KM = 1, µ1=µM = 0.4, K2= K I = 20,
and µ2 = µI = 12 (KM is normalized to be unity). Figures 1 and 2 involve circular-inclusion composites,
while the elliptic inclusions of Figures 3 and 4 have the aspect ratio a1 : a2 = 2.

In Figures 1–3 we compare graphics of effective elastic moduli of the respective two-component
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Figure 1. Effective elastic moduli of a 2D periodic circular-inclusion composite at a
range of inclusion volumes vI , with KM = 1, µM = 0.3, K I = 135, and µI = 81:
numerical results (NUM) are compared with HS upper (HSU) and lower (HSL) bounds
and polarization approximations PA0 using dilute solution reference, PA1(0.7) using the
reference at vI = 0.7, PA02(0.6, 0.8) using dilute solution reference and two references at
vI 1 = 0.6 and vI 2 = 0.8, and PA01(0.8) using dilute solution reference and the reference
at vI = 0.8. Top: microstructure. Left: bulk modulus. Right: shear modulus.
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Figure 2. The moduli of another 2D periodic circular-inclusion composite (the data
and notation as in Figure 1): FE are compared with HSU and HSL, PA0, PA1(0.5),
PA02(0.5, 0.6), and PA01(0.6). Top: microstructure. Left: bulk modulus. Right: shear
modulus.

composites calculated numerically (NUM or FE) with the Hashin–Shtrikman upper (HSU) and lower
(HSL) bounds and our polarization approximations PA0, using the dilute suspension reference results,
and PA1, using the reference at some finite volume proportions of the inclusion component, over large
ranges of the inclusion phase v1 = vI . PA1(0.7), for example, indicates PA1 using the reference at
vI = v

ref
I = 0.7.

In Figures 1 and 2 with circular inclusions, PA0 coincides with HSL, Maxwell, and Mori–Tanaka ap-
proximations, as noted in the previous section. However, PA0 using the dilute elliptic-inclusion reference
results from (22)–(23) and (26)–(27) in Figure 3 (as well as PA0 of Figure 4) differs from HS bounds.

One may observe that all PA0 and PA1 fall within HS bounds as expected. PA1, using the reference at
finite volume proportion of the included phases, approximates the numerical results better than PA0, using
the dilute suspension reference results, over certain finite volume ranges of the included phases (especially
near the reference points). The results also reveal that, for the two-component matrix composites, PA0
seems to give lower estimates of the effective moduli, while PA1 provides lower estimates at vI > v

ref
I

and upper estimates at vI < v
ref
I if the inclusion phase is stiffer than the matrix phase and vice versa if the

matrix phase is stiffer (we do not show the respective graphs in the case that the matrix phase is stiffer,
because the differences between the curves NUM, FE, HSU, PA0, and PA1 are much less significant
there, and we do not want to overload the paper with additional figures).

Our approximations apply to general multicomponent materials. In Figure 4 a three-component
composite is considered. Again K1 = KM = 1 and µ1 = µM = 0.4, and we take K2 = 10 and µ2 = 6
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(dark elliptic inclusions) and K3 = 0.2 and µ3 = 0.1 (gray circular inclusions). FE, HSU, HSL, PA0,
and PA1 results are compared in Figure 4 over a range of volume proportions of the included phases
vI = v2+ v3 (presume v2 = v3).

Experimentally measured values of the macroscopic elastic moduli of a composite at certain vol-
ume fractions of the component materials can also serve as the reference moduli for our polarization
approximation for the composite over all the ranges of volume fractions of the component materials.
Experimental data on the compressibility (elastic bulk modulus) of the porous glass over a range of
porosity vI reported in [Walsh et al. 1965] is displayed in Figure 5. The elastic moduli of the glass
are KM = 46.3 GPa and µM = 30.5 GPa. PA1 for the macroscopic bulk modulus corresponding to
an experimental reference point and the HS upper bound are given in the figure for comparisons (HS
lower bound is identically zero in this case). The notation PA1(6) denotes PA1 corresponding to the
experimental reference point 6 in the graph.

Experimental data on the macroscopic elastic Young’s modulus Eeff and Poisson’s ratio νeff of a
particulate-filled glassy polymer [Smith 1976] is displayed in Figure 6, top row. The elastic constants of
the polymer matrix are EM = 3.01 GPa and νM = 0.394, while those for the glass are E I = 76 GPa and
νI = 0.23. The relations between the 3D elastic constants E , ν, K , and µ are

K =
E

3(1− 2ν)
, µ=

E
2(1+ ν)

, E =
9Kµ

3K +µ
, ν =

3K − 2µ
6K + 2µ

. (31)

Figure 6 shows PAs for the macroscopic elastic constants corresponding to various experimental reference
points and HS bounds.
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Figure 3. The moduli of a 2D periodic elliptic-inclusion composite (the data and no-
tation as in Figure 1), and the aspect ratio of the ellipses is 2: FE are compared with
HS bounds, PA0, PA1(0.6), PA02(0.6, 0.7), and PA01(0.7). Top: microstructure. Left:
bulk modulus. Right: shear modulus.
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Figure 4. The moduli of a 2D three-component periodic elliptic-circular-inclusion com-
posite at a range of inclusion volumes vI = v2+ v3, v2 = v3, with K1 = KM = 1 and
µ1=µM =0.4 and K2=10 and µ2=6 (dark elliptic inclusions) or K3=0.2 and µ3=0.1
(gray circular inclusions), and the aspect ratio of the ellipses is 2: FE are compared with
HS bounds, PA0, and PA1(0.45). Top: microstructure. Left: bulk modulus. Right: shear
modulus.
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Figure 5. Macroscopic elastic bulk modulus of a porous glass over a range of porosity
vI ; the elastic moduli of the glass are KM = 46.3 GPa and µM = 30.5 GPa. Experimental
data (EXP) are compared with HSU (HSL is identically zero) and PA1(6) using the
reference at the reference experimental point 6.
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Figure 6. Macroscopic elastic constants of a particulate-filled glassy polymer over a
range of inclusion volumes vI ; the elastic constants of the polymer matrix are EM =

3.01 GPa and νM = 0.394, while those for the glass are E I = 76 GPa and νI = 0.23.
Experimental data (EXP) are compared with HS bounds, PA1, PA02, and PA01 using
the references at the indicated reference experimental points. Top left: Young’s modulus.
Top right: Poisson’s ratio. Bottom left: bulk modulus. Bottom right: shear modulus.

With a one-point reference parameter reflecting the feature of the microgeometry of a particular com-
posite, as with many other EMAs, the polarization approximations PA0 and PA1 have inevitable limita-
tions. For high-contrast-component-property composites, at finite volume proportions of the inclusions,
the approximations yield good results only near the reference point and the results become poorer with
increasing distance from the reference point. Even so, they should obey HS bounds over all the ranges
of component proportions, once the reference model satisfies HS bounds at the reference point.

5. Multipoint polarization approximations

By assuming K∗ and µ∗ are functions of volume proportions of the component materials, we are able to
use more reference points to obtain better approximations of the effective moduli. The variable reference
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parameters K∗ and µ∗ should lie within the intervals (13) and (17), respectively, for the approximations
to obey HS bounds.

Further, in the remaining part of this paper, we shall restrict ourselves to two-component materials
and assume the variable reference parameters K∗ and µ∗ of the polarization approximations (11) and
(15), respectively, to be of the form

K∗ = K ∗(c+ avb
2), b > 0, (32)

µ∗ = µ∗(c′+ a′vb′
2 ), b′ > 0, (33)

where K ∗ and µ∗ are some fixed values of elastic moduli dimension; three dimensionless parameters
a, b, c or a′, b′, c′ should be found from appropriate available references. Presume we have three
numerical or experimental reference values of the effective elasticity K eff

= K eff
ref 1, K eff

ref 2, K eff
ref 3 and

µeff
= µeff

ref 1, µ
eff
ref 2, µ

eff
ref 3 at the volume proportions v2 = v21, v22, v23, respectively. Solving (11) in

the two-component case, one finds

K ref
∗
=

K eff
ref(v1K2+ v2K1)− K1K2

v1K1+ v2K2− K eff
ref

(34)

and the respective values of the reference parameter K ref
∗1 , K ref

∗2 , K ref
∗3 corresponding to K eff

ref 1, K eff
ref 2, K eff

ref 3.
Now with (32) one derives three dimensionless equations for three dimensionless parameters a, b, c:

(c+ avb
21)= k1, (c+ avb

22)= k2, (c+ avb
23)= k3, (35)

where
k1 = K ref

∗1 /K ∗, k2 = K ref
∗2 /K ∗, k3 = K ref

∗3 /K ∗. (36)

Equation (35) leads to the unique equation determining b

vb
21− v

b
22

vb
21− v

b
23
=

k1− k2

k1− k3
, (37)

and explicit expressions for a and c

a =
k1− k2

vb
21− v

b
22
, c = k1− avb

21. (38)

The polarization approximations (11) and (32) for K eff with the parameters a, b, c determined from
(37)–(38) shall be referred to as three-point polarization approximation PA3. Since K∗ in (32) is a
monotonous function of v2, if the reference macroscopic moduli K eff

ref 1, K eff
ref 2, K eff

ref 3 satisfy HS bounds,
the approximations (11) and (38) also obey HS bounds, at least, over the range min{v21, v22, v23} ≤ v2 ≤

max{v21, v22, v23}. Independently, a similar three-point polarization approximation for µeff from (15)
and (33) is obtained. The respective equations (34)–(38) keep the same forms, except that one has to
substitute notations µ, a′, b′, c′ for K , a, b, c.

In the case of two-component matrix composites, with the notation v1 = vM , K1 = KM , µ1 =µM , and
v2 = vI , K2 = K I , µ2 = µI , if dilute solution results (18)–(19) are available, one can use them to find c
and c′ independently as was done in Section 3 and suggest simpler two-point polarization approximations
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(11) for K eff and (15) for µeff with variable reference parameters involving just two free parameters a
and b (and a′ and b′):

K∗ = K ∗(1+ avb
2), K ∗ =

DK K I − KM

1− DK
, (39)

µ∗ = µ∗(1+ a′vb′
2 ), µ∗ =

DµµI −µM

1− Dµ

, (40)

where DK and Dµ are the functions from the dilute solution results (27)–(28) which have the expres-
sions (26)–(27) for ellipsoidal (elliptic) inclusion cases. Now one needs just two reference equations
determining a and b:

1+ avb
21 = k1, 1+ avb

22 = k2. (41)

Equation (41) can be solved explicitly to give

b = logv21/v22

k1− 1
k2− 1

= ln
k1− 1
k2− 1

/
ln
v21

v22
, a =

k1− 1
vb

21
. (42)

Polarization approximations (11), (39), (41), and (42) using the dilute solution reference and two refer-
ences at v2 = v21, v22 is referred to as PA02. Independently, a similar polarization approximation PA02
for µeff from (15) and (40) is obtained. The respective equations (41)–(42) keep the same forms, with
the only change being the substitution of the notations µ, a′, b′, c′ for K , a, b, c. One observes that the
approximations obey HS bounds, at least, over the range 0≤ v2 ≤max{v21, v22}.

Graphs of PA02 from (11), (15), (39)–(42), and (26) for the suspension of elliptic inclusions of the
configuration of Figure 3, top, using the dilute solution result and two numerical references at vI 1 = 0.6
and vI 2 = 0.7, are presented with a = 27.6 and b = 9.75 (Figure 3, left) and a′ = 8.17 and b′ = 6.11
(Figure 3, right). One can observe that PA02 fits well with the numerical data.

In the case of composites with sphere-like (circular-like) inclusions, DK and Dµ have simple expres-
sions (28)–(29), and K ∗ = K∗(µM) and µ∗ = µ∗(KM , µM) in (39) and (40). Applications of PA02 are
presented with numerical references at vI 1 = 0.6 and vI 2 = 0.8 and a = 3.17 and b = 9.43 (Figure 1,
left) and a′ = 3.18 and b′ = 3.60 (Figure 1, right). Similarly PA02 is given with numerical references at
vI 1 = 0.5 and vI 2 = 0.6 and a = 32.5 and b = 5.72 (Figure 2, left) and a′ = 19 and b′ = 4.08 (Figure 2,
right). PA02 with experimental references at the experimental points 8 and 10 are shown with a = 10.5
and b = 2.34 (Figure 6, top left) and a′ = 12.5 and b′ = 2.9 (Figure 6, bottom right). In all the cases,
PA02 fits the numerical or experimental data much better than PA0 or PA1, as expected.

If only one numerical or experimental value of the effective moduli of the matrix composite at a finite
volume proportion point v2 = vI = vI 1 is available for reference (in addition to the dilute solution one),
one has to fix an additional parameter, for instance b or b′, and obtains just one equation (the first one of
(41)) which determines the remaining parameter a or a′, according to the second equation of (42). The
resulted approximation is called PA01. It should obey HS bounds, at least, over the range 0≤ vI ≤ vI 1.

PA01 with b = b′ = 4 is projected using numerical reference at vI 1 = 0.6 and a = 13.5 (Figure 2,
left) or a′ = 18.2 (Figure 2, right) and at vI 1 = 0.7 and a = 3.55 (Figure 3, left) or a′ = 3.85 (Figure 3,
right). PA01 with b = b′ = 2 is applied using numerical reference at vI 1 = 0.8 and a = 0.606 (Figure 1,
left) and a′ = 0.227 (Figure 1, right) and with experimental reference at the experimental point 10 and
a = 8.31 (Figure 6, top left) or a′ = 6.68 (Figure 6, bottom right). Though b and b′ for PA01 in those
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figures are chosen to be not quite close to the respective b and b′ for PA02, the approximations appear
relatively good.

6. Conclusion

Unlike other EMAs (such as the self-consistent, differential, Maxwell, and Mori–Tanaka ones), which are
constructed from the field equations, our PAs are based on the approximate field solutions which come
from minimum energy principles. The “optimal” polarization trial fields constructed earlier to bound the
effective elastic moduli of isotropic multicomponent materials have been implemented to derive the PAs
for the moduli in three and generally d dimensions. The approximations are separate functions for the
effective bulk and shear moduli and contain, in addition to the moduli and volume proportions of the
components, certain free parameters, which should be determined from some reference effective moduli
at certain volume proportions of the component materials analytically, numerically, or experimentally.
Specifically, PA0 using the dilute solution reference (similar to other EMAs) as well as PA1 using the
reference at a component’s finite volume proportion point should obey HS bounds over all the ranges
of volume proportions of the component materials. Refined approximations with variable reference
parameters incorporating more available information about a particular composite should improve the
accuracy of the estimations. Specifically, PA02 using dilute solution reference and two references at
components’ finite volume proportion points and PA01 using dilute solution reference and one reference
at a component’s finite volume proportion point can yield good approximations. The approximations
satisfy HS bounds, at least, over the volume proportion range between the extreme reference points.
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A NONLINEAR MICROMECHANICAL MODEL FOR PROGRESSIVE DAMAGE
OF VERTEBRAL TRABECULAR BONES

EYASS MASSARWA, JACOB ABOUDI, FABIO GALBUSERA,
HANS-JOACHIM WILKE AND RAMI HAJ-ALI

A new three-dimensional (3D) nonlinear micromechanical analysis is proposed to predict the overall
mechanical response to damage evolution of the vertebral trabecular bone (VTB) highly porous mi-
crostructure. Towards that goal, a nonlinear micromechanical model, based on the 3D parametric high
fidelity generalized method of cells (HFGMC) micromechanics, is extended to include progressive dam-
age. The damage is initiated at the local subcell and its evolution is carried out using a strain-softening
method. The nonlinear HFGMC behavior including damage evolution is first verified by examining
its ability to predict the experimental nonlinear compression stress-strain response of printed polymeric
VTB highly porous microstructure. Next, predicted HFGMC pre- and postultimate failure for native
VTB representative unit cells (RUCs) harvested from different vertebrae of human cadavers (n = 10)
are carried out. Some of the latter predictions were compared to reported values found in the literature.
The proposed nonlinear HFGMC micromechanical model with evolving damage can predict the overall
nonlinear behavior, including postultimate range.

1. Introduction

Osteoporosis is a bone disease state characterized by low bone strength and an increased fracture risk
of the bone walls. Although osteoporosis affects the entire skeleton, osteoporotic fractures commonly
occur in the spine vertebrae [Nevitt et al. 1999]. The vertebral bodies, primary structures located in the
spine, bear the compressive loads. Vertebrae are composed of an internal highly porous trabecular bone
core surrounded by a thin shell of dense material called cortical bone [Cowin 2001]. Studies have shown
that the trabecular bone carries a substantial proportion of the compressive loads applied to the vertebral
body [Rockoff et al. 1969]. The loss of trabecular bone density and strength throughout the osteoporotic
process leads to failure of the entire vertebra. Maquer et al. [2015] showed that osteoporotic vertebral
compression fractures strongly depend on bone volume fraction and trabecular bone microarchitecture.

Experimental studies with irreversible loading (overloading and damage) of the trabecular bone have
been conducted. A reduction of the elastic moduli, strength and accumulation of residual deformations
in the trabecular bone were the main consequences [Keaveny et al. 1994; 1999; Zysset 1994]. Another
extensive experimental outcome demonstrated that for postyield behavior, the yield strains over a limited
range of densities for human vertebral trabecular bones (VTBs) are independent of the apparent density
and have reasonably constant values [Kopperdahl and Keaveny 1998]. Another important study by Fyhrie
et al. [1994] microscopically examined the mechanisms of failure in human VTBs compressed by a large
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deformation. Microscopic cracking as the result of shear stresses in the trabeculae, complete fractures
of trabeculae occurring in those oriented transversely to the loading direction and residual compressive
strain formation were the main observations of this study. Based on other experimental studies [Fyhrie
and Schaffler 1994; Gibson and Ashby 1999; Hayes and Carter 1976], the load-displacement curves for
VTB specimens can include a sequence of several responses:

(1) an initial linear undamaged region;

(2) a material nonlinear response including strain-softening caused by damage accumulation;

(3) ultimate load peak region;

(4) postpeak unloading with increased strain and displacement; and

(5) a region where with increased displacements, the load is increased with very small values.

Finite element models have been extensively used to study trabecular bone mechanical behavior due to
the anatomical complexity of the trabecular bone and limited availability of cadaveric specimens. A pre-
vious study [Niebur et al. 2000] presented a nonlinear high-resolution finite element analysis framework
to calibrate the effective elastic moduli, as well as tensile and compressive yield strains of the bovine tibia
trabecular bone. In another study, based on a voxel-based finite element analysis combined with physical
measurements of volume fraction, µCT reconstructions, uniaxial mechanical and nanoindentation tests
of trabecular bone extracted from cadaveric proximal femurs was demonstrated [Chevalier et al. 2007].
More recently, Hamed and Jasiuk [2013] introduced a multiscale computational finite element model
with dominant damage mechanisms to predict stiffness and bone strength at different structural scales
by using cohesive interface elements. Harrison et al. [2013] also developed a 3D high-resolution model
with fracture criteria and a large-deformation computational model predicting the full range of response
including the pre- and postultimate stress state, referred to as “ultimate strength” by the authors. The
damage and fracture processes were simulated at the local element by reducing the elastic modulus and
removing the element, respectively. This analysis model has successfully predicted ultimate strength
following the softening of the trabecular bone. In order to analyze human trabecular bone samples under
compressive loading, an isotropic µCT finite element model coupled to a damage law was developed
[Hambli 2013]. The element deletion technique was also adapted.

Goda et al. [2012] presented a micromechanical method to investigate the microstructural effects of
the macroscopic mechanical properties of trabecular bones. A Cosserat anisotropic continuum model
was modeled from the discrete homogenization of a quasiperiodical lattice model for the microstructural
trabecular bone where the effective mechanical properties of the trabecular bone were directly related
to the lattice microstructure and its elastic properties. In addition, the bone walls of the lattice were
modeled as linear elastic Timoshenko thick beams. Recently, Goda and Ganghoffer [2015] introduced
a three-dimensional model studying the multiaxial yield and failure response of trabecular bones and
established criteria for brittle and ductile collapse based on micromechanical methods. In this study, the
homogenization technique was used to create the plastic yield surfaces of two and three-dimensional
bending-dominated periodic lattices which demonstrate the topology of trabecular bones. More recently,
Goda et al. [2016] developed a numerical model to predict the effective properties of porous polymeric
biomaterials. Finite element models based on an accurate three-dimensional solid model from µCT data
were generated to quantify the effects of the porosity. In this study, the second gradient of deformation,
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which is expressed as in couples stress continuum theories, was used to address the size dependency in
porous structures.

The high fidelity generalized method of cells (HFGMC) is a micromechanical method used to analyze
2 and 3D multiphase composites. Global and local quadratic displacement fields (microvariables) within
a discretized representative volume element (RVE) divided into subcells are applied. The mechanical
formulation of the HFGMC is performed using traction and displacement continuity equations between
the interfaces of the subcells as well as the average volume equilibrium applied in the subcells [Haj-Ali
and Aboudi 2013, 2016]. The HFGMC method has been widely used for both linear and nonlinear
applications in order to analyze the behavior of multiphase composites such as viscoelastic, viscoplastic,
bond damage of fiber, smart composite materials and piezoresistive fiber-reinforced composites [Aboudi
et al. 2013; Haj-Ali et al. 2014]. The HFGMC method with damage evolution effects has also been
proposed [Haj-Ali and Aboudi 2009] using cohesive traction-separation between the subcells and cell
extinction damage (CED) approaches.

In the present study, to predict the overall nonlinear mechanical response with evolving damage of
VTB highly porous microstructures, a proposed nonlinear 3D parametric HFGMC with progressive
damage is presented. Verification of the model is performed by comparing the nonlinear stress-strain
predicted curve to one obtained from our own compression tests performed on a printed polymeric VTB-
RUC microstructure as well as curves reported in the literature for native VTBs.

2. Methods

A nonlinear micromodeling framework based on the 3D parametric HFGMC micromechanical method
was formulated to predict the nonlinear response including damage evolution of a VTB highly porous
microstructure deformed under a uniaxial compression stress state [Haj-Ali and Aboudi 2013, 2016].
A nonlinear elastic power-law model and postfailure approach were used. Three-dimensional µCT
HFGMC models were geometrically generated from scanned specimens. In addition, compression tests

Figure 1. Schematic illustration of a triply periodic multiphase composite material in
the global coordinate system with its HFGMC representative unit cell (RUC) comprising
general hexahedral subcells defined with respect to its local coordinate system, (a). A
general hexahedral subcell in its physical and parent coordinate systems, (b).
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on 3D printed polymeric VTB-RUC microstructures were conducted to generate its stress-strain response
and verify the ability of the nonlinear HFGMC model to predict nonlinear VTB behavior.

2.1. Nonlinear HFGMC model. We present herein the mechanical formulation of the nonlinear para-
metric HFGMC based on Haj-Ali and Aboudi’s studies [2013; 2016]. The parametric HFGMC mi-
cromechanical method is based on the homogenization technique, in which a representative unit cell
(RUC) of a triply periodic multiphase composite can be identified. A multiphase composite of a triply
periodic microstructure defined with respect to the global coordinate system (X1, X2, X3) is schematically
described together with its parallelepiped RUC and defined with respect to the local material coordinate
system (y1, y2, y3) (Figure 1a). The RUC domain is discretized into a general assembly of hexahedral
subcells representing different phase geometries. A general hexahedral subcell is mapped to a uniform
parametric coordinate system (r, s, t) using a classical linear transformation (Figure 1b). The compact
quadratic form of the increment of the displacement vector 1u in each subcell is defined by

1u =1u0
+1W0+

1
2(1W4−1W6)r + 1

2(1W5−1W3)s+ 1
2(1W2−1W1)t

+
1
4(1W4+1W6− 2 ·1W0)(3r2

+ rs+ r t − 1)

+
1
4(1W3+1W5− 2 ·1W0)(3s2

+ rs+ st − 1)

+
1
4(1W1+1W2− 2 ·1W0)(3t2

+ r t + st − 1),

(1)

where the applied remote global increment of the displacement field is 1u0
≡1ε0

· X . Here, ε0 is the
applied remote second order strain tensor.

The components of vectors 1Wk , k = 1 . . . 6 and one additional internal displacement variable 1W0

are the increments of the fluctuating displacement microvariables. The strain vector

εT
≡ {ε11, ε22, ε33, 2ε23, 2ε13, 2ε12}

in a given subcell (β) is defined in an incremental form by

1ε
(β)

i j (y(r, s))=1ε0
i j +

1
2

(
∂(1ui )

∂y j
+
∂(1u j )

∂yi

)
, (2)

1ε(β) =1ε0
+ A(β)1W (β), (3)

where A(β) is the matrix relating to the incremental strain displacement microvariables. The nonzero
components of this matrix are found in Haj-Ali and Aboudi’s studies [2013; 2016]. The increment of
the displacement microvariables vector 1W (β) of the subcell (β) includes 21 components.

For a general nonlinear material filling a subcell (β), the incremental form of its constitutive relation-
ship is given by

1σ (β) = C t,(β)
:1ε(β), (4)

where C t,(β) is the proper instantaneous fourth-order tangential stiffness tensor that is computed based on
the considered nonlinear material response within the subcell. The incremental stress and strain vectors
of a subcell (β) are 1σ (β) and 1ε(β), respectively.
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The incremental surface-average traction vector on face number k of the hexahedral subcell (β) is then
obtained by the following equation:

1T (βk)
=

1
4 N (βk)1C t,(β)

[1ε0
+ Ā(βk)1W (β)

], (5)

where the N (βk) matrix is defined by

N (βk ) =

n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0


(βk )

. (6)

The (n1, n2, n3) are the components of the normal vector to the k-th face of subcell (β). Matrix Ā(βk) is
computed as

A(βk)
=

∫ 1

−1

∫ 1

−1
A(β) dr ds. (7)

Next, we impose traction and displacement interfacial continuity conditions within the inner subcells:

1T (βk)
=1T (γm)

,

1Wk
(β)
=1Wm

(γ ).
(8)

This is done using the incremental surface-average microvariables. In addition, equilibrium equations of
each subcell are applied in an incremental volumetric average form:∫

V
∇ · (1σ ) dV =

6∑
k=1

Ak1T (βk)
= 0. (9)

Here, (βk) denotes the k-th face of subcell (β), (γm) is the neighboring m-th face of subcell (γ ), vβ is
the volume of subcell (β) and Ak is the area of the k-th face.

The total number of unknown incremental displacement microvariables in the RUC is 21× Nc, where
Nc is the total number of subcells (each one having 21 displacement microvariables). The number of
continuity equations for incremental displacements is 3× 3Nc (for each subcell there are only three
independent interfaces). The number of incremental traction continuity equations is also 3× 3Nc. The
incremental volume average equilibrium equations in (9) present an additional 3Nc equations.

The assembly of the derived 21Nc HFGMC governing equations of the RUC can be symbolically
expressed by

[1R] ≡

 1T (+)
−1T (−)

1W (+)
−1W (−)∫

V ∇ · (1σ ) dV

= 0, {D} ≡


DT

0
0

 , (10)

where [1R] is the incremental residual matrix expressing the incremental form of the displacement
continuity, traction continuity and subcells’ equilibrium, respectively.

The 21 unknown incremental displacement microvariables for each subcell (β) are obtained by solving
the system of linear equation resulting from the linearized incremental form of (10). In general, the
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governing incremental equations can symbolically be written as

{1W} = −[∂(1R)/∂(1W)]−1
· {D} · {1ε̄0

}. (11)

Then, the above system is solved for a given incremental remote applied strain vector 1ε̄0 in order
to obtain the incremental displacement microvariables of the subcells. Moreover, the incremental local
strain vectors can be readily obtained using (3), leading in turn to the spatial distribution of the incremen-
tal stresses in the RUC. Further discussion of the solution approach for the above equation system and
how to obtain the overall tangential stiffness matrix of a multiphase composite can be found in Haj-Ali
and Aboudi’s research [2013; 2016].

2.2. Material nonlinearity. A nonlinear elastic power-law model of the Ramberg–Osgood (R-O) strain-
stress relationship is used to reflect the softening of the bone wall tissue material [Hambli 2013; Keaveny
et al. 2003]. To this end, a nonlinear response of an isotropic and reversible material is modeled [Haj-Ali
and Aboudi 2009; Haj-Ali and Kilic 2003; Khan and Huang 1995] using the general multiaxial form of
the R-O representation as follows:

εi j = ε
e
i j + ε

p
i j =

(1+v
E
+

3α
2E

(
σe
σ0

)n−1)
· si j +

σkk

9K
δi j , (12)

where the Young’s modulus is E , Poisson’s ratio is v, K = E/[3(1− 2v)] and α, σ0, n are the material
constants and εi j is the total strain tensor, εe

i j is the elastic strain components, ε p
i j is the plastic strain

components and σi j , si j are the stress and stress deviatoric tensors, respectively. Kronecker’s delta tensor
is δi j and σe is the equivalent stress as follows:

σe =

√
3
2 · si j · si j . (13)

To this end, the incremental strain-stress relationship in vector notation is

1ε = (Se
+φ · P +αt ·φ · ŝ · ŝT )1σ = St1σ , (14)

where the linear elastic compliance matrix for an isotropic material is Se(6× 6), ŝ(6× 1) is the stress
deviatoric vector and St(6× 6) is the tangent compliance matrix. We also have:

φ =
3α
2E

(
σe

σ0

)n−1

,

αt =
3
2(n− 1) ·

1
σ 2

e
,

P = 1
3



2
−1 2 Symm.
−1 −1 2

0 0 0 6
0 0 0 0 6
0 0 0 0 0 6


.

(15)

To this end, the tangent stiffness matrix is derived by inverting the tangent compliance matrix. Once
the stress vector is given, the corresponding stain vector and the tangent stiffness matrix can be computed
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using (12). But when the strain vector is provided, it should initially determine the equivalent stress (σe)
by iteratively solving the following scalar nonlinear polynomial equation using the Newton–Raphson
method to obtain the corresponding stress vector and tangent stiffness matrix:

φ · σe+
1

2G
· σe− εe = 0. (16)

The shear modulus G = E/[2(1+ v)], where εe is defined as the equivalent strain and is related to the
deviatoric strain tensor (ei j ) as follows:

εe =

√
3
2 · ei j · ei j . (17)

2.3. Damage response. An isotropic damage model for postfailure stiffness degradation is used. When
failure is detected, the relevant subcell is extinct. This progressive damage model is coupled with the
HFGMC micromechanical model at the subcell level. To this end, the following isotropic damage model
is adopted and imposed:

σ (β) = (1− D(β))C t,(β)
: ε(β), (18)

where the current associated subcell damage variable is 0 ≤ D(β)
≤ 1 and C t,(β), σ (β), ε(β) are the in-

stantaneous tangent stiffness matrix, stress vector and strain vector of subcell (β), respectively. Damage
variable in a subcell is governed by the equivalent strain εe; see (17). A linear relationship between the
subcell damage variable D(β) and the equivalent strain ε(β)e is assumed as follows:

D(β)
= 0 if 0< ε(β)e < ε

(β),initial
e ,

D(β)
=

1
1−η

(
1−

ε
(β)
e

ε
(β),initial
e

)
if ε(β)e > ε

(β),initial
e ,

D(β)
= 1 if ε f = ηε

(β),initial
e ,

(19)

where the parameter η is used to relate the equivalent strain damage ε(β),initial
e to the final strain ε f when

the subcell is extinct (removed, no stiffness). Its limit values (η = 1,∞) correspond to highly brittle
and highly ductile states, respectively. Once the damage variable is initiated, a strain softening scheme
is imposed whereby the stiffness of the subcell is degraded. Herein, damage initiates at the subcell once
the failure is detected according to

σ (β)e ≥ X, (20)

where σ (β)e is the equivalent stress at subcell (β) and X is a calibrated value denoting the effective strength
value of the bone wall constituent.

2.4. Nonlinear implementation. To this end, an incremental solution algorithm using the 3D nonlinear
parametric HFGMC, a nonlinear material model and a damage approach is developed. The numerical
algorithm proceeds incrementally for a given number of increments ninc as shown on the next page. Once
given the history of total stress and strain vectors in the subcells (Step 2.1), the prior local tangent stiffness
matrices of the subcells C t,(β)

i−1 (Step 2.2) and the overall prior tangential stiffness matrix C t
i−1 (Step 2.3),

can be computed. Next, the current remote incremental average strain vector {1ε̄0
}i = {1ε̄a,1ε̄b}i
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Incremental solution algorithm

1 Initialize parameters: ninc, σ (β)0 = {0}, ε
(β)

0 = {0}, 1εa , X

2 WHILE i ≤ ninc DO
2.1 Recall prior total local stress σ (β)i−1, strain ε(β)i−1, and damage variable D(β)

i−1.
2.2 Compute prior tangent stiffness matrices C t,(β)

i−1 .
2.3 Compute prior global tangent stiffness matrix C t

i−1.
2.4 Using (21), get applied remote incremental average strain vector: {1ε̄0

}i

2.5 Solve Eq. (11), {1W}i = −[∂(1R)/∂(1W)]−1
i · {D}i · {1ε̄

0
}i , for the current incremental

displacement microvariables.
2.6 FOR β = 1, 2, 3, . . . , Nc DO

2.6.1 Get current total local strain vector {ε}(β)i = {ε̄
0
}i + A(β)i {1W}(β)i +{ε}

(β)

i−1.
2.6.2 Compute current tangent stiffness matrix C t,(β)

i .
2.6.3 Using (18), perform constitutive calculations for total local stress vector {σ }(β)i :

IF D(β)

i−1 ≤ 1 THEN
{σ }

(β)

i = (1− D(β)

i−1)C
t,(β)
i : {ε}

(β)

i

ELSE
{σ

(β)

i } = {0}, ε
(β)

i = {0}, subcell (β) extinct
2.6.4 Using (13), compute current total equivalent stress σ (β),ie .

IF σ (β),ie ≥ X and D(β)

i−1 = 0 THEN
Using (17), compute total equivalent strain for damage initiation: ε(β),initial

e

2.6.5 Using (17), compute current total equivalent strain: ε(β),ie

2.6.6 Using (19), update current damage variable: D(β)

i

2.7 Compute RUC current total stress and strain vectors:

{σ̄ }i =
1
V

∫
V
{σ }i dV = 1

V

Nc∑
β=1

vβ{σ }
(β)

i , {ε̄}i =
1
V

∫
V
{ε}i dV = 1

V

Nc∑
β=1

vβ{ε}
(β)

i .

Set i = i + 1.

for the RUC, deformed under a uniaxial stress state, is evaluated (Step 2.4) by solving the following
linearized equation system:

1σ̄a------
0
0
0
0
0


i

=


C t

aa-------------

{C t
ba}5×1

{C t
ab}1×5

----------------------

[C t
bb]5×5


i−1

·



1ε̄a
-----------

{1ε̄b}5×1


i

,

{1ε̄b}i =−[C
t
bb]
−1
i−1 · {C

t
ba}i−1 ·1ε̄a,

{1ε̄0
}i = {1ε̄a,1ε̄b}i ,

(21)
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where 1ε̄a is a given average strain increment in the axial direction (11) of the RUC. In Step 2.5, the
equation system (10) is established and solved with the current incremental {1ε̄0

}i evaluating the current
incremental microvariables {1W}i ; see (11). Then, for all the subcells in the given RUC, the current
total local strain vector (Step 2.6.1), tangent stiffness matrix (Step 2.6.2) and stress vector (Step 2.6.3) are
evaluated. Subsequently in Step 2.6.4, the equivalent stress is computed and compared with the calibrated
value denoting the effective strength value of the bone wall constituent. Once the equivalent stress is
greater than the calibrated effective strength value, the initial equivalent strain is computed and fixed.
Next, the current total equivalent strain is computed (Step 2.6.5) and in Step 2.6.6, the current damage
variable is updated according to the computed current total equivalent strain (19). The global stress and
strain vectors are obtained in Step 2.7 and the algorithm proceeds to the next increment. It should be
noted that there is no need to apply periodic boundary conditions in order to simulate the current axial
loading which is directly imposed on the RUC. This special case yields zero average traction on the
edges of the RUC. To that end, the microvariables at the edges are set to zero.

2.5. Microcomputed tomography imaging. Selected CT bone scans shown in Table 1 were acquired
from a larger database originally reported by Wolfram et al. [2011] which included 104 (50 males,
54 females) fresh frozen human vertebrae (T1–L3) obtained from 32 donors (21–94y, median = 65)
and stored at −20◦ after harvest. Surrounding soft tissue was removed from the vertebrae, and the
posterior structures were partially removed. Endplates were removed with a band saw. Subsequently,
251 cylindrical specimens (8 mm in diameter and 18–25 mm in height) were cored from the remaining
slices by a custom-made core drill. Marrow was removed from the top and bottom of the cylinders
using a pulsed waterjet (Braun Oral-B Professional Care 6500). The cylinders were submerged in water
containing 0.9% sodium chloride and scanned in a µCT (µCT 40, SCANCO Medical AG) at a resolution
of 12µm3.

2.6. Damage analysis of vertebral trabecular bones. 3D RUCs demonstrating the VTB highly porous
microstructure were studied for nonlinear with damage response. Figure 3a represents a human vertebral
body macroscale from which high resolution images of sequential and cylindrical cross sections of µCT
scans were generated. By stacking the cross-sectional images, the original VTB microstructure can
then be rebuilt as a 3D solid model (Figure 3b). The VTB-RUC has been arbitrarily selected with an
approximate length of l = w = h = 8.1± 0.3 mm. Then, the 3D solid model representing the bone
walls (Figure 3c) and the marrow (soft fatty substances in the cavities of bones) domain (Figure 3d)

vertebral vertebral
level gender age level gender age

T11 F 43 T11 M 37
T12 F 43 T12 M 44
T12 F 46 T12 M 56
T11 F 60 T11 M 84
T12 F 60 L2 M 84
L3 F 80

Table 1. Vertebrae scanned samples analyzed in this study reported in [Wolfram et al. 2011].
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Figure 3. Human vertebral body (macroscale), (a); a VTB-RUC microstructure, (b);
bone walls, (c), and marrow domain, (d).

Figure 4. A 3D discretized of VTB-RUC.

were converted to approximately 72,000 equally shaped brick elements (subcells); see Figure 4. In situ
material properties of each subcell representing bone wall were defined with the nonlinear R-O model
with the material parameters found in Table 2, while subcells representing the marrow domain were set
with very little stiffness. Then, the nonlinear with damage evolution response of the VTB-RUC was
predicted using the incremental solution algorithm described above with a strain increment finite-size of
5 · 10−4, presenting a sufficiently convergent criterion.

2.7. Compression tests of printed polymeric VTB-RUC. In order to generate the overall compression
stress-strain response of a VTB-RUC manufactured from a polymeric material using a 3D-printer, com-
pression tests were performed. The aim was to verify the ability of the calibrated nonlinear HFGMC to
predict the tested response of a VTB-RUC behavior. Towards that goal, a 3D VTB-RUC solid model
obtained from a µCT scan of a human cadaveric VTB (37 years old) was generated. Three printed
polymeric VTB-RUC samples with a scale factor of 5:1 of the last 3D VTB-RUC with bottom and upper
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parameters notation polymeric material bone wall

elastic modulus E (GPa) 2.56 11.00
Poisson ratio v 0.35 0.3
material parameter σ0 (GPa) 0.060 0.110
material parameter α 1 1
material parameter n 5 5
strain-softening parameter η 1–∞ 1.001
effective strength value X (GPa) 0.060 0.110

Table 2. Material properties and model parameters for tested polymeric material and
bone wall, calibrated and used in the analysis of the one-dimensional R-O relation: ε =
σ/E +α(σ0/E)(σ/σ0)

n .

caps were produced by a 3D printer. The volume fraction of the polymeric material in the VTB-RUC was
24.71%. In addition, three “dog-bone” specimens of the polymeric material were produced to measure
the polymeric material response under tension. The experimental study was performed as follows: the
“dog-bone” specimens were stretched using the Instron 5582 machine. Subsequently, compression tests
were performed on the three polymeric 3D printed VTB-RUC samples. Initially, the VTB-RUC samples
were cycled between two polished steel plates under reversed compression, three times nondestructively,
between a 0 and 0.7% strain at a rate of 0.1 mm/min, followed by 10 minutes of relaxation. Subsequently,
the samples were destructively compressed to a ∼3% strain at a rate of 0.1 mm/min (Figure 5a). The
axial deformation (Figure 5b) was measured using the digital-image-correlation (DIC) method. The axial
stress was defined as an instantaneous applied load divided by the cross-sectional area of the VTB-RUC.
Strain was defined as an instantaneous deformation divided by the effective initial length between the steel
plates. Subsequently, the measured results were compared with the nonlinear HFGMC model including
a progressive damage analysis.

Figure 5. Experimental study: a compressed polymeric VTB-RUC highly porous mi-
crostructure, (a). An axial deformation gauge, (b).
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3. Results and discussion

Figure 6 presents the experimental tension mechanical responses of the polymeric material used in this
study. The material parameters of the R-O stress-strain relationship describing the nonlinear response of
the polymeric material were calibrated (Table 2) and used in the analysis of the polymeric VTB-RUC
samples to predict its nonlinear response with damage evolution.

The compression test results and the predicted HFGMC mechanical response with evolving damage
of the polymeric VTB-RUC samples are shown in Figure 7. The effective strength value X of the
polymeric material was calibrated at 0.06 GPa, while different values for the strain-softening parameter
η were used to examine the ability to simulate energy dissipation rates. The above results provide an
excellent agreement between the predicted and experimentally obtained nonlinear mechanical response of
the polymeric VTB-RUC samples which began with an elastic region, followed by a nonlinear reversible
response and continued with a nonlinear softening region caused by both the nonlinear elastic and damage.
The experiments ceased after detecting the ultimate load. The predicted nonlinear response included
postpeak strain-softening degradation behavior. This degradation was related to the strain-softening
parameter η that controls the energy dissipation rate.

The predicted nonlinear with evolving damage responses of the available native VTB-RUCs compared
with compression overloading tests available in the literature [Keaveny et al. 1999; Kopperdahl and
Keaveny 1998] are shown in Figure 8. Bone volume fraction of the VTB-RUCs are also presented. The
material parameters of the R-O constitutive relationship, effective strength value and parameter η were
calibrated (Table 2) and used as the in situ nonlinear behavior of the bone wall phase in the VTB-RUCs.

The obtained mechanical responses were typical of the curves reported for the trabecular bone [Hayes
and Carter 1976] and other natural and synthetic porous materials, such as cellular foams [Gibson and
Ashby 1999]. Moreover, the predicted mechanical responses after the softening region presented another
region of stiffening. When high compression closes the pores and cavities in the material, thus causing
material stiffening, the consolidation region emerges [Gibson and Ashby 1999; Gibson et al. 2010].

Figure 6. Mechanical response of the polymeric material used by the 3D printer.
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Figure 7. Experimental results of compressive loading and a predicted HFGMC me-
chanical responses with softening and evolving damage of a polymeric VTB-RUC highly
porous microstructure.

Figure 8. Predicted HFGMC mechanical responses vs. compression overloading tests
of native VTBs available in the literature.

Figures 9 and 10 show the mechanical responses with yield points of the available native VTB-RUCs
of the six VTB µCT scans of females and four scans of males with different vertebral levels (T11,
T12, L3, and L4), respectively. The yield points were determined using a similar protocol proposed by
Kopperdahl and Keaveny [1998]. In this study, the elastic modulus for each curve was computed based
on all points up to 0.2% strain. The elastic slope was then used to construct 0.2% strain offset lines as
shown in Figures 9 and 10. The intersections of the offset lines with the damage curves define the yield
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Figure 9. Predicted HFGMC mechanical responses for native female vertebral bones.

Figure 10. Predicted HFGMC mechanical responses for native male vertebral bones.

points. To this end, we present in Figures 11 and 12, respectively, the predicted yield stress and strain of
the available native VTB-RUCs and compare these with the results found in the literature [Kopperdahl
and Keaveny 1998]. Unlike the yield stresses for human VTBs, which demonstrated strong correlations
with the bone volume fraction (BV/TV), the results of the yield strains were significantly independent
of BV/TV. The above results strongly correspond with the previous outcomes indicating that for over-
yielding behavior, the yield strains are independent of the apparent density and have reasonably constant
values [Kopperdahl and Keaveny 1998]. Studies examining the independency of the compressive yield
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Figure 11. Predicted HFGMC yield stress vs. bone volume fraction of native VTBs.

Figure 12. Predicted HFGMC yield strain vs. bone volume fraction of native VTBs.

strains to bone volume fractions have suggested that the failure of the highly porous trabecular bone
microstructure is based on the strain [Gibson et al. 2010; Turner 1989].

4. Limitations

There are several limitations to the proposed approach seeking to generate a VTB nonlinear mechanical
response. The first limitation is related to the acquisition accuracy of the µCT images. The relative
Hounsfield Units (HUs) are associated with the full range of bone density all the way through the mar-
row medium. Thus, a threshold is used to determine whether a voxel is considered a bone wall or void.
Therefore, we assumed that the µCT scans can represent the VTB microstructure and its porosity. The
accuracy of these scans is a challenging problem, leading to errors in computing the microstructure
and its bone volume fraction. Ultimately, this error in the RUC geometry can influence the computed
mechanical response. Secondly, random bone variations and end fixtures may result in several errors and
variation measurements resulting from in-vitro bone compression tests. These errors can be associated
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with end-artifacts in the platen compression tests for trabecular bones [Keaveny et al. 1997]. Despite such
limitations, we have adopted the same mechanical testing for the current polymeric VTB-RUC samples
representing the microstructure of the VTB. Thirdly, periodic conditions of traction and displacement
that may be imposed on the edges of the RUC can affect the predicted nonlinear behavior. In the current
HFGMC model, the last periodic conditions were not applied. Fourthly, the porous media representing
the marrow phase of the VTB was modeled with very little stiffness which might cause errors, especially
for large cavities. Fifthly, small increments have to be used in the current nonlinear HFGMC incre-
mental solution algorithm, which may be computationally expensive. A correction-algorithm suited
for the micromechanical formulation can be developed to enhance computational efficiency. Sixthly,
because of the limited availability of the experimental study for native human VTBs, it was difficult
to calibrate the strain-softening parameter η that controls the energy dissipation rate of the native hu-
man VTB microstructure. More experimental and anisotropic damage modeling is needed to further
develop the proposed progressive damage and better tailor it to different failure modes, such as local
microbuckling and combined shear-compression modes, among others. The current damage parameter
is isotropic with one damage parameter combining all these modes. Seventhly, this study concentrated on
the compression analysis of the VTBs which mostly feature VTB failure; therefore, the characterization
of tension-compression asymmetry [Kopperdahl and Keaveny 1998] is not investigated herein. Finally,
the softening postpeak behavior will always be affected by mesh size unless a nonlocal interpolated
solution variable and failure criteria are applied.

5. Conclusions

The parametric HFGMC micromechanics has been extended to include progressive damage of a highly
porous microstructure such as VTB. The 3D nonlinear micromechanical modeling approach can predict
the compression response of tested highly porous polymeric RUC. The proposed nonlinear HFGMC
progressive damage micromodel was used to simulate compression failure of native VTB microstruc-
tures. Good predictive ability was shown for the compression yield stresses and strains compared to
results reported in the literature. The proposed HFGMC VTB micromechanical damage analysis can be
employed in future multiscale FE models of the macroscale vertebral bodies.
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NONLOCAL PROBLEMS WITH LOCAL DIRICHLET AND
NEUMANN BOUNDARY CONDITIONS

BURAK AKSOYLU AND FATIH CELIKER

We present novel governing operators in the theory of peridynamics (PD) which will allow the extension
of PD to applications that require local boundary conditions (BC). Due to its nonlocal nature, the original
PD governing operator uses nonlocal BC. The novel operators agree with the original PD operator in the
bulk of the domain and simultaneously enforce local Dirichlet or Neumann BC. Our construction is
straightforward and easily accessible. The main ingredients are antiperiodic and periodic extensions of
kernel functions together with even and odd parts of functions. We also present governing operators
that enforce antiperiodic and periodic BC and the corresponding compatibility conditions for the right-
hand side function in a given operator equation. Finally, we present the basic idea in extending the 1D
construction to 2D.

1. Introduction

We present novel governing operators in the theory of peridynamics (PD), a nonlocal extension of con-
tinuum mechanics developed by Silling [2000]. We consider problems in 1D and choose the domain
� WD Œ�1; 1�. By suppressing the dependence of u on the time variable t , the original bond based PD
governing operator is given as

Lorigu.x/ WD

Z
�

yC .x0�x/u.x/ dx0�

Z
�

yC .x0�x/u.x0/ dx0; x 2�: (1-1)

Due to its nonlocal nature, the operator Lorig uses nonlocal boundary conditions (BC); see [Silling 2000,
p. 201]. We define the operator that is closely related to Lorig as

Lu.x/ WD cu.x/�

Z
�

yC .x0�x/u.x0/ dx0; x 2�; (1-2)

where c WD
R
� C.x0/ dx0. We will prove that the two operators agree in the bulk. As the main contribution,

we present novel governing operators that agree with L in the bulk of �, and, at the same time, enforce
local Dirichlet or Neumann BC.

Since PD is a nonlocal theory, one might expect only the appearance of nonlocal BC. Indeed, so far
the concept of local BC does not apply to PD. Instead, external forces must be supplied through the
loading force density [Silling 2000]. On the other hand, we demonstrate that the anticipation of local
BC being incompatible with nonlocal operators is not quite correct. Hence, our novel operators present
an alternative to nonlocal BC and we hope that the ability to enforce local BC will provide a remedy for

Burak Aksoylu was supported in part by the European Commission Marie Curie Career Integration 293978 grant and the
Scientific and Technological Research Council of Turkey (TÜBİTAK) MFAG 115F473 grant.
Keywords: nonlocal operator, peridynamics, boundary condition, integral operator.
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surface effects seen in PD; see [Madenci and Oterkus 2014, Chapters 4, 5, 7, and 12] and [Kilic 2008;
Mitchell et al. 2015].

For x;x0 2 Œ�1; 1�, it follows that x0 � x 2 Œ�2; 2�. Hence, in (1-1), the kernel function C.x/ needs
to be extended from � to the domain of yC .x0�x/, which is y� WD Œ�2; 2�. The default extension is the
zero extension defined by

yC .x/ WD

8<:
0 if x 2 Œ�2;�1/;

C.x/ if x 2 Œ�1; 1�;

0 if x 2 .1; 2�:

Furthermore, the kernel function C.x/ is assumed to be even. Namely, C.�x/D C.x/. An important
first choice of C.x/ is the canonical kernel function �ı.x/ whose only role is the representation of the
nonlocal neighborhood, called the horizon, by a characteristic function. More precisely, for x 2�,

�ı.x/ WD

�
1 if x 2 .�ı; ı/;

0 otherwise.
(1-3)

The size of nonlocality is determined by ı and we assume ı < 1. Since the horizon is constructed by
�ı.x/, a kernel function used in practice is in the form

C.x/D �ı.x/�.x/; (1-4)

where �.x/ 2L2.�/ is even.
We define the periodic and antiperiodic extensions of C.x/ from � to y�, respectively, as follows

yCa.x/ WD

8<:
�C.xC 2/ if x 2 Œ�2;�1/;

C.x/ if x 2 Œ�1; 1�;

�C.x� 2/ if x 2 .1; 2�;

yCp.x/ WD

8<:
C.xC 2/ if x 2 Œ�2;�1/;

C.x/ if x 2 Œ�1; 1�;

C.x� 2/ if x 2 .1; 2�:

(1-5)

Even for smooth �.x/, note that yC .x/, yCa.x/, and yCp.x/ are not necessarily smooth; see Figure 1.
Throughout the paper, we assume that

u.x/ 2L2.�/\C 1.@�/: (1-6)

Even and odd parts of the function u are used in the novel governing operators. Here we provide their
definitions. We denote the orthogonal projections that give the even and odd parts, respectively, of a
function by Pe;Po W L2.�/ ! L2.�/; whose definitions are

Peu.x/ WD 1
2

�
u.x/Cu.�x/

�
; Pou.x/ WD 1

2

�
u.x/�u.�x/

�
: (1-7)

Theorem 1.1 (Main Theorem). Let c D
R
� C.x0/ dx0. The following operators MD and MN defined by

.MD� c/u.x/W D �

Z
�

�
yCa.x

0
�x/Peu.x0/C yCp.x

0
�x/Pou.x0/

�
dx0;

.MN� c/u.x/W D �

Z
�

�
yCp.x

0
�x/Peu.x0/C yCa.x

0
�x/Pou.x0/

�
dx0

agree with Lu.x/ in the bulk, i.e., for x 2 .�1C ı; 1� ı/. Furthermore, the operators MD and MN

enforce homogeneous Dirichlet and Neumann BC, respectively. More precisely, for u.˙1/ D 0 and
u0.˙1/D 0, we obtain MDu.˙1/D 0 and MNu0.˙1/D 0, respectively.
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Related work and structure of the paper. In [Beyer et al. 2016], one of our major results was the finding
that, in R, the PD governing operator is a function of the governing operator of (local) classical elasticity.
This result opened the path to the introduction of local boundary conditions into PD theory. Building
on [Beyer et al. 2016], we generalized the results in R to bounded domains, a critical feature for all
practical applications. In [Aksoylu et al. 2017b], we laid the theoretical foundations and in [Aksoylu
et al. 2017a], we applied the foundations to prominent BC such as Dirichlet and Neumann, as well as
presented numerical implementation of the corresponding wave propagation. We carried out numerical
experiments by utilizing MD and MN as governing operators in the previously cited work. In [Aksoylu
and Celiker 2016], we studied other related governing operators. In [Aksoylu et al. 2017c], we presented
the extension of the novel operators to 2D. In [Aksoylu and Kaya 2017], we studied the condition numbers
of the novel governing operators. Therein, we proved that the modifications made to the operator Lorig

to obtain the novel operators are minor as far as the condition numbers are concerned.
The rest of the article is structured as follows. In Section 2, we present the main observation that

leads to the construction of the novel operators that enforce Dirichlet and Neumann BC. In Section 3,
we give the proof of the main theorem. In Section 4, we show how to obtain the operators that enforce
antiperiodic and periodic BC by choosing suitable combinations of kernel functions. In Section 5, when
an equation using the governing operators is solved, we show that the right-hand side function should
satisfy the same the BC enforced by the governing operator. In Section 6, we provide the highlights of
the extension from the 1D construction to 2D. We conclude in Section 7.

2. The main observation and the construction

Let us study the definition of yCa.x/ given in (1-5) by explicitly writing the expression of the kernel in
(1-4) as follows:

yCa.x/D

8̂<̂
:
��ı.xC 2/�.xC 2/; x 2 Œ�2;�1/;

�ı.x/�.x/; x 2 Œ�1; 1�;

��ı.x� 2/�.x� 2/; x 2 .1; 2�:

Let us closely look at the first expression in the above definition of yCa.x/:

yCa.x/jx2Œ�2;�1/ D��ı.xC 2/�.xC 2/: (2-1)

The expression in (2-1) is equivalent to

yCa.x/jx2Œ�2;�1/ D

�
��.xC 2/ if xC 2 2 .�ı; ı/ and x 2 Œ�2;�1/;

0 if xC 2 … .�ı; ı/ and x 2 Œ�2;�1/:
(2-2)

Due to the set equivalence˚
x W xC 2 2 .�ı; ı/ and x 2 Œ�2;�1/

	
D
˚
x W x 2 Œ�2� ı;�2C ı/\ Œ�2;�1/D Œ�2;�2C ı/

	
;

the expression in (2-2) reduces to

yCa.x/jx2Œ�2;�1/ D

�
��.xC 2/ if x 2 Œ�2;�2C ı/;

0 if x 2 Œ�2C ı;�1/:
(2-3)
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Figure 1. The kernel function C.x/D �ı.x/�.x/ with �ı.x/ given in (1-3), ı D 0:4,
and �.x/ D 0:25 � x2. The zero, periodic, and antiperiodic extensions of C.x/ are
denoted by yC .x/, yCp.x/, and yCa.x/, respectively. For plotting, we employ bivariate
versions of yC .x0 � x/, yCp.x

0 � x/, and yCa.x
0 � x/ defined by C.x;x0/ WD yC .x0 � x/,

Cp.x;x
0/ WD yCp.x

0�x/, and Ca.x;x
0/ WD yCa.x

0�x/.
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Similarly, for x 2 .1; 2�, we have

yCa.x/jx2.1;2� D

�
0 if x 2 .1; 2� ı�;

��.x� 2/ if x 2 .2� ı; 2�:
(2-4)

Combining (2-3) and (2-4), for x 2 Œ�2; 2�, we obtain

yCa.x/D

8̂̂̂<̂
ˆ̂:
��.x� 2/ if x 2 Œ�2;�2C ı/;

�.x/ if x 2 .�ı; ı/;

��.xC 2/ if x 2 .2� ı; 2�;

0 otherwise:

(2-5)

Similarly, we obtain the following expression for the periodic extension:

yCp.x/D

8̂̂̂<̂
ˆ̂:
�.x� 2/ if x 2 Œ�2;�2C ı/;

�.x/ if x 2 .�ı; ı/;

�.xC 2/ if x 2 .2� ı; 2�;

0 otherwise.

(2-6)

Lemma 2.1. Let the kernel function C.x/ be in the form

C.x/D �ı.x/�.x/;

where �.x/ 2 L2.�/ is even. Let yC .x/, yCa.x/, and yCp.x/ denote the zero, antiperiodic, and periodic
extensions of C.x/ to y� WD Œ�2; 2�, respectively. Then,

yC .x/D yCa.x/D yCp.x/; x 2 .�2C ı; 2� ı/: (2-7)

Furthermore, we have the following agreement in the bulk. For x 2 .�1C ı; 1� ı/,

yC .x0�x/D yCa.x
0
�x/D yCp.x

0
�x/; x0 2 Œ�1; 1�: (2-8)

Proof. By the definition of the functions yCa.x/ and yCp.x/ in (2-5) and (2-6), respectively, they differ
from yC .x/ only on Œ�2;�2Cı/[.2�ı; 2�. Also, see Figure 1. Hence, yC .x/, yCa.x/, and yCp.x/ coincide
on Œ�2C ı; 2� ı/, i.e., (2-7) holds.

Since for x in the bulk, i.e., x 2 .�1C ı; 1� ı/ and x0 in the range of integration, i.e., x0 2 Œ�1; 1�,
we have x0�x 2 .�2C ı; 2� ı/. From (2-7), we conclude (2-8). �
Remark 2.2. The kernel yC .x/ W Œ�2; 2�!R is a univariate function. The operator Lorig utilizes yC .x0�x/.
In order to visualize (2-7), it is more useful to define bivariate versions of yC .x0�x/, yCa.x

0�x/, and
yCp.x

0�x/, respectively, as follows:

C; Ca; Cp W Œ�1; 1�� Œ�1; 1�! R:

For brevity, with a slight abuse of notation, we represent the bivariate functions using the same name of the
univariate function C.�/, i.e., C.x;x0/ WD yC .x0�x/, Ca.x;x

0/ WD yCa.x
0�x/, and Cp.x;x

0/ WD yCp.x
0�x/.

This notation is also used in Figure 1. Hence, analogous to (2-7), in the bulk (i.e., x 2 .�1C ı; 1� ı/),
kernel functions coincide

C.x;x0/D Ca.x;x
0/D Cp.x;x

0/: (2-9)
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We first prove that the operators L and Lorig agree in the bulk.

Lemma 2.3. Lu.x/D Lorigu.x/; x 2 .�1C ı; 1� ı/.

Proof. For x in the bulk, we have .x� ı;xC ı/\�D .x� ı;xC ı/. Hence,Z
�

yC .x0�x/ dx0 D

Z
�

y�ı.x
0
�x/y�.x0�x/ dx0

D

Z
.x�ı;xCı/\�

y�.x0�x/ dx0

D

Z
.x�ı;xCı/

y�.x0�x/ dx0

D

Z
.�ı;ı/

�.x0/ dx0

D

Z
�

�ı.x
0/�.x0/ dx0

D

Z
�

C.x0/ dx0:

The result follows. �

3. Dirichlet and Neumann BC, and differentiation under the integral sign

Imposing Neumann (also antiperiodic and periodic) BC requires differentiation. Thus, we present techni-
cal details regarding differentiation under the integral sign which are provided in Lemma 3.1. The proof
of Lemma 3.1, which is omitted here, is by the Lebesgue dominated convergence theorem. Similarly, the
limit in the definition of the Dirichlet BC can be interchanged with the integral, again by the Lebesgue
dominated convergence theorem.

Lemma 3.1. Suppose that the function k W�x ��x0 ! R satisfies the following conditions.

(1) The function k.x;x0/ is measurable with respect to x0 for each x 2�x .

(2) For almost every x0 2�x0 , the derivative @k=@x.x;x0/ exists for all x 2�x .

(3) There is an integrable function ` W�x0 ! R such that j@k=@x.x;x0/j � `.x0/ for all x 2�x .

Then,
d

dx

Z
�x0

k.x;x0/ dx0 D

Z
�x0

@k

@x
.x;x0/ dx0:

We use Lemma 3.1 to check if the operator MN enforces homogeneous Neumann BC. First, we want
to identify the integrand associated to MN. We start with writing Pe and Po explicitly and utilizing a
simple change of variable as follows:

.MN� c/u.x/D�

Z
�

�
yCp.x

0
�x/1

2

�
u.x0/Cu.�x0/

�
C yCa.x

0
�x/1

2

�
u.x0/�u.�x0/

��
dx0

D�

Z
�

KN.x;x
0/u.x0/ dx0;

(3-1)



NONLOCAL PROBLEMS WITH LOCAL DIRICHLET AND NEUMANN BOUNDARY CONDITIONS 431

where
KN.x;x

0/ WD 1
2

˚
Œ yCa.x

0
�x/� yCa.x

0
Cx/�C Œ yCp.x

0
�x/C yCp.x

0
Cx/�

	
:

Analogous to the construction given in [Aksoylu et al. 2017a], we assume that C.x/ 2L2.�/, and hence,

yC .x/; yCa.x/; yCp.x/ 2L2. y�/: (3-2)

We are now in a position to determine the necessary conditions needed to apply Lemma 3.1. First, we
set �x D�x0 D� and

k.x;x0/DKN.x;x
0/u.x0/:

Considering the jumps and the fact that the BC is enforced at the boundary, we assume that yCa.x/ and
yCp.x/ are piecewise continuously differentiable in y� and continuously differentiable functions up to @ y�.
Hence, the first two conditions of Lemma 3.1 are satisfied. To satisfy the third condition, we define

`.x0/ WD ess sup
x2�x

ˇ̌̌̌
@KN

@x
.x;x0/

ˇ̌̌̌
ju.x0/j;

and assume that

ess sup
x2�x

ˇ̌̌̌
@KN

@x
.x;x0/

ˇ̌̌̌
2L2.�x0/: (3-3)

The integrability of `.x0/ is sufficient to satisfy the third condition. We could choose any Lp.�x0/ space.
We choose the space L2.�x0/ in (3-3) in order to align with the construction given in [Aksoylu et al.
2017a]. Since u.x0/ 2L2.�x0/, we obtain `.x0/ 2L2.�x0/.

We are now ready to prove our Main Theorem.

Proof of Theorem 1.1. We exploit (2-9) in constructing the governing operators that enforce Neumann
and Dirichlet BCs by rewriting the L operator in the following way. For x 2 .�1C ı; 1� ı/, we have

.L� c/u.x/D�

Z
�

yC .x0�x/u.x0/ dx0

D�

Z
�

yC .x0�x/.PeCPo/u.x
0/ dx0

D�

Z
�

�
yC .x0�x/Peu.x0/C yC .x0�x/Pou.x0/

�
dx0

D�

Z
�

�
yCp.x

0
�x/Peu.x0/C yCa.x

0
�x/Pou.x0/

�
dx0

D .MN� c/u.x/:

Similarly, for x 2 .�1C ı; 1� ı/,

.L� c/u.x/D�

Z
�

�
yC .x0�x/Peu.x0/C yC .x0�x/Pou.x0/

�
dx0

D�

Z
�

�
yCa.x

0
�x/Peu.x0/C yCp.x

0
�x/Pou.x0/

�
dx0

D .MD� c/u.x/:
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Next, we show that MN and MD enforce homogeneous Neumann and Dirichlet BC, respectively.

The operator MN: First we remove the points at which the derivative of KN.x;x
0/ does not exist from

the set of integration. Note that such points form a set of measure zero, and hence, do not affect the value
of the integral. We differentiate both sides of (3-1) and apply Lemma 3.1 to interchange the differentiation
with the integral. We can differentiate the integrand KN.x;x

0/ in a piecewise fashion and obtain

d
dx
Œ.MN� c/u�.x/D�

Z
�

@KN

@x
.x;x0/u.x0/ dx0; (3-4)

where
@KN

@x
.x;x0/D 1

2

˚
Œ yC 0a.x

0
�x/� yC 0a.x

0
Cx/�C Œ yC 0p.x

0
�x/C yC 0p.x

0
Cx/�

	
:

We check the boundary values by plugging x D˙1 in (3-4):

d
dx
Œ.MN� c/u�.˙1/D�

Z
�

@KN

@x
.˙1;x0/u.x0/ dx0: (3-5)

The functions yC 0a and yC 0p are 2-antiperiodic and 2-periodic because they are the derivatives of 2-antiperiodic
and 2-periodic functions, respectively. Hence,

yC 0a.˙1Cx0/D� yC 0a.�1Cx0/ and yC 0p.�1Cx0/D yC 0p.˙1Cx0/: (3-6)

Hence, the integrand in (3-5) vanishes, i.e.,

@KN

@x
.˙1;x0/D 0:

Therefore, we arrive at
d

dx
MNu.˙1/D cu0.˙1/: (3-7)

Since we assume that u satisfies homogeneous Neumann BC, i.e., u0.˙1/ D 0, we conclude that the
operator MN enforces homogeneous Neumann BC as well.

The operator MD: In order to check if the operator MD enforces homogeneous Dirichlet BC, we start
again with writing Pe and Po explicitly and utilizing a simple change of variables as follows:

.MD� c/u.x/D�

Z
�

yCa.x
0
�x/1

2
.u.x0/Cu.�x0// dx0�

Z
�

yCp.x
0
�x/1

2
.u.x0/�u.�x0// dx0

D�

Z
�

KD.x;x
0/u.x0/ dx0;

where
KD.x;x

0/ WD 1
2

˚
Œ yCa.x

0
�x/C yCa.x

0
Cx/�C Œ yCp.x

0
�x/� yCp.x

0
Cx/�

	
: (3-8)

By the Lebesgue dominated convergence theorem, the limit in the definition of the Dirichlet BC can be
interchanged with the integral. Now, we check the boundary values by plugging x D˙1 in (3-8):

.MD� c/u.˙1/D�

Z
�

KD.˙1;x0/u.x0/ dx0: (3-9)
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Since yCa and yCp are 2-antiperiodic and 2-periodic, respectively, we have

yCa.�1Cx0/D� yCa.˙1Cx0/ and yCp.�1Cx0/D yCp.˙1Cx0/: (3-10)

Hence, the integrand in (3-9) vanishes, i.e., KD.˙1;x0/D 0. Therefore, we arrive at

MDu.˙1/D cu.˙1/: (3-11)

Since we assume that u satisfies homogeneous Dirichlet BC, i.e., u.˙1/ D 0, we conclude that the
operator MD enforces homogeneous Dirichlet BC as well. �

Remark 3.2. We have defined MD and MN in a way that they are linear bounded operators. More
precisely, MD;MN 2L.X;X / where X DL2.�/\C 1.@�/. For MD, the choice of X can be relaxed
as L2.�/\C 0.@�/. This choice is implied when we study MD. Boundedness of MD and MN follows
from the choice of (1-6) and (3-2). In addition, since MD and MN are both integral operators, their self-
adjointness follows easily from the fact that the corresponding kernels are symmetric (due to evenness
of C ), i.e., KD.x;x

0/DKD.x
0;x/ and KN.x;x

0/DKN.x
0;x/.

4. Other possible boundary conditions

The construction employed to satisfy local BC is based on the following decomposition of u.x0/:

u.x0/D Peu.x0/CPou.x0/;

and the agreement of yC .x0 � x/ with yCa.x
0 � x/ and yCp.x

0 � x/ in the bulk; see (2-8). By replacing
yC .x0�x/ with either yCa.x

0�x/ or yCp.x
0�x/, we have the following four combinations for the integrand

of L:

yC .x0�x/u.x0/D
˚
yCa.x

0
�x/; yCp.x

0
�x/

	
Peu.x0/C

˚
yCa.x

0
�x/; yCp.x

0
�x/

	
Pou.x0/:

Denoting the choice of yCa.x
0�x/ and yCp.x

0�x/ by a and p, respectively, the combinations ap and pa
give rise to Dirichlet and Neumann BC, respectively; see Theorem 1.1. Namely,

Dirichlet (ap): yC .x0�x/u.x0/D yCa.x
0
�x/Peu.x0/C yCp.x

0
�x/Pou.x0/;

Neumann (pa): yC .x0�x/u.x0/D yCp.x
0
�x/Peu.x0/C yCa.x

0
�x/Pou.x0/:

We show that the combinations aa and pp give rise to antiperiodic and periodic BC, respectively. Namely,

Antiperiodic (aa): yC .x0�x/u.x0/D yCa.x
0
�x/Peu.x0/C yCa.x

0
�x/Pou.x0/D yCa.x

0
�x/u.x0/;

Periodic (pp): yC .x0�x/u.x0/D yCp.x
0
�x/Peu.x0/C yCp.x

0
�x/Pou.x0/D yCp.x

0
�x/u.x0/:

Then, the operators Ma and Mp are defined by

.Ma� c/u.x/ WD �

Z
�

yCa.x
0
�x/u.x0/ dx0;

.Mp� c/u.x/ WD �

Z
�

yCp.x
0
�x/u.x0/ dx0:
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We recall the space of functions used to enforce antiperiodic and periodic BC, respectively [Aksoylu
et al. 2017a]:˚

u 2L2.�/\C 1.@�/ W lim
x!�1

u.x/D� lim
x!1

u.x/; lim
x!�1

u0.x/D� lim
x!1

u0.x/
	
;˚

u 2L2.�/\C 1.@�/ W lim
x!�1

u.x/D lim
x!1

u.x/; lim
x!�1

u0.x/D lim
x!1

u0.x/
	
:

Since yCa and yC 0a are 2-antiperiodic and yCp and yC 0p are 2-periodic, similar to (3-10) and (3-6), we have

yCa.�1�x0/D� yCa.1�x0/; yCp.�1�x0/D yCp.1�x0/;

yC 0a.�1�x0/D� yC 0a.1�x0/; yC 0p.�1�x0/D yC 0p.1�x0/:

Consequently,

.Ma� c/u.�1/D�.Ma� c/u.1/; (4-1)

.Mp� c/u.�1/D .Mp� c/u.1/: (4-2)

In addition, by applying Lemma 3.1, we obtain

d
dx
Œ.Ma� c/u�.�1/D�

d
dx
Œ.Ma� c/u�.1/; (4-3)

d
dx
Œ.Mp� c/u�.�1/D

d
dx
Œ.Mp� c/u�.1/: (4-4)

These imply that the operators Ma and Mp enforce antiperiodic and periodic BC, respectively.

5. Compatibility conditions

When we solve an equation using the operators MBC where BC 2 fD; N; a; pg, i.e.,

MBCuD fBC;

we want to identify the conditions imposed on fBC. Since the operator MBC enforces the corresponding
BC, we observe that the same BC is imposed on fBC. To see this, we start by assuming that u satisfies
the corresponding BC. Then, we choose fBC from the same space to which u belongs, i.e.,

fBC 2L2.�/\C 1.@�/:

From (4-1) and (4-2), respectively, we immediately see that

fa.�1/D�fa.1/; fp.�1/D fp.1/:

From (4-3) and (4-4), respectively, we also get

f 0a.�1/D�f 0a.1/; f 0p.�1/D f 0p.1/:

In addition, from (3-11) and (3-7), respectively, we obtain

fD.˙1/D 0;
dfN

dx
.˙1/D 0:
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6. The extension to a 2D problem

In this section, we present the extension of the present work to 2D problems. The main idea of this
extension relies on our 1D construction but it is nontrivial. Its proof requires a significant amount of
technical detail. Here, we provide only a small part of the results without proof.

We choose the domain in 2D to be �D Œ�1; 1�� Œ�1; 1�. There are various combinations of BC one
can enforce. Here, we report only pure Dirichlet and pure Neumann BC, the 2D analogues of the ones
presented in Theorem 1.1. The proofs, a comprehensive discussion, and numerical results are provided
in [Aksoylu et al. 2017c].

In 2D, the governing operator in (1-1) takes the form

Lorigu.x;y/ WD

“
�

yC .x0�x;y0�y/u.x;y/ dx dx0�

“
�

yC .x0�x;y0�y/u.x0;y0/ dx0 dy0:

Similar to (1-2), we define the operator that is closely related to Lorig as

Lu.x;y/ WD cu.x;y/�

“
�

yC .x0�x;y0�y/u.x0;y0/ dx0 dy0; .x;y/ 2�;

where c D
’
�

C.x0;y0/ dx0 dy0. The kernel function C.x;y/ is assumed to be even. Namely,

C.�x;�y/D C.x;y/:

Similar to the 1D case, we choose the kernel function C.x;y/ to be the canonical kernel function
�ı.x;y/, whose definition is given as follows. For .x;y/ 2�,

�ı.x;y/ WD

�
1 if .x;y/ 2 .�ı; ı/� .�ı; ı/;
0 otherwise:

The agreement of the operators L and Lorig in the 1D bulk shown in Lemma 2.1 carries over to the 2D
bulk whose definition is given by

bulkD
˚
.x;y/ 2� W .x;y/ 2 .�1C ı; 1� ı/� .�1C ı; 1� ı/

	
:

Inspired by the projections that give the even and odd parts of a univariate function given in (1-7), we
define the following operators that act on a bivariate function.

Pe;x0 ;Po;x0 ;Pe;y0 ;Po;y0 WL2.�/!L2.�/;

whose definitions are

Pe;x0u.x0;y0/ WD 1
2
.u.x0;y0/Cu.�x0;y0//; Po;x0u.x0;y0/ WD 1

2
.u.x0;y0/�u.�x0;y0//; (6-1)

Pe;y0u.x0;y0/ WD 1
2
.u.x0;y0/Cu.x0;�y0//; Po;y0u.x0;y0/ WD 1

2
.u.x0;y0/�u.x0;�y0//: (6-2)

Each operator is an orthogonal projection and possesses the following decomposition property:

Pe;x0 CPo;x0 D Ix0 ; Pe;y0 CPo;y0 D Iy0 :
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One can easily check that all four orthogonal projections in (6-1) and (6-2) commute with each other.
We define the following new operators obtained from the products of these projections:

Pe;x0Pe;y0u.x0;y0/ WD 1
4

˚
Œu.x0;y0/Cu.x0;�y0/�C Œu.�x0;y0/Cu.�x0;�y0/�

	
;

Pe;x0Po;y0u.x0;y0/ WD 1
4

˚
Œu.x0;y0/�u.x0;�y0/�C Œu.�x0;y0/�u.�x0;�y0/�

	
;

Po;x0Po;y0u.x0;y0/ WD 1
4

˚
Œu.x0;y0/�u.x0;�y0/�� Œu.�x0;y0/�u.�x0;�y0/�

	
;

Po;x0Pe;y0u.x0;y0/ WD 1
4

˚
Œu.x0;y0/Cu.x0;�y0/�� Œu.�x0;y0/Cu.�x0;�y0/�

	
:

These operators are also orthogonal projections and satisfy the following decomposition property:

Pe;x0Pe;y0 CPe;x0Po;y0 CPo;x0Pe;y0 CPo;x0Po;y0 D Ix0;y0 :

They will be used in the definition of the operators MD and MN.

Theorem 6.1 (Main Theorem in 2D). Let � WD Œ�1; 1�� Œ�1; 1� and the kernel function be separable in
the form

C.x;y/DX.x/Y .y/; (6-3)

where X and Y are even functions. Then, the operators MD and MN defined by

.MD� c/u.x;y/ WD

�

“
�

�
yXa.x

0
�x/Pe;x0 C yXp.x

0
�x/Po;x0

��
yYa.y

0
�y/Pe;y0 C yYp.y

0
�y/Po;y0

�
u.x0;y0/ dx0 dy0;

.MN� c/u.x;y/ WD

�

“
�

�
yXp.x

0
�x/Pe;x0 C yXa.x

0
�x/Po;x0

��
yYp.y

0
�y/Pe;y0 C yYa.y

0
�y/Po;y0

�
u.x0;y0/ dx0 dy0;

agree with Lu.x;y/ in the bulk, i.e., for .x;y/ 2 .�1C ı; 1� ı/� .�1C ı; 1� ı/. Furthermore, the
operators MD and MN enforce pure Dirichlet and pure Neumann BC, respectively:

.MD� c/u.x;˙1/D .MD� c/u.˙1;y/D 0;

@

@n
Œ.MN� c/u�.x;˙1/D

@

@n
Œ.MN� c/u�.˙1;y/D 0;

where n denotes the outward unit normal vector.

Remark 6.2. Although we assume a separable kernel function C.x;y/D X.x/Y .y/ as in (6-3), note
that we do not impose a separability assumption on the solution u.x;y/.

Remark 6.3. In Theorem 6.1, the function u is scalar valued, which corresponds to the solution of a
nonlocal diffusion problem. In higher dimensional PD problems, the function u is vector valued. The
extension of our construction to such problems is the subject of ongoing work.
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7. Conclusion

We presented novel governing operators MD and MN in the theory of PD constructed by the guiding
principle that they agree with the original PD operator Lorig in the bulk, and, at the same time, enforce
local Dirichlet or Neumann BC. We also presented the operators Ma and Mp that enforce local antiperi-
odic and periodic BC. In [Aksoylu et al. 2017d], we give an overview of local BC in general nonlocal
problems. We believe that our contribution is an important step towards extending the applicability of
PD to problems that require local BC such as contact, shear, and traction. For future research, we plan
to investigate if our approach of enforcing local BC can be used to eliminate surface effects. Finally, we
presented the extension of the 1D governing operators to 2D on rectangular domains. The generalization
to 3D box domains is straightforward. The construction of the operators for general geometries remains
an open problem and constitutes the subject of ongoing work.
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OPTIMIZATION OF CHABOCHE KINEMATIC HARDENING PARAMETERS BY
USING AN ALGEBRAIC METHOD BASED ON INTEGRAL EQUATIONS

LIU SHIJIE AND LIANG GUOZHU

The current work is devoted to optimizing the Chaboche kinematic hardening parameters via an algebraic
method based on its integral equations, which is rarely investigated. An experimental test in strain range
of ±0.8% for 304 stainless steel (304SS) is applied to demonstrate this method. Firstly, the first quarter
tensile part, along with the Osgood–Ramberg equation, is used to estimate the initial parameters. Then,
optimizations are conducted based on the first quarter tensile part for the first and the 150th cyclic test.
Results indicate that:

(i) the value of initial yielding stress has a significant effect on the simulation. The optimized initial
yielding stress is roughly 181 MPa for 304SS, which corresponds to the test at strain range of ±0.8%
with a frequency of 0.25 Hz.

(ii) The experimental plastic strains in elastic loading/unloading segments in the proposed method are
unreasonable in calculating the stresses and should be removed before conducting an optimization.

A list of symbols can be found on page 453.

1. Introduction

It is well-known that metallic materials exhibit a gradual fatigue life consumption phenomenon under a
complicated cyclic loading. Indeed, the cyclic deformation, including ratcheting, of metallic structures
has been extensively studied in the last few decades, as it plays a very important role in safety assessments
and fatigue-life estimations.

Many experimental studies were conducted about mechanical behaviors subjected to cyclic load-
ing [Prager 1956; Benham 1965; Kamaya and Kawakubo 2015]. Along with those experimental studies,
many researchers have tried to develop appropriate constitutive models to better predict the response
of metallic materials subjected to cyclic loading, especially the Bauchinger effect and the strain accu-
mulation in unsymmetric uniaxial stress-controlled conditions. The first systematic literature in this
regard is [Prager 1956], in which the author proposed a linear hardening model capable of capturing
the Bauchinger effect; however, the model failed to simulate ratcheting strains in the presence of mean
stress due to its constant plastic hardening modulus. For this reason, in [Armstrong and Frederick 1966],
the authors modified Prager’s hardening rule by adding a nonlinear recall term to propose the so-called
Armstrong and Frederick hardening model. This new term could account for the fading memory effect of
the plastic strain path observed in experiments by making a difference in the plastic hardening modulus
between the forward and reverse parts in a typical unsymmetric stress cycle. Due to this initial work
of Armstrong and Frederick, the idea of describing the evolution of kinematic hardening variables in
terms of nonlinear differential equations has been followed in many other studies, such as [Chaboche

Keywords: Chaboche kinematic hardening, Ramberg–Osgood model, parameters optimization, integral equations.
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et al. 1979; Chaboche 1991; 2008]. The Chaboche model is a decomposed nonlinear kinematic hardening
model (CHK-M, where M is the total number of AF rules in the Chaboche kinematic hardening model), in
which each of the backstress components plays a primary role in controlling the shape of σ -ε response at
different ranges of strain. The CHK-M model is rate-independent and able to account for the Bauschinger
effect. The advantage of this model is that it can be modified to solve for complex behaviors of the mate-
rials under various conditions. Besides the CHK-M model, many other evolution of kinematic hardening
models have been proposed; see, e.g., [Ohno and Wang 1994; Voyiadjis and Basuroychowdhury 1998;
Bari and Hassan 2000; Dafalias et al. 2008; Abdel-Karim 2010; Ahmadzadeh and Varvani-Farahani 2013;
Jiang et al. 2013]. Note that the multimechanism model has attracted attention in the last twenty years.
In [Velay et al. 2006], the authors proposed a nonunified elasto-plastic model for describing the TMF
behavior of AISI L6. Two integration methods, explicit Runge–Kutta method and implicit θ method, of
constitutive equations were developed for the numerical implementation of the 2-mechanisms −1 yield
criterion (2M1C) model. Based on the modification of 2M1C model, a new version of the multimech-
anism model for plasticity was proposed in [Taleb and Cailletaud 2010] for considering the nonpropor-
tional effect of the loading and the strain memory phenomenon. In the previous work, the kinematic hard-
ening parameters were identified by using optimization software included in the finite element method
(FEM) code ZeBuLoN. The optimization algorithms in the software are shown in [Besson et al. 1998].

Among various constitutive models mentioned above, the CHK-M model was widely used [Abdel-
Karim 2010; Jiang et al. 2009; Djimli et al. 2010]. As suggested in [Chaboche et al. 1979; Chaboche
1986], at least three AF rules should be incorporated in the model. Because of its simplicity and efficiency,
this model was implemented into different kinds of finite element software (e.g., ABAQUS and ANSYS).

The CHK-M model has been applied for decades and the metal-related fatigue literature are numerous,
for example, [Egner and Egner 2014; Pereira and Jesus 2011; Chaboche 1988; Jiang et al. 2009]. Indeed,
higher accuracy of the predicted material cyclic mechanical behavior accompanies higher accuracy of
fatigue life estimation. Consequently, in order to get an accurate description of fatigue material behavior
and its properties [Chaboche et al. 2012; Djimli et al. 2010; Li et al. 2014], it is necessary to choose or
develop a suitable constitutive model that will accurately describe its mechanical behavior of materials.
While the identification of material parameters in various hardening models is always one of the principal
difficulties to be handled prior to the fatigue life estimation, the parameters of CHK-M model can be
identified by using the finite element method with the return-mapping algorithm through a trial-and-error
approach. However, this method is difficult to implement, especially for practical applications, because
the test data are mainly being used to validate the parameters, not to identify them (which is rather time
consuming). In this case, an algebraic approach simulating the stress with the integral equations was
developed to predict and optimize the CHK-M model parameters, which directly identifies the model
parameters based on the test data. The current work is to determine the CHK-M model parameters in
the cyclic experimental tests under strain-controlled conditions, but isotropic hardening/softening and
ratcheting are not taken into account.

2. Optimization method of model parameters identification

There exist a lot of yield criteria for determining the yield condition, among which the von Mises criterion
is widely used. The yield surface, regarding the plasticity criterion, of a purely kinematic hardening von
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Mises material can be written as

f (σ
≈
, X
≈
)=

√
3
2(s≈− X

≈
) : (s

≈
− X
≈
)− k = 0, (1)

where the backstress tensor X
≈

defines the current center of the yield surface in the stress space.
Actually, the Chaboche decomposed hardening model [Chaboche et al. 1979; Chaboche 1986] is an

assembly of several AF rules, which can be expressed as

dX
≈
=

M∑
i=1

dX
≈ i
, dX

≈ i
=

2
3Ci dε

≈ p
− γi X

≈ i
dp, dp =

√
2
3 dε
≈ p
: dε
≈ p
, (2)

where M is the total number of decomposed AF rules utilized. The main reason for the superposition
of several AF rules in the Chaboche model is to improve its accuracy at different ranges of strain; as
stated in Section 1, the goal cannot be achieved using only one AF rule. Chaboche [1986] first used the
superposition of three AF rules (M = 3) to simulate the three critical segments of monotonic stress-strain
curves and this method is also adopted in the current study.

In the case of uniaxial loading, each of the decomposed rules takes the form

dXx =

M∑
i=1

dX i x , dX i x =
2
3Ci dεp,x − γi X i x |dεp,x |, (3)

where the subscript x stands for the direction of applied load. Now, it can be easily shown that the
following equation holds between the uniaxial stress, the backstress, and the initial yielding stress:∣∣σx −

3
2 Xx

∣∣= k. (4)

For simplicity, the subscript x was omitted for deducing the integral equation for (3) in uniaxial
state. Furthermore, combining (3) and (4), the decomposed component equation in (3) will be dX i =

Ci dεp − γi X i |dεp|.
In the first quarter tensile part, v= sign ε̇p = 1 and starts from the initial virgin state (εp,0= 0, X i,0= 0).

Integrating (3), we have

X i, j =
Ci

γi
[1− exp(γiεp, j )] (i = 1, 2, . . . ,M), (5)

where the subscript j denotes the serial number of plastic strain used. In (5), for εp, j →∞, the stress
asymptotically approaches a limit value Ci/γi . This means that the kinematic hardening process becomes
saturated and the backstress cannot exceed X i,∞ = Ci/γi .

If the loading direction is reversed at plastic strain εp,N1 and the corresponding backstress at εp,N1 is
X i,N1 = X i,∞[1− exp(−γiεp,N1)], the subsequent evolution of backstress is given by

X i, j =−
Ci

γi
+

(
X i,N1 +

Ci

γ1

)
exp[γ1(εp, j − εp,N1)]

= −X i,∞+ (X i,N1 + X i,∞) exp[γi (εp, j − εp,N1)].

(6)

Similarly denoting X i,N2 and εp,N2 as the final values of X i, j and εp, j for (6), the backstress at εp,N2 is

X i,N2 =−X i,∞+ (X i,N1 + X i,∞) exp[γi (εp,N2 − εp,N1)].
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The evolution of the backstress from compression to tension is given as

X i, j =
Ci

γi
+

(
X i,N2 −

Ci

γi

)
exp[−γi (εp, j − εp,N2)]

= X i,∞+ (X i,N2 − X i,∞) exp[−γi (εp, j − εp,N2)].

(7)

By means of (7), the backstress from the compressive tip εp,N2 to the tensile endpoint εp,N3 can be
calculated. Then, the backstress-strain response is determined with equations (5)–(7). Substituting the
total backstress X j =

∑M
i=1 X i, j into (4), the total simulated stress σ sim

j can be identified. Thus, the
simulated stresses can all be calculated with equations (4)–(7). It is convenient to obtain the backstress-
strain curve because only algebraic calculations exist in the above-mentioned method.

It is difficult identifying a set of reasonable CHK-M model parameters when using the traditional trial-
and-error method. The well-known L-M nonlinear least square algorithm is a good tool in determining
optimal model parameters, especially for the nonlinear system employed in the current work.

In the optimization, the differences between the stress values from the numerical simulated stress σ sim
j

and experimental measured stress σ exp
j are represented in the following objective function F :

F = 1
2

N∑
j=1

(σ sim
j − σ

exp
j )2,

where N is the total number of the data points used in the optimization. The optimum values can be
determined when the objective function reaches the specified convergence criterion, which is set to 1 ·10−6

in the current work. Referring to the rules suggested in [Bari and Hassan 2000], parameters C1, C2, and
C3 are all constrained within the range of 100 to 1 · 108. In addition, γ1 and γ2 are in the range of 1 to
1 · 104, and then the constraint interval for γ3 is [0.1, 6].

3. Study procedures

For the material 304SS, three groups of strain-controlled fatigue tests were performed at the material
level, and the fatigue test at 0.8% strain amplitude was employed so as to identify the CHK-3 model
parameters. Figure 1 is the detailed flow chart of the study procedures.

In Figure 1, the Ramberg–Osgood equation is applied to approximately represent the first quarter
tensile part by using the L-M algorithm. After determining the parameters in the Ramberg–Osgood
equation, the Chaboche kinematic hardening parameter Ci can be obtained by taking the derivative of
the Ramberg–Osgood equation with plastic strain. Subsequently, the other relevant parameters γi can be
predicted through allocating contribution percentages for every AF rule.

As indicated in [Dafalias et al. 2008], if the first quarter tensile segment includes a yield plateau that is
significantly different from the hysteresis curve, then it is impossible to attempt to simulate all the curves
by using one set of parameters. Conveniently, the first quarter tensile segment is used for estimating the
initial parameters because p = εp in the region and further optimizations can be performed to obtain
more reasonable ones. Note that a reasonable initial yielding stress is beneficial for the stress-strain
simulation. So the initial yielding stress and the hardening parameters for the first quarter tensile part
was optimized in the current work. In order to verify the feasibility of these parameters for cyclic tests,
the stress-strain response for the first cycle was simulated. Poor accuracy causes further optimization of
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Figure 1. Study procedures of identifying CHK-3 model parameters.

parameters for the first cyclic test. Then, an investigation for the stabilized hysteresis loop was executed.
As pointed out in previous literature [Bari and Hassan 2000; Ahmadzadeh and Varvani-Farahani 2013],
the ratcheting parameter γ3 in the third AF hardening rule should be constrained to a small range, such
as [0.5, 10]. First, in order to verify the feasibility of the approach for the ratcheting simulation, the
ratcheting parameter γ3 was constrained within the interval from 0.1 to 6. Then, in order to improve the
simulation accuracy for the stabilized hysteresis loop, the ratcheting parameter γ3 was set to whatever
the ratcheting strain is. Although the ratcheting issue was not included in the investigation, the ratcheting
actually exists when using the parameters to perform a simulation.

4. Experimental testing

4.1. Test specimen. 304SS was chosen to verify the general method because it is cheap and it has exten-
sive applications in industry. Table 1 shows the chemical composition of 304SS. In order to homogenize
the 304SS material to obtain the expected mechanical properties, the steel ingots were forged into bars
at 1160 ◦C. Then, an annealing treatment was performed by heating the bars up to 720 ◦C and cooling
very slowly to room temperature. All experimental tests were conducted by using round-bar specimens.
Figure 2 shows the test specimen.

4.2. Test program. Three groups of strain-controlled LCF tests were conducted, which were controlled
by using the triangular waveform at a constant frequency of 0.25 Hz with a strain ratio Rε =−1 and strain
amplitude εa of 0.4%, 0.6%, and 0.8%. A 25 mm gauge extensometer was used for measuring and con-
trolling the strain in the specimen and all tests were carried out according to the ASTM standard [ASTM

C Si Mn P S C Ni Mo

≤ 0.08 ≤ 1 ≤ 2 ≤ 0.045 ≤ 0.03 > 17.03 > 8.01 > 0.02

Table 1. Chemical compositions of the 304 stainless steel (wt%).
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Figure 2. Specimen geometry used for strain-controlled fatigue test.

E606/E606M 2012]. The experiments were conducted on multiple specimens; namely, each test was
carried out at a constant strain amplitude until failure occurred at room temperature.

4.3. Experimental results. First, we should determine which hysteresis loop could be suitably used for
this study. Typical cyclic tests at different strain amplitudes are shown in Figure 3, left. It can be seen
from Figure 3, left, that the reasonable strain range for identifying the CHK-3 model parameters is
±0.8%, which ensures that the first and the second AF rules get stabilized within the strain limit, while
the third one does not. Therefore, the experimental test at a strain range of ±0.8% was used to obtain
the CHK-3 model parameters.

The Chaboche kinematic hardening model is closely related to the plasticity. So, determining the
plastic stress-strain response becomes a critical step in identifying its parameters.

Conveniently, the initial tensile curve (the first quarter cycle), OA, was used to estimate the parameters.
Equation (3) is readily dealt with because of the relationship p = εp in this segment.

The aforementioned first cyclic test at strain amplitude of 0.8%, together with its plastic stress-strain
curve is displayed in Figure 3, right. As shown in this figure, the Young’s modulus E is taken as the
slope of the initial linear region. After performing a regression analysis for segment OP, the Young’s
modulus E is approximately 183500 MPa with the correlation efficient of 0.99887.
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Figure 3. Left: LCF test results for 304 SS specimens. Right: The first cyclic test
results at strain amplitude of 0.8%.
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Some unreasonable problems exist, assuming all the plastic strain points are used to calculate the
stress. The details are illustrated in the schematic diagram Figure 4. The Young’s modulus E is the slope
of the initial elastic loading segment OI. Theoretically, the plastic strain in OI is nearly equal to zero
because of the relationship

εp = εT− εe = εT− σ/E = εT− εT = 0.

In addition, the test strain is portioned as

εT = εth+ εfl.

In practice, the plastic strain in this region is not absolutely identical to zero due to the fluctuation. For
example, the plastic strain in point B, εB

p , is negative because

εB
p = εT−

σB

E
= εT− εth = (εth+ εfl)− εth = εfl < 0,

which leads to an unacceptable value when using (5) to simulate the backstress. This fact can be explained
as follows:

X i,B =
Ci

γi
[1− exp(γiε

B
p )]< 0,

where X i,B is the backstress at point B. It is impossible that X i,B has a negative sign in the first quarter
tensile part. Although the plastic strain in point A is positive, the simulated total stress at this point
nearly equals the initial yielding stress, which will never approach the test stress. Therefore, points like
A and B are called abnormal data in this investigation. In the elastic unloading part II-III, the ratio of
εfl to εT is relatively small, which means the experimental plastic strain is very close to the theoretical.
The theoretical plastic strain in II-III remains unchanged, as well-known. Thus, the simulated stress
in II-III equals the stress at point II because such a small plastic strain fluctuation has little effect on
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Figure 4. Schematic diagram of the cyclic stress-strain test response.
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Figure 5. The effective first (left) and 150th (right) cyclic test data used for optimization.

the simulation. However, the experimental stress in II-III is gradually decreasing. In all, the simulated
stresses in the elastic loading/unloading segments are not appropriate for use in the proposed method.
Note that although the plastic strain fluctuation occurs in I-II, the calculated stress is acceptable. This
fact can be partly explained by the analysis for II-III, and the simulated stress has a good tendency toward
the experimental in this region.

Fortunately, the L-M algorithm is excellent for identifying the model parameters by using the sub-
sequence extracted from the original test data. So, the elastic segments are removed in the following
optimization.

Figure 5 shows the effective test data used for optimization, which are extracted from the original first
and the 150th cyclic test curves.

5. Estimation of the initial values for the model parameters

As discussed in Section 2, the CHK-M model is a superposition of different AF rules; namely, the total
back stress is the summation of backstress components. The AF hardening rule follows a series of
successive specific slopes which are defined by the derivatives of backstress plastic strain curve, and the
slope of the curve of AF rule gradually approaches zero with increasing plastic strain. Thus, a certain
AF rule in the CHK-M model has a primary role in a special strain range, which means the other rules
have a slight effect on the shape of the σ -ε curve in this range. For example, provided that the shape of
σ -ε curve in strain range [0, 0.01%] is determined by the first AF rule, the influence by other AF rules
can be ignored. Similarly, the second AF rule influences the shape of the σ -ε curve in the strain range
[0.01%, 0.03%]. As a result, we can differentiate the first quarter tensile curve with respect to the plastic
strain at different strain points to estimate the parameters Ci .

In order to efficiently and conveniently calculate parameters Ci , the Ramberg–Osgood equation is
applied for approximating the first quarter tensile curve:

εT
ε0
=
σ

σ0
+

(
σ

σ0

)n0
. (8)

The reason for using (8) to fit the first quarter tensile part is that the segment is similar to the mono-
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tonic tensile curve. We use the following values for the Ramberg–Osgood constants of 304SS in the
segment OA (strain amplitude of 0.8%):

n0 = 5.3390, ε0 = 0.171%, σ0 = 356MPa.

In order to verify the feasibility of these constants, the simulated stress-strain relationship was obtained
by using the Ramberg–Osgood equation and shown in Figure 6 together with the first cyclic experimental
test curve.

As shown in Figure 6, there exists a slight deviation between the simulation and the experimental test,
particularly at the knee part. This may be ascribed to the quick hardening behavior of 304SS. However,
the simulated curve has a good tendency for the real stress-strain curve, so the Ramberg–Osgood curve
can be applied to predict the initial values of CHK-3 model parameters.

After obtaining the Ramberg–Osgood constants, the relationship of ε0 = σ0/E can be substituted into
(8) to give

EεT
σ0
=
σ

σ0
+

(
σ

σ0

)n0
, (9)

which can then be differentiated with respect to εT to give

dσ
dεT
=

σ0

ε0(1+ n0(σ/σ0)n0−1)
. (10)

The calculation of dσ/dεp is more complicated. First, dσ/dεp must be changed into the form

dσ
dεp
=

dσ
dεT

dεT

dεp
=

dσ
dεT

dεT/dt
dεp/dt

=
dσ
dεT

1
ε̇p
ε̇T. (11)

Using Hooke’s law and the total strain relationship, dεp/dt can be given as

dεp

dt
=

dεT

dt
−

dσ
dt

1
E
. (12)
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C1 1249658.623 γ1 42102.530
C2 129813.037 γ2 874.712
C3 23817.112 γ3 200.607

Table 2. Initial values of CHK-3 model parameters.

Then, (12) can be reformulated as

dεp

dt
=

dεT

dt
−

dσ
dt

1
E

dεT

dεT
=

dεT

dt
−

dσ
dεT

1
E

dεT

dt
=

dεT

dt

(
1−

dσ
dεT

1
E

)
. (13)

So ε̇p = ε̇T
(
1− (dσ/dεT)(1/E)

)
, which means ε̇T/ε̇p = 1/

(
1− (dσ/dεT)(1/E)

)
.

The expression for dσ/dεp can then be obtained expressed in terms of the derivative dσ/dεT by sub-
stituting ε̇T/ε̇p into (11):

dσ
dεp
=

dσ
dεT

1
1− (1/E)(dσ/dεT)

. (14)

Since the Young’s modulus has been confirmed, the plastic stress-strain response can be determined with
the relationship εp = εT− σ/E . Meanwhile, the slopes of the plastic stress-strain curve can also be given
by (14). As a consequence, the tangent lines of the σ -εp curve can be identified, which are shown in
Figure 6, right.

The AF rules contribution method, as described in [Rahman 2006], is applied for determining the
parameters γi , which control the rate of the hardening modulus, which decreases with increasing plastic
strain. In the tensile part, the total stress σx could be denoted by adding the summation of the backstresses
of AF rules and the yield stress k, so the following relationship provides the reference for assigning the
contribution fractions:

C1

γ1
+

C2

γ2
+

[
C3

γ3

]
= σx − k. (15)

Equation (15) indicates that the first and the second AF rule reach the saturated values before the testing
strain attains its peak, while the third AF rule (embraced in a bracket) denotes that this component may
not be up to its saturation value. The advantage of this strategy is that the first and the second AF rule
respectively determine the shape of the initial and the knee part for the stress-strain curve; the third
unsaturated AF rule controls the end part of the curve and the ratcheting strain evolution. Obviously, the
right side of (15) can be readily determined. As a result, if the backstress contributions from each of the
three AF rules in the left side of (15) can be determined, then the initial values of γ1, γ2, and γ3 can be
estimated. Following the data applied in [Rahman 2006], contribution fractions of 0.1, 0.5, and 0.3 are
also applied for each of the three AF rules, respectively, in the current study.

Table 2 shows the initial values of CHK-3 model parameters estimated for the first quarter tensile part.
As illustrated above, the CHK-3 model parameters have been estimated successfully for the first

quarter tensile segment, but in general, these parameters have poor accuracy for simulating the stabilized
hysteresis loop, especially when the first quarter tensile segment includes a yield plateau. As depicted in
Figure 3, right, one set of model parameters cannot be used to simultaneously simulate the first quarter
tensile part and the hysteresis loops with high precision. Thus, the above model parameters can only be
used as initial values for further optimization for the stabilized hysteresis loop.



OPTIMIZATION OF CHABOCHE KINEMATIC HARDENING 449

6. Optimization of the model parameters

Two important factors, the kinematic hardening parameters and the initial yielding stress, have significant
effects on the simulation. Based on the first quarter cycle, the initial yielding stress can be optimized
with the CHK-3 model. It is well-known that the isotropic hardening rule will change the yield surface,
which influences the shapes of the hysteresis loops. To identify the influence of the isotropic hardening
on the model parameters, both the 150th cyclic test (the stabilized hysteresis loop) and the first cyclic
test will be used for optimizing the CHK-3 model parameters, Ci , γi , and k.

6.1. Optimization based on the first quarter tensile part. The initial yielding stress definition, as pointed
out by some authors [Facheris and Janssens 2014; Guijuan et al. 2014], has significant influence on the
yield surface and the plastic flow directions. However, an exact definition for the yielding stress is not very
clear at present. In [Abdel-Karim 2010], the author applied a smaller plastic strain offset (0.0025%) to
determine the initial yielding stress. In the current work, the initial yielding stress (defined with a 0.02%
plastic strain offset from the origin, where the initial yield stress is 232.251 MPa), serves as an initial
value for optimization.

Because the CHK-3 model parameters will change with the alteration of the initial yielding stress, the
following two steps are adopted in the optimization of the initial yielding stress:

(1) fixing Ci and γi to optimize k;

(2) fixing k to optimize Ci and γi .

Table 3 gives the optimal CHK-3 model parameters for the first quarter tensile curve. The optimized
initial yielding stress is 181.392 MPa. Figure 7, left, shows the plastic stress strain response simulated
by using the CHK-3 model with parameters before and after optimization. As a comparison, the first
quarter tensile segment is also plotted in the figure.

Obviously, the simulated plastic stress-strain response produces a good agreement with the first tensile
segment. In Figure 7, left, the calculated stress is always identical to zero when the plastic strain is
substantially small and then it suddenly grows to the initial yielding stress k due to the large value of γ1.
This result proves that the aforementioned method is feasible.

6.2. Optimization based on the first cyclic test. In order to study the simulation capability of the initial
values of the CHK-3 model parameters listed in Table 3 for the hysteresis loops, the cyclic plastic stress-
strain response for the first cycle was calculated. Figure 7, right, shows the simulated plastic stress-strain
response and the experimental test curve.

As illustrated in Figure 7, right, the shape of simulated plastic stress-strain response is remarkably
different from the first cyclic test, especially at the transient portion. This can be attributed to the fact
that the strain cycling leads to a decrease in the subsequent yielding stress when the first reverse occurs.

C1 1444579.469 γ1 21051.266
C2 184230.879 γ2 1749.424
C3 22817.112 γ3 278.154

Table 3. Optimum CHK-3 model parameters for the first quarter tensile curve.
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Figure 7. Left: comparison of the first quarter tensile part and the plastic stress-strain
response simulated with and without parameter optimization. Right: comparison of the
first cyclic test and the simulated plastic stress-strain response.

Because the values in Table 3 are determined from the uniaxial tensile part, there inevitably exists an
overestimation when using them to simulate the first cycle.

To reduce the overestimation, another optimization was conducted based on the initial values for the
first cycle. The plastic strain used in equations (5)–(7) was calculated based on the effective data shown
in Figure 5, left, and the initial yielding stress is set to 181 MPa. Table 4 shows the optimal values of the
CHK-3 model parameters for the first cyclic test. The simulated σ -εp response as well as the first cyclic
test curve is plotted in Figure 8, left.

As seen in that graph, the simulation is in a good agreement with the first cyclic test except at the first
quarter tensile segment. This suggests that the first quarter tensile curve and the cyclic test curves may
not possess the same set of kinematic parameters if they exhibit a significant difference in shape.
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The isotropic hardening could change the radius of the yield surface, causing the hysteresis loop to
continuously change till it becomes the stabilized one. As a result, the kinematic hardening parame-
ters will be different when respectively using the stable and unstable hysteresis loops to perform the
parameter’s optimization. To investigate these differences, a further optimization was executed with the
stabilized hysteresis loop (the 150th cyclic test curve).

6.3. Optimization based on the stabilized hysteresis loop. The model parameters shown in Table 4 were
used to simulate the stress-strain response for the stabilized hysteresis loop (the 150th cycle). Figure 8,
right, gives the experimental σ -εp curve for the stabilized hysteresis loop and the σ -εp response simulated
using the CHK-3 model with parameters listed in Table 4.

As shown in Figure 8, right, the simulated σ -εp curve exhibits a poor agreement with the 150th cyclic
test. Qualitatively, the hardening overestimation in Figure 8, right, may be caused by the isotropic harden-
ing. As analyzed in Section 6.2, the hysteresis loop continuously changes till it becomes a stabilized one
due to the isotropic hardening effect. Consequently, the values of CHK-3 model parameters determined
in Section 6.2 are not suitable for the stabilized hysteresis loop. Note that the cyclic softening occurs in
the test. It is well-known, however, that 304SS should exhibit cyclic hardening under cyclic loading. The
abnormal phenomenon may be ascribed to the high experimental frequency because an additional test at
a frequency of 0.1 Hz exhibits the cyclic hardening effect; the additional test is displayed in Figure 9, left.

We thus draw the significant conclusion that the cyclic hardening behavior is rate-dependent. However,
the method developed in this paper is feasible whatever the real material cyclic behavior.

C1 122733.002 γ1 3121.596
C2 18641.186 γ2 785.931
C3 12127.629 γ3 5.563

C1 165362.400 γ1 2372.604
C2 80140.956 γ2 834.633
C3 18322.853 γ3 0.111

Table 4. Optimal results of the CHK-3 model parameters for the first (left) and 150th
(right) cyclic tests.
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Figure 9. Left: stress-strain response at the strain-controlled test with test frequency of
0.1 Hz. Right: comparison between the 150th cyclic test and σ -εp response simulated
based on the parameters from Table 4, right.
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C1 46318.993 γ1 1501.795
C2 80426.735 γ2 1501.940
C3 42612.671 γ3 219.000

Table 5. CHK-3 model parameters optimized by fixing γ3 = 219.

In the following optimization, the ratcheting parameter γ3 was constrained to the range of 0.1 to 6 so as
to meet the requirement for ratcheting simulation. Indeed, the reasonable value for γ3 should be adjusted
according to the ratcheting test, which has a slight effect on the hysteresis loop simulation. Table 4 also
gives the optimized CHK-3 model parameters for the 150th experimental response.

Figure 9, right, shows the σ -εp response simulated with the CHK-3 model parameters from Table 4,
right. For comparison, the 150th cyclic test curve is also plotted. We see that the simulation is in good
agreement with experiments except at the regions near the peak of tension and the valley of compression.
The fact is that the first and the second AF rule reach their saturated values before the relative plastic
strain increases to a certain value, but the third AF rule does not. Thus, the hardening overestimation
was closely associated with the third AF hardening rule.

The ratcheting parameter γ3 has a significant effect on the ratcheting. As such, a reasonable value for
γ3 should be verified by the ratcheting test. In this investigation, we just want to verify the effect of γ3

on the hysteresis loop. Accordingly, the reasonable ratcheting parameter for 304SS was not considered
in a further optimization. Next, a special consideration for γ3 was taken for obtaining a better simulation
for the stabilized hysteresis loop.

As shown in Figure 9, right, hardening overestimation is ascribed to the fact that there exists a slow
increasing/decreasing tendency in the third AF hardening rule. So, a larger value of γ3 should be ap-
plied to increase its changing rate. To lower the effect of the third AF hardening rule on the hardening
overestimation, a trial value of γ3 = 219 was applied for an in-depth optimization.

The optimized values are given in Table 5. Figure 10 gives the σ -εp result calculated using the CHK-3

-6 -4 -2 0 2 4 6

x 10
-3

-500

-400

-300

-200

-100

0

100

200

300

400

500

H
p
 [mm/mm]

V
 [

M
P

a
]

 

 

150th cyclic test

X
1
-H

p

X
2
-H

p

X
3
-H

p

sim. based on 150th cyclic test

Figure 10. Comparison between the 150th cyclic test and σ -εp response simulated based
on the parameters from Table 5.
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model with the parameters given in Table 5. The 150th cyclic test is also plotted in the figure.
By comparing Figure 9, right, with Figure 10, we find that the simulation accuracy has been greatly

improved by fixing the value of γ3= 219 to perform a new parameter optimization. As a consequence, the
ratcheting parameter γ3 actually has an effect on the hysteresis loop. Generally, however, a small change
of γ3 is enough to simulate the ratcheting evolution. Thus, the value of γ3 for ratcheting is always
assigned to a small value. The ratcheting parameter γ3 in this work is not appropriate for ratcheting
simulation, because a reasonable γ3 should be verified through a further ratcheting test [Bari and Hassan
2000; Facheris and Janssens 2014]. Qualitatively, however, the parameters shown in Table 4, right, will
be recommended for the ratcheting simulation, although they lead to a hardening overestimation.

7. Conclusions

The current work is devoted to identifying the CHK-3 model parameters with an algebraic calculation
method based on its integral equations. The experimental test at strain range of ±0.8% was selected for
optimizing the CHK-3 model parameters. The main conclusions for this paper are these:

(1) One same set of CHK-3 model parameters cannot ensure a same high precision when they are used
simultaneously to simulate the stress-strain responses for both the first quarter tensile segment and
the stabilized hysteresis loop.

(2) It is recommended removing the elastic loading/unloading segments from the experimental stress-
strain curves before conducting an optimization of CHK-3 mode parameters.

(3) The initial yielding stress definition should be treated carefully for obtaining a good simulation. In
this work, 232.251 MPa corresponding to 0.02% plastic strain offset was taken as the initial yielding
stress, but after optimization, the reasonable initial yielding stress became around 181 MPa.

(4) The optimization procedure proposed can be applied generally to identify the CHK-3 model param-
eters for other similar metallic materials.

List of symbols

LCF low cyclic fatigue
AF rule Armstrong and Frederick kinematic hardening rule
LM algorithm Levenberg–Marquardt algorithm
304SS 304 stainless steel
X i the i-th kinematic hardening rule
Ci γi the i th Chaboche kinematic hardening parameters
E Young’s modulus
p accumulated plastic strain
dp accumulated plastic strain rate
ε
≈T

total strain tensor
ε̇
≈T

total strain rate
ε
≈ p

plastic strain tensor
ε
≈ px

plastic x-axial strain
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ε̇
≈ p

plastic strain rate
ε
≈e

elastic strain tensor
ε
≈a

strain amplitude
X
≈

backstress tensor
S
≈

deviatoric stress tensor
k initial yielding stress
σx x-axial stress
Xx x-axial backstress
σ0 ε0 n0 Ramberg–Osgood constants
σ sim

i the i-th simulated stress
σ

exp
i the i-th experimental stress
εth theoretical strain
εfl fluctuating strain
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INTERFACIAL WAVES IN AN A/B/A PIEZOELECTRIC STRUCTURE WITH
ELECTRO-MECHANICAL IMPERFECT INTERFACES

M. A. REYES, J. A. OTERO AND R. PÉREZ-ÁLVAREZ

We study the propagation of shear horizontal (SH) waves in the interfaces of an A/B/A piezoelectric
structure with an electrical and mechanical imperfect contact, being modeled by means of a capacitor
and a spring, respectively. The analytical dispersion relations are obtained and some limit cases are
analyzed in detail, predicting the existence of interface waves. Based on numerical calculations, it can
be shown that the electrical and mechanical imperfections strongly influence the dispersion curves.

1. Introduction

The possibility of an elastic shear surface wave being guided by the free surface of a piezoelectric crystal
with 6 mm hexagonal symmetry has been studied in [Bleustein 1968].

Maerfeld and Tournois [1971] found that these kinds of waves can also be guided by the interface in
perfect contact between two semi-infinite media, where at least one of these is a piezoelectric medium.
Moreover, a shear horizontal (SH) wave propagating along an interface between a piezoelectric half-
space and piezomagnetic half-space was investigated in [Soh and Liu 2006]. In [Fan et al. 2006b],
imperfection was considered by means of a discontinuity of the displacement (spring model). An exact
solution for antiplane waves in a ceramic half-space including an imperfectly bonded layer was obtained
in [Fan et al. 2006a]. In [Chen et al. 2008], an exact solution for antiplane waves in a 6 mm crystal
between two piezoceramic half-spaces with imperfect interface bonding was obtained. Furthermore, the
effect of an electric field gradient on the SH interface waves was investigated in [Yang and Yang 2009].
The SH surface waves propagating in a layered piezoelectric half-space with an imperfectly bonded
interface were studied in [Liu et al. 2010]. In [Sun et al. 2011], the SH wave propagation was studied
in a cylindrical PE/PM structure with an imperfect interface and two exact dispersion relations were
obtained. Dispersion relations of SH waves in an A/B/A heterostructure (which has different magnetic,
electric and elastic properties with imperfect bonding at the surfaces) taking 6 mm hexagonal symmetry
into account have been studied in great detail by Otero et al. [2011], giving some dispersion curves
for different A/B/A heterostructures with magneto-electro-elastic properties and showing how strongly
the behavior of these curves depends on the spring constant material parameter ku (GPa/m). In [Otero
et al. 2012], propagation of SH waves between the interfaces of two piezoelectric materials with electro-
mechanical imperfect contacts modeled by means of a spring and a capacitor and the corresponding
dispersion relations for the imperfect contact was presented.

Several works have been presented in order to study the effects of interface bonding on acoustic wave
generation in elastic bodies using piezoelectric transducers driven electrically, as in [Li et al. 2013].

Keywords: piezoelectricity, dispersion curve, wave propagation, imperfect contact.
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A coupling model for interfacial imperfection is proposed in [Li et al. 2015a] in order to characterize
the imperfect interface in a bilayered multiferroic cylinder, and in [Li et al. 2016a] the SH wave propaga-
tion at the interface in a bilayered multiferroic is considered. In [Li and Jin 2015], the shear-lag interface
model is used to simulate the effect of an imperfect interface on SH wave propagation in a piezoelectric
composite structure. Trying to generalize the interfacial imperfection coupling model, Li et al. [2015b]
introduced a new model to describe the magneto-electro-mechanical imperfect interfacial region in a
multiferroic composite consisting of an FE layer and another FM layer. Xiong et al. [2015] proposed an
interfacial sliding prevention/promotion model in order to consider the effect of interfacial normal stress
on interfacial sliding and Li et al. [2015c; 2016b] proposed a generalization of the spring model while
including intercoupling effects. Some authors, like Kakar [2015], have investigated the existence of SH
waves in a fiber-reinforced layer placed over a heterogeneous elastic half-space. Kong et al. [2016] stud-
ied the propagation of SH waves in the layered structure consisting of a transversely isotropic FGPM layer
and a PMN-0.29PT substrate that is being poled along [011]c, finding that the dispersion characteristics
of the SH waves are dominated by the cut orientation of the PE substrate.

In the present work, different to the work of Otero et al. [2011], we consider the existence of two
imperfections at the interfaces on an A/B/A piezoelectric structure: electrical and mechanical. The
presence of electrical and mechanical imperfections are modeled by means of a capacitor and a spring,
respectively. The capacity of the capacitor is the measure of the electrical imperfection.

This paper is organized as follows: in Section 2 the equations governing the SH wave propagating
in piezoelectric materials with 6 mm hexagonal symmetry and the constitutive relations are presented.
Section 3 is dedicated to the general formulation of the main problem, considering two types of imper-
fections at the interfaces. Symmetric and antisymmetric solutions are obtained for a specific system.
Section 4 is devoted to calculating the dispersion relations, and some limiting cases are analyzed. These
results are in agreement with known results from the literature. In Section 5 some numerical examples
are shown and analyzed. Finally, in Section 6 some conclusions are presented.

2. Governing equations for the SH mode

A system of two coupled partial differential equations with two unknowns: the z component of the elastic
displacement uz and the in-plane electric potential ϕ, describe SH waves in this type of material; that is,

c∇2u+ e∇2ϕ = ρ
∂2u
∂t2 , (2-1)

e∇2u− ε∇2ϕ = 0, (2-2)

where ∇2
≡ ∂2/∂x2

+ ∂2/∂y2 and u ≡ uz . Here, c ≡ c44, e ≡ e15, ε ≡ ε11 are the elastic, piezoelectric,
and dielectric permittivity coefficients, respectively. For the case of SH waves, both components ux

and u y are equal to zero. Equations (2-1)–(2-2), which depend only on (x, y, t), describe the motion of a
SH wave in a homogeneous material. Firstly, we have to rewrite (2-1)–(2-2) using an auxiliary potential
function φ defined by

φ = ϕ−
e
ε

u. (2-3)



INTERFACIAL WAVES IN A PIEZOELECTRIC STRUCTURE WITH IMPERFECT INTERFACES 459

Then, (2-1) can be written as (
∇

2
−

1
v̄2

∂2

∂t2

)
u = 0, (2-4)

where v̄ =
√

c̄/ρ is the bulk shear wave speed within the piezoelectric and c̄ = c+ e2/ε is the electro-
elastically stiffened constant. Secondly, (2-2) can be written as

∇
2φ = 0. (2-5)

3. SH waves in piezoelectrics

Consider a piezoelectric material with 6 mm hexagonal symmetry exhibiting polarization in the z-axis
direction of an xyz Cartesian coordinate system and the xy plane is an isotropy plane. The planes
y =± 1

2 d are the interfaces. The spaces y <−1
2 d and y > 1

2 d are occupied by a piezoelectric of type A
and the region enclosed in the interval [−1

2 d, 1
2 d] by a piezoelectric of type B, as shown in Figure 1.

We want to find u and φ describing SH waves propagating along the positive x axis that satisfy (2-4)
and (2-5) at each interface of the piezoelectric structure. We are really interested in finding confined
modes, which is why the functions u and φ in media A should vanish as y goes to ±∞. This in turn
implies that at these interfaces the solutions of (2-4) and (2-5) must be of the form

us = ei(ξ x−ωt)


UAeηA y if y <− 1

2 d,
UB cos(ηB y) if |y| ≤ 1

2 d,
UAe−ηA y if y > 1

2 d,
(3-1)

for the symmetric modes in y, and

uas = ei(ξ x−ωt)


UA1eηA y if y <− 1

2 d,
UB1 sin(ηB y) if |y| ≤ 1

2 d,
−UA1e−ηA y if y > 1

2 d,
(3-2)

for the antisymmetric modes in y, where UA, UB , UA1, and UB1 are undetermined constants. Here, ω, ξ ,
and η are the frequency, the x-component of the wave vector, and the y-component of the wave vector,

A A

x

y

B

0-d/2 d/2

Figure 1. Scheme of a piezoelectric structure A/B/A.
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respectively, which are related to each other through the expressions

ηA = ξ

√
(1− v2/v̄2

A) > 0, |y|≥ 1
2 d,

ηB = ξ

√
(v2/v̄2

B − 1) > 0, |y|≤ 1
2 d,

(3-3)

where v = ω/ξ is the phase velocity. Using the above considerations, we obtain

φs = ei(ξ x−ωt)


8Aeξ y if y <−1

2 d,
8B cosh(ξ y) if |y| ≤ 1

2 d,
8Ae−ξ y if y > 1

2 d,
(3-4)

for the symmetric modes in y, and

φas = ei(ξ x−ωt)


8A1eξ y if y <−1

2 d,
8B1 sinh(ξ y) if |y| ≤ 1

2 d,
−8A1e−ξ y if y > 1

2 d,
(3-5)

for the antisymmetric modes in y, where 8A, 8B , 8A1, and 8B1 are undetermined constants.

4. Dispersion relations

Now, the stress component T ≡ Tzy and the electric displacement D ≡ Dy are related to u and φ by

T = c∂u
∂y
+ e∂ϕ

∂y
, D = e∂u

∂y
− ε

∂ϕ

∂y
. (4-1)

It is convenient to express (4-1) using the potential function φ, which leads to the following expressions:

T = c̄∂u
∂y
+ e∂φ

∂y
, D =−ε ∂φ

∂y
. (4-2)

Substituting (3-1) and (3-4) into (2-3), the symmetric parts of the electric potential are written as

ϕs = ei(ξ x−ωt)


eA/εAUAeηA y

+8Aeξ y if y <−1
2 d,

eB/εBUB cos(ηB y)+8B cosh(ξ y) if |y| ≤ 1
2 d,

eA/εAUAe−ηA y
+8Ae−ξ y if y > 1

2 d.
(4-3)

Substituting (3-1) and (3-4) into (4-2), we get the following expressions for the symmetric part of T
and D:

Ts = ei(ξ x−ωt)


UAc̄AηAeηA y

+8Aξ eξ y if y <−1
2 d,

−UB c̄BηB sin(ηB y)+8BeBξ sinh(ξ y) if |y| ≤ 1
2 d,

−UAc̄AηAe−ηA y
−8AeAξ e−ξ y if y > 1

2 d,
(4-4)

Ds = ei(ξ x−ω t)


−8AεAξ eξ y if y <− 1

2 d,
−8BεBξ sinh(ξ y) if |y| ≤ 1

2 d,
8AεAξ e−ξ y if y > 1

2 d.
(4-5)
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Analogously, we get the following expressions for the antisymmetric part of T and D:

Tas = ei(ξ x−ωt)


UA1c̄AηAeηA y

+8A1ξ eξ y if y <− 1
2 d,

UB1c̄BηB cos(ηB y)+8B1eBξ cosh(ξ y) if |y| ≤ 1
2 d,

UA1c̄AηAe−ηA y
+8A1eAξ e−ξ y if y > 1

2 d,
(4-6)

Das = ei(ξ x−ωt)


−8A1εAξ eξ y if y <−1

2 d,
−8B1εBξ cosh(ξ y) if |y| ≤ 1

2 d,
8A1εAξ e−ξ y if y > 1

2 d.
(4-7)

4A. The symmetric part. Let us build the equations that satisfy the condition for the electro-mechanical
imperfect contact at y =− 1

2 d using the symmetric part of the solution. First,

TA = ku(u A− u B)

describes an elastic interface with spring constant material parameter ku > 0. Then, we get

UA(c̄AηA− ku)e−dηA/2+8AeAξ e−dξ/2
+UBku cos

(1
2 dηB

)
= 0, (4-8)

with the second condition

TB = ku(u A− u B),

therefore we get

−UAku e−dηA/2+UB
(
c̄BηB sin

( 1
2 dηB

)
+ ku cos

( 1
2 dηB

))
−8BeBξ sin

( 1
2 dξ

)
= 0. (4-9)

The third condition,

DA = kφ

(
φA+

eA

εA
u A−φB −

eB

εB
u B

)
,

describes an electric interface with electric capacitor parameter kϕ > 0, i.e., if the electric potential at the
interface is discontinuous, we get

−
eA

εA
UAkϕe−dηA/2−8A(εAξ + kϕ)e−dξ/2

+
eB

εB
UBkϕ cos

( 1
2 dηB

)
+8Bkϕ cos

(1
2 dξ

)
= 0. (4-10)

Using the fourth condition,

DB = kϕ

(
φA+

eA

εA
u A−φB −

eB

εB
u B

)
,

we obtain

−
eA

εA
UAkϕe−dηA/2−8Akϕe−dξ/2

+
eB

εB
UBkϕ cos

( 1
2 dηB

)
+8B

(
εBξ sinh

(1
2 dξ

)
+ kϕ cosh

( 1
2 dξ

))
= 0. (4-11)

The set of equations (4-8)–(4-11) is a homogeneous system of linear algebraic equations for UA, UB ,
8A, and 8B . In order to obtain nontrivial solutions, the determinant of the matrix formed by this system
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of equations should be zero, and it can be simplified to∣∣∣∣∣∣∣∣∣
eAξ 0 c̄AηA− ku ku cos

( 1
2 dηB

)
0 −eBξ sin

( 1
2 dξ

)
−ku c̄BηB sinh

( 1
2 dηB

)
+ ku cos

( 1
2 dηB

)
−εAξ − kϕ kϕ cosh

( 1
2 dξ

)
−eA/εA kϕ eB/εB kϕ cos

( 1
2 dηB

)
−kϕ εBξ sinh

( 1
2 dξ

)
+ kϕ cosh

( 1
2 dξ

)
−eA/εA kϕ eB/εB kϕ cos

( 1
2 dηB

)
∣∣∣∣∣∣∣∣∣ .

This determinant leads us to the following dispersion relations for the symmetric modes:

PA PB − Q2
+ ku(PA+ PB + 2Q)= 0,

where

PA =−c̄A

(
ηA− ξγφ

M2
A

εA

)
, PB = c̄B

(
ηB tan

(1
2 dηB

)
+ ξγφ

M2
B

εB

)
,

Q =−ξγφ

(
eAeB

εAεB

)
, γφ =

kϕ
ξ + kϕ

(
1/εA+ 1/εB coth

(1
2 dξ

)) ,
M2

A =
e2

A

c̄AεA
, M2

B =
e2

B

c̄BεA
.

4B. The antisymmetric part. We now build the equations that satisfy the condition for the electro-
mechanical imperfect contact at y =− 1

2 d using the antisymmetric part of the solution.
The first condition,

TA = ku(u A− u B),

describes an elastic interface with spring constant material parameter ku > 0. Then, we get

UA1(c̄AηA− ku)e−dηA/2+8A1eAξ e−dξ/2
−UB1ku sin

( 1
2 dηB

)
= 0. (4-12)

With the second condition,
TB = ku(u A− u B),

we get

−UA1ku e−dηA/2+UB1
(
c̄BηB cos

( 1
2 dηB

)
− ku sin

( 1
2 dηB

))
+8B1eBξ cosh

( 1
2 dξ

)
= 0. (4-13)

The third condition,

DA = kϕ

(
φA+

eA

εA
u A−φB −

eB

εB
u B

)
,

describes an electric interface with an electric capacitor parameter kϕ > 0, i.e., the electric potential at
the interface must be discontinuous, so we obtain

−
eA

εA
UA1kϕe−dηA/2−8A1(εAξ + kϕ)e−dξ/2

−
eB

εB
UB1kϕ sin

( 1
2 dηB

)
−8B1kϕ sinh

( 1
2 dξ

)
= 0. (4-14)

Using the fourth condition,

DB = kϕ

(
φA+

eA

εA
u A−φB −

eB

εB
u B

)
,
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we obtain,
eA

εA
UA1kϕe−dηA/28A1kϕe−dξ/2

+
eB

εB
UB1kϕ sin

( 1
2 dηB

)
+8B1

(
εBξ cosh

(1
2 dξ

)
+ kϕ sinh

( 1
2 dξ

))
= 0. (4-15)

The set of equations (4-12)–(4-15) is a homogeneous system of linear algebraic equations for UA, UB ,
8A, and 8B . In order to obtain nontrivial solutions, the determinant of the matrix formed by this system
of equations should be zero, and it can be simplified to∣∣∣∣∣∣∣∣∣

eAξ 0 c̄AηA− ku −ku sin
( 1

2 dηB
)

0 eBξ cosh
( 1

2 dξ
)

−ku c̄BηB cos
( 1

2 dηB
)
− ku sin

( 1
2 dηB

)
−εAξ − kϕ −kϕ sinh

( 1
2 dξ

)
−eA/εA kϕ −eB/εB kϕ sin

( 1
2 dηB

)
−kϕ −εBξ cosh

( 1
2 dξ

)
− kϕ sinh

( 1
2 dξ

)
−eA/εA kϕ −eB/εB kϕ sin

( 1
2 dηB

)
∣∣∣∣∣∣∣∣∣.

This determinant leads us to the following dispersion relations for the antisymmetric modes:

PA PB − Q2
+ ku(PA+ PB + 2Q)= 0,

where

PA =−c̄A

(
ηA− ξ Aγφ

M2
A

εA

)
, PB = c̄B

(
ηB tan

( 1
2 dηB

)
+ ξ Aγφ

M2
B

εB

)
,

Q =−ξ Aγφ

(
eAeB

εAεB

)
, Aγφ =

kϕ
ξ + kϕ

(
1/εA+ 1/εB tanh

( 1
2 dξ

)) ,
M2

A =
e2

A

c̄AεA
, M2

B =
e2

B

c̄BεA
.

5. Limit cases

Let us consider the following limit cases for the symmetric part:

(1) The interface has partial electrical interaction but has no mechanical interaction:

ku→ 0, 0< kϕ <∞,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
+ γφ

M2
B

εB

√
1− v2/v̄2

A

− γφ
M2

A

εA

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

(2) The interface has perfect electrical interaction but has no mechanical interaction:

ku→ 0, kϕ→∞,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
+

M2
B

εB/εA+ coth
( 1

2 dξ
)√1− v2/v̄2

A

−
M2

A

1+ εA/εB coth
( 1

2 dξ
)√v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0.
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(3) The interface has neither mechanical nor electrical interaction:

ku→ 0, kϕ→ 0,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 tan
(1

2 dξ
√
v2/v̄2

B − 1
)
= 0→ sin

( 1
2 dξ

√
v2/v̄2

B − 1
)
= 0,

1
4 d2ξ 2(v2/v̄2

B − 1
)
= n2π2

; n ∈ Z.

(4) The interface has perfect mechanical interaction but partial electrical interaction:

ku→∞, 0< kϕ <∞,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
= γφ(eA/εA− eB/εB)

2.

(5) The interface has both perfect mechanical and electrical interactions:

ku→∞, kϕ→∞,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 tan
( 1

2 dξ
√
v2/v̄2

B − 1
)
=

(eA/εA− eB/εB)
2

1/εA+ 1/εB coth
( 1

2 dξ
) .

(6) The interface has perfect mechanical interaction but has no electrical interaction:

ku→∞, kϕ→ 0,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 tan
(1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

Let us consider the following limit cases for the antisymmetric part:

(1) The interface has partial electrical interaction but has no mechanical interaction:

ku→ 0, 0< kϕ <∞,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
− Aγφ

M2
B

εB

√
1− v2/v̄2

A

− Aγφ
M2

A

εA

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

(2) The interface has perfect electrical interaction but has no mechanical interaction:

ku→ 0, kϕ→∞,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
−

M2
B

εB/εA+ coth
( 1

2 dξ
)√1− v2/v̄2

A

−
M2

A

1+ εA/εB tanh
( 1

2 dξ
)√v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

(3) The interface has neither mechanical nor electrical interaction:

ku→ 0, kϕ→ 0,√
1− v2/v̄2

A

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
= 0→ cos

( 1
2 dξ

√
v2/v̄2

B − 1
)
= 0,

d2ξ 2(v2/v̄2
B − 1)= (2n+ 1)2π2

; n ∈ Z.
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(4) The interface has perfect mechanical interaction but partial electrical interaction:

ku→∞, 0< kϕ <∞,

c̄A

√
1− v2/v̄2

A+ c̄B

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
= Aγφ(eA/εA− eB/εB)

2.

(5) The interface has both perfect mechanical and electrical interactions:

ku→∞, kϕ→∞,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 cot
( 1

2 dξ
√
v2/v̄2

B − 1
)
=

(eA/εA− eB/εB)
2

1/εA+ 1/εB tanh
( 1

2 dξ
) .

(6) The interface has perfect mechanical interaction but has no electrical interaction:

ku→∞, kϕ→ 0,

c̄A

√
1− v2/v̄2

A− c̄B

√
v2/v̄2

B − 1 cot
(1

2 dξ
√
v2/v̄2

B − 1
)
= 0.

6. Numerical examples

In order to show the effects of the imperfections within the interfaces, we present some dispersion curves.
We used two different piezoelectric materials: BaTiO3 as the piezoelectric A and PZT4 as the piezoelec-
tric B. The properties of the materials are summarized in Table 1.

In Figure 2, dispersion curves v = f (ωd) for the symmetric part for the fixed electrical imperfect
parameter kϕ = 0 F/m2 and different values of the mechanical imperfect parameter ku are shown. These
curves are nonmonotonic for small values of ku and strictly convex and decreasing for large values of ku .
As we can see, the dispersion curves are shifted to the right by increasing values of ku . This behavior
of the dispersion curves was shown by Otero et al. [2011, Figures 2(a) and 2(b)]. The value of ku has a
really strong influence on the dispersion curves and all the wave velocities tend to the wave velocity in
phase B as ωd goes to infinity. Nevertheless, for high frequencies, the wave propagation is not affected.
The wave velocities are between vA and vB , and both are shown in Figure 2.

In Figure 3, dispersion curves for the symmetric part for kϕ = 5 F/m2 and different values of the
mechanical imperfect parameter ku are shown. In Figure 4, dispersion curves for the symmetric part for
kϕ = 107 F/m2 and different values of mechanical imperfect parameter ku are shown.

The behavior in Figures 3 and 4 are quite similar for the case kϕ = 0 F/m2, but there is a slight difference,
which is shown in Figure 5, if we compare the dispersion curves for ku = 0.3 GPa/m in all cases. As we

properties BaTiO3 PZT4

c (GPa) 43 26
e (C/m2) 11.6 10.5

ε (10−9 C2/Nm2) 11.2 7.124
ρ (103 kg/m3) 5 7.5
v̄ (103 m/s) 3.07981 2.35162

Table 1. Material properties.



466 M. A. REYES, J. A. OTERO AND R. PÉREZ-ÁLVAREZ

0 20 40 60 80 100
2.2

2.4

2.6

2.8

3.0

3.2

vB

 ku = 0.3
 ku = 1.0
 ku = 1.5
 ku = 2.0
 ku = 3.0
 ku = 5.0
 ku = 103v 

(1
0 3

 m
/s)

 d (kHz m)

vA

Figure 2. Dispersion curve for the symmetric part for kϕ = 0 F/m2 and different values of ku .
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Figure 3. Dispersion curve for the symmetric part for kϕ = 5 F/m2 and different values of ku .
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Figure 4. Dispersion curves for the symmetric part for kϕ = 107 F/m2 and different
values of ku .
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Figure 5. Dispersion curve for the symmetric part for ku = 0.3 GPa/m and different
values of kϕ .
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Figure 6. Dispersion curve for the antisymmetric part for kϕ = 10 F/m2 and different
values of ku .

can see in Figure 5, there is a notable displacement in both the frequency and the wave velocity axes.
If kϕ is increased, the dispersion curves are shifted to the left and the wave velocity is decreased. This
conclusion is really important because the dispersion curves are strongly dependent on the mechanical
imperfect parameter (ku) and depend weakly on the electrical parameter (kϕ).

In Figure 6, dispersion curves for the antisymmetric part for the fixed electrical imperfect parameter
kϕ = 10 F/m2 and different values of mechanical imperfect parameter ku are shown. These curves are
strictly convex and have the same nonmonotonic behavior for small values for ku and large values of ku ,
similar to that of dispersion curves for the symmetric part. The visual difference between these curves
and the symmetric ones is that dispersion curves for the antisymmetric part are shifted to the right. This
behavior of the dispersion curves was shown in [Otero et al. 2011, Figures 8(a) and 8(b)]. The value of
ku has a really strong influence in the dispersion curves and all the wave velocities approach to the wave
velocity in phase B as ωd goes to infinity. Nevertheless, for high frequencies, the wave propagation is
not affected. The wave velocities are between vA and vB , and both are shown in Figure 6.
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Figure 7. Dispersion curve for the antisymmetric part for kϕ = 107 F/m2 and different
values of ku .
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Figure 8. Dispersion curve for the antisymmetric part for ku = 0.5 GPa/m and different
values of kϕ .

In Figure 7, dispersion curves for the antisymmetric part for kϕ = 107 F/m2 and different values of
the mechanical imperfect parameter ku are shown. The behavior in Figures 6 and 7 are quite similar,
but there is a slight difference, which is shown in Figure 8, if we compare the dispersion curves for
ku = 0.5 GPa/m in both cases. As we can see in Figure 8, there is a notable displacement in both the
frequency and wave velocity axes, which is the same behavior as in the symmetric part.

7. Conclusions

Dispersion relations for the propagation of an interfacial shear wave in an A/B/A piezoelectric structure
for symmetric and antisymmetric parts have been studied by considering the existence of electrical and
mechanical imperfections at the interfaces, which are modeled by means a capacitor and a spring, respec-
tively. Analytical expressions for dispersion relations are obtained and different limit cases are studied,
showing a good agreement with [Otero et al. 2011]. Numerical examples are presented by using two



INTERFACIAL WAVES IN A PIEZOELECTRIC STRUCTURE WITH IMPERFECT INTERFACES 469

piezoelectric materials (PZT4 and BaTiO3), and dispersion curves for different values of the material
parameters (ku and kϕ) are shown. Some conclusions about dispersion curves have been obtained:

• they are confined within the velocity of media A and B for the symmetric and antisymmetric parts,

• they never intersect each other for the symmetric and antisymmetric parts,

• they go to vB as ωd goes to infinity for all values of ku , and possible values of kφ ,

• they are nonmonotonic for small values for ku , strictly convex and decreasing for large values of ku ,

• the smaller the value of the imperfect bounding parameter (kφ), the more shift to the right.

References

[Bleustein 1968] J. L. Bleustein, “A new surface wave in piezoelectric materials”, Appl. Phys. Lett. 13:12 (1968), 412–413.

[Chen et al. 2008] Z. G. Chen, Y. T. Hu, and J. S. Yang, “Shear horizontal piezoelectric waves in a piezoceramic plate imper-
fectly bonded to two piezoceramic half-spaces”, J. Mech. 24:3 (2008), 229–239.

[Fan et al. 2006a] H. Fan, J. Yang, and L. Xu, “Antiplane piezoelectric surface waves over a ceramic half-space with an
imperfectly bonded layer”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53:9 (2006), 1695–1698.

[Fan et al. 2006b] H. Fan, J. Yang, and L. Xu, “Piezoelectric waves near an imperfectly bonded interface between two half-
spaces”, Appl. Phys. Lett. 88:20 (2006), 203509.

[Kakar 2015] R. Kakar, “SH-wave velocity in a fiber-reinforced anisotropic layer overlying a gravitational heterogeneous half-
space”, Multi. Model. Mat. Struct. 11:3 (2015), 386–400.

[Kong et al. 2016] Y. Kong, J. Liu, and G. Nie, “Propagation characteristics of SH waves in a functionally graded piezomagnetic
layer on PMN-0.29PT single crystal substrate”, Mech. Res. Commun. 73 (2016), 107–112.

[Li and Jin 2015] P. Li and F. Jin, “Excitation and propagation of shear horizontal waves in a piezoelectric layer imperfectly
bonded to a metal or elastic substrate”, Acta Mech. 226:2 (2015), 267–284.

[Li et al. 2013] P. Li, F. Jin, W. Chen, and J. Yang, “Effects of interface bonding on acoustic wave generation in an elastic body
by surface-mounted piezoelectric transducers”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60:9 (2013), 1957–1963.

[Li et al. 2015a] Y.-D. Li, T. Xiong, and Q.-G. Cai, “Coupled interfacial imperfections and their effects on the fracture behavior
of a layered multiferroic cylinder”, Acta Mech. 226:4 (2015), 1183–1199.

[Li et al. 2015b] Y.-D. Li, T. Xiong, and L. Dong, “A new interfacial imperfection coupling model (IICM) and its effect on the
facture behavior of a layered multiferroic composite: anti-plane case”, Eur. J. Mech. A Solids 52 (2015), 26–36.

[Li et al. 2015c] Y.-D. Li, T. Xiong, and L. Dong, “Interfacial imperfection coupling model with application to the in-plane
fracture problem of a multiferroic composite”, Int. J. Solids Struct. 54 (2015), 31–41.

[Li et al. 2016a] Y.-D. Li, T. Xiong, and Y. Guan, “Effects of coupled interfacial imperfections on SH wave propagation in a
layered multiferroic cylinder”, Ultrasonics 66 (2016), 11–17.

[Li et al. 2016b] Y.-D. Li, K. Zhou, and T. Xiong, “Fracture analysis on a multiferroic cylindrical shell: effects of coupled
interphase imperfections”, J. Intell. Mater. Syst. Struct. 27:2 (2016), 195–207.

[Liu et al. 2010] J. Liu, Y. Wang, and B. Wang, “Propagation of shear horizontal surface waves in a layered piezoelectric
half-space with an imperfect interface”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57:8 (2010), 1875–1879.

[Maerfeld and Tournois 1971] C. Maerfeld and P. Tournois, “Pure shear elastic surface wave guided by the interface of two
semi-infinite media”, Appl. Phys. Lett. 19:4 (1971), 117–118.

[Otero et al. 2011] J. A. Otero, R. Rodriguez-Ramos, J. Bravo-Castillero, A. R. Aguiar, and G. Monsivais, “Dispersion relations
for SH waves on a magnetoelectroelastic heteroestructure with imperfect interfaces”, J. Mech. Mater. Struct. 6:7–8 (2011),
969–993.

[Otero et al. 2012] J. A. Otero, R. Rodríguez-Ramos, J. Bravo-Castillero, and G. Monsivais, “Interfacial waves between two
piezoelectric half-spaces with electro-mechanical imperfect interface”, Philos. Mag. Lett. 92:10 (2012), 534–540.

http://dx.doi.org/10.1063/1.1652495
http://dx.doi.org/10.1017/S172771910000229X
http://dx.doi.org/10.1017/S172771910000229X
http://dx.doi.org/10.1109/TUFFC.2006.1678199
http://dx.doi.org/10.1109/TUFFC.2006.1678199
http://dx.doi.org/10.1063/1.2206702
http://dx.doi.org/10.1063/1.2206702
http://dx.doi.org/10.1108/MMMS-01-2015-0002
http://dx.doi.org/10.1108/MMMS-01-2015-0002
http://dx.doi.org/10.1016/j.mechrescom.2016.02.012
http://dx.doi.org/10.1016/j.mechrescom.2016.02.012
http://dx.doi.org/10.1007/s00707-014-1181-6
http://dx.doi.org/10.1007/s00707-014-1181-6
http://dx.doi.org/10.1109/TUFFC.2013.2780
http://dx.doi.org/10.1109/TUFFC.2013.2780
http://dx.doi.org/10.1007/s00707-014-1246-6
http://dx.doi.org/10.1007/s00707-014-1246-6
http://dx.doi.org/10.1016/j.euromechsol.2014.09.013
http://dx.doi.org/10.1016/j.euromechsol.2014.09.013
http://dx.doi.org/10.1016/j.ijsolstr.2014.11.010
http://dx.doi.org/10.1016/j.ijsolstr.2014.11.010
http://dx.doi.org/10.1016/j.ultras.2015.12.004
http://dx.doi.org/10.1016/j.ultras.2015.12.004
http://dx.doi.org/10.1177/1045389X14563868
http://dx.doi.org/10.1177/1045389X14563868
http://dx.doi.org/10.1109/TUFFC.2010.1627
http://dx.doi.org/10.1109/TUFFC.2010.1627
http://dx.doi.org/10.1063/1.1653836
http://dx.doi.org/10.1063/1.1653836
http://dx.doi.org/10.2140/jomms.2011.6.969
http://dx.doi.org/10.2140/jomms.2011.6.969
http://dx.doi.org/10.1080/09500839.2012.698758
http://dx.doi.org/10.1080/09500839.2012.698758


470 M. A. REYES, J. A. OTERO AND R. PÉREZ-ÁLVAREZ

[Soh and Liu 2006] A. K. Soh and J. X. Liu, “Interfacial shear horizontal waves in a piezoelectric-piezomagnetic bi-material”,
Philos. Mag. Lett. 86:1 (2006), 31–35.

[Sun et al. 2011] W.-H. Sun, G.-L. Ju, J.-W. Pan, and Y.-D. Li, “Effects of the imperfect interface and piezoelectric/piezomagnetic
stiffening on the SH wave in a multiferroic composite”, Ultrasonics 51:7 (2011), 831–838.

[Xiong et al. 2015] T. Xiong, Y.-D. Li, and Z.-K. Song, “Interfacial sliding in a bi-layered multiferroic ceramics: localized
sliding-prevention/promotion based mechanism of intra-layer fracture”, Int. J. Solids Struct. 77 (2015), 15–27.

[Yang and Yang 2009] Z. Yang and J. Yang, “Effects of electric field gradient on the propagation of short piezoelectric interface
waves”, Int. J. Appl. Electrom. 29:2 (2009), 101–108.

Received 27 Nov 2016. Revised 22 Mar 2017. Accepted 29 Mar 2017.

M. A. REYES: 777marcorey@gmail.com
Instituto Politécnico Nacional, UPIITA-IPN, Avenida Instituto Politécnico Nacional No. 2580, Col Barrio la Laguna Ticomán,
07340 Ciudad de México,, Mexico

J. A. OTERO: j.a.otero@itesm.mx
Campus Estado de México, Tecnológico de Monterrey, Carretera Lago de Guadalupe Km. 3.5, Atizapán de Zaragoza,
52926 Colonia Margarita Maza de Juárez,, Mexico

R. PÉREZ-ÁLVAREZ: rpa@uaem.mx
Centro de Investigacion en Ciencias, Instituto de Investigacion en Ciencias Basicas y Aplicadas,
Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, 62209 Cuernavaca,, Mexico

mathematical sciences publishers msp

http://dx.doi.org/10.1080/09500830500492125
http://dx.doi.org/10.1016/j.ultras.2011.04.002
http://dx.doi.org/10.1016/j.ultras.2011.04.002
http://dx.doi.org/10.1016/j.ijsolstr.2015.08.007
http://dx.doi.org/10.1016/j.ijsolstr.2015.08.007
http://dx.doi.org/10.3233/JAE-2009-1006
http://dx.doi.org/10.3233/JAE-2009-1006
mailto:777marcorey@gmail.com
mailto:j.a.otero@itesm.mx
mailto:rpa@uaem.mx
http://msp.org


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 12, No. 4, 2017

dx.doi.org/10.2140/jomms.2017.12.471 msp

FULLY PERIODIC RVES FOR TECHNOLOGICAL RELEVANT COMPOSITES:
NOT WORTH THE EFFORT!

KONRAD SCHNEIDER, BENJAMIN KLUSEMANN AND SWANTJE BARGMANN

The setup of a finite element model for homogenization featuring a fully periodic geometry and a fully
periodic mesh topology in combination with a high quality discretization is a cumbersome task and might
significantly reduce the overall efficiency in multiscale finite element simulations.

In this work, we examine multiple methodologies of setting up finite element models for homoge-
nization purposes that extenuate these difficulties. Approaches resulting in periodic and nonperiodic
representative volume element topologies in the microstructural generation process are introduced. Fur-
thermore, we review and analyze various types of boundary conditions that either enforce periodicity or
do not require periodicity of the underlying discretization. Approximate periodic boundary conditions
are discussed in detail.

The benchmark study proves that a fully periodic topology and mesh discretization with periodic
boundary conditions is not necessary in order to identify effective macroscopic material parameters for
technologically relevant composites.

1. Introduction — numerical homogenization of heterogeneous solids

Advanced and complex materials often possess a distinctive microstructure at a certain length scale,
which significantly influences the macroscopic material behavior. In composites, the combination of
multiple material phases enhances mechanical properties over the single constituents, which in turn
qualifies them as highly technologically relevant.

In computational micromechanics, the state of the art approach only considers a small but repre-
sentative part of the structure, namely a representative volume element (RVE), featuring all relevant
characteristics of the materials microstructure [Böhm 1998; Geers et al. 2010; Klusemann et al. 2012;
Kari et al. 2007; McBride et al. 2012; Saeb et al. 2016; Schröder and Hackl 2014; Yuan and Fish 2008;
Suquet 1985]. Such a RVE should have a sufficiently large size to capture enough microstructural infor-
mation while being significantly smaller than the macroscopic structure to hardly influence macroscopic
gradients [Böhm 1998].

One important issue to deal with is the application of appropriate boundary conditions. They have to
be chosen carefully to fulfill the macrohomogeneity condition [Hill 1963] (also named the Hill–Mandel
condition) for proper homogenization. At least five conditions obey this requirement: fully prescribed de-
formation over the entire domain, fully prescribed displacement on the boundary of the domain, periodic
boundary conditions, fully prescribed stress vectors on the boundary of the domain and fully prescribed
stresses over the entire domain.

Keywords: periodic boundary conditions, representative volume element, homogenization.
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Secondly, application of the finite element method (FEM) requires a discretization of the RVE. The
type and accuracy of such discretizations significantly influence the quality of the results. As will be
shown in this work, periodic RVEs with periodic boundary conditions are not necessarily worth the effort.

In the opinion of many researchers, a favorable FE model features a periodic topology with a large
number of inhomogeneities as well as high quality discretizations suitable for the direct application of
periodic boundary conditions [Böhm 1998; Torquato 2002; Yue and E 2007; Kanit et al. 2003; Perić
et al. 2011; Miehe and Koch 2002; Glüge 2013; Gusev 1997; Böhm and Han 2001; Böhm et al. 2002;
Gitman et al. 2007]. The construction of such models is either a very tedious and expensive task or
even impossible to accomplish for certain microstructures [Dirrenberger et al. 2014; Fritzen et al. 2009;
Fritzen and Böhlke 2011].

Tremendous effort might be necessary to gather microstructural information and transfer it to a dis-
cretized model. If periodicity in terms of geometry and boundary conditions is targeted, this effort is
questionable for engineering applications. Various possibilities of relaxing these strict requirements are
possible to ease the homogenization procedure. Discretizing geometrically complex microstructures (e.g.,
curved geometric entities) is typically realized by employing tetrahedralizations. To achieve trustworthy
analyses, high quality meshes are required; however, their generation might become a very cumbersome
and resource consuming task [Böhm et al. 2002; Fritzen et al. 2009; Schneider et al. 2016]. A viable
solution is the utilization of voxel discretizations resulting in regular grid-like meshes [Glüge 2013; Kanit
et al. 2003]. Regular voxel meshes naturally feature a periodic mesh topology, allowing a straightforward
application of periodic boundary conditions.

As an alternative approach, approximate periodic boundary conditions and kinematic uniform stress
vectors or displacement boundary conditions loosen the requirement of a periodic mesh topology. In fact,
these methodologies allow completely nonperiodic RVEs.

The goal of this paper is a systematic evaluation of the influences of RVE topology, discretization
and employed boundary conditions on the effective material response. A benchmark study is conducted
for the example of composites consisting of a topologically interconnected matrix and nonoverlapping
inclusions, so-called matrix inclusion composites.

2. Aspects of numerical homogenization in context of RVE topology, discretization and
boundary conditions

Vital to a proper homogenization is the fulfillment of the macrohomogeneity condition suggested by Hill
[1963]: the equality of the stress power deduced by the mean values (pure macroscopic quantities) and
the stress power calculated by the actual volume integral of the microscopic quantities:1

P :
˙F = 1

V0

∫
B0

P : Ḟ dV0. (1)

Here, V0 is the volume in the reference configuration, P represents the first Piola–Kirchhoff stress tensor
and F is the deformation gradient. The fulfillment is accomplished by the proper choice of boundary
conditions.

1Quantities on the macroscopic scale are related to the microscopic scale via a volume average over the RVE domain B0 and
are denoted by (. . . )= 1/V0

∫
B0
(. . . ) dV0 in the following. Accordingly, the macroscopic deformation gradient is introduced

via F = 1/V0
∫

B0
F dV0.
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(a) (b) (c)

Figure 1. Example microstructures for an inclusion volume fraction of f = 20% featur-
ing a periodic topology with (left) 10 inclusions, (center) 50 inclusions and (right) 100
inclusions.

2.1. Microstructure generation. In the following, the underlying RVE geometry is exemplarily based
on matrix-inclusion microstructures.

The key idea of a RVE with an a priori periodic topology is approximating inhomogeneous materials
by infinitely extended model materials with a periodic phase arrangement [Michel et al. 1999]. The
constraint of generating a fully periodic geometry results in additional effort.

The generation process is based on our random sequential adsorption algorithm [Schneider et al. 2016].
Inclusions are modeled as nonoverlapping spheroids randomly orientated and located inside a cubic RVE
as depicted in Figure 1. All investigated RVEs feature a target inclusion volume fraction of f = 20%
with equally shaped, nonoverlapping spheroids incorporating an aspect ratio of γ = 1

5 (ratio of minor to
major spheroid axis).2

The size of the RVE is triggered by the ratio of the characteristic length of the microstructural compo-
nents l (major axis of a spheroid) and the RVE edge length d . Three setups of 10, 50 and 100 inclusions
along with their respective ratios, listed in Table 1, are considered.3 4

target inclusion number n 10 50 100

major spheroid axis (l) / RVE length (d) l/d 0.49 0.28 0.23

Table 1. Ratios of characteristic lengths of microstructural components l (longest axis
of the spheroid) and RVE dimension d for target inclusions numbers of 10, 50 and 100.

2Periodic RVEs always exhibit this intended inclusion volume fraction since a placed inclusion intersecting the RVE bound-
ary has its periodic counterparts also inside the RVE. However, the actual volume fractions of inclusions intersecting with the
RVE boundary cannot be determined exactly in advance due to the random nature of the placement procedure. Therefore, the
inclusion volume fraction for nonperiodic cases are only approximate. The actual microstructure generation process for the
nonperiodic case is terminated, if the inclusion volume fraction deviates less than 1% from target volume fraction.

3 A RVE with a nonperiodic topology typically contains more inclusions than its periodic counterpart: randomly placed
inclusions intersecting the RVEs boundary do not have periodic continuations and, thus, more inclusions are required to achieve
the preassigned inclusion volume fraction.

4The expression l/d converges towards zero with an increasing inclusion number as the RVE length is set to d = 1 and
remains constant. In the limit of infinitely many inclusions, l→ 0 and, thus, l/d→ 0.
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2.2. FE discretizations. Two element types are employed for three-dimensional discretizations, namely
tetrahedral or hexahedral elements. Tetrahedral elements are more versatile in terms of meshing compli-
cated geometries, but typically exhibit increased computational costs compared to hexahedral elements
[Benzley et al. 1995; Carl et al. 2006].

An alternative to avoid the tedious task of precisely resolving the geometry via a sophisticated mesh
represents the utilization of fully structured grids, also known as voxel discretization. By assigning each
element to material phases by means of the location of element midpoints or even Gauss points, it is
possible to capture the geometric features to a certain extent. As a consequence, the mesh is easily
generated, see Figures 2 and 3.

(a)

(b)

periodic

tetra mesh

periodic

voxel mesh

nonperiodic

tetra mesh

Figure 2. Periodic model setups considered in this study: (a) periodic topology and (b)
tetrahedral and voxel discretizations.

(a)

(b)

nonperiodic

tetra mesh

nonperiodic

voxel mesh

Figure 3. Nonperiodic model setups considered in this study: (a) nonperiodic topology
and (b) tetrahedral and voxel discretizations.
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We consider quadratic tetrahedral meshes as well as voxel discretizations featuring linear hexahedral
elements. In this context, a tetrahedralization of the geometry generally provides higher geometric accu-
racy. However, due to the sharp curvature of the inclusions, the geometry cannot be perfectly captured.
Following [Schneider et al. 2016], constrained triangulations and tetrahedralizations are utilized to gen-
erate high quality meshes which possess periodicity.

2.3. Boundary conditions. By applying boundary conditions to the RVE, macroscopic loadings are
transferred to the microscale. Typically, the macroscopic deformation gradient F or the macroscopic
first Piola–Kirchhoff stress tensor P are imposed on the microfield.

Kinematic uniform boundary conditions are formulated for the displacements u on the entire boundary
∂B0 of the RVE via

u = F · X ∀X ∈ ∂B0. (2)

Here, X denotes the position vector of a material point in the reference configuration of the RVE. Since
the displacements are fully prescribed on the entire boundary, this boundary condition does not have any
requirements on the mesh topology, making it operationally very easy to implement. Disadvantageously,
the macroscopic response is predicted to be too stiff, resulting from strongly restricted degrees of freedom
[Pecullan et al. 1999; Miehe and Koch 2002; Kanit et al. 2003].

Periodic boundary conditions relax these kinematic constraints. The boundary of the RVE is split into
associated parts ∂B0 = ∂B+0 ∪ ∂B−0 with associated material points X+ and X−. Displacements show a
periodic behavior, whereas the tractions p are antiperiodic:

u(X+)− u(X −)= [F− 1] · [X+− X−] and

p(X+)+ p(X−)= 0 ∀X+, X− ∈ ∂B+0 , ∂B−0 .
(3)

Since the boundary is divided into opposing (periodic) counterparts, it is an inevitable requirement for
the underlying discretization to possess a periodic mesh topology.

Furthermore, static uniform boundary conditions:

t = P · N ∀N ∈ ∂B0 (4)

are considered. Here, t represents the stress vector in the current configuration and N is the normal
vector of the boundary in the reference configuration. Static uniform boundary conditions do not have
any requirements on the mesh. Difficulties concerning the uniqueness of a solution resulting from the
pure Neumann problem are overcome by employing semi-Dirichlet boundary conditions as suggested in
[Javili et al. 2017; Saeb et al. 2016]. Rigid body motions are restricted by fixing one corner node in all
three coordinate directions and applying semi-Dirichlet boundary conditions to the other corner nodes.5

2.3.1. Approximate periodic boundary conditions (APBC). If the underlying mesh topology is not peri-
odic, there is no straightforward way to apply periodic boundary conditions. To circumvent the restriction
on the mesh topology, some researchers weakly impose periodic boundary conditions on a nonperiodic
mesh [Larsson et al. 2011; Nguyen et al. 2012; Xia et al. 2003]. However, these methods demand
sophisticated programming and are hardly applicable to commercial software. A more practical approach

5Within the commercial FE software package Abaqus, static uniform boundary conditions are implemented via the DLOAD
option.
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x

y

Rx

Ry

ux

uy

corner node

Px0
master face nodes

Py0
master face nodes

Py1
slave face nodes

Px1
slave face nodes

TIE constraintsTIE constraintsTIE constraintsTIE constraints

PBC constraints in x-direction

PBC constraints in y-direction

Figure 4. Sketch of approximate periodic boundary conditions using surface-to-surface
constraints (e.g., TIE-constraints in Abaqus).

(suggested in [Yuan and Fish 2008; Kassem 2009]) is to apply approximate periodic boundary conditions
via surface-to-surface constraints, available in commercial FE software packages, e.g., in Abaqus.

A schematic illustration of this method for the two-dimensional case is depicted in Figure 4. First,
master faces Px0 : X = 0 (red nodes) and Py0 : Y = 0 (green nodes) are introduced. These faces are
copied and, for better illustration purposes, translated to their opposing counterparts, namely Px1 : X = lx

(orange nodes) and Py1 : Y = ly (blue nodes), with lx and ly being the dimensions of the RVE. The
required constraints for the periodic boundary conditions are then formulated between reference points
(Rx and Ry), copied faces and their source faces. Therefore, identical nodal distributions are maintained
a priori, see the blue and violet area in Figure 4. Furthermore, the actual RVE boundaries Px1 and Py1 are
coupled to the copied faces via surface-to-surface coupling, thus consequently equalizing their motion
respectively and tying them together.6 During this coupling, Px1 and Py1 act as slave surfaces implying
the condensation of degrees of freedom of associated nodes.

In Abaqus, an element-based master-slave surface algorithm is employed. To every point on the master
surface, the closest nodes on the slave surface are computed by a projection procedure. These quantities
are then coupled via constraints which are generated using the element shape functions.

Special care must be taken to set up constraints for the corners (black nodes) and edges (in three
dimensions) of copied surfaces to circumvent overconstraining. Edges and corner nodes are excluded
in the coupling process and are processed via separate multipoint constraints. In particular, three master
edges (L x0 y0 : x = y = 0, L y0z0 : y = z = 0, L x0z0 : x = z = 0) have to be introduced and copied for

6As a consequence, all involved surfaces show the same motion during an analysis. In Abaqus, this coupling is conveniently
established by utilizing the *TIE keyword.
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a) b) c)

Px0

Py0

Pz0

Figure 5. Model setup for a 3d nonperiodic mesh topology using TIE-constraints: virgin
mesh (left), TIE-constraints with copied Px0, Py0 and Pz0 faces (center) and conducted
analysis for tensile loading (right).

coupling to each slave edge (analogously to the mentioned surfaces).7 Since edges are one-dimensional,
a coupling solely relying on nodal distributions is utilized.8 The displacements are prescribed at the
reference nodes before analysis.

Following the described approach, we are able to apply approximate periodic boundary conditions to
nonperiodic three-dimensional meshes. Figure 5 exemplarily depicts a three-dimensional nonperiodic
model. An additional investigation of the approximate periodic boundary conditions can be found in the
Appendix.

3. Numerical examples

3.1. Set-up of benchmark study. All RVEs have a unit edge length d whereas the spheroid axis length l
varies to trigger the RVE size. For each RVE, 20 randomized realizations are considered. A statisti-
cal study is given to support the results and extenuate artificial findings due to the randomness of the
RVE generation process. To this end, a total of 3600 simulations are conducted for this study.9 Two
oppositional cases of matrix-inclusion materials are investigated:

(i) materials with soft inclusions and a stiff matrix, i.e., a low stiffness ratio α = EInclusion/EMatrix =

GInclusion/GMatrix such as the polymer blend Acrylonitrile-Butadien-Styrene (ABS) [Michler 1992;
Lombardo et al. 1994];

(ii) materials with a very high stiffness ratio such as glass-fiber or carbon-fiber reinforced composites.

Linear elastic material behavior is assumed with the corresponding material parameters documented in
Table 2. Typically, the employed FE models exhibit a minimum element number of nel = 105, allowing
for a sufficient resolution of geometric features. Furthermore, all meshes exhibit an average element
shape factor of η ≤ 0.5 to ensure reliable results. Additionally, plastic material behavior based on the
von Mises yield criterion is considered for the matrix material. A yield stress of σy = 60 MPa and a
linear, isotropic hardening coefficient of 35 MPa are utilized to represent the deformation behavior of the

7A master edge possesses three slave edges, and thus three copies are necessary.
8In Abaqus, edge-coupling is realized by node-based surfaces tying.
9Three RVE sizes, two periodic and three nonperiodic topologies and discretizations, three types of boundary conditions,

two loading cases, two stiffness ratios and 20 realizations.
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EMatrix GMatrix EInclusion GInclusion α

3800 1300 38 13 1
100

3800 1300 38000 13000 100

Table 2. Material properties for the RVE constituents.

matrix material (SAN), see [Seelig and Van der Giessen 2009]. As load cases, tension as well as simple
shear in the small strain context are considered. All results are normalized to the numerical reference
solution, obtained by the full periodic RVE (periodic topology, mesh and boundary conditions) with 100
inclusions.

3.2. Results and Discussion.

3.2.1. Influences of topology and mesh. The effective macroscopic responses are seemingly independent
of the chosen combinations of periodic and nonperiodic topologies and meshes. Figure 6 clearly demon-
strates that for all cases, the five combinations predict a very similar material behavior: the markers in
each group achieve the same normalized response, independent of the topology-mesh combination.10

This is true for the elastic as well as the plastic material behavior, tensile and shear loading, both
stiffness ratios, all three RVE ratios and the various applied boundary conditions. The effort of the RVE
construction strongly differs between the analyzed combinations. The simulation times when calculating
the effective properties are in similar time ranges. Consequently, the high effort of constructing a fully
periodic RVE, with periodic topology as well as a periodic mesh, does not pay off and simpler approaches
should be used.

Remark. The averaged inclusion volume fractions emanating from varying topologies and discretiza-
tions are within a very small range for all combinations and are independent of the aspect ratio. The voxel
mesh with a periodic topology naturally reaches the target volume fraction of 20%, whereas the others
converge to a slightly smaller volume fraction (with a maximum underestimation of 1%). Moreover,
voxel meshes feature linear hexahedral elements with an a priori perfect average element shape factor.

3.2.2. Influence of boundary conditions. With respect to elastic/plastic material behavior, topology/mesh
combination, RVE ratios and load cases, the obtained differences are negligible.

However, with respect to the stiffness ratio α, the choice of boundary conditions may influence the
results’ quality to a large extent. In case of a low stiffness ratio α = 0.01 (stiff matrix and soft inclusions),
kinematic uniform boundary conditions and periodic boundary conditions predict very similar effective
properties. In contrast, the static uniform boundary conditions reveal large discrepancies of 22.7% up to
55.3% for elastic material behavior and 18.0% up to 40.4% for von Mises plasticity.

If the composite under consideration possesses a high stiffness ratio, the situation drastically changes.
In this case, the static uniform boundary conditions’ performance enhances and the results are within
the range of the periodic boundary conditions. The kinematic uniform boundary conditions, however,
clearly overestimate the effective material properties to an unacceptable degree.

10Due to the meshing effect voxel meshes possess a slightly higher inclusion volume fraction, resulting in slight variations
from the tetra meshes.
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KUBC - kinematic uniform boundary conditions PBC - periodic boundary conditions
SUBC - static uniform boundary conditions APBC - approximate periodic boundary conditions
P - periodic topology NP - nonperiodic topology
PMESH - periodic tetrahedral mesh NPMESH - nonperiodic tetrahedral mesh
VOXEL - voxel mesh
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Figure 6. Normalized effective Young’s and shear moduli and macroscopic stress re-
sponses (tensile: σ̄11, shear: σ̄12) at a state of deformation featuring a pronounced plastic
deformation for all model variants, RVE sizes l/d and stiffness ratio α.

As discussed in Section 3.2.1, a fully periodic topology-mesh-RVE is not worth the construction
effort and thus nonperiodic counterparts are strongly recommended. In this case, truly periodic boundary
conditions must be replaced by approximate periodic boundary conditions, as described in Section 2.3.1.
Advantageously, they are easily set up and their performance is by no means inferior to the truly periodic
boundary conditions, see Figure 7. Disadvantageously, they necessitate slightly longer computational
times.

If the finite element model is set up for one particular material or for one set of materials with similar
stiffness ratios, either all high or all low, a short investigation of the different uniform boundary conditions
might be well worth the effort to circumvent the fully periodic setup. If the model, however, is set up for
materials with a strong deviation in the stiffness ratio, one needs to invest the effort of setting up periodic
or approximate periodic boundary conditions in order to obtain meaningful numerical results for all sim-
ulations. In particular, the presented approximate boundary conditions ease the model generation effort.
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KUBC - kinematic uniform boundary conditions PBC - periodic boundary conditions
SUBC - static uniform boundary conditions APBC - approximate periodic boundary conditions
P - periodic topology NP - nonperiodic topology
PMESH - periodic tetrahedral mesh NPMESH - nonperiodic tetrahedral mesh
VOXEL - voxel mesh
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Figure 7. Normalized responses — effective Young’s and shear moduli and macro-
scopic stress responses (tensile: σ̄11, shear: σ̄12) at a state of deformation (ε̄11 = ε̄12 =

0.05) featuring a pronounced plastic deformation for all model variants — for all model
variants in the light of different and stiffness ratios α.

4. Conclusion

The current work presents a systematic study of different homogenization approaches. The RVEs of
the matrix-inclusion composites were randomly generated and employed to compute effective material
properties.

Within our benchmark study, we examined similar results for the simplest possible model setup (a
nonperiodic RVE featuring a structured voxel discretization) and the most sophisticated approach of a
fully periodic model setup.

For different stiffness ratios, nonperiodic and periodic microstructural topologies, periodic and non-
periodic tetrahedral meshes as well as structured voxel discretizations, kinematic and static uniform
boundary conditions, approximate periodic boundary conditions and exact periodic boundary conditions
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stiffness ratio effective material parameters inclusion positions
center corner side

α = 1
100

E11 [MPa] 3834.62 3833.99 3835.21
G12 [MPa] 1310.01 1310.04 1310.12

α = 100 E11 [MPa] 3765.93 3764.36 3766.65
G12 [MPa] 1291.44 1291.39 1291.54

Table A1. Macroscopic material parameters for different single inclusion RVEs with
approximate periodic boundary conditions.

were investigated. Subjected to macroscopic uniaxial tensile and simple shear loading cases, the effect
of the individual model setups were analyzed. All simulations were conducted for linear elastic as well
as nonlinear elastic-plastic material behavior.

As reported in the literature, kinematic uniform boundary conditions are a rougher choice in homog-
enization, leading to overly stiff responses, while static uniform boundary conditions show a softer
response. Our studies show that kinematic uniform boundary conditions and static uniform boundary
conditions are very sensitive with respect to the stiffness ratio. On the one hand, kinematic uniform
boundary conditions show superior performance at low stiffness ratios, whereas static uniform boundary
conditions are more suitable for high stiffness ratios.

Approximate periodic boundary conditions are very convenient to circumvent a cumbersome genera-
tion of periodic meshes. Thus, generation of truly periodic RVEs is not worth the effort.

Appendix: Performance study of approximate periodic boundary conditions

The following analysis indicates the effectiveness and feasibility of the approximated periodic boundary
conditions introduced in Section 2.3.1. In compliance with Miehe [Miehe and Koch 2002], we inves-
tigate three different microstructures for a material with a periodic inclusion arrangement as shown in
Figure A1:

(a) inclusion at RVE center;

(b) one eighth of the inclusion at each RVE corner;

(c) inclusion very close to one side of the RVE.

Due to the assumed periodic arrangement of the inclusion, all RVEs represent the same microstructure.
The aspect ratio of the major spheroid axis (l) and the RVE length (d) is l/d = 0.28. The volume fraction
of the single inclusion is 0.4%. We use a free meshing technique resulting in a nonperiodic mesh topology
and apply approximate periodic boundary conditions. As in Section 3.1, we consider two stiffness ratios
with the material properties given in Table 2. Tensile and shear loadings are applied. Table A1 lists
the resulting macroscopic material parameters. The variations of the effective material parameters are
negligible, i.e., the three different geometric setups yield almost identical results. Figure A1 exemplarily
depicts contour plots of the von Mises stress distribution for tensile and shear loadings for a stiffness ratio
of α = 100. Regarding the stress distribution, similar patterns for the different variants are observable
which indicates the conformity of the simulations. However, some artificial stress concentrations are
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(a) (b) (c)

shear loading

tensile loading

geometric setup

�
Mises [MPa]

�
Mises [MPa]

Figure A1. Geometric setup and von Mises stress distributions σ vMises for tensile and
shear loadings for a stiffness ratio of α = 100: left, center inclusion; center, corner
inclusion and, right, side inclusion.

present near the RVE edges due to the nonconformity of the mesh and the consequences of the approxi-
mations introduced by the approximate periodic boundary conditions. Nevertheless, the influences on the
macroscopic properties are negligible. Thus, approximated periodic boundary conditions are feasible.
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HOMOGENIZATION OF A VIERENDEEL GIRDER WITH ELASTIC JOINTS
INTO AN EQUIVALENT POLAR BEAM

ANTONIO GESUALDO, ANTONINO IANNUZZO, FRANCESCO PENTA AND GIOVANNI PIO PUCILLO

In this paper, a homogenization procedure of a Vierendeel girder with elastic joints is shown. The
method is based on the Stephen transfer matrix analysis and employs (as a substitute continuum) a polar
Timoshenko beam. The polar character of the equivalent beam arises quite naturally from the analysis
of the pure bending eigenvector components of the girder force transfer matrix. Through the girder unit
cell, two bending moments are transmitted: one is generated by the couple of axial forces acting on
each nodal section of the beam, and the other is produced by the moments applied at the nodes of every
section by the adjacent cells and is modeled as the resultant of the micropolar moments. Transfer force
eigenvector analysis reveals that the unit cell bends while maintaining undeformed webs, a property
that allows the evaluation of both the bending stiffnesses and the equivalent material micropolar scale
parameter by means of straightforward equations.

The accuracy of the proposed method is verified by comparing the predictions of the homogenized
model with literature data and with the results of the analysis of a series of girders carried out by the
finite element method.

1. Introduction

Recently, in order to achieve simultaneously safety, sustainability and environmental compatibility, an
increasing amount of attention has been paid to structural elements that are able to realize the optimal
trade-off between strength and stiffness on one side, and lightness, economy and manufacturing times
on the other.

A suitable example of a structural solution having these properties is the Vierendeel beam, which for
this reason is often employed both in civil and industrial builds and in naval and aerospace constructions
[Salmon et al. 2008; Tej and Tejová 2014; Nakayama 1985; Noor 1983; Cao et al. 2007]. The Vierendeel
beam finds applications in railway structures as well. In fact, to design against the thermal track buckling
phenomenon, rails, sleepers and fastenings are frequently modeled as a Vierendeel girder constrained to
the ground by nonlinear springs, representative of the ballast actions [Kerr and Zarembski 1981; Pucillo
2016; De Iorio et al. 2014a; 2014b; 2014c].

The response of this kind of lattice beam to the service loads is usually analyzed in a CAE environment.
The beam is reduced to a discrete system of finite elements and one of the solution methods for structural
framework problems is then applied to it. If a great number of bays or unit cells composes the beam, it
may be convenient to approximate its mechanical behavior by a continuum 1D model, whose properties
are derived from those of the unit cell by a suitable homogenization method. In many cases, this kind

Keywords: Vierendeel girder, Timoshenko micropolar beam, transfer matrix analysis, homogenization, compliant joints,
sensitivity analysis.
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of approach offers the advantage of applying analytical solutions in closed form for the problem at hand.
Moreover, the continuous approximation may be employed as a means of transition to a coarser discrete
system with a smaller and more tractable set of kinematic and static unknowns.

However, the classical continuum theory does not provide an acceptable approximation and a micro-
polar theory has to be used in order to correctly analyze the in plane lattice bending. Several micropolar
equivalent models have been reported in literature for the analysis of planar lattices [Noor 1988; Bazant
and Christensen 1972; Kumar and McDowell 2004; Bakhvalov and Panasenko 1989; Hård af Segerstad
et al. 2009; Wang and Stronge 1999; Warren and Byskov 2002; Onck 2002; Martinsson and Babuška
2007; Liu and Su 2009; Dos Reis and Ganghoffer 2012; Trovalusci et al. 2015; Bacigalupo and Gam-
barotta 2014; Hasanyan and Waas 2016]. However, studies on the micropolar models for analyzing
beam-like lattices have not yet achieved the same advances. As far as the authors are aware, only
two papers have specifically addressed this topic. In [Noor and Nemeth 1980], a rational approach
was presented where stiffness parameters of the effective continuum model were obtained using energy
equivalence concepts. Nodal displacements of the unit cell were obtained in an approximated way by a
Taylor expansion of the kinematical model of the substitute continuum. Then, the equivalent stiffnesses
were derived by equating the potential and kinetic energies of a unit cell of the lattice beam to those of
the continuum. This approach leads to two questionable stiffness couplings: between the symmetric and
antisymmetric components of the shear stresses and between the bending and couple stress moments.
These make the solution of the equilibrium equations of the equivalent beam awkward for the simpler
loading and constraining conditions. Furthermore, a key limitation of this research is that it does not take
into account the girder joints elasticity.

More recently, Romanoff and Reddy [2014] used the modified couple stress Timoshenko beam theory
[Ma et al. 2008; Reddy 2011] to analyze the transversal bending of web-core sandwich panels. The
equivalent polar bending stiffness was determined by invoking the spring analogy criterion. According
to this rule, along the substitute beam, the ratio of the couple stress moment to the total bending moment
is given by the ratio of the chords’ bending moments caused by the thick face effect to the moment of
the couple of axial forces acting in the panels faces. As it will be shown, this assumption unfortunately
leads to overestimates of the polar bending stiffness.

This article introduces an equivalent Timoshenko micropolar beam for the static analysis of Vierendeel
girders with compliant joints. The adopted homogenization method is based on the force transfer matrix
eigenanalysis presented in [Stephen and Wang 2000], where the homogenization of a truss made of hinged
rods is also carried out as a numerical example. When this method is applied to the analysis of the girder,
no approximations for the kinematical quantities nor subjective phenomenological assumptions on the
inner moments are needed. The polar nature of the substitute beam is a direct consequence of the pure
bending eigenvector structure of the force transfer matrix of the unit cell. Through the unit cell, two
bending moments are transferred. The first one is generated by the axial forces acting on the nodal cross
sections and corresponds to the Navier bending moment in the equivalent beam. The other one is due to
the moments applied on the joints of the unit cell and is modeled by the polar moments. Furthermore,
the ratio between the amplitudes of the two moments is such that the total moment is always transferred
without deformations of the girder webs. On the basis of this property, equivalent bending stiffness
and couple stress stiffness are expressed by means of a couple of surprisingly simple equations. These
stiffnesses are also independent of the web properties, the cell length and the stiffness of web-chord
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Figure 1. Kinematics of the Timoshenko beam.

joints, a result not yet reported in studies till now. Consequently, the polar material length scale ` is
independent from the cell sizes and is a function only of the chords cross section geometry and material.

Finally, results from a validation study of the proposed model are also presented. The study has been
carried out by means of both literature experimental data and the sensitivity analysis performed by finite
element models.

2. The equivalent continuum

As an equivalent continuum, the modified polar Timoshenko beam is adopted [Ma et al. 2008; Reddy
2011]. The displacements (U, V ) of a point P(x, y) of the beam (see Figure 1) are given by

U = u(x)− y ·ϕ(x), V = v(x),

where u(x) and v(x) denote respectively the longitudinal and transversal displacements of the beam axis
and ϕ(x) is the rotation of the cross section. The only nonzero strains at P are the normal strain in the
x direction,

εx =
du
dx
− y dϕ

dx
,

the shear strain associated with the directions x and y,

γxy =
dv
dx
−ϕ(x),

and the curvature,

χxy =
1
2

dω
dx
=

1
4

(dϕ
dx
+

d2v

dx2

)
,

where ω = 1
2(dv/dx +ϕ) is the rotation of an elementary neighborhood of P in the x-y plane.

Denoting by δ( · ) the kinematically admissible variations of the strain components and by σx , τxy and
mxy respectively the normal, tangential and the couple stress acting on the beam cross section, the virtual
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strain energy or internal work can be expressed as

δU =
∫

l

∫
A
(σxδεx + τxyδγxy + 2mxyδχxy) dA dx

=

∫
l

[
Nx

dδu
dx
+Mx

dδϕ
dx
+ Qx

(
δϕ−

dδv
dx

)
+

1
2

Pxy

(dδϕ
dx
+

d2δv

d2x

)]
dx,

where l is the beam length and A is the area of its cross section,

Nx =

∫
A
σx dA, Qx =−

∫
A
τxy dA, (1)

are the beam axial and shear forces, while

Mx =−

∫
A
σx y dA and Pxy =

∫
A

mxy dA (2)

are the Navier and polar bending moments, respectively. It is worth nothing that the dual shear deforma-
tion of Qx is

γ =−γxy = ϕ−
dv
dx
. (3)

Under the assumption of homogeneous and isotropic linear elastic material, the stress-strain relation-
ships are

σx = Eεx , τxy = Gγxy, mxy = 2G`2χxy,

with E being the Young modulus, G the tangential elasticity modulus and ` the material length scale
parameter. Substituting the previous constitutive relations into the expressions of the stress resultants (1)
and (2) gives

Nx = Axxεx , Qx = DQγ,

Mx = Dxx
dϕ
dX
, Pxy =

1
2 Sxyχxy,

(4)

where Axx and DQ are respectively the axial and shear beam stiffnesses, Dxx = E I is the bending
stiffness, with I the second order central moment of the beam cross section, and Sxy = 4G`2 A the
couple stress bending stiffness.

The beam equilibrium equations can be derived by equating the virtual internal work δU to the virtual
work of the external loads, integrating by parts and taking into account the beam boundary conditions. For
the simpler loading and constraint conditions, approximate solutions for these equations can be obtained
by the Fourier series method (see [Reddy 2011] for more details).

3. Girder transfer matrix analysis and homogenization

In this section, the equivalent beam properties are evaluated by employing the transfer matrix analysis
of a unit cell. So far, the transfer matrix methods have been applied mostly for the dynamic analysis of
repetitive or periodic structures [Mead 1970; Meirovitch and Engels 1977; Yong and Lin 1989; Zhong
and Williams 1995; Langley 1996]. Only recently have they also been used for the elasto-static analysis
of prismatic, curved and pretwisted repetitive beam-like lattices made of pin-jointed bars [Stephen and
Zhang 2004; 2006; Stephen and Ghosh 2005].
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Figure 2. Vierendeel girder (a), unit cell (b) and exploded view of the elements com-
posing the unit cell (c).

The main advantage of the method is that it allows evaluating both the Saint-Venant decay rates and
the load transmission modes by carrying out an eigenanalysis of the transmission matrix G of the unit
cell. Although it is conceptually simple, its practical implementation is problematic, since the G matrix is
ill-conditioned and defective. Consequently, the Jordan block structure of G is very difficult to determine
numerically. To overcome this problem, in this paper the force transfer matrix approach of Stephen and
Wang [2000] is adopted. This method suppresses the redundant decay vectors and makes the assessment
of the force transmission modes of the unit cell simpler.

In this study, the Vierendeel girder is modeled by assembling one-dimensional elements of Euler–
Bernoulli type as represented in Figure 2. It consists of two straight parallel chords connected to the
webs by means of torsional springs of stiffness kϑ . By these springs the elastic deformability of the
web-chords’ connections is taken into account. In Figure 2a the unit cell is depicted. Top and bottom
chords have the same section, whose area and second order central moment are Ac and Ic, respectively.
To respect the girder geometrical periodicity, cross sectional area and second order moment of the cell
vertical beams are equal to the half part of the area Aw and second order moment Iw of the girder webs,
while the stiffness of the unit cell torsional springs is 1

2 kϑ .
In the following, we use the subscript j to identify any static or kinematic quantity concerning the

nodal section j of the girder. Furthermore, to distinguish between the joints of a same section, we use
superscripts t and b depending on whether the top or the bottom chords are involved. Coherently with
this notation, the top and bottom joints of the section j are labeled j (t) and j (b).

For the sake of clarity, the nodal sections of the girder are numbered in such a way that sections i − 1
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Figure 3. Unit cell nodes numbering with girder inner forces and nodal displacements.

and i bound the i-th cell respectively from the left and the right side, as shown in Figure 3. Therefore,
the two extreme sections of a lattice beam of N cells are labeled correspondingly by 0 and N.

We denote with
st

j = [u
t
j , v

t
j , ϕ

t
j ]

T and sb
j = [u

b
j , v

b
j , ϕ

b
j ]

T

the displacement vectors of the joints j t and jb, where u(·)j and v(·)j are the displacement components
and ϕ(·)j the rotation of the joint j (·). Therefore, the displacement vector of the nodal section j is s j =

[stT
j , sbT

j ]
T.

Similarly, the nodal forces applied on the joints j t and jb of the cell j are

pt
j =

[
F t

j x , F t
j y,mt

j
]T and pb

j =
[
Fb

j x , Fb
jy,mb

j
]T
,

where F (·)j x and F (·)j y are respectively the axial and transversal components of the force and m(·)
j the couple

applied on the joint j (·). Thus, the vector of the nodal forces acting on the section at the left side of the
j-cell is

p j = [ ptT
j , pbT

j ]
T.

In order to construct the displacement and force transfer matrix, we consider the couple of adjacent
cells i and i + 1 sharing the nodal cross section i . By equilibrium, in absence of external loads on the
section, the nodal forces on the left sides of the cell i + 1 are equal to − pi .

The stiffness equations of the cells i and i + 1 in partitioned form are thus given by[
− pi−1

pi

]
=

[
KL L KL R

KRL KR R

]
·

[
s j−1

s j

]
, (5)[

− pi

pi+1

]
=

[
KL L KL R

KRL KR R

]
·

[
s j

s j+1

]
, (6)

in which subscripts L and R adopted for the subpartitions of the stiffness matrix refer to the left and
right side of the cell. For the problem at hand, the cell stiffness matrix has been obtained following the
standard method adopted in the finite element analyses, that is by assembling the stiffness matrix of the
chords and those of the elastic systems composed by a cell vertical beam and the couple of torsional
springs constraining it to the chords (see Figure 2c).
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Adding the second equation in (5) to the first equation within (6) eliminates the vector pi , since we
obtain

0= KRL si−1+ (KR R + KL L)si + KL R si+1. (7)

From the previous equation written for the section (N − 1) of the girder, taking into account the
boundary condition sN = 0, the following relationship between the displacement vector sN−1 and sN−2

is deduced:
sN−1 =−S−1

1 KRL sN−2,

where S1 = KR R + KL L .
Substituting this result within relation (7) specialized to the case of section (N − 2), we have

sN−2 =−S−1
2 KRL sN−3,

where S2 = KR R + KL L − KL R S−1
1 KRL .

By iterating the previous algebraic operations until considering the section j − 1, the displacement
vector s j of the inner section j can be expressed as function of the displacement vector s j−1 of the
adjacent nodal section by means of the equation

s j = S s j−1,

where S is the j-cell displacement transfer matrix given by

S=−S−1
N− j KRL , (8)

with SN− j = KR R + KL L − KL R S−1
(N− j+1) KRL .

By expanding the stiffness matrix equation of the j-th cell and substituting in it the previous results,
one obtains

p j−1 =−KL L s j−1− KL R s j =−(KL L + KL R S)s j−1, (9a)

p j = KRL s j−1+ KR R s j = (KRL + KR R S)s j−1. (9b)

Eliminating the displacement vector s j−1 in (9) gives

p j = M p j−1,

where M =−(KRL + KR R S)(KL L + KL R S)−1 is the force transfer matrix of the cell j .
Notice that the matrix M depends on the recurrence index j . It must have three unity eigenvalues

corresponding to the force transmission modes and three nonunitary eigenvalues corresponding instead
to the decay rates of self-equilibrated loadings [Stephen and Wang 2000]. However, when the j-index is
not sufficiently high, numerical determination of the unitary eigenvector may be difficult or impossible.
For the present analysis, a value of j equal to 100 has allowed the detection of the unit eigenvalues and
the related eigenvectors with a precision of four decimal digits, at least.

Eigenspaces of M associated to unit eigenvalues have dimensions 1 and 2. The one-dimensional
eigenspace is related to the transmission of the beam axial force. Pure bending eigenvectors Eb of the
matrix M belong instead to the eigenspace of dimension 2, since they may be coupled with the shear
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Figure 4. Unit cell under pure bending loading.

forces vector S f . The latter is given by the chain rule defining the principal vector associated to the
bending eigenvector Eb:

M · Eb = Eb, M · S f = Eb+ S f . (10)

However, for the considered problem S f can be obtained directly on the basis of very simple equilib-
rium considerations, without solving the algebraic problem defined by (10). In fact, it is worth noting
that (9b) is the equilibrium relationship between the bending moments and the shear forces acting on a
single cell.

The homogenized beam stiffnesses can be determined by averaging over the unit cell length s the cell
responses under the load conditions defined by the unitary eigen- and principal vectors.

The eigenvector of the axial force Ea is

Ea = [n, 0, 0, n, 0, 0]T.

Due to the symmetry of the cell, the two axial forces n are transmitted without bending; consequently
only the chords deform with the axial elongations ns/E Ac. Thus, the equivalent axial stiffness of the
homogenized beam is

Axx = 2E Ac.

The pure bending eigenvector Eb has components

Eb = [−nb, 0,mb,+nb, 0,mb]
T,

where m and ±nb are respectively the moments and the axial forces acting on the joints of the right side
of the unit cell. The m moments correspond to the polar bending moment while the axial forces ±nb

generate the bending couple associated to the Navier moment in the Timoshenko polar beam.
To evaluate the equivalent bending stiffnesses, the cell displacements and rotations were calculated

solving the elastic scheme of Figure 4. Denoting the upper and lower chords elongations respectively as
1ub = ub

j − ub
j−1 and 1ut = ut

j − ut
j−1, the mean curvature of the cell can be written in the form

1
R
=
1ub−1ut

hs
.
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Therefore, the equivalent bending stiffness Dxx is given by

Dxx = nbh · R = nbh2s
1ub−1ut

. (11)

Polar bending stiffness can be evaluated by observing that when the shear force is zero, from (3) and (4)
it follows that

dϕ
dX
=

d2v

dX2 .

Hence, the polar and Navier moment of the homogenized beam make work by the same generalized
strain, namely the beam curvature dϕ/dX . For this reason, we evaluate the polar bending stiffness as

Sxy = 2mb R = 2mbsh
1ub−1ut

. (12)

The principal vector of the shear forces is

S f =
[
0, 1

2 T, 0, 0, 1
2 T, 0

]T
,

where the shear resultant force T is obtained by the in plane rotation equilibrium of the unit cell

−T s+ nbh+ 2mb = 0.

The equivalent shear stiffness is determined by analyzing the scheme in Figure 5. In it, the transversal
load components of the principal vector S f act on the left section of the unit cell, while on the right
section, the axial forces vectors ± nb and the moments mb, given by the pure bending eigenvector Eb,
are applied. Recalling the expression of the shear angle γ and denoting by

ϕ̂ = 1
4(ϕ

(t)
i−1+ϕ

(b)
i−1+ϕ

(t)
i +ϕ

(b)
i )

the average rotation angle of the cell and by

1v

s
=
−v

(t)
i−1− v

(b)
i−1

2s

the mean slope of the cell center-line, the shear stiffness can be expressed as

DQ =
T

1v/s− ϕ̂
. (13)

Equations (11), (12) and (13) completely define the elastic behavior of the equivalent Timoshenko
beam. The range of validity of these homogenized equations is analyzed in the next section on the basis
of both literature experimental data and the numerical results of a sensitivity analysis.

4. Validation study

To verify the accuracy of the proposed micropolar beam, we use the experimental data from [Jutila and
Romanoff 2007; Romanoff et al. 2007; 2009] as reported in [Romanoff and Reddy 2014]. They were
obtained from specimens extracted from web-core sandwich panels. The specimens had unit cell length
s = 120 mm, web height hw = 40 mm, nominal web thickness tw = 4 mm and were made of a steel
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Figure 5. Unit cell under shear and bending loading.

having Young modulus E = 200–220 GPa and Poisson ratio ν = 0.3. Top and bottom panels face plates
had the same thickness t = 2.5–3 mm. A three point bending test was carried out on a beam of only 4
unit cells. Four point bending tests were executed on beams made of 9 and 15 unit cells. In these tests,
the loads were applied at 1

3 and at 2
3 of the beam span L .

Only the deflection of the half-span section was measured for the 4 cell beam tested under the three
points loading condition. For the 9 cell beam tested under the four points loading, the deflection was
measured at the abscissas X = 360 mm. For the 15 cell beam having span L = 1800 mm, the deflections
were instead measured at the abscissas X = 200 mm, X = 400 mm, X = 600 mm and X = 1200 mm.
The measured deflections are listed in Table 1, together with the stiffnesses and the deflections obtained
under the assumption of plane strain by both the theory of Reddy–Romanoff and the model we propose.
As it can be seen, the deflections predicted by the latter are in good agreement with the experimental data.
It is worth noting that the bending and shear stiffnesses from the Reddy–Romanoff theory are very close
to those of our model while the Reddy–Romanoff polar stiffness results are at least four times greater
than the results obtained by the present method.

To study the accuracy of the predictions from the equivalent beam defined in Section 3 in greater detail,
it is essential to consider a wider data set than [Romanoff and Reddy 2014], including information on the
effects of all the geometrical parameters influencing the girder response. To this end, a series of girder
finite element models under the three points bending condition has been developed by assembling beam
elements of Euler–Bernoulli type.

Given the properties of the chords and web cross-sections, as a first approximation the height h of
the girder determines the relative importance of the two bending moments acting on its cross section.
For this reason, in the first set of finite element analyses, the effects of different values of h for several
values of the cell aspect ratio α = s/h and girder aspect ratio β = L/h have been considered, under the
assumption that the joints between chords and webs are rigid and that both chords and webs have the
same cross section, specifically HEA100.

The results from these analysis are reported in Figure 5 where the joints vertical displacements vi of
the girder finite element models having h = 300, 600, 1200 mm, α = 0.5, 1, 2 and β = 6, 12, 24, 48 are
compared with the elastic curves v(x) of the corresponding homogenized beams. Previous values of h,
α and β as well as the cross section properties were chosen in order to obtain a girder geometry similar
to those encountered in the practice of structural design. The stiffnesses of the homogenized beams of
Figure 5 are listed in Table 2 together with the corresponding values of the following nondimensional
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Unit 4 unit cells specimen 9 unit cells specimen 15 unit cell specimen
[Jutila and Romanoff 2007] [Romanoff et al. 2009] [Romanoff et al. 2007]

F [N/m] 2000 4000 1000
E [GPa] 212 221 221
ν − − 0.3
B [mm] 50 50 1000
s [mm] 120 120 120
α − 2.79 2.82 2.8
β − 4 9 15
Ac [mm2] 152 126 2860
Ic [mm3] 117 66.7 1950
Iw [mm3] 273 261 5210
kJ [kN] 107 113 107

Dxx [kN m] 657 / 656 554 / 553 613 / 612
DQ [kN/m] 388 / 500 304 / 368 355 / 447
Sxy [kN m] 4.33 / 1.09 2.57 / 0.648 3.61 / 0.908

x/L = 1
2

1
3

1
9

2
9

1
3

1
2

0.487 4.69 0.675 1.33 1.9 2.02
v(x/L) [mm]

{
0.439 4.07 0.561 1.109 1.606 1.676
0.446 4.14 0.750 1.37 1.88 2.02

Table 1. Top: geometrical details of 4, 9 and 15 unit cell specimens. Middle: values
of Dxx , DQ and Sxy obtained from the Reddy–Romanoff theory (before the slash) and
with the present model (bold, after the slash). Bottom: Values of v for various x/L ,
obtained from the Reddy–Romanoff theory (first of three rows of results), the present
theory (middle row, bold), and experiment (bottom row, slanted). Experimental and
Reddy–Romanoff data are from [Romanoff and Reddy 2014].

measure of the homogenization error:

e =
{

1
n̄
·

∑
i∈N

[
v(xi )− vi

vi

]2}1/2

,

where N is the set of n̄ nodes belonging to the inner model cross section of the girder and xi is the
abscissas of these nodes.

For all the girder aspect ratio considered, the homogenization error quickly decreases as the cell aspect
ratio decreases or equivalently as the number of cell per beam unit length increases. This behavior is
expected since the adopted method of homogenization is asymptotically exact; that is, e→ 0 when
α/β = s/L→ 0. The highest values of the homogenization error in Table 2 are attained when the girder
aspect ratio β is equal to 6, namely when the girder is very stout and its behavior can be approximated
only roughly by any beam model. Instead, the homogenization errors in Table 2 are much smaller for
the more slender girders.



496 ANTONIO GESUALDO, ANTONINO IANNUZZO, FRANCESCO PENTA AND GIOVANNI PIO PUCILLO

α [–] DQ [Nmm−1] Sxy [Nmm] Dxx [Nmm] eave [–]

h = 300 mm 0.50 1.579 ·108 1.481 ·1012 2.026 ·1013 8.233 ·10−3

β = 24 1.00 6.580 ·107 ” ” 5.312 ·10−3

2.00 2.468 ·107 ” ” 1.107 ·10−2

h = 600 mm 0.50 3.948 ·107 1.481 ·1012 8.105 ·1013 1.760 ·10−2

β = 12 1.00 1.645 ·107 ” ” 4.188 ·10−2

2.00 6.169 ·106 ” ” 6.877 ·10−2

h = 1200 mm 0.50 9.871 ·106 1.481 ·1012 3.242 ·1014 9.880 ·10−2

β = 6 1.00 4.113 ·106 ” ” 1.532 ·10−1

2.00 1.542 ·106 ” ” 3.350 ·10−1

Table 2. Equivalent stiffnesses and homogenization errors for Vierendeel girders with
various heights H (span L = 7600 mm, chords and web sections: HEA100).

webs [–] DQ [Nmm−1] Sxy [Nmm] Dxx [Nmm] eave [–]

h = 300 mm HEA100 3.131 ·107 2.570 ·1012 2.417 ·1013 8.465 ·10−3

α = 0.5 HEA120 4.284 ·107 ” ” 1.739 ·10−3

β = 24 HEA140 5.399 ·107 ” ” 1.553 ·10−3

HEA160 6.289 ·107 ” ” 2.283 ·10−3

h = 600 mm HEA100 1.955 ·107 2.570 ·1012 9.670 ·1013 4.456 ·10−2

α = 1.0 HEA120 2.906 ·107 ” ” 3.145 ·10−2

β = 12 HEA140 3.997 ·107 ” ” 1.810 ·10−2

HEA160 5.719 ·107 ” ” 2.623 ·10−2

Table 3. Equivalent stiffnesses and homogenization errors for Vierendeel girders with
webs of various cross section (span L = 7600 mm, chords’ sections: HEA120).

In Figure 6 and in Table 3 the effects of the variations of the web bending stiffness on the accuracy of
the proposed beam model are analyzed for two values of the girder aspect ratio β. It is evident that the
homogenization error follows the same trend for both values of β, attaining the greater values when the
webs have the lower shear stiffness. However, in both cases, the errors are negligible and are acceptable
for engineering purposes, being less than or equal to 5%.

In Figure 6 the elastic lines of the homogenized beam models by Noor–Nemeth [1980] and Romanoff–
Reddy [2014] are also reported for comparison purposes. As it can be seen, the Reddy–Romanoff theory
in all the examined cases underestimates the finite element model’s displacements while the predictions
of the proposed approach are affected by an error of the same order of magnitude as the error of the
Noor–Nemeth theory.

Also when the joints between webs and chords are elastically compliant, the predictions from our beam
model are in excellent agreement with the finite element method results for a wide range of values of the
joint compliance. This is evident from results reported in Figure 7, where the vertical displacements of
a series of girder finite element models having various stiffnesses of the torsional springs are compared
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Figure 6. Vertical deflections of Vierendeel girders finite element models and elastic
lines of the equivalent Timoshenko beams: effects of girder height H (span L = 7600
mm, chords and web sections HEA100).

with the elastic lines of the corresponding homogenized polar beam. The spring stiffness values of these
girders have been chosen in order to realize, starting from the ideal case of perfectly rigid chord-webs
joints, percent increments χ equal to 1, 5, 25, 50, 100, 400 and 2000 for the bending compliance of the
elastic systems of Figure 2c. As schematically shown in Figure 7, the systems are composed by a web
in series with the corresponding springs constraining it to the chords. In Table 4, the stiffnesses and the
homogenization errors of the equivalent beam of Figure 7 are listed.

The influence that both web shear and joint stiffnesses have on the homogenization error can be
explained as follows: recall that in a Vierendeel girder the bending constraint action that the chords exert
on each other depends on these stiffnesses, being the Vierendeel effect directly proportional to them. In
other words, for lower values of the web shear and joint stiffnesses, the jumps in the chords’ axial forces
at the girder joints become smaller; as a result, when either E Iw or kϑ decrease, the girder behavior tends
toward an Euler–Bernoulli beam, having infinite shear stiffness and bending stiffness equal to the one
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Figure 7. Vertical deflections of Vierendeel girders finite element models and elastic
lines of the equivalent Timoshenko beams: effects of the girder webs cross sections.

χ% [–] kϑ [Nmm] DQ [Nmm−1] Sxy [Nmm] Dxx [Nmm] eave [–]

h = 300 mm 1.0 7.403 ·1011 2.530 ·107 1.481 ·1012 2.026 ·1013 4.681 ·10−3

α = 2.0 5.0 1.481 ·1011 2.437 ·107 ” ” 5.925 ·10−3

β = 24 25.0 2.961 ·1010 2.058 ·107 ” ” 1.067 ·10−2

chords= HEA100 50.0 1.481 ·1010 1.724 ·107 ” ” 1.360 ·10−2

webs= HEA100 100.0 7.403 ·109 1.300 ·107 ” ” 1.558 ·10−2

400.0 1.851 ·109 5.258 ·106 ” ” 5.639 ·10−2

2000.0 3.702 ·108 1.259 ·106 ” ” 1.881 ·10−1

h = 1200 mm 1.0 8.867 ·1011 4.655 ·107 7.094 ·1012 5.918 ·1014 2.266 ·10−2

α = 0.5 5.0 1.773 ·1011 4.379 ·107 ” ” 2.317 ·10−2

β = 12 25.0 3.547 ·1010 3.378 ·107 ” ” 3.196 ·10−2

chords= HEA160 50.0 1.773 ·1010 2.627 ·107 ” ” 4.158 ·10−2

webs= HEA160 100.0 8.867 ·109 1.819 ·107 ” ” 5.035 ·10−2

400.0 2.217 ·109 6.392 ·106 ” ” 9.207 ·10−2

2000.0 4.433 ·108 1.433 ·106 ” ” 2.144 ·10−1

Table 4. Equivalent stiffnesses and homogenization errors for Vierendeel girders with
elastic joints: effects of the joints stiffness (span L = 7600 mm).
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of the two chords acting in parallel. However, when E Iw or kϑ become very small, the shear stiffness
of the unit cell tends to the minimum value 3E Ic/s3 and consequently the Timoshenko beam model
over-estimates the real displacements.

5. Analysis of results

Results listed in Tables 2, 3 and 4 clearly show that the bending and polar stiffnesses evaluated by
the present method appear to be independent from the web bending stiffness and the stiffness kϑ of the
torsional springs. For fixed values of the girder aspect ratio β, Dxx and Sxy are insensitive to any changes
of the cell aspect ratio α. Moreover, given the girder span L , these stiffnesses do not change for changes
in the ratio α/β = s/L . This is in marked contrast to results of previous theories for homogenizing
toward a polar beam, whose equivalent stiffnesses have the expressions reported in Table 5.

Indeed, the aforementioned property of Dxx and Sxy are a consequence of the deformation mode by
which the cell transfers the bending moment to the neighboring cells. Actually, the cell bends while
maintaining its webs in the straight configuration, a fact that allows the determination of the equivalent
bending stiffnesses without executing the eigenanalysis of the transfer matrix M.

For this aim, we first observe that the unit cell is symmetric with respect to the vertical and horizontal
centroidal axes; see Figure 2b. Under the loading condition defined by the pure bending eigenvector
(see Figure 4), the bending moments at the ends of the chords and webs have the same amplitudes,
respectively mc and mw. Hence, the corresponding cell equilibrium configuration (Figure 9) is defined
by equilibrium equations of the joints having the form

mb = mc−mw (14)

and by the inner compatibility conditions

ϕ
q
j (w) = ϕ

q
j (c), with q = t, b, (15)

where ϕq
j (w) and ϕq

j (c) are respectively the rotations of the web and chord end sections at the joint jq.
These rotations have expressions given by

ϕ
(q)
j (c) =±

mcs
2E Ic

, ϕ
(q)
j (w) =±

(
ψ −

mws
6E Iw

)
, (16)

where the angles

ψ =±
1ub−1ut

2h
=±

nbs
E Ach

(17)

Dxx Sxy

Reddy–Romanoff theory
[Romanoff and Reddy 2014]

1
2 E Ach2

+ 2E Ic,
8
(
Ic Dxx

)( 1
2 E Ach2+ δE Iw

) , δ =

(
Iw
2Ic
+ 12

E Iw
kϑs
+

h
s

)−1

Noor–Nemeth theory
[Noor and Nemeth 1980]

1
2 E Ach2

+ 3 E Iw
s
h

2E Ic+ 3E Iw
s
h

Table 5. Equivalent bending and polar stiffnesses of a Vierendeel girder.
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Figure 8. Vertical deflections of Vierendeel girders fe models and elastic lines of the
equivalent Timoshenko beams: effects of joint elasticity.

are the web’s rigid rotations that would occur as a consequence of the chords elongations if the webs
were simply hinged to the chords. According to the sign convention of Figure 9, the choice of +/− in
the previous equations depends on whether joints on the right or on the left side of the cell are considered.
Through (14)–(16), it can be recognized that the cell equilibrium can be attained without deformations
of the webs, that is with mw = 0, only if

ϕ
q
j (w) = ϕ

q
j (c) = ψ and mb = mc =

2nb Ic
Ach

. (18)

When previous conditions are met, the curvature of the chords is given by

1
R
=

2ψ
s
=

2 nb
E Ac h

.

Substituting this result into (11) and (12) and taking into account (18), we obtain the following ex-
pressions of the bending and polar stiffnesses of the equivalent beam:

Dxx =
nbhs
2ψ
=

1
2 E Ach2,

Sxy =
2mbs
2ψ
= 2E Ic.

(19)

The stiffnesses evaluated by previous formulas perfectly match those listed in Tables 1–4, which were
obtained by the numerical procedure in Section 4.
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Figure 9. Unit cell deformed shape under pure bending loads.

Finally, equating the expression of Sxy given in (19) to the polar stiffness of a Timoshenko beam, the
following expression for the material length scale ` is derived:

`= ρc
√

1+ ν,

where ρc is the central (inertial) radius of gyration of the chord cross section. According to this latter
result, the severity of the polar effect in the equivalent Timoshenko beam appears to be totally independent
from the cell sizes and is a function only of the chords cross section geometry and the girder material.

6. Conclusions

The homogenization of a Vierendeel girder having elastic joints has been performed by adopting a Timo-
shenko polar beam as substitute medium. The equivalent stiffnesses were determined by a numerical
procedure based on the analysis of the eigen- and principal vectors of the force transfer matrix of the unit
cell. While previous approaches proposed that the polar character of the beam is deduced by kinematical
conjectures or is inspired by the microstructure, in the present study it is a direct consequence of the
pattern of the inner forces acting in the lattice when the pure bending mode of the cell is active.

The method we proposed has been validated on the basis of some experimental data from literature
and the results of a series of finite element models. In almost all the examined cases, the predictions of
our model were in good agreement with numerical and experimental outcomes. Furthermore, from the
validation study, we found that the bending and polar stiffnesses are independent from the web bending
stiffness and do not change with either the unit cell length s or the stiffness kϑ of the torsional springs.
In addition, the bending moment is transferred by the unit cell without deformation of the webs; during
bending, the webs maintain their initial straight configuration. From this result, two simple formulas for
the bending and polar stiffness were derived.

The presented beam model has great potential for analyzing the behavior of any beam-like repetitive
structures with elastic or rigid joints. More specifically, it appears to be a serious candidate for analyzing
the buckling and postbuckling response of infinitely long periodic beams, such as the railway track
under thermal load. Its range of validity is bounded by the bending stiffness of the webs and the stiffness
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of the web-chord connections. As these stiffnesses decrease, from the presented theory a family of
Timoshenko beams having increasing shear flexibility are obtained. However, in real girders, the smaller
these stiffnesses are, the weaker the Vierendeel effect results. As a consequence, the girder behavior
tends toward an Euler–Bernoulli beam having bending stiffness equal to twice the chord bending stiffness.
However, the extension of the proposed approach to girders with weak Vierendeel effects needs a deeper
analysis and probably will be the object of future research.

Similarly, further research will be needed to apply the proposed model in the girder elasto-plastic
range, where the response of the unit cell has to be analyzed by approximated methods, as presented in
[Fraldi et al. 2010; 2014].
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HIGHLY ACCURATE NONCOMPATIBLE GENERALIZED MIXED
FINITE ELEMENT METHOD FOR 3D ELASTICITY PROBLEMS

GUANGHUI QING, JUNHUI MAO AND YANHONG LIU

Based on the generalized H–R mixed variational principle, the simple compatible and noncompatible
generalized mixed elements (CGME, NCGME) for 3D linear elasticity problems were derived by the C0

continuous polynomial shape functions used usually in the displacement methods. Two of main features
of the generalized mixed finite element methods corresponding to the CGME and NCGME are that the
coefficient matrix of system of equations are automatically symmetric and invertible. Without any extra
techniques of the traditional mixed methods, the displacement and stress results can be obtained directly
from the linear system of equations by introducing the stress and displacement boundary conditions
simultaneously. The numerical examples show that the displacement and stress variables converge stably.
The resulting stresses of NCGME have nearly the same accuracy as displacements and are certainly more
accurate than the common noncompatible displacement finite element methods.

1. Introduction

It is well known that the finite element minimum potential energy principle leads, as its Euler–Lagrange
(EL) equations, to not only equilibrium within the element but also interelement traction reciprocity. The
equilibrium finite element methods are also straightforward applications of the minimum complementary
energy principle. The finite element complementary energy principle leads, as its EL equations, to not
only kinematic compatibility within each element but also interelement displacement compatibility.

The above requirements of interelement displacement continuity and traction reciprocity on the admis-
sible displacement variables and stress variables (respectively) may not provide sufficient flexibility in the
finite element solution of several problems in linear elasticity, such as plate bending, shells, multilayered
composites, and problems with singularities found in fracture mechanics, among others [Pian 1964].

To gain this flexibility in application, one may relax the conditions of displacement continuity or trac-
tion reciprocity at interelement boundaries on the admissible displacement or stress fields, by introducing
these as a posteriori constraints into the respective finite element variational principles. This is the under-
lying concept in the hybrid finite element methods [Pian 1964] (the hybrid methods, in essence, belong
to the displacement methods [Tian and Pian 2011]) and the mixed finite element methods [Herrmann
1967; Dunham and Pister 1968]. The hybrid methods and mixed methods for the elasticity problem
are mostly based on the mixed variational principle, which is a form of the Hellinger–Reissner (H–R)
mixed variational principle [Reissner 1950]. Unlike the hybrid methods, where the element matrices
are condensed into a stiffness matrix on the element level, in the mixed methods the element matrix is
generally assembled to the global coefficient matrix by the usual superposition process. Consequently,

Keywords: H-R mixed variational principle, mixed element, generalized H-R mixed variational principle, compatible
generalized mixed element, noncompatible generalized mixed element.
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the mixed methods generally include two fields in the linear system of equations (e.g., displacement and
stress fields for linear elasticity problems). The solution of resulting governing equations immediately
also yields the static variables, which are of basic interest in the analysis and design of a structure.

It should be mentioned that the boundary nodal stresses obtained from the finite element analysis
are inconsistent with the prescribed stresses in the displacement methods [Tian and Pian 2011]. The
convergence rate of the displacement models for problems with large gradients of stresses is slow [Hoa
and Feng 1998]. The equilibrium methods are rarely used in practical computation due to the difficulty
of creating finite element spaces incorporating the necessary constraints. Thus the practical choice is
usually between the displacement methods and the mixed methods.

The early and classical contributions for the mixed methods are reviewed in [Oden 1973; Atluri
et al. 1983; Morley 1989; Arnold 1990]. More recent developments and extensions may be found in
[Belytschko et al. 2013; Bonet and Wood 1997; Zienkiewicz and Taylor 2000; Arnold 2002; Arnold and
Winther 2002; Adams and Cockburn 2005; Arnold et al. 2007; 2008; Gatica et al. 2008; Sinwel 2009;
Qiu and Demkowicz 2010; 2011; Gopalakrishnan and Guzmán 2011; Hu et al. 2016].

One of the most prominent advantages of the mixed methods is the avoidance of using C1 elements for
plate bending and other fourth-order problems. This is because the mixed functional for plate bending
involves no more than two derivatives in any term and hence, after a suitable integration by parts, may be
evaluated on the finite element spaces with merely continuous elements. The primal variational principles,
however, require the use of C1 elements [Atluri et al. 1983; Arnold 1990]. Hence, the mixed methods
are widely used in the linear and nonlinear applications of plate and shells for elasticity.

It is well known that for nearly incompressible and incompressible materials, finite element compu-
tations based on a standard displacement formulation fail due to the onset of the locking phenomenon.
The traditional mixed formulations are a valid alternative to locking-affected methods, since they provide
mathematical models capable of treating both compressible and incompressible linear elasticity problems
under a unified framework [Atluri et al. 1983]. Of course, the mixed methods are also applied extensively
for the numerical analysis of fluid mechanics problems.

The stability of the numerical results refers to the invertibility of the system matrix representing the
discrete problem. Compared with the displacement methods, the mathematical properties of the mixed
methods are not simple. If the same polynomial interpolation functions applied in the displacement
methods are used to express the displacement and stress variables, the linear system of equations of mixed
methods based on the H–R mixed variational principle is symmetric but possesses zeros on the diagonal.
Thus, the coefficient matrix is usually indefinite and not invertible. The questions of convergence rate
and stability of the traditional mixed models have attracted many mathematicians [Babuška et al. 1977;
Oden and Reddy 1976; Talaslidis 1979].

Some representative researches on the mixed methods in recent years should be mentioned here.
Arnold and Winther [2002] suggested some stable elements for a two-dimensional problem; the cor-
responding method in three-dimensional space was first characterized by Adams and Cockburn [2005];
and thorough analyses of the finite elements were provided in [Arnold et al. 2008]. The construction of
these elements is not convenient for computer program, since they are of high polynomial order, which
implies large costs even for the lowest-order scheme. A mixed finite element method was constructed
by the tangential displacement-normal-normal-stress (TDNNS) formulation in [Sinwel 2009]. Thus, it
is applicable for both nearly incompressible materials and the discretization of the thin structures using
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flat elements. However, the mathematical theory and process on the basis of the TDNNS formulation
are not simple and not suitable for engineers.

In a word, the above works show that it is not easy to construct a pair of finite elements for the
displacement vector and the symmetric stress tensor which satisfy the stability Brezzi’s conditions [1974].
There are still some open questions left in connection with the mixed methods for 2D and 3D problems.

2. Basic theory

2.1. Governing equations. Consider a body under static loading. The body occupies the volume V. S is
the surface of body. S= Su ∪Sσ , where Su and Sσ are the segments of S where displacements and surface
tractions are prescribed, respectively; the outward unit normal on S is denoted by n≡ ni . Let ∇ be the
gradient operator in the undeformed body which, under the assumption of infinitesimal deformation, is
indistinguishable from the deformed body.

We define the following: stress σ ≡ σi j and strain ε≡ εi j ; the surface traction T ≡ Ti and the prescribed
surface traction T ≡ T i on Sσ ; the prescribed displacement u ≡ ui on Su ; and b≡ bi is the body force
in V. Thus, the boundary value problems in linear elasticity can be stated as:

• The constitutive relations:

σ = Cε or σi j = Ci jklεkl or ε = Sσ in V, (1)

where C is symmetric stiffness matrix of material and S= C−1 is compliance matrix.

• The strain-displacement equations (the compatible equations):

ε =∇u or εi j =
1
2(ui, j + u j,i ) in V. (2)

• The equilibrium equations:

∇
Tσ + b̄= 0 or σi j, j + b̄i = 0 in V. (3)

• The surface tractions boundary conditions:

n · σ = T or T i = σi j n j on Sσ . (4)

• The displacement boundary conditions:

u = u or ui = ui on Su . (5)

2.2. H–R mixed variational principle and generalized H–R mixed variational principle. The H–R
mixed variational principle contains the displacement field and stress field. Satisfying the displacement
boundary conditions (5) a priori, such a principle takes the form

5HR =

∫
V

(
−

1
2σ

T Sσ + σT(∇u)− bTu
)

dV −
∫

sσ
T Tu dS. (6)

Like the H–R mixed variational principle, there are also both displacement and stress fields in the
generalized H–R mixed variational principle [Chien 1983]. This principle can be expressed as

5GHR =5HR+

∫
V
λ
( 1

2σ
T Sσ + 1

2(∇u)TC(∇u)− σT(∇u)
)

dV . (7)
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We should point out that Felippa [1989a; 1989b] constructed a one-parameter family of mixed varia-
tional principles for linear elasticity. This family includes the generalized H–R mixed and the minimum
potential energy principles as special cases. We expect to take 0≤ λ≤ 1 in (7). If the parameter λ < 0
or λ > 1, there does not exist practical interest.

It is clear that, letting λ= 0, (7) is the H–R mixed variational principle, and letting λ= 1 yields the
minimum potential energy principle.

Letting λ= 1
2 leads to the simplest generalized H–R mixed variational principle:

5GHR =

∫
V

(
−

1
4σ

T Sσ + 1
2σ

T(∇u)+ 1
4(∇u)TC(∇u)− bTu

)
dV −

∫
sσ

T Tu dS. (8)

For principles (6)–(8), the only constraint conditions are given in (1), while the equilibrium equations
(3) and the traction boundary conditions (4) are satisfied a posteriori.

We assume that all equations in the following sections are for the same finite element model. For
clarity, the matrices or vectors with the same symbol in the following imply the identical expressions.

3. Compatible and noncompatible generalized mixed finite element formulations

3.1. Mixed finite element formulations based on H–R mixed variable principle. Without loss of gen-
erality, consider an n-node compatible linear element for 3D linear elasticity problems. Both displace-
ment u and stress σ are expressed by the same shape functions:

u = Nqqe, (9)

σ = Np pe. (10)

Here,

Diag(Nq)= [Ne, Ne, Ne]
T, Ne = [N1, N2, . . . , Nn], qe = [ue1, ue2, ue3]

T,

Diag(Np)= [Ne, Ne, Ne, Ne, Ne, Ne]
T, pe = [σe13, σe23, σe33, σe11, σe22, σe12]

T.

Let Ni =
1
8(1+ ζiζ )(1+ ηiη)(1+ ξiξ), i = 1, 2, 3, . . . , 8, in (9) and (10); thus Nq and Np are the 24

by 24 and 48 by 48 shape function matrices, respectively.
It is well known that by substituting (9) and (10) into (6) and performing the energy integration, one

obtains the discrete functional

5HR( pe, qe)=

n∑
i=1

(
−

1
2 pT

e K (i)
pp pe+ pT

e K (i)
pq qe− ( f (i)q )Tqe

)
, (11)

in which
∑

implies summation with respect to all individual elements; K (i)
pp =

∫
Vi

NT
p SNp dV is sym-

metric and positive definite matrix for each element; K (i)
pq =

∫
Vi

NT
p (∇Nq) dV is a rectangular matrix;

and f (i)q =
∫

Vi
NT

p b dV +
∫

Sσ i
NT

q T dS is the load vector of each element.
In the following, the superscript “(i)” of element submatrices will be dropped for clarity.
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Consider pe and qe as independent variables. Using δ5HR( pe, qe)= 0 yields the two Euler–Lagrange
(EL) equations

−Kpp pe+ Kpqqe = 0, (12a)

K T
pq pe = fq. (12b)

The summation of (12a) and (12b) on all elements gives a linear system of equations with respect to
both displacement and stress variables. It is well known as the mixed model:[

−K11 K12

K T
12 0

]{
p
q

}
=

{
0
f

}
. (13)

Here, submatrices K11 =
∑

Kpp, K12 =
∑

Kpq; the vectors p=
∑

pe, q =
∑

qe; and the whole load
vector f =

∑
fq.

The equation resulting from H–R mixed variational principles (6) of various physical problems is
symmetric but possesses zeros on the diagonal. Indeed, it can be seen that the coefficient matrix of (13)
is indefinite. For 2D or 3D problems, if the stable mixed element techniques [Adams and Cockburn
2005; Oden and Reddy 1976; Brezzi and Fortin 1991] are not employed, it is very difficult to obtain the
stable and reliable solutions by (13).

3.2. Compatible generalized mixed finite element formulations. By the same way, using (9) and (10),
the discrete form of the generalized H–R mixed variational principle is

5GHR( pe, qe)=
∑(
−

1
4 pT

e Kpp pe+
1
2 pT

e Kpqqe+
1
4 qT

e Kqqqe− f T
q qe

)
. (14)

In (14), Kqq =
∫

Vi
(∇Nq)

TC(∇Nq) dV is a full rank, symmetric, and positive definite matrix and undoubt-
edly it is equivalent to the expression derived from the minimum potential energy principle.

Similarly, the following 8-node compatible generalized mixed element (CGME) with 8 nodes for 3D
problems can be derived from (14):

−Kpp pe+ Kpqqe = 0, (15a)

K T
pq pe+ Kqqqe = 2 fq. (15b)

It is of interest to see that (15) can also be obtained by combining the EL equations of the finite
element potential energy principle and the finite element H–R mixed variational principle.

The summation of (15) on all elements gives a novel algebraic system[
−K11 K12

K T
12 K22

]{
p
q

}
=

{
0

2 f

}
, (16)

where K11 and K22 (=
∑

Kqq) are symmetric and positive definite.
It is clear that the coefficient matrix of the above equation is indefinite because of submatrix −K11.

However, it is characterized by symmetry and all elements on the leading diagonal are nonzero.
Comparing (16) and (13), the main difference is the values of elements on the diagonal.



510 GUANGHUI QING, JUNHUI MAO AND YANHONG LIU

3.3. Noncompatible generalized mixed finite element formulations. On the basis of [Chen 1982; Taylor
et al. 1976], for a noncompatible element weak discontinuity, the element displacements can be expressed
as a sum of the compatible part Nqqe and the noncompatible part Nrre:

u = Nqqe+ Nrre. (17)

Here, the expression of Nr can be found in [Chen 1982]; Nr are the shape functions with respect to points
within elements; re is the displacement vector corresponding to points within elements.

In a similar way, by (17) and (10), the finite element functional of the generalized mixed variational
principle is given by

5GHR( pe, qe, re)=

n∑
i=1

(
−

1
4 pT

e Kpp pe+
1
2 pT

e Kpqqe+
1
2 pT

e Kprre+
1
4 qT

e Kqqqe

+
1
2 qT

e Kqrre+
1
4 rT

e Krrre− f T
q qe− f T

r re
)
. (18)

In (18),

Kpr = K T
rp =

∫
Vi

NT
p (∇Nr) dV, Kqr = K T

rq =

∫
Vi

(∇Nq)
TC(∇Nr) dV,

Krr = K T
rr =

∫
Vi

(∇Nr)
TC(∇Nr) dV, fr =

∫
Vi

NT
r b dV +

∫
Sσi

NT
r T dS.

Taking the variation of (18) with respect to re results in

Krrre+ K T
pr pe+ K T

qrqe = 2 fr. (19)

Krr in the above equations is identical to the corresponding expression obtained from the minimum
potential energy principle for noncompatible displacement elements [Chen 1982; Taylor et al. 1976], and
Krr is an invertible matrix. Thus, one has

re = 2K−1
rr fr− K−1

rr K T
pr pe− K−1

rr K T
qrqe. (20)

Finding the extrema of (18) with respect to pe and qe leads to two EL equations:

−Kpp pe+ Kpqqe+ Kprre = 0, (21)

K T
pq pe+ Kqqqe+ K T

prre = 2 fq. (22)

On substituting (20) into (21) and (22), one obtains

−Kpp pe+Kpqqe =−2Kpr K−1
rr fr, (23a)

KT
pq pe+Kqqqe = 2 fq− 2Kqr K−1

rr fr, (23b)

in which

Kpp = Kpp+ Kpr K−1
rr K T

pr, Kpq = Kpq− Kpr K−1
rr K T

qr, Kqq = Kqq− Kqr K−1
rr K T

qr.

Note that, for general numerical examples, if the body force is ignored, the vectors 2Kpr K−1
rr fr and

2Kqr K−1
rr fr on the right-hand side of (21) are close to zero. Such a property is the same as the non-

compatible displacement element formulations [Tian and Pian 2011]. Therefore, the following 8-node
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noncompatible generalized mixed element (NCGME) problems is of the form[
−Kpp Kpq

KT
pq Kqq

]{
pe

qe

}
=

{
0

2 fq

}
. (24)

Similarly, the noncompatible generalized mixed model corresponding to (24) is as follows:[
−K11 K12

KT
12 K22

]{
p
q

}
=

{
0

2 f

}
, (25)

where submatrices K11 =
∑

Kpp, K12 =
∑

Kpq, K22 =
∑

Kqq; the vectors p =
∑

pe, q =
∑

qe,
and the whole load vector f =

∑
fq.

It is obvious that the main difference between (25) and (16) is their coefficient matrices.

3.4. A unified approach for imposing stress and displacement boundary conditions. Assume that sym-
bol a refers to the known value vector with respect to nodes on the surface or edges, whose values are
determined by the prescribed surface traction T on Sσ and the prescribed displacement u on Su .

Interchanging the rows and columns of (25), it can be recast into the form−K̂11 K̂12 K̂13

K̂
T
12 K̂22 K̂23

K̂
T
13 K̂

T
23 K̂33




p̂
q̂
a

=


f1

f2

f3

 , (26)

where p̂ and q̂ are the unknown parameter vectors of the nodal stresses and displacements, respectively.
Therefore,

−K̂11 p̂+ K̂12q̂ = f1− K̂13a, (27a)

K̂
T
12 p̂+ K̂22q̂ = f2− K̂23a, (27b)

K̂
T
13 p̂+ K̂

T
23q̂ = f3− K̂33a. (27c)

Of course, (27c) is redundant. Consequently, the final system of equations for the finite element
solutions is [

−K̂11 K̂12

K̂
T
12 K̂22

]{
p̂
q̂

}
=

{
f1− K̂13a
f2− K̂23a

}
. (28)

The above unified approach for imposing stress and displacement boundary conditions is employed in
our program. In the next section, one of the numerical examples indicates that boundary nodal stresses
are consistent with the prescribed stresses.

4. Numerical examples and discussions

4.1. A thick rectangular plate with simply supported edges. As shown in Figure 1, consider a thick
rectangular plate with in-plane dimensions a = b = 1.0 and thickness h = 0.10. The material properties
are E11 = 10E22 = 10E33, G12 = G13 = 0.6E33, G23 = 0.5E33, and ν12 = ν13 = ν23 = 0.25. The
boundary conditions are σ11 = u2 = u3 = 0 on x1 = 0 and x1 = a; and σ22 = u1 = u3 = 0 on x2 = 0 and
x2 = b. The uniform normal load 0.1 is on the upper surface of the plate [Fan 1996].
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x1

x2x3

a

b

o

h

x1

x2

o

coordinates and dimensions one-quarter model

Figure 1. Coordinates and dimensions of a thick rectangular plate.

Using the symmetry about the x1 and x2-axes, only one-quarter of plate (see Figure 1, right) is analyzed
with uniform meshes. The convergence rate and accuracy of displacements and stresses at special loca-
tions are depicted in Figures 2–12. The notation l ×m× n mesh denotes l subdivisions along the x1-axis
and m subdivisions along the x2-axis with the same type of elements, while n denotes the element number
in the x3 direction. The nodal stresses of the 8-node noncompatible displacement element (NCDE) for
3D problems in the commercially available software ABAQUS are obtained from the stresses of Gauss
quadrature points by the extrapolation method. On the basis of the results of the 12×12×4 mesh, errors,
which are illustrated in the legends in Figures 2–10, are computed by the formulation

exact solution−solution of element
exact solution

× 100%.

In our computer program, two Gauss quadrature points in each direction are used for both CGME and
NCGME.

As far as displacements u1
( 1

8a, 1
2 b, h

)
, u2

( 1
2a, 1

8 b, h
)

and u3
( 1

2a, 1
2 b, 1

2 h
)

are concerned (see Figures
2, 3, and 4), there is no significant difference between NCGME and NCDE for the convergence rate and
accuracy. Certainly, it is clear that when the element mesh is relatively fine, the results of NCGME and
NCDE are more accurate than those of CGME.

Figures 5 and 6 show that the results σ13
( 1

8a, 1
2 b, 1

2 h
)

and σ23
( 1

2a, 1
8 b, 1

2 h
)

of NCGME are in good
agreement with the exact solution for even coarse meshes. It can also be observed that the accuracy of the
σ13
(1

8a, 1
2 b, 1

2 h
)

and σ23
( 1

2a, 1
8 b, 1

2 h
)

of the compatible element CGME are greatly superior to NCDE.

u 1
( 1 8

a,
1 2
b,

h)

Figure 2. Comparison of displacement u1
( 1

8a, 1
2 b, h

)
.
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u 2
( 1 2

a,
1 8
b,

h)

Figure 3. Comparison of displacement u2
( 1

2a, 1
8 b, h

)
.

u 3
( 1 2

a,
1 2
b,

1 2
h)

Figure 4. Comparison of displacement u3
( 1

2a, 1
2 b, 1

2 h
)
.

σ
13
( 1 8

a,
1 2
b,

1 2
h)

Figure 5. Comparison of stress σ13
( 1

8a, 1
2 b, 1

2 h
)
.

σ
23
( 1 2

a,
1 8
b,

1 2
h)

Figure 6. Comparison of stress σ23
( 1

2a, 1
8 b, 1

2 h
)
.
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σ

33
( 1 2

a,
1 2
b,

h)

Figure 7. Comparison of stress σ33
( 1

2a, 1
2 b, h

)
.

σ
11
( 1 2

a,
1 2
b,

0)

Figure 8. Comparison of stress σ11
( 1

2a, 1
2 b, 0

)
.

σ
22
( 1 2

a,
1 2
b,

0)

Figure 9. Comparison of stress σ22
( 1

2a, 1
2 b, 0

)
.

σ
12
( 1 8

a,
1 8
b,

h)

Figure 10. Comparison of stress σ12
( 1

8a, 1
8 b, h

)
.
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H
=

x 3
/

h

σ13
( 1

8 a, 1
2 b, x3

)
Figure 11. Comparison of stress σ13

(1
8a, 1

2 b, x3
)

distribution along thickness of NCGME.

H
=

x 3
/

h

σ23
( 1

2 a, 1
8 b, x3

)
Figure 12. Comparison of stress σ23

(1
2a, 1

8 b, x3
)

distribution along thickness of NCGME.

In this example, NCDE can not predict accurately the transversal stresses with respect to the geomet-
rical neutral plane of plate, since the distribution of σ13 and σ23 along the thickness is nonlinear (see
Figures 11 and 12), and the maximum or minimum values on the neutral plane is near to the neutral
plane.

Figure 7 indicates that the accuracy of σ33
( 1

2a, 1
2 b, h

)
of NCDE is very poor. As mentioned above, it

is difficult to introduce the traction boundary conditions when the stress variables are computed by the
constitutive relations (1) on the element level. Hence, the stress results of NCDE on the boundary are
inconsistent with the prescribed stresses. However, the stress results of CGMCE8 and NCGMCE8 on
the boundary are fully consistent with the prescribed stresses.

The in-plane stress σ22
(1

2a, 1
2 b, 0

)
of NCGME is characterized by rapid convergence. The accuracy of

σ11
( 1

2a, 1
2 b, 0

)
, σ22

( 1
2a, 1

2 b, 0
)

and σ12
( 1

8a, 1
8 b, h

)
of NCGME is slightly better than NCDE (see Figures

8–10).
On the basis of the mesh 12× 12× 4, the distribution of both σ13

( 1
8a, 1

2 b, x3
)

and σ23
( 1

2a, 1
8 b, x3

)
along the thickness of NCGME are depicted by Figures 11 and 12, respectively. They indicate further
that the σ13 and σ23 can approximate to the exact solutions.

4.2. A classical cantilever beam problem. The effect of element geometric distortions on the accuracy
of CGME and NCGME are investigated in this example.
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Figure 13. A cantilever beam under pure bending or acted upon by shear forces at the
tip [Cheung and Chen 1988].
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Figure 14. Models of element geometric distortion.

load cases QS11−1 QS11−2 CGME NCGME exact

pure bending 31.2 37.5 15.0 75.1 100.0
shear forces 37.4 45.1 22.6 81.8 102.6

Table 1. Vertical displacements u3 at point A of model a.

load cases QS11−1 QS11−2 CGME NCGME exact

pure bending −1162.4 −1350.9 −423.8 −2549.1 −3000.0
shear forces −1623.2 −1953.6 −573.3 −2642.9 −2700.0

Table 2. The stresses σ11 at point B(4.0,1.0,2.0) of model a

Consider a cantilever beam [Cheung and Chen 1988] under pure bending or acted upon by shear
forces at the tip (see Figure 13). The geometry dimensions are 2× 2× 10, and the material properties are
E = 1500 and ν = 0.25. The vertical displacements at point A and the bending stress σ11 at point B for
two finite element models (as shown in Figure 14) are presented in Tables 1–4, and they are compared
with QS11−1 [Cheung and Chen 1988], QS11−2 [Cheung and Chen 1988] and the exact solutions.

From the results listed in Tables 1–4, it can be concluded that:

(1) The displacement and stress results of NCGME appear to be more accurate than those of the hybrid
stress elements QS11−1 and QS11−2 .
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load cases QS11−1 QS11−2 CGME NCGME exact

pure bending 92.2 92.9 22.7 99.6 100.0
shear forces 94.05 94.9 67.6 103.6 102.6

Table 3. Vertical displacements u3 at point A of model b.

load cases QS11−1 QS11−2 CGME NCGME exact

pure bending −3006.6 −3015.1 −2294.9 −2996.5 −3000.0
shear forces −4125.3 −4138.2 −3155.8 −4076.2 −4050.0

Table 4. The stresses σ11 at point B(1.0,1.0,2.0) of model b.

(2) Obviously, NCGME is less sensitive to geometric distortions (see Figure 14) in cases where elements
are distorted. It is also observed that the accuracy of u3 and σ11 from CGME is very poor due to
the geometric distortions of elements.

5. Conclusions

For the generalized mixed finite elements presented in this work, both conditions of displacement conti-
nuity and traction reciprocity at interelement boundaries are relaxed by including them in the generalized
mixed variational principle itself. Hence, the generalized H–R mixed variational principle is crucial to
ensure that the generalized mixed elements are effective in obtaining the displacements and stresses
directly in the mixed finite element computations. As mentioned in Section 3, two of the most prominent
advantages of the compatible and noncompatible generalized mixed elements are that the symmetry with
respect to both displacement and stress variables are guaranteed, and the coefficient matrix is invertible.
The generalized mixed models seem to be preferable for introducing the displacement and traction bound-
ary conditions simultaneously. The numerical results of the compatible and noncompatible generalized
mixed elements are stable and the displacement and stress results of noncompatible generalized mixed
elements are characterized by high-precision.

Certainly, like in the traditional mixed methods, a drawback of the generalized mixed methods is a
larger number of unknown parameters in the linear system of equations for the finite element analysis.
The added number of stress variables means that generally larger size algebraic problems have to be
handled. But with the present computer technologies, it is not a problem. In fact, the power of the
present computers will always be suitable for a large-scale finite element system. We emphasize that
conveniently obtaining stable and highly accurate numerical results is the first priority for the design of
engineering structures.

We believe the generalized mixed methods are simple and will be useful, especially as the methods are
developed further. For wide engineering structures, some important applications of the noncompatible
generalized mixed method should be extended, such as the treatment of the combination with other
structural members, the evolution of the possible advantages in stress singularity problems, and nonlinear
applications which may result from special structures. The pertinent theories of the generalized mixed
elements should also be explored deeply; for instance, investigations of the local error bounds or practical
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estimates for the variables should be done. On the other hand, the stresses and the displacements are
interpolated with the same interpolation order in this work. Does this choice of interpolation order satisfy
the inf-sup Ladyzhenskaya–Babuška–Breezi (LBB) condition? This work should be discussed in the next
paper.

The task of developing high-performance finite element methods for complex engineering problems
never seems to be completed.
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THICKNESS EFFECTS IN THE FREE VIBRATION OF
LAMINATED MAGNETOELECTROELASTIC PLATES

CHAO JIANG AND PAUL R. HEYLIGER

A semianalytical discrete-layer approach is used to evaluate thickness effects in the free vibration of
laminated magneto-electro-elastic (MEE) plates under various lateral boundary conditions. To match
the primary physical phenomenon and simplify the study, piecewise continuous approximations are used
through the thickness direction and either continuous global polynomial or trigonometric functions are
used to simulate the deflection in axial or planar displacement fields. Thin plate models can be recovered
to predict frequency estimation for various boundary conditions and compared with continuum-based
theories using more complex approximations. Based on symmetry, the natural vibratory modes can be
grouped to optimize computation. Numerical examples are used to show the thickness effects, with
nondimensional frequencies computed for multiple plates under six lateral boundary conditions: simply
supported, clamped, and four different combinations of free and clamped/simply supported edges. Along
with the influence of electroelastic and magnetoelastic coupling, the results of these analyses clearly
illustrate the limits of thin-plate approximations.

Introduction

Kirchhoff’s plate theory yields many exact solutions that can predict the behavior of elastic deformations
and stresses near or across the interface of material layers under static and dynamic loading, but usually
only when the planar dimensions are much larger than the thickness. These methods can also be used
for solving more complicated situations for multilayered composites that are more complex than for
homogeneous elastic materials. An example of this is a plate formed with materials that combine elastic,
electric, and magnetic effects. These are typically referred to as magneto-electro-elastic (MEE) solids,
and have behavior that is significantly different than the purely elastic case.

The free vibration of purely elastic laminated plates has a very rich history with numerous contribu-
tions, with one of the most significant being the early work of Srinivas et al. [1970]. The development of
representative theories and solutions for laminates where the elastic fields are coupled with both magnetic
and electric fields are much more recent. The free vibration of MEE plates has been investigated by
several researchers. By expanding the general boundary conditions in series form, Vel and Batra [2000]
solved the static deformation of multilayered piezoelectric plates using a three-dimensional solution. The
corresponding bending vibration problem has been studied by Vel et al. [2004]. For a simply supported
multilayered MEE plate, the exact free vibration behavior using an exact closed-form solution has been
derived using the pseudo-Stroh formulation by Pan and Heyliger [2002]. The state-space formulation
is another method that has been used to analyze the static and dynamic behavior of MEE multilayered
plates [Wang et al. 2003; Chen et al. 2007]. This methodology was also used by Chen [Chen et al.

Keywords: thickness effects, free vibration, laminated, magneto-electro-elastic, plate.
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2005] in the study of the free vibration of a nonhomogeneous isotropic MEE plate. Kondaiah, Shankar,
and Ganesan [Kondaiah et al. 2012] used the finite element method to investigate beams made of MEE-
thermo materials with different volume fractions under uniform temperature increase and clamped-free
boundary conditions. The discrete-layer (DL) and domain-discretization methods have also been widely
used in the analysis of anisotropic elastic and MEE plates and shells. The free vibration of an anisotropic
and MEE plate was worked out by Chen, Heyliger and Pan [Chen et al. 2014] corresponding to different
lateral boundary conditions.

The studies of many computational schemes for the solution of the equations of motion are based on
the early work of Demarest [1971] and Eer Nisse [1967] through algorithms for elastic and piezoelectric
parallelepipeds. However, if there is no existing closed-form solution, by expanding the displacements in
terms of reasonable approximations, Hamilton’s principle can be used to solve the weak form of the equa-
tions of motion. Furthermore, at an interface made of different materials, such as elastic, piezoelectric,
and piezomagnetic properties, additional considerations may apply. Between two dissimilar materials,
interface conditions include continuous stress, normal electric displacement, and normal magnetic in-
duction. At a region of discontinuous material properties, these cause a discontinuity in the slope of the
displacement and potential fields. The use of piecewise linear functions through the thickness with contin-
uous global polynomial or trigonometric functions in the plane parallel to the interface allows a relatively
accurate solution to be achieved. Via a semianalytical discrete-layer model, Heyliger [2000] developed
the governing equations of layered elastic and piezoelectric parallelepipeds and obtained frequencies for
a number of geometries and material combinations using this sort of approach.

Kirchhoff’s classical theory of thin plates can often give sufficiently accurate results instead of carrying
out a full three-dimensional stress analysis. But accuracy usually decreases with increasing thickness of
the plate. Many authors qualify the value of the thickness relative to the larger plate dimensions as being
“small” [Rao 2007], “much smaller” [Whitney 1987], or “significantly smaller” [Hjelmstad 1997]. Sev-
eral authors have suggested limits with numbers attached: the thickness is “less than 1/20” [Ugural and
Fenster 1995] of the lateral dimensions or that the lateral dimensions are “at least ten times” the thickness
[Szilard 1974]. There has always been significant latitude assumed in applying these limits, since they
are clearly influenced by plate geometry, the nature of the loading, and the material constitution. Such an
inherent limitation of classical plate theory for the moderately thick plates necessitated the development
of more refined theories in order to obtain reliable results for the behavior of these new materials. By
plotting the frequencies as a function of the length-to-thickness ratio a/h, the present results indicate
the level of errors influenced by thickness effects. The errors even within prior recommendations of a/h
ratios can be significant.

The objective of this study is to use Hamilton’s principle and appropriate approximations to make the
link between the thin plate theory and more accurate continuum models to determine at what a/h ratios
thin plate theory may be adequate for plates of laminated MEE material.

Theory

Governing equations. A plate is a structural element that is typically flat and thin. The lateral dimension
is larger than the thickness by a factor that will be directly considered in this work. The plates consid-
ered in this study are formed by multiple anisotropic layers and all constitutive relations are linear. A
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Figure 1. The geometry and coordinate system of the laminated plate.

rectangular Cartesian coordinate is used to formulate the governing equations with the origin as shown
in Figure 1.

Of primary interest in this work are the thickness effects in laminated plate vibration for plates com-
posed of MEE materials. Square laminates with lateral dimensions a = b and a total thickness h are
considered in this study. Each layer is homogeneous and each interface is perfectly bonded; therefore,
the compatibility of displacements and the potentials are enforced. Even though the elastic displacements,
electric and magnetic potentials, elastic traction, and the z-components of the electric displacement and
magnetic induction are continuous, there is a discontinuity in the z-direction gradient of the displacement
components, the electrostatic potential, and magnetostatic potential at the interface of two layers.

In a linear, isotropic MEE solid, the coupled constitutive law for each lamina can be expressed as

σi j = Ci jkl Skl − eki j Ek − qki j Hk, (1)

Dm = emkl Skl + εmk Ek + dmk Hk, (2)

Bm = qmkl Skl + dmk Ek +µmk Hk . (3)

Here σi j , Dm , and Bm are respectively the components of stress, electric displacement, and magnetic
induction; Skl , Ek , and Hk represent the components of strain, electric field and magnetic field; Ci jkl ,
εmk , and µmk indicate the elastic, dielectric, and magnetic permeability coefficients; and eki j , qki j , and
dmk are the piezoelectric, piezomagnetic, and magnetoelectric coefficients. Moreover, by setting the
values emkl or qmkl equal to zero, the results for either purely piezoelectric, piezomagnetic, or elastic
material can be achieved.

The relationship between the strain and displacement, electric (magnetic) field and its potential can
be written as

Si j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, (4)

Ek =−
∂φ

∂xk
, (5)

Hk =−
∂ψ

∂xk
. (6)

Here, ui are the infinitesimal displacement components and φ and ψ are the electric and magnetic
potentials, respectively. The components xk are related to the x , y and z in the rectangular Cartesian
coordinates for k = 1, 2, 3.
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The weak form of the equations of motion, the charge equation and the electromagnetic equation for
a MEE medium within Hamilton’s principle can be expressed as [Tiersten 1969]

δ

∫ t

t0
dt
∫

V

[ 1
2ρu̇ j u̇ j − H(Skl, Ek, Hk)

]
dV +

∫ t

t0
dt
∫

S
(Tkδuk − σδφ− I δψ) dS = 0. (7)

Here, t0 and t are two specified times, V is the volume of the plate, S is the surface that bounds V , and δ is
the variational operator. The · superscript represents differentiation with respect to time, and T , σ , and I
are surface tractions, surface charge, and surface current. H is the system enthalpy and can be written as

H = 1
2Ci jkl Si j Skl − ei jk Ei S jk −

1
2εi j Ei E j − qi jk Hi S jk −

1
2µi j Hi H j − dik Ei Hk . (8)

Based on the specific material properties used in this study, and setting x1 = x , x2 = y, and x3 = z, with
the corresponding displacement field as u, v, w, the weak form can be expanded as∫ t

t0
dt
∫

V

{
ρ(u̇δu̇+ v̇δv̇+ ẇδẇ)

−

[
C11

∂u
∂x
∂δu
∂x
+C12

∂u
∂x
∂δv

∂y
+C12

∂δu
∂x

∂v

∂y
+C13

∂u
∂x
∂δw

∂z

+C13
∂δu
∂x

∂w

∂z
+C22

∂v

∂y
∂δv

∂y
+C23

∂v

∂y
∂δw

∂z
+C23

∂δv

∂y
∂w

∂z
+C33

∂w

∂z
∂δw

∂z

+C16
∂u
∂x

(
∂δu
∂y
+
∂δv

∂x

)
+C16

∂δu
∂x

(
∂u
∂y
+
∂v

∂x

)
+C26

∂v

∂y

(
∂δu
∂y
+
∂δv

∂x

)
+C26

∂δv

∂y

(
∂u
∂y
+
∂v

∂x

)
+C36

∂w

∂z

(
∂δu
∂y
+
∂δv

∂x

)
+C36

∂δw

∂z

(
∂u
∂y
+
∂v

∂x

)
+C44

(
∂v

∂z
+
∂w

∂x

)(
∂δv

∂z
+
∂δw

∂x

)
+C55

(
∂u
∂z
+
∂w

∂y

)(
∂δu
∂z
+
∂δw

∂y

)
+C66

(
∂u
∂y
+
∂v

∂x

)(
∂δu
∂y
+
∂δv

∂x

)
+C45

(
∂v

∂z
+
∂w

∂x

)(
∂δu
∂z
+
∂δw

∂y

)
+C45

(
∂δv

∂z
+
∂δw

∂x

)(
∂u
∂z
+
∂w

∂y

)
− e15δE1

(
∂u
∂z
+
∂w

∂x

)
− e15 E1

(
∂δu
∂z
+
∂δw

∂x

)
− e24δE2

(
∂v

∂z
+
∂w

∂y

)
− e24 E2

(
∂δv

∂z
+
∂δw

∂y

)
− e31δE3

∂u
∂x
− e31 E3

∂δu
∂x

− e32δE3
∂v

∂y
− e32 E3

∂δv

∂y
− e33δE3

∂w

∂z
− e33 E3

∂δw

∂z
− q15δH1

(
∂u
∂z
+
∂w

∂x

)
− q15 H1

(
∂δu
∂z
+
∂δw

∂x

)
− q24δH2

(
∂v

∂z
+
∂w

∂y

)
− q24 H2

(
∂δv

∂z
+
∂δw

∂y

)
− q31δH3

∂u
∂x
− q31 H3

∂δu
∂x
− q32δH3

∂v

∂y
− q32 H3

∂δv

∂y
− q33δH3

∂w

∂z
− q33 H3

∂δw

∂z

− ε11 E1δE1− ε22 E2δE2− ε33 E3δE3−µ11 H1δH1−µ22 H2δH2−µ33 H3δH3

]}
dV

+

∫ t

t0
dt
∫

S
(Tkδuk − σδφ− I δψ) dS = 0. (9)

It is possible to integrate the weak form by parts and collect the coefficients with respect to δu, δv,
δw, δφ, and δψ . Since we use the Ritz method, there is no need for this step. Here the focus is on the
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quasistatic state, which means there is no electric charge or current densities across the surface. Body
forces are also assumed to be zero in the results that follow.

Ritz approximations. The five primary field variables (u, v, w, φ, and ψ) can be approximated with x ,
y, z, and t as follows:

u(x, y, z, t)=
n∑

j=1

U j (x, y, t)9u
j (z)=

m∑
i=1

n∑
j=1

U j i (t)9u
i (x, y)9u

j (z),

v(x, y, z, t)=
n∑

j=1

V j (x, y, t)9v
j (z)=

m∑
i=1

n∑
j=1

V j i (t)9v
i (x, y)9v

j (z),

w(x, y, z, t)=
n∑

j=1

W j (x, y, t)9w
j (z)=

m∑
i=1

n∑
j=1

W j i (t)9w
i (x, y)9w

j (z),

φ(x, y, z, t)=
n∑

j=1

8 j (x, y, t)9v
j (z)=

m∑
i=1

n∑
j=1

8 j i (t)9
φ
i (x, y)9φ

j (z),

ψ(x, y, z, t)=
n∑

j=1

9 j (x, y, t)9v
j (z)=

m∑
i=1

n∑
j=1

9 j i (t)9
ψ

i (x, y)9ψ

j (z).

(10)

Here, U j i , V j i , W j i , 8 j i , and 9 j i are unknown constants. 9i (x, y) are the in-plane approximation func-
tions, while 9 j are the one-dimensional Lagrangian interpolation polynomials in the thickness direction
with respect to each variable.

The corresponding virtual fields can be expressed as

δu =9u
i (x, y)9u

j (z), δv =9v
i (x, y)9v

j (z), δw =9w
i (x, y)9w

j (z),

δφ =9
φ
i (x, y)9φ

j (z), δψ =9
ψ

i (x, y)9ψ

j (z).
(11)

By assuming periodic motion, substituting these approximations into the weak form, and collecting
the coefficients of the variations of the displacements and placing the results in matrix form, the system
can be written as

[M11
] [0] [0] [0] [0]

[0] [M22
] [0] [0] [0]

[0] [0] [M33
] [0] [0]

[0] [0] [0] [0] [0]
[0] [0] [0] [0] [0]





{U }
{V }
{W }
{8}

{9}


ρω2
=


[K 11
] [K 12

] [K 13
] [K 14

] [K 15
]

[K 21
] [K 22

] [K 23
] [K 24

] [K 25
]

[K 31
] [K 32

] [K 33
] [K 34

] [K 35
]

[K 41
] [K 42

] [K 43
] [K 44

] [K 45
]

[K 51
] [K 52

] [K 53
] [K 54

] [K 55
]





{U }
{V }
{W }
{8}

{9}


. (12)

The submatrices here are related to the materials’ characteristics, which include the elastic stiffnesses,
piezoelectric coefficients, piezomagnetic coefficients, and shape functions. These matrices are given in
the Appendix.

The DL model is based on separating the field variables in the thickness direction and within the plane
of the plate. This can effectively reduce the computational effort. One-dimensional Lagrangian polyno-
mials are sufficient to describe these displacements in the thickness direction. The in-plane functions are
generated depending on the various lateral boundary conditions. These are described below.
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Boundary Conditions. The following classes of boundary conditions are discussed.

SSSS: simply supported around all edges. Srinivas [Srinivas et al. 1970] solved this problem using an
exact method. The in-plane approximation functions are treated as harmonic functions, as per Heyliger
[2000], to determine the fundamental in-plane modes.

For the simply supported condition,

w = σxx = σxy = φ = ψ = 0 at x = 0, a, (13)

w = σxy = σyy = φ = ψ = 0 at y = 0, b. (14)

To satisfy the essential boundary conditions on w, φ, and ψ , the in-plane approximations are

9u
i (x, y)= cos mπx

a
sin nπy

b
, 9v

i (x, y)= sin mπx
a

cos nπy
b
, 9w

i (x, y)= sin mπx
a

sin nπy
b
.

Here, φ and ψ have the same expression as w, and each individual pair of (m, n) contains a different
value of i .

CCCC: clamped around all edges. The boundary conditions for this case are

u = v = w = φ = ψ = 0 at x = 0, a and at y = 0, b. (15)

Since displacements are zero at the domain endpoints, it is convenient to give the approximations along
the (x, y) directions written in the “parent” domain (ξ, η), which allows computations in terms of coor-
dinate origins. Chen et al. [2014] used this approximation for all the clamped conditions and compared
their results with frequencies from a FEM approach. The coordinates ξ and η are introduced as ξ = 2x/a
and η= 2y/b and varying from −1 to 1, with ξi and ηi being the equally spaced locations within (−1, 1).
For example, within the ξ domain, the displacements are expressed as following:

when i = 1, fx = (1− ξ)(1+ ξ);

when i = 2, fx = (1− ξ)ξ(1+ ξ);

when i = 3, fx = (1− ξ)
( 1

3 − ξ
)( 1

3 + ξ
)
(1+ ξ).

FCFC: free-clamped-free-clamped. Here two opposite sides of the plate are “free” (in that all compo-
nents of the stress-traction vector are 0, as are the electric displacement and normal flux), and the others
are clamped. In this case it is assumed that the plate is clamped along the x direction, while the y
direction is free. Therefore, the appropriate boundary conditions are

u = v = w = φ = ψ = 0 at x = 0, a, (16)

σyy = σxy = σyz = Dy = By = 0 at y = 0, b. (17)

Demarest [1971] showed that group theory can be used to simplify vibration analysis in the case of
traction-free surfaces using Legendre polynomials. The approximations are given in even/odd forms for
these functions. The lowest three terms in the even group are 1, (3x2

− 1)/2, and (35x4
− 30x2

+ 3)/8,
while for the odd functions are shown as x , (5x3

− 3x)/2, and (63x5
− 70x3

+ 15x)/8 [Abromowitz and
Stegun 1966].
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CFFF: clamped-free-free-free. Here, only one edge is clamped; the others are free. This is also known
as the cantilever plate; boundary conditions are as follows:

u = v = w = φ = ψ = 0 at x = 0, (18)

σxx = σxy = σxz = Dx = Bx = 0 at x = a, (19)

σyy = σxy = σyz = Dy = By = 0 at y = 0, b. (20)

Here, to match the displacements at x = 0, we use power series of at least first order along the x direction
and maintain the Legendre polynomials in the y direction.

CCFF: clamped-clamped-free-free. Here two adjacent edges are clamped, while the others are free;
boundary conditions are as follows:

u = v = w = φ = ψ = 0 at x = 0, y = 0, (21)

σxx = σxy = σxz = Dx = Bx = 0 at x = a, (22)

σyy = σxy = σyz = Dy = By = 0 at y = b. (23)

The displacements and potential along the x and y directions are extended as power series in a manner
similar to the cantilever plate.

SFSF: simple-free-simple-free. In this condition, two opposite sides are simply supported and the others
are free; boundary conditions are as follows:

w = σxx = σxy = φ = ψ = 0 at x = 0, a, (24)

σyy = σxy = σyz = Dy = By = 0 at y = 0, b. (25)

Fourier series are used in the x direction. The only difference is specified terms for the approximate
function, as m and n are either 2i + 1 or 2i . The approximation functions in u and v are coupled
with the displacement in w, and the modes are separated into two groups (odd and even) according
to these groupings. For example, the first terms in odd group are: 9u

1 (x, y) = cos(πx/a) sin(πy/b),
9v

1 (x, y) = sin(πx/a) cos(πy/b), and 9w
1 (x, y) = sin(πx/a) sin(πy/b). The first terms in the even

group are: 9u
2 (x, y) = cos(2πx/a) sin(2πy/b), 9v

2 (x, y) = sin(2πx/a) cos(2πy/b), and 9w
2 (x, y) =

sin(2πx/a) sin(2πy/b). For all clamped-clamped and clamped-free conditions, symmetry can be used
to exploit the nature of the eigenvalue problem. By grouping the approximations according to symmetry
groups as introduced by Ohno [1976], the original complete problem can be reduced into four smaller
problems with the same result but at a lower computational cost.

Results

Isotropic plates. Several problems are first considered for the homogeneous isotropic plate to demon-
strate the accuracy of the DL model. This type of plate has a number of solutions with which to compare.

Simply supported condition. The convergence of the semianalytical discrete layer model has been ex-
plored using the natural frequencies of a square isotropic plate. For the simply supported condition, the
Navier solution gives an exact result for Kirchhoff’s plate theory. The in-plane variations in transverse
displacement are given as a single term in the sine or cosine components of the expansion. Fixing a/b= 1,
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Figure 2. The first in-plane mode of the SSSS isotropic plate (mode 7).

a/h = 10, and ν = 0.3, the natural frequencies are compared with Srinivas’s elasticity theory and Reddy’s
higher-order shear deformation theory (HSDPT) [Reddy and Phan 1985].

Equal thicknesses of each discrete layer were used. The results are presented in terms of the nondimen-
sional parameter ω = ω(ρh2/G)1/2. Each frequency was computed using 36 in-plane terms and eight
sublayers, which gave values of sufficient accuracy such that little change was observed in increasing the
numbers beyond these limits. The results are shown in Table 1. The highlights in bold indicate the in-
plane modes for which the transverse displacement is zero. The mode shapes for the bending modes are
well known and are not repeated here. The seventh mode, which is purely in-plane and is not included or
computed by Srinivas or Reddy, is shown in Figure 2 and is an example of the usefulness of continuum
theories that provide all modes rather than just those related to bending.

All-clamped condition. The natural frequencies of an all clamped isotropic (ν = 0.3) plate have been
computed by Liew et al. [1993] using the Rayleigh–Ritz procedure to solve the energy function derived
from Mindlin’s plate theory. The frequency parameter was given as ω = (ωa2/π2)

√
ρh/D, where

D = Eh3/[12(1− ν2)] and h is the total thickness. Using 36 in-plane terms with eight layers, results are
shown in Table 2. Once again, the present model captures in-plane modes (listed in bold face) that were
not considered by the previous authors. It is clear that as the thickness increases, the in-plane frequencies
are reduced and approach the lowest bending frequency given by simpler theories.

frequency [Srinivas et al. 1970] HSDPT present solution

number [Reddy and Phan 1985] N = 4 N = 8 N = 16

1 0.0932 0.0931 0.0939 0.0933 0.0932
2, 3 0.226 0.2222 0.2245 0.2231 0.2227
4 0.3421 0.3411 0.3452 0.3429 0.3423

5, 6 0.4171 0.4158 0.4211 0.4182 0.4174
7 – – 0.4443 0.4443 0.4443

8, 9 0.5239 0.5221 0.5292 0.5253 0.5243
10 – 0.6545 0.6642 0.6589 0.6575

Table 1. The first ten nondimensional frequencies of an isotropic square plate under the
simply supported boundary condition (SSSS) with ν = 0.3 and a/h = 10, normalized
by ω = ω(ρh2/G)1/2.
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frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 3.2954 3.3297 2.6875 2.7370
2 6.2858 6.3633 4.6907 4.7940
3 6.2858 6.3633 4.6907 4.7940
4 8.8098 8.9295 – 6.2751
5 10.3788 10.5316 – 6.2751
6 10.4778 10.6316 6.2985 6.4484
7 – 12.5221 7.1767 7.3598
8 – 12.5221 – 7.4371
9 12.5529 12.7474 7.2759 7.4621
10 12.5529 12.7474 8.5155 8.7416

Table 2. The first ten nondimensional frequencies of an isotropic square plate under the
CCCC boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 2.0904 2.1094 1.7772 1.8061
2 2.4342 2.4533 2.0151 2.0429
3 3.9055 3.9312 – 2.9771
4 5.3392 5.3996 3.1652 3.2004
5 5.7811 5.8408 4.0413 4.1242
6 – 5.9501 4.3472 4.4262
7 6.9368 6.9834 – 5.3326
8 7.3046 7.3757 – 5.4493
9 9.6241 9.7567 5.3813 5.4827
10 9.9989 10.0960 5.3813 5.4831

Table 3. The first ten nondimensional frequencies of an isotropic square plate under the
FCFC boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

FCFC condition. Table 3 lists the first ten nondimensional natural frequencies of isotropic square plates
for the FCFC condition. This case was also considered by Liew et al. [1993] and the DL results provide
frequency predictions that are close to but slightly above those numbers.

CFFF condition. The cantilever plate is an extremely important case that has numerous practical appli-
cations. Liew et al. [1993] gave results without showing the mode shapes. Frequencies are given in
Table 4. The present model again consistently gives bending and torsional frequencies that are slightly
larger than those of the Mindlin results compared to the previous work. The in-plane frequencies are
normally smaller.

CCFF Condition. Results for this case are computed using four terms in both x and y directions together
with four layers through the thickness. Comparison of frequencies is demonstrated in Table 5 and indicate
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frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 0.3476 0.3573 0.3384 0.3471
2 0.8168 0.8401 0.7445 0.7637
3 2.0356 2.1111 – 1.1181
4 2.5836 2.2349 1.7806 1.8451
5 2.8620 2.9795 2.2765 2.5154
6 4.8162 3.0007 2.4205 2.5742
7 5.4834 5.3357 3.8851 2.6689
8 5.7769 5.4769 4.3168 2.9809
9 6.2381 5.9619 4.5996 4.3811
10 7.9181 7.9682 4.8966 4.8979

Table 4. The first ten nondimensional frequencies of an isotropic square plate under the
CFFF boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 0.6762 0.6946 0.6328 0.6489
2 2.2438 2.3246 1.9221 1.9856
3 2.5049 2.6055 2.1499 2.2313
4 4.2557 4.5059 – 2.6032
5 5.5633 5.2043 – 3.3287
6 5.8188 6.6564 3.4217 3.5729
7 7.2399 7.9353 4.3468 3.9720
8 7.5055 7.9449 4.5533 5.3123
9 9.9651 8.6372 5.4276 5.6800
10 10.1661 9.5767 5.6539 6.1263

Table 5. The first ten nondimensional frequencies of an isotropic square plate under the
CCFF boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

slightly larger discrepancies that those of prior predictions. Some of this may be differences in actual
bending frequencies, but other gaps may exist because the model of Liew et al. [1993] may not capture
some of the nonbending modes, especially as the plate becomes thick.

SFSF condition. Table 6 shows the comparison with Liew et al.’s results [1993]. It again appears that the
model of the previous authors captures only the bending frequencies under the SFSF condition. Hence
at a minimum, the lower modes can be directly compared.

Composite MEE plates. There are three primary features associated with the results in this section. The
first is a direct comparison with one of the few models of laminated MEE plates to ensure accuracy of
the results that follow. The second is a collection of results for laminated MEE plates under a variety of



EFFECTS IN THE VIBRATION OF MAGNETOELECTROELASTIC PLATES 531

frequency a/h = 10 a/h = 5

number [Liew et al. 1993] present [Liew et al. 1993] present

1 0.9565 0.9593 0.9102 0.9139
2 1.5593 1.5670 1.4280 1.4342
3 3.4307 3.4808 – 2.4697
4 3.6838 3.7036 2.9521 2.9845
5 4.3358 4.3634 3.1684 3.1994
6 – 4.9400 3.6435 3.6777
7 6.2971 6.4010 – 4.6127
8 6.7071 6.9051 5.0216 5.0994
9 7.7648 7.8291 5.3173 5.4507
10 8.3513 8.4230 – 5.6993

Table 6. The first ten nondimensional frequencies of an isotropic square plate under
SFSF boundary condition with ν = 0.3, normalized by ω = (ωa2/π2)

√
ρh/D.

CCCC [Chen et al. 2014] present FCFC [Chen et al. 2014] present

1 0.3332 0.3332 1 0.2193 0.2193
2 0.5987 0.5987 2 0.2572 0.2572
3 0.5987 0.5987 3 0.3798 0.3798
4 0.7459 0.7459 4 0.3967 0.3967
5 0.7459 0.7459 5 0.5182 0.5182
6 0.8138 0.8138 6 0.5656 0.5656

Table 7. The first six nondimensional frequencies of an elastic square plate with hexag-
onal materials under CCCC and FCFC conditions, normalized by ω = ωh

√
ρ/C11.

lamination schemes and boundary conditions. Finally, the influence of the a/h ratio on the frequencies
for these plates are explored.

Comparison with existing results. The free vibration of composite MEE plates under CCCC and FCFC
conditions has been extensively studied by Chen, Heyliger and Pan [Chen et al. 2014] for a fixed a/h
ratio. These simulations all used properties for either a purely elastic hexagonal material, the piezoelectric
material barium titanate (BaTiO3), denoted in this work by the letter B, and the magnetostrictive material
cobalt ferrite (CoFe2O4), denoted in this study by the letter F. All plates are assumed to have three layers
of equal thickness. In the case of homogeneous MEE materials, either BBB or FFF are used to denote
the differing materials. Composites use FBF or BFB to indicate the lamination scheme. The material
properties are given in [Chen et al. 2014]. These results were repeated here to ensure accuracy for MEE
media and are summarized in Table 7. Excellent agreement was found for all cases.

For the remaining examples, the nondimensional frequencies are calculated by ω = ωh
√
ρmax/cmax

and are typically plotted using the parameter �= ω(a2/h)
√
ρmax/cmax. Here ρmax is the largest value

of material density in the laminate and cmax is the largest component of the elastic stiffness tensor in the
laminate.
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Figure 3. The relative differences of fundamental frequencies of the SSSS plate compared
to the thin plate limit for the five different material combinations as a function of a/h.

SSSS condition. The influence of a/h for very thick plates was first studied for the five basic lamination
schemes (hexagonal, BBB, FFF, FBF, and BFB). In this case, all frequencies were normalized by their
respective values for the thin plate, taken as the frequency computed at a/h = 30. Beyond this point
there was very little change in the dimensionless frequency for all plates considered. The results of this
analysis are shown in Figure 3 for the fundamental frequency and show that the level of difference with
thin plate limits are ordered as FFF > FBF > BFB > BBB > hex. Hence the purely magnetostrictive
plate has stronger thickness effects than the purely elastic hexagonal plate.

Figure 4 displays the influence of slenderness for the first six frequencies of a hexagonal material
along with the corresponding mode shapes. It appears that there are only four curves, but this is because

�

a/h

dimensionless frequency variation

mode 1 mode 2

mode 3 mode 4

mode 5 mode 6

Figure 4. Frequency variation as a function of a/h and the first six mode shapes (a/h= 10)
for the anisotropic elastic square SSSS plate.
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�

a/h

Figure 5. Dimensionless frequency variation as a function of a/h for the SSSS square
BFB plate.

frequencies
B material F material

[Chen et al. 2014] present [Chen et al. 2014] present

1 1.7817 1.7817 1.3667 1.3667
2 2.9486 2.9486 2.2311 2.2311
3 2.9486 2.9486 2.2311 2.2311
4 3.2195 3.2195 2.7905 2.7905
5 3.2195 3.2195 2.2311 2.2311
6 3.7120 3.7120 2.9345 2.9345

Table 8. The first six nondimensional frequencies of square plates composed of BBB
and FFF materials under the CCCC condition, normalized by ω = ωa

√

ρmax/Cmax.

several of the modes for this boundary condition are repeated. The horizontal dashed lines indicate the
asymptote of each frequency which is again chosen using the value at a/h = 30. Figure 5 shows the
frequency arrangement of BFB materials. The arrangements are similar for other stacking sequences.
The character of all of the curves are very similar in nature, with slight differences in value and mode
order sometimes occurring. Table 9 lists the first six frequencies at a/h ratios of 30 for reference since
these values are used for all plots and can be used as thin plate predictions using other models. As was
the case for the very thick plates, an increased amount of F material results in larger differences in the
thin plate limits. Yet for an a/h ratio larger than 20, the differences are within 3 percent.

CCCC condition. The differences of the first frequency with respect to a/h for the five stacking se-
quences are shown in Figure 6. The differences between the thin-plate limits are all slightly higher than
those of the SSSS condition, with differences of about 10 percent when a/h = 10. Figure 7 gives the
first six frequencies of the hexagonal plate as a function of a/h ratio and the corresponding mode shapes.
It is clear that as the slenderness increases, the fifth and the sixth frequencies are identical.
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bending mode hex BBB FFF BFB FBF

1 1.17 ·10−4 2.92 ·10−4 1.83 ·10−4 1.73 ·10−4 1.97 ·10−4

2 2.92 ·10−4 7.24 ·10−4 4.55 ·10−4 4.31 ·10−4 4.88 ·10−4

3 2.92 ·10−4 7.24 ·10−4 4.55 ·10−4 4.31 ·10−4 4.88 ·10−4

4 4.65 ·10−4 1.16 ·10−3 7.24 ·10−4 6.88 ·10−4 7.79 ·10−4

5 5.79 ·10−4 1.44 ·10−3 9.01 ·10−4 8.52 ·10−4 9.68 ·10−4

6 5.79 ·10−4 1.44 ·10−3 9.01 ·10−4 8.52 ·10−4 9.68 ·10−4

Table 9. Frequencies for homogeneous plates composed of five stacking sequences un-
der the SSSS condition at a/h = 30.

�
/
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A

a/h

Figure 6. The relative differences of fundamental frequencies of the CCCC plate compared
to the thin plate limit for the five different material combinations as a function of a/h.

�

a/h

dimensionless frequency variation

mode 1 mode 2

mode 3 mode 4

mode 5 mode 6

Figure 7. Frequency variation as a function of a/h and the first six mode shapes (a/h= 10)
for the anisotropic elastic square CCCC plate.
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�

a/h

Figure 8. Dimensionless frequency variation as a function of a/h for the CCCC square
BFB plate.

bending mode hex BBB FFF BFB FBF

1 2.12 ·10−4 5.32 ·10−4 3.37 ·10−4 3.16 ·10−4 3.61 ·10−4

2 4.31 ·10−4 1.07 ·10−3 6.76 ·10−4 6.39 ·10−4 7.24 ·10−4

3 4.31 ·10−4 1.07 ·10−3 6.76 ·10−4 6.39 ·10−4 7.24 ·10−4

4 6.33 ·10−4 1.57 ·10−3 9.86 ·10−4 9.31 ·10−4 1.06 ·10−3

5 7.67 ·10−4 1.90 ·10−3 1.19 ·10−3 1.13 ·10−3 1.28 ·10−3

6 7.67 ·10−4 1.92 ·10−3 1.20 ·10−3 1.13 ·10−3 1.29 ·10−3

Table 10. Frequencies for homogeneous plates composed of five stacking sequences
under the CCCC condition at a/h = 30.

Figure 8 shows the effect of the length-to-thickness ratio for the first six frequencies for BFB plates
under all-clamped conditions. The levels of difference with the thin-plate limits are similar to those of the
fully simply supported condition. Frequencies are repeated and lines are coincident for modes 2 and 3.
Table 10 lists the first six frequencies of the five stacking sequences under the all-clamped condition with
a/h equal to 30.

FCFC condition. Figure 9 shows the frequency response for the five stacking sequences under the FCFC
condition. Figure 10 shows the influence of a/h ratio for the hexagonal material along with the lowest
six mode shapes. Figure 11 gives the slenderness effects for BFB materials. Table 11 gives the values of
the first seven frequencies according to five stacking sequences at slenderness of a/h = 30. Reductions
are smaller for the piezoelectric and piezomagnetic plates in the sixth frequency. This is apparent from
the different curvature of each frequency lines. As a/h ratios approach 20, the percentage differences
are within 5 percent.

CFFF condition. Figure 12 shows the difference of the five stacking sequences with respect to the funda-
mental frequency. Reductions are less variable under this condition than several other support conditions.
Even with a/h = 10, the BFB plate still maintains a 5 percent reduction from the thin-plate estimates.
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Figure 9. The relative differences of fundamental frequencies of the FCFC plate compared
to the thin plate limit for the five different material combinations as a function of a/h.
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Figure 10. Frequency variation as a function of a/h and the first six mode shapes
(a/h = 10) for the anisotropic elastic square FCFC plate.

bending mode hex BBB FFF BFB FBF

1 1.33 ·10−4 3.20 ·10−4 2.07 ·10−4 1.94 ·10−4 2.22 ·10−4

2 1.62 ·10−4 3.77 ·10−4 2.42 ·10−4 2.28 ·10−4 2.59 ·10−4

3 2.67 ·10−4 6.21 ·10−4 3.96 ·10−4 3.74 ·10−4 4.25 ·10−4

4 3.63 ·10−4 8.70 ·10−4 5.62 ·10−4 5.30 ·10−4 6.04 ·10−4

5 4.03 ·10−4 9.49 ·10−4 6.09 ·10−4 5.76 ·10−4 6.57 ·10−4

6 4.77 ·10−4 1.13 ·10−3 7.24 ·10−4 6.88 ·10−4 7.79 ·10−4

Table 11. Frequencies for homogeneous plates composed of five stacking sequences
under the FCFC condition at a/h = 30.



EFFECTS IN THE VIBRATION OF MAGNETOELECTROELASTIC PLATES 537
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Figure 11. Dimensionless frequency variation as a function of a/h for the FCFC square
BFB plate.
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Figure 12. The relative differences of fundamental frequencies of the CFFF plate compared
to the thin plate limit for the five different material combinations as a function of a/h.

Figure 13 displays the first eight frequencies as a function of a/h ratio and the first six mode shapes
under CFFF condition. Once again the straight dashed lines represent the in-plane modes. The mode
shapes are almost the same as isotropic plates under this boundary condition. Figure 14 gives the config-
uration of frequencies of the BFB stacking sequence. Table 12 lists the frequency values of the first six
bending modes at a/h = 30. The differences are quite small for this condition, with the percent difference
being below 10 percent even up to the fifth frequency with a/h = 10. When the length-to-thickness ratio
is 20, the sixth frequency reductions are nearly 2 percent.

CCFF condition. Figure 15 demonstrates the reduction for the lowest frequency for various a/h ratios.
At a/h of 6, percent differences are within 10 percent for each material. Figure 16 shows the first nine
frequencies and the first six mode shapes of the plates made of anisotropic materials under CCFF condi-
tion. More in-plane modes appear within these bending frequencies than for prior conditions, indicating
increased stiffening in bending. Figure 17 gives the influence of slenderness for the first nine frequencies
for the plate composed with BFB materials. Even as a/h is equal to 20, the reductions are still over 5
percent. Table 13 gives the first six modes at a/h = 30 for reference.

SFSF condition. Figure 18 shows the differences of the fundamental frequency for the five cases. This
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Figure 13. Frequency variation as a function of a/h and the first six mode shapes
(a/h = 10) for the anisotropic elastic square CFFF plate.
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Figure 14. Dimensionless frequency variation as a function of a/h for the CFFF square
BFB plate.

configuration is similar to the all simply supported condition; however, reductions are slightly smaller
for the same a/h conditions. Figure 19 demonstrates the configuration of the first seven frequencies and
the first six modes of anisotropic materials under SFSF condition. The straight dashed line corresponds
to the in-plane mode 6. Figure 20 shows frequency variation as a function of a/h. These are almost
the same as those for anisotropic plates except that the difference between the third and fourth bending
frequencies, which are the bending modes along simply supported edges and the bending mode along
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bending mode hex BBB FFF BFB FBF

1 2.09 ·10−5 5.19 ·10−5 3.45 ·10−5 3.29 ·10−5 3.72 ·10−5

2 5.57 ·10−5 1.22 ·10−4 7.85 ·10−5 7.30 ·10−5 8.40 ·10−5

3 1.31 ·10−4 3.15 ·10−4 2.08 ·10−4 1.90 ·10−4 2.22 ·10−4

4 1.93 ·10−4 4.58 ·10−4 2.96 ·10−4 2.74 ·10−4 3.17 ·10−4

5 2.01 ·10−4 4.53 ·10−4 2.95 ·10−4 2.75 ·10−4 3.13 ·10−4

6 3.91 ·10−4 8.58 ·10−4 5.48 ·10−4 5.17 ·10−4 5.87 ·10−4

Table 12. Frequencies for homogeneous plates composed of five stacking sequences
under the CFFF condition at a/h = 30.
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Figure 15. The relative differences of fundamental frequency of the CCFF plate compared
to the thin plate limit for the five different material combinations as a function of a/h.
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Figure 16. Frequency variation as a function of a/h and the first six mode shapes
(a/h = 10) for the anisotropic elastic square CCFF plate.
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Figure 17. Dimensionless frequency variation as a function of a/h for the CCFF square
BFB plate.

bending mode hex BBB FFF BFB FBF

1 4.36 ·10−5 1.01 ·10−4 6.63 ·10−5 6.08 ·10−5 7.12 ·10−5

2 1.53 ·10−4 3.50 ·10−4 2.28 ·10−4 2.10 ·10−4 2.44 ·10−4

3 1.60 ·10−4 3.99 ·10−4 2.64 ·10−4 2.42 ·10−4 2.82 ·10−4

4 3.11 ·10−4 7.24 ·10−4 4.67 ·10−4 4.38 ·10−4 5.00 ·10−4

5 6.82 ·10−4 1.50 ·10−3 9.43 ·10−4 9.01 ·10−4 1.02 ·10−3

6 7.06 ·10−4 1.73 ·10−3 1.12 ·10−3 1.07 ·10−3 1.20 ·10−3

Table 13. Frequencies for homogeneous plates composed of five stacking sequences
under CCFF condition at a/h = 30.

�
/
�

A

a/h

Figure 18. The relative differences of fundamental frequencies of the SFSF plate compared
to the thin plate limit for the five different material combinations as a function of a/h.

free edges, are much smaller. With a/h = 10, the differences are within 10 percent. At a/h = 20, the
percent differences are smaller than 2 percent. Table 14 gives the first six modes at a/h = 30.
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�

a/h

dimensionless frequency variation

mode 1 mode 2

mode 3 mode 4

mode 5 mode 6

Figure 19. Frequency variation as a function of a/h and the first six mode shapes
(a/h = 10) for the anisotropic elastic square SFSF plate.

�

a/h

Figure 20. Dimensionless frequency variation as a function of a/h for the SFSF square
BFB plate.

Conclusions

A discrete-layer model was used to approximate the natural frequencies of laminated isotropic and MEE
plates under various boundary conditions. There are three primary conclusions related to this work:

(1) The current DL model gives excellent agreement with most existing solutions for both isotropic and
layered MEE plates. The main discrepancies arise for specific combinations of boundary conditions
that have seen very little study in the literature.
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bending mode hex BBB FFF BFB FBF

1 5.86 ·10−5 1.39 ·10−4 8.89 ·10−5 8.40 ·10−5 9.49 ·10−5

2 1.04 ·10−4 2.30 ·10−4 1.45 ·10−4 1.38 ·10−4 1.56 ·10−4

3 2.34 ·10−4 5.61 ·10−4 3.60 ·10−4 3.41 ·10−4 3.86 ·10−4

4 2.57 ·10−4 5.76 ·10−4 3.66 ·10−4 3.47 ·10−4 3.93 ·10−4

5 2.88 ·10−4 6.69 ·10−4 4.27 ·10−4 4.05 ·10−4 4.58 ·10−4

6 4.78 ·10−4 1.05 ·10−3 6.69 ·10−4 6.33 ·10−4 7.18 ·10−4

Table 14. Frequencies for homogeneous plates composed of five stacking sequences
under the SFSF condition at a/h = 30.

(2) From all results and all cases considered in this study, the thin-plate limit of a/h = 10 does not give
sufficient accuracy for a wide enough range of lamination schemes and boundary conditions. An
a/h ratio of 20 gives a far better limit for using any thin-plate kinematic assumption.

(3) The results contained herein for all boundary conditions can be used for purposes of comparison
using other simplified theories of MEE plate behavior.
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LOCALIZED BULGING OF ROTATING ELASTIC CYLINDERS AND TUBES

JUAN WANG, ALI ALTHOBAITI AND YIBIN FU

We investigate axially symmetric localized bulging of an incompressible hyperelastic circular solid
cylinder or tube that is rotating about its axis of symmetry with angular velocity ω. For such a solid
cylinder, the homogeneous primary deformation is completely determined by the axial stretch λz , and
it is shown that the bifurcation condition is simply given by dω/dλz = 0 if the resultant axial force F
is fixed. For a tube that is shrink-fitted to a rigid circular cylindrical spindle, the azimuthal stretch λa

on the inner surface of the tube is specified and the deformation is again completely determined by the
axial stretch λz although the deformation is now inhomogeneous. For this case it is shown that with
F fixed the bifurcation condition is also given by dω/dλz = 0. When the spindle is absent (the case
of unconstrained rotation), we also allow for the possibility that the tube is additionally subjected to an
internal pressure P . It is shown that with P fixed, and ω and F both viewed as functions of λa and λz , the
bifurcation condition for localized bulging is that the Jacobian of ω and F should vanish. Alternatively,
the same bifurcation condition can be derived by fixing ω and setting the Jacobian of P and F to zero.
Illustrative numerical results are presented using the Ogden and Gent material models.

1. Introduction

In a series of classic papers by Haughton and Ogden [1979a; 1979b; 1980a; 1980b; 1980c] on the periodic
buckling of hyperelastic circular solid cylinders or cylindrical tubes described by a general strain-energy
function, two types of loading were considered separately. The first type consists of an internal pressure
and an end thrust, and the second type consists of rotation about the axis of symmetry and an end thrust.
The first situation has recently been reexamined with a view to characterize axially symmetric localized
bulging, motivated by the fact that in some loading regimes localized bulging is usually observed first
but had previously not been fully understood. The second situation is now reexamined in the current
paper, motivated by similar considerations.

Deformation of a rotating hyperelastic cylinder or tube is one of the first problems solved using the
continuum mechanics theory [Green and Zerna 1957] with results used to test the validity of constitutive
assumptions. For instance, when the neo-Hookean material model is used, the resulting axial stretch λz

in a solid cylinder rotating with angular velocity ω is given by

ρω2
=

4µ
A2 (1− λ

3
z ), (1-1)
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where µ, ρ, and A are the ground state shear modulus, material density, and undeformed radius, respec-
tively. The above result predicts that when ρω2 approaches the finite value 4µ/A2, the stretch tends to
zero, which is clearly unphysical, thus showing the inadequacy of the neo-Hookean material model in the
large deformation regime. The question of the existence of a unique homogeneous (shape-preserving)
solution valid for all values of ω was then examined by Chadwick et al. [1977] using the newly proposed
Ogden material model at that time. In a parallel study, the question of an axisymmetric bifurcation for a
rotating cylinder was studied by Patterson and Hill [1977] using the neo-Hookean material model. They
showed that such a bifurcation would take place before ω reaches the value corresponding to λ = 0.
The bifurcation condition has an explicit expression and was derived in a similar manner to that used
by Wilkes [1955] for studying the buckling of a cylinder or tube under end thrust. A significant gener-
alization was subsequently made by Haughton and Ogden [1980a; 1980b; 1980c], who considered all
the possible periodic buckling modes (prismatic, axisymmetric, or asymmetric) for a rotating cylinder
or tube without restricting the material model in their general formulation although numerical results
were presented only for the Ogden material model. In the last three studies, it was observed that the
rotation speed, when viewed as a function of a stretch measure, may reach a maximum beyond which
the primary deformation no longer exists. This is similar to the so-called limiting point instability which
was receiving a lot of attention around the same period; see, e.g., [Kanner and Horgan 2007] and the
references therein. However, in both situations the connection between the limiting point instability and
localized bulging bifurcation was not fully understood at that time. It is shown in the present paper that
under a certain loading condition the existence of such an angular speed maximum is closely associated
with axisymmetric bulging localized in the axial direction, a phenomenon rather similar to localized
bulging in circular cylindrical tubes that are inflated by an internal pressure.

We follow the same strategy as in [Fu et al. 2016]. After formulating the problem and summarizing
the expressions for the angular speed ω, the internal pressure P , and the resultant axial force F associ-
ated with the primary shape-preserving deformation in the next section, we first derive the bifurcation
condition in Section 3, and then conjecture and verify that the bifurcation condition in each case can be
written simply in terms of the derivatives of ω, F , and/or P with respect to the stretches as stated in the
abstract. In Section 4 the bifurcation condition is solved and numerical results are presented when both
the Gent and Ogden material models are used. Section 5 concludes the paper with a summary of our main
results and a discussion of whether localized bulging under rotation could be observed experimentally.

2. Primary deformation

We first write down the solution for the primary shape-preserving deformation associated with an incom-
pressible circular cylindrical tube that is rotating about its axis of symmetry with angular velocity ω.
The corresponding results for a solid cylinder will be obtained by specialization. The tube is assumed
to have inner radius A and outer radius B in the undeformed configuration, and these dimensions take
the values a and b in the deformed configuration. The outer surface of the tube is traction-free, but its
inner surface may in general be subjected to a hydrostatic pressure P or shrink-fitted to a rigid circular
cylindrical spindle with a radius larger than A. It is also assumed that each plane end face of the tube is
subject to a resultant axial force F (e.g., F = 0, in which case the end faces are traction-free). In terms
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of cylindrical polar coordinates, the primary shape-preserving deformation is given by

r =
√
λ−1

z (R2
− A2)+ a2, θ =2+ωt, z = λz Z , (2-1)

where (R,2, Z) and (r, θ, z) are the cylindrical polar coordinates in the undeformed and deformed
configurations, respectively, t denotes time, and λz is a constant. The associated principal stretches are

λ1 =
r
R
≡ λ, λ2 = λz, λ3 =

dr
d R
= 1/(λλz). (2-2)

We assume that the constitutive behavior of the tube is described by a strain-energy function W (λ1, λ2, λ3).
By integrating the only equilibrium equation in the r -direction, it can be shown that various quantities can
be expressed in terms of the reduced strain-energy function w, and its derivatives w1 and w2, defined by

w(λ, λz)=W (λ, λz, λ
−1λ−1

z ), w1 =
∂w

∂λ
, w2 =

∂w

∂λz
(2-3)

[Haughton and Ogden 1980c]. For instance, the normal stress on the inner surface is given by

σ33(a)= 1
2ρω

2λ−1
z (B2

− A2)−

∫ λa

λb

w1

λ2λz − 1
dλ, (2-4)

where ρ is the material density and the two limits λa and λb are defined by

λa =
a
A
, λb =

b
B
,

and are related to each other, through incompressibility, by

λ2
aλz − 1=

B2

A2 (λ
2
bλz − 1). (2-5)

We observe that with λb eliminated using the above relation, the deformation is completely determined
by the two stretches λa and λz .

The expression (2-4) suggests the introduction of a nondimensional quantity 0 defined by

0 = ρω2 B2/µ, (2-6)

where µ denotes the ground-state shear modulus. In the rest of this paper, we shall assume that the
strain-energy function, stress components, and pressure have all been scaled by µ, forces by µB2, and
the radii A, a, and b by B. As a result of nondimensionalization, (2-4) is now replaced by

σ33(a)= 1
20λ

−1
z (1− A2)−

∫ λa

λb

w1

λ2λz − 1
dλ, (2-7)

and the resultant of σ22 at any cross section is given by

F̃0(λa, λz, 0)≡ 2π
∫ b

a
σ22r dr = 1

4π0λ
−2
z (1− A2)2+πa2

∫ λa

λb

w1

λ2λz − 1
dλ

+π A2(λ2
aλz − 1)

∫ λa

λb

2λzw2− λw1

(λ2λz − 1)2
λ dλ, (2-8)
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where the first equation serves to define the function F̃0. Finally, the normal stress component σ33 in the
r -direction is given by

σ33(r)= 1
20(b

2
− r2)−

∫ λ

λb

w1

λ2λz − 1
dλ. (2-9)

This expression recovers (2-7) on evaluation at r = a followed by the use of the identity (b2
− a2)λz =

B2
− A2. We can now specialize the above formulae to three different loading and geometry conditions.
Firstly, consider a tube under the combined action of an internal pressure, rotation, and an end

thrust (referred to hereafter as the unconstrained case). Denoting the internal pressure by P , we have
σ33(a)=−P , and (2-7) then becomes

P = P̃(λa, λz)≡−
1
20λ

−1
z (1− A2)+

∫ λa

λb

w1

λ2λz − 1
dλ (2-10)

or equivalently

0 = 0̃(λa, λz)≡
2λz

1− A2

∫ λa

λb

w1

λ2λz − 1
dλ−

2λz P
1− A2 , (2-11)

where the second expression in each equation defines the functions P̃ and 0̃, respectively. To simplify
notation, we have not shown explicitly the dependence of P̃ on 0 or 0̃ on P .

The resultant axial force at any cross section, that is to be balanced by the net force F applied at each
plane end face, is given by

F = F̃(λa, λz)≡ 2π
∫ b

a
σ22r dr −πa2 P

=
1
4π0λ

−1
z (a2

+ b2)(1− A2)+π A2(λ2
aλz − 1)

∫ λa

λb

2λzw2− λw1

(λ2λz − 1)2
λ dλ, (2-12)

where ≡ defines the function F̃ , which should be compared with the F̃0 defined by (2-8). We note that
the 0 in the expression for F̃ could be eliminated in favor of P with the use of (2-11). Thus, whenever
F̃ is partially differentiated, it can be either 0 or P that is fixed. This will always be indicated explicitly.

Once the geometry of the tube is specified, either P or 0 can be assumed to take a dominant role
together with F . If, for instance, P is specified and is assumed to take a passive role (by being sufficiently
small), then 0 and F can be viewed as functions of the two stretches λa and λz , and we expect the
following Jacobian to play a role in the characterization of localized bulging:

�u(λa, λz)≡ J (0̃, F̃)=
∂0̃

∂λa

∂ F̃
∂λz
−
∂0̃

∂λz

∂ F̃
∂λa

, (2-13)

where the first equation defines the function �u(λa, λz) with the subscript u signifying “unconstrained”.
Similarly, if 0 is assumed to take a passive role, then the Jacobian J (P̃, F̃) can be defined. However, it
can be shown that this Jacobian is a nonzero multiple of J (0̃, F̃) when the connection (2-10) is used.

The case previously studied by [Fu et al. 2016] can now be viewed as a special case, corresponding
to 0 ≡ 0, of the current more general formulation. The observations made in that paper about J (P̃, F̃)
can be extended to the case when 0 is nonzero but is held fixed. In particular, it can be shown that when
F and 0 are both fixed, the pressure will reach a maximum precisely when J (P̃, F̃)= 0. In a similar
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manner, we note that if both P and F are held fixed when 0 is increased gradually, F̃(λa, λz)= F would
define λz as a function of λa , and we then have

∂ F̃
∂λa
+
∂ F̃
∂λz

dλz

dλa
= 0,

and
d0̃
dλa
=
∂0̃

∂λa
+
∂0̃

∂λz

dλz

dλa
=

(
∂ F̃
∂λz

)−1

J (0̃, F̃).

Thus, 0 reaches a maximum when the Jacobian J (0̃, F̃) vanishes. We emphasize that this correspon-
dence is lost when, for instance, it is the λz that is held fixed in rotating the tube. Drawing upon the results
of [Fu et al. 2016], we may then further conjecture that when the inner surface is traction-free or subjected
to a hydrostatic pressure P the bifurcation condition for localized bulging is simply J (0̃, F̃)= 0, whether
it is the F or λz that is fixed in rotating the tube. We shall verify in the next section that this is indeed
the case.

Next, consider the case when a tube is mounted on a rigid circular cylindrical spindle with a radius
larger than A, which is the shrink-fit case discussed in [Chadwick et al. 1977]. We assume that the
contact is smooth so that at the inner surface the stretch λa is specified and the shear stress components are
negligible. When such a tube is rotated, the expression (2-4) can be used to compute the contact pressure,
and the resultant F̃0(λa, λz, 0) of σ22 given by (2-8) is now a function of the only variable stretch λz . It
will be shown in the next section that the bifurcation condition for localized bulging is simply

�c(λa, λz, 0)≡
∂ F̃0

∂λz
= 0, (2-14)

where the first equation defines the function �c(λa, λz, 0) with the subscript c signifying “constrained”.
Suppose that the equation F̃0(λa, λz, 0) = F , with F̃0 given by (2-8), is solved for 0 and the result
is denoted by 0 = 0̃0(λa, λz, F). Then it can also be shown that the above bifurcation condition is
equivalent to ∂0̃0/∂λz = 0.

Finally, in the special case of a solid cylinder (A = a = 0), the three principal stretches given by (2-2)
reduce to

λ1 = λ
−1/2
z , λ2 = λz, λ3 = λ

−1/2
z , (2-15)

which are all independent of r . Then in terms of the reduced strain-energy function ŵ defined by

ŵ(λz)=W (λ−1/2
z , λz, λ

−1/2
z ), (2-16)

the principal stretch λz is determined by

0 = 4λ2
z

(
F
π
− ŵ′

)
, (2-17)

where the prime denotes differentiation with respect to the argument λz . If F is fixed, then setting
d0/λz = 0 would yield, after F has been eliminated with the use of (2-17), the condition

�s(λz)≡ 2λ3
z ŵ
′′
−0 = 0, (2-18)
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where the first relation defines the function �s(λz) with the subscript s signifying “solid”. On the other
hand, if 0 is fixed instead, then setting d F/λz = 0 would again yield the same condition (2-18). It will
be shown in the next section that this is in fact the bifurcation condition for localized bulging.

3. Bifurcation conditions for localized bulging

To investigate the axisymmetric localized bulging of the finitely deformed configurations determined in
the previous section, we consider an incremental displacement field ẋ given by

ẋ = u(r, z)er + v(r, z)ez, (3-1)

where u(r, z) and v(r, z) are the incremental displacements in the r - and z-directions, respectively. The
incremental equation of motion takes the form

div χT
=−0uer , (3-2)

where the incremental stress tensor χ is defined by the following components relative to the orthonormal
basis {eθ , ez, er }:

χi j =B j ilkηkl + pη j i − p∗δ j i . (3-3)

In the above expression, the B j ilk are the incremental elastic moduli whose expression in terms of the
principal stretches can be found in [Haughton and Ogden 1979a], p and p∗ are, respectively, the primary
and incremental pressures associated with the constraint of incompressibility, and the tensor η is given by

η =

u/r 0 0
0 vz vr

0 uz ur

 with vz ≡
∂v

∂z
, vr ≡

∂v

∂r
, etc. (3-4)

The equation of motion is to be supplemented by the incompressibility condition

tr η = ur + vz +
u
r
= 0, (3-5)

and is to be solved subject to appropriate boundary conditions on r = a, b. On the outer boundary r = b,
we impose the traction-free boundary condition

χn= 0 on r = b (3-6)

for all three cases under consideration, where n denotes the unit normal to the surface. For a solid
cylinder, this boundary condition is supplemented by the condition that the solution must be bounded
at r = 0. For the case when a tube is subjected to an internal (hydrostatic) pressure P , the boundary
condition on r = a is given by

χn= PηT n on r = a. (3-7)

Finally, for the shrink-fit case, the boundary condition on r = a is given by

χ23 = 0, u = 0 on r = a. (3-8)
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As explained in [Fu et al. 2016], the bifurcation condition can be derived by first looking for a solution
of the form

u = f (r)eαz, v = g(r)eαz, p∗ = h(r)eαz. (3-9)

On substituting these expressions into the incremental equilibrium equations and then eliminating g(r)
and h(r) in favor of f (r), we find that f (r) satisfies the single fourth-order ordinary differential equation

r4
{r−1
[r−1B3232(r2 f ′′+ r f ′− f )]′}′+α2r2{r [r(B2222+B3333− 2B2233− 2B3223) f ′]′

+
(
r2σ ′′33− r2B′′3232+ rB′2222+ rB′1133− rB′1122− rB′2233− rB′3223

+ 2B1122+ 2B3223−B1111−B2222+ r20
)

f
}
+α4r4B2323 f = 0. (3-10)

This corresponds to [Haughton and Ogden 1980c, (49)] with α replaced by iα. In a similar manner, the
two boundary conditions (3-6) and (3-7) yield

r2 f ′′+ r f ′− (α2r2
+ 1) f = 0 on r = a, b, (3-11)

and

r2
[r−1B3232(r2 f ′′+ r f ′− f )]′+α2r3(B2222+B3333− 2B2233− 2B3223+B3232) f ′

−α2r2(rσ ′33− rB′3232+B2222+B1133−B1122−B2233−B3223) f = 0 on r = a, b. (3-12)

The last boundary condition (3-12) on r = a corresponds to (3-7) applied in the normal direction. For
the shrink-fitting case, this is replaced by

f (a)= 0, (3-13)

and as a result the boundary condition (3-11), which corresponds to χ23 = 0, reduces to

a f ′′(a)+ f ′(a)= 0. (3-14)

Because of the translational invariance in terms of z, α= 0 is always an eigenvalue of the above eigenvalue
problem. For sufficiently small values of 0, P , and F , none of the other eigenvalues can be pure imag-
inary since such eigenvalues give rise to bifurcation modes that are sinusoidal in the z-direction, and we
only expect such modes to appear for sufficiently large values of 0, P , and F . We note that Haughton and
Ogden’s [1980a; 1980b; 1980c] analysis is concerned with the conditions under which such bifurcation
modes would appear. Since our current analysis is concerned with a bifurcation mode that is localized
in the axial direction, as a first attempt we may assume that the tube or solid cylinder is infinitely long
so that boundary conditions at the two end faces need not be considered. This is essentially the “perfect”
bifurcation case (i.e., bifurcation in the absence of any imperfections). Effects of finite length as well as
material inhomogeneity and/or nonuniform wall thickness can all be considered as imperfections. Since
localized bulging is in general a subcritical bifurcation, it is expected that in the presence of imperfections,
the critical value of angular speed will be significantly lower than the value determined in the current
paper. For an illustration of the effect of imperfections, we refer to [Fu and Xie 2012].

For the problem under consideration, there exist two real eigenvalues of the form α =±α1 that are
closest to α = 0 when 0, P , and F are sufficiently small. These two eigenvalues would move along the
real axis towards the origin as 0 and/or P is increased gradually. According to the dynamical systems
theory, a necessary condition for a localized bulging bifurcation to take place is when α1 vanishes, making
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zero a triple eigenvalue; see, e.g., [Kirchgässner 1982] or [Haragus and Iooss 2011]. This necessary
condition is now derived for the three different cases defined earlier.

Solid cylinder. For the case of a solid cylinder, all the elastic moduli are constants and the reduced
eigenvalue problem can be solved analytically. Adapting Haughton and Ogden’s [1980a] results slightly,
we obtain the following equation satisfied by all the eigenvalues of α:

K1− K2 = 0, (3-15)

where K1 and K2 are defined by

νβ(ν
2
β + 1)I1(νβαb)Kβ = αb(ν2

βB1212+B2121)I0(νβαb)− νβ(2B1313+0b2)I1(νβαb), (3-16)

with ν1 and ν2 denoting the two positive roots of the biquadratic equation

ν4B1212− ν
2(B1111+B2222− 2B1122− 2B1221)+B2121 = 0. (3-17)

The condition for zero to become a triple eigenvalue can be obtained by expanding (3-15) in terms of α
and then setting the leading term to zero. The result is

(2B1313− 2B1212+0b2)ν2
1ν

2
2 − 2B2121(ν

2
1 + ν

2
2)− 2B2121 = 0,

which, on using (3-17), can be reduced to

0b2
− 2B1111+ 4B1122− 4B1212+ 4B1221+ 2B1313− 2B2222 = 0. (3-18)

With the use of the expressions for the elastic moduli given by [Haughton and Ogden 1979a], we have
verified that (3-18) can be reduced to (2-18). Thus, we conclude that for a rotating solid cylinder, a
localized bulge will be initiated when the rotation speed ω or the axial force given by (2-17) reaches a
maximum.

Unconstrained tube. We next consider the case of an unconstrained tube that is subjected to the com-
bined action of rotation, internal inflation, and an axial force. An inspection of the associated eigenvalue
problem governed by (3-10), (3-11), and (3-12) shows that it can be obtained from the case with 0 = 0
by the simple substitution

B1111→B1111−0r2. (3-19)

As a result, the exact bifurcation condition can be derived following the same procedure as in [Fu et al.
2016]. Guided by the results in that paper, we may further conjecture that with the above substitution, the
new bifurcation condition should be equivalent to �u(λa, λz)= 0, where �u(λa, λz) is defined by (2-13).
We have checked to verify that this is indeed the case. Furthermore, in the thin-wall limit, with the aid
of an expansion procedure adapted from [Fu et al. 2016], we find that the exact bifurcation condition to
leading order reduces to

λm(w1− λzw12)
2
+ λ2

zw22(w1− λ1w11)+ λ
3
m0

2
+ 2λ2

m(λzw12−w1)0 = 0, (3-20)

where λm denotes the azimuthal stretch in the mid-surface, and all the partial derivatives are now evaluated
at λ= λm . The associated leading-order expressions for 0 and F take the form

0 = w1/λm − λz P0, F = π(2w2− P0λ
2
m), (3-21)
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where P0= P/ε, ε being the wall thickness scaled by the averaged radius. If (3-21)1 is used to eliminate 0
in (3-20), we obtain the alternative bifurcation condition

λm(w11w22−w
2
12)−w1w22+ P0λ

2
m(2w12− λm P0)= 0, (3-22)

which is valid if P0 is held fixed in rotating the tube. As a useful check, this leading-order bifurcation
condition can also be obtained from J (0, F)= 0 when the leading-order expressions (3-21) are used.

As expected, when 0 = 0, (3-20) reduces to its counterpart for the pure inflation case given in [Fu
et al. 2008], and it is known that this reduced bifurcation condition has a solution that defines λz as a
function of λm for most of the commonly used strain-energy functions. In contrast, if we set P0 = 0
in (3-22), the existence of a solution of the reduced bifurcation condition depends very much on the
material model used: it again has a solution when the Ogden material model is used, but it does not
have a solution when the Gent material model is used. This difference carries over even when finite
wall thickness is considered, which will be discussed further in the next section. We also observe that
(3-22) with P0 = 0 is the same as [Haughton and Ogden 1980c, (63)] which emerged as the limit of the
condition of bifurcation into axially symmetric periodic modes in an infinitely long tube. This equation
reappeared as (71) in the same paper, where it was observed as characterizing the turning point of ω
when the axial force F is held fixed.

Constrained tube. Finally, we consider the shrink-fit case for which the applicable boundary conditions
at r = a, b are (3-13)–(3-14) and (3-11)–(3-12), respectively. Again, the bifurcation condition is the con-
dition under which zero becomes a triple eigenvalue. To derive this condition, we expand the stretches as

λa = λ
(0)
a +α

2λ(1)a + · · · , λz = λ
(0)
z +α

2λ(1)z + · · · (3-23)

and look for a regular perturbation solution of the form

f (r)= f (0)(r)+α2 f (1)(r)+ · · · , (3-24)

where the constants λ(i)a and λ(i)z (i = 0, 1, . . . ) and functions f (i)(r) (i = 0, 1, . . . ) are to be determined.
We are basically assuming that there is a small real eigenvalue α and then determining the required values
of the stretches that support such a small eigenvalue. If such a nontrivial solution can be found, then the
leading-order values λ(0)a and λ(0)z are the stretch values at which zero becomes a triple eigenvalue.

On substituting (3-24) into (3-10) and equating the coefficients of α0 and α2, we obtain a homogeneous
equation for f (0)(r) and an inhomogeneous equation for f (1)(r). These equations are the same as their
counterparts derived in [Fu et al. 2016] except for the substitution (3-19). We thus have

f (0)(r)= c1r + c2
1
r
+ c3κ1(r)+ c4κ2(r), (3-25)

and

f (1)(r)= d1r + d2
1
r
+ d3κ1(r)+ d4κ2(r)+ c1κ3(r)+ c2κ4(r)+ c3κ5(r)+ c4κ6(r), (3-26)

where ci and di (i = 1, 2, 3, 4) are constants and the expressions for κi (r) (i = 1, . . . , 6) are not written out
here for the sake of brevity. We observe that the last four terms in (3-26) are simply particular integrals.
The boundary conditions can similarly be expanded. On substituting (3-24) together with (3-25) and
(3-26) into the leading- and second-order boundary conditions, we find that c3 = c4 = 0, c2 =−ac1, and
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d2 =−ad1, and that the three constants c1, d3, and d4 satisfy three homogeneous linear equations. For a
nontrivial solution, we set the determinant of its coefficient matrix to zero, thus obtaining the condition

�(λ(0)a , λ(0)z )= 0, (3-27)

where

�(λa, λz)= (a2b2
− b4)F1+ (a2b4

− a4b2)F2+ 2b2 F3− 2a2b2 F4+ (a4
− b4)σ3(b)

+ b4(B1122(b)−B1133(b)− 2B2222(b)+ 3B2233(b)+ 2B3223(b)− 2B3232(b)−B3333(b)
)

+ a2b2(2B1133(b)+ 2B2222(b)+ 2B3232(b)− 2B1122(b)− 2B2233(b)− 2B3223(b)
)

+ b(a2
− b2)2(B′3223(b)+ p′(b))+ a4(B1122(b)−B1133(b)−B2233(b)+B3333(b)).

In the last expression, the constants F1, . . . , F4 are given by

F1 =

∫ b

a
ω1(t) dt, F3 =

∫ b

a
t
(∫ t

a
ω1(s) ds

)
dt,

F2 =

∫ b

a
ω2(t) dt, F4 =

∫ b

a
t
(∫ t

a
ω2(s) ds

)
dt,

ω1(r)=B′1122−B′1133+ 3B′2233− 2B′2222−B′3333+ 3B′3223+ r(B′′3223+ p′′)

+
1
r
(B1111−0r2

− 2B1122+ 2B2233−B3333),

ω2(r)=
1
r
(B′′3223+ p′′)+

1
r2 (B

′

1122−B′1133−B′2233−B′3333−B′3223)

+
1
r3 (B1111−0r2

− 2B1122+ 2B2233−B3333).

We may conjecture that the bifurcation condition (3-27) is equivalent to (2-14). This is verified numeri-
cally to indeed be the case.

4. Numerical results

We present some representative numerical results by considering two commonly used material models for
rubber-like materials, the Ogden [1972] and Gent [1996] material models. The associated strain-energy
function is given by

W = µ
3∑

r=1

µ∗r (λ
αr
1 + λ

αr
2 + λ

αr
3 − 3)/αr (4-1)

or

W =−
µ

2
Jm ln

(
1−

J1

Jm

)
, J1 = λ

2
1+ λ

2
2+ λ

2
3− 3, (4-2)

respectively, where µ is the ground state shear modulus,

α1 = 1.3, α2 = 5.0, α3 =−2.0, µ∗1 = 1.491, µ∗2 = 0.003, µ∗3 =−0.023,
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Figure 1. Relation between 0 and F when localized bulging takes place. The solid and
dashed parts on each curve correspond to λz < 1 and λz > 1, respectively. Left: Gent
material. Right: Ogden material.

Figure 2. Dependence of 0 and F on λz when localized bulging takes place. Solid and
dashed lines correspond to the Gent and Ogden material models, respectively.

and Jm is a material constant which we shall take to be 97.2 following [Gent 1996]. All our numerical
computations were carried out using Mathematica version 10.2.0.0.

Solid cylinder. We assume that a net axial force F is specified and we wish to determine the value of 0
at which localized bulging may take place. In Figure 1, we have shown the relation between 0 and F
when the bifurcation condition (2-18) is satisfied. The relation is obtained by varying λz continuously
from 0.2 to 1.2 and computing the associated 0 and F using (2-17) and (3-15). It is seen that both
curves contain a cusp point, corresponding to the fact that the 0 given by 0 = 2λ3

z ŵ
′′, defined by the

bifurcation condition (2-18), attains a minimum at λz = 0.39 for the Gent material, and λz = 0.20 for
the Ogden material; see Figure 2, left. In Figure 2, right, is shown the dependence of F on λz when
localized bulging occurs. It is seen that there is a major difference between the predictions between the
two material models: whereas the Ogden model predicts that localized bulging may take place when
F = 0 and the associated critical value of 0 = 3.81 is attained at λz = 0.15, the Gent material model
predicts that localized bulging can never take place when F = 0.
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Figure 3. Solution of the bifurcation condition�u(λa, λz)= 0, when the Ogden material
is used, for a rotating tube with A= 0.8 and P = 0 in terms of (λa, λz) (left) and (0, λz)

(right). The dashed lines represent the loading paths with F = 0, 0.5,−0.7.

Unconstrained tube. We first consider the simplest case when P = 0, and we determine the critical value
of 0 at which localized bulging may occur. We have in mind two possible types of end conditions: either
F or λz is fixed when 0 is increased. We note, however, that the solution of the bifurcation condition
�u(λa, λz) = 0 is independent of the end conditions. It is found that when the Gent material model
is used, this bifurcation condition does not have a solution, and so localized bulging can never occur
however large the rotation speed is. This fact was already noted in the previous section in the thin-wall
limit. In contrast, when the Ogden material model is used, �u(λa, λz) = 0 has a solution giving λz as
a function of λa; see the solid line in Figure 3, left, where we have also shown a typical loading curve
defined by F̃(λa, λz) = 0. As 0 is increased gradually from zero, loading starts from the point where
(λa, λz)= (1, 1) and traces down the loading curve F̃(λa, λz)= 0. Localized bulging would occur when
this curve intersects the bifurcation curve �u(λa, λz)= 0 at

(λa, λz)= (2.313, 0.683),

with the associated value of 0 equal to 0.885.
As a comparison, we have also shown in Figure 3, left, the loading paths associated with F = 0.5,−0.7.

It is seen that as F is increased from zero, the loading path is shifted upwards, whereas as F is decreased
from zero, the loading path is shifted downwards, eventually losing the intersections with the bifurcation
curve when F is approximately equal to −0.7. This means that when P = 0, localized bulging is always
possible when a stretching force is applied axially in addition to the rotation but becomes impossible
when a compressive force exceeding 0.7 in magnitude is applied.

To offer a different perspective on the bifurcation, we have shown in Figure 3, right, the critical value
of λz as a function of 0. This curve is obtained as follows. For each value of λz , the bifurcation condition
�u(λa, λz)= 0 is solved to find the corresponding values of λa (there are zero, one, or two such values,
as can be seen from Figure 3, left), and hence the values of 0. This alternative plot of the bifurcation
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A/B 0.43 0.5 0.6 0.7 0.8 0.9 0.99
λa 3.4779 2.9635 2.6486 2.4518 2.3128 2.2085 2.1346
λz 0.6291 0.6591 0.6729 0.6797 0.6834 0.6851 0.6956
0 1.4446 1.2984 1.1304 0.9958 0.8855 0.7935 0.7230
0 ≈ (1.3641) (1.2397) (1.0896) (0.9907) (0.8837) (0.7931) (0.7230)

Table 1. Critical values of 0 in free rotation (F = 0).

Figure 4. Solution of the bifurcation condition J (P̃, F̃)= 0 for the different values of 0
indicated. The solid, dotted, and dashed lines correspond to 0 = 0, 0.2, 0.5, respectively.
Left: Gent material. Right: Ogden material.

condition is particularly useful when it is the axial stretch that is fixed as the rotation speed is increased
gradually. For each such axial stretch, λz0 say, the corresponding critical value of 0 can simply be
obtained from the leftmost intersection of the horizontal line λz = λz0 in this plot with the bifurcation
curve. For instance, when λz is fixed at unity so that the tube is not allowed to contract axially as the
rotation speed is increased, the associated critical value of 0 is equal to 0.997. It is seen that the critical
value of 0 is an increasing function of λz .

We have also carried out calculations to find out how the results in Figure 3 depend on A. It is found
that as A decreases (so that the wall thickness increases), the curve corresponding to F = 0 would shift
downwards relative to the curve of �u(λa, λz)= 0. When A reaches 0.428 approximately, the two curves
would no longer intersect, implying that localized bulging becomes impossible below this threshold value.
In Table 1, we have listed the critical values of 0 for a selection of values of A. Since the wall thickness
is a decreasing function of A/B, it can be seen that the larger the wall thickness, the larger the critical
value of 0. The numbers in parentheses in the last row are the corresponding results based on the thin-
wall approximation (3-21) and (3-22) and is seen to provide a good approximation, with a relative error
of less than 5%, for values of A as small as 0.5.

We next consider the effect of allowing for a nonzero internal pressure. There are now two subcases.
The first subcase is when the unconstrained tube is mainly subjected to the action of internal inflation
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Figure 5. Solution of the bifurcation condition �u(λa, λz) = 0 for the three different
values of P indicated. The dashed line corresponds to the solution of F̃(λa, λz) = 0
when P = 0.06 and is the loading path when there is no net axial force applied at the
plane end faces. Its intersection with the solid curve associated with P = 0.06 gives
the values of the two stretches when localized bulging takes place. Left: Gent material.
Right: Ogden material.

and an axial force, with rotation being small and playing a minor role. This subcase covers the case of
zero rotation which has previously been investigated in [Fu et al. 2016]. In Figure 4 we have shown the
solution of the bifurcation condition �u(λa, λz)= 0 for three representative values of 0 and the common
value of A = 0.8. We note that when 0 is nonzero, the solution again has two branches when the Ogden
material model is used. We shall focus our discussion on the parameter regime near λa = λz = 1. It is
seen that adding a rotation to the tube delays the onset of localized bulging when the Gent material is
used, but when the Ogden material is used the rotation has a delaying effect when the rotation speed is
small, but has an opposite effect when the rotation speed is large enough.

Finally, we assume that the internal pressure P is zero or small, and it is the rotation and axial force F
that play a dominant role. In Figure 5 we have shown the solution of �u(λa, λz)= 0 for three representa-
tive values of P . There is here a big difference between the predictions of the two material models. When
P = 0 and the Gent material model is used, the condition �u(λa, λz)= 0 does not have a solution at all,
which means that localized bulging is impossible now matter how large the rotation speed is. Localized
bulging first becomes possible when P is increased to the value of 0.051. In contrast, according to the
Ogden material model, localized bulging is possible even if P is zero. The dotted line in each figure
represents the loading path, the solution of F̃(λa, λz)= 0, when P = 0.06 and the net axial force is zero.

The shrink-fit case. In this case the stretches must satisfy F̃0(λa, λz, 0)= F . This equation may also
be solved to express 0 in terms of F . The bifurcation condition (2-14) then depends on F as well as λa

and λz . For each specified F , this condition defines a curve in the (λa, λz) plane. A typical solution with
F = 2 is shown in Figure 6, where the solution of σ33(a)= 0 is also shown with a dashed line. It is seen
that although localized bulging is possible, the contact force at r = a must necessarily be tensile. This
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Figure 6. Solution of the bifurcation condition (2-14). The result corresponds to F = 2
and is shown with a solid line. The dashed line in each plot represents the solution of
σ33(a)= 0. Left: Gent material. Right: Ogden material.

means that no matter how tight the initial fitting is, localized bulging will not occur before the tube loses
contact with the rigid spindle. It is also found that as F is gradually reduced, the closed curve shrinks in
size and eventually disappears at F = 1.29 when the Gent material model is used and at F = 1.66 when
the Ogden material model is used. Thus, in particular, when the plane ends of the tube are traction-free,
localized bulging will not occur no matter how large λa or 0 is.

5. Conclusion

In this paper we have studied the bifurcation condition for localized bulging of a circular solid cylinder
or cylindrical tube which rotates about its axis of symmetry. Additional external forces may include a
nonzero net axial force and/or internal pressure. In each case, the bifurcation condition is derived with
the aid of the dynamical systems theory and found to have simple interpretations in terms of physical
quantities such as the rotation speed, axial force, and internal pressure. For instance, when the axial force
and internal pressure are both fixed, the bifurcation condition simply corresponds to the angular velocity
reaching a maximum when viewed as a function of λa for a tube or λz for a solid cylinder. However,
this correspondence is lost when for instance it is the axial stretch λz that is fixed in rotating the tube.
Although we have only presented numerical results for A = 0.8 and two typical strain-energy functions,
our simple representation of the bifurcation condition can be used to evaluate the effects of wall thickness
and dependence on the material model in a straightforward manner if required.

The simplest case is perhaps the case of free rotation when both F and P are zero. Our illustrative
calculations show that the Ogden material model would predict that localized bulging may occur but
the Gent material model would predict that localized bulging can never occur. According to the Gent
material model, localized bulging could occur only if a sufficiently large internal pressure is added. Also,
according to both models, localized bulging will not occur in the shrink-fit case before contact with the
rigid spindle is lost.
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It would be of interest to ask whether the localized bulging discussed in the current study could be
realized for realistic material parameters and angular speeds in free rotation. As a rough estimate, we take

ρ = 0.91 kg/m3, µ= 667 kPa,

which are typical values for natural rubber. If B = 0.1 m, the critical value of 0 = 3.81 predicted by the
Ogden model for a solid cylinder would correspond to an angular velocity ω = 528/s, which translates
to a rotation frequency of 5046 rpm (revolutions per minute). For a cylindrical tube with B = 0.1 m,
A/B = 0.8, the critical value of 0 = 0.885 predicted by the Ogden model for an unconstrained tube
corresponds to an angular velocity ω = 270/s, which is about 2582 rpm. This is within the achievable
rotor speed of 3000 rpm. The required speed for the solid cylinder is higher, but it can be brought down
by choosing a softer material since the rotation frequency is proportional to the square root of µ. For
instance, for a typical gelatin, the shear modulus can be as small as 30 kPa [Markidou et al. 2005], for
which the critical rotation frequency would be 1070 rpm. Thus, we may conclude that localized bulging
should be easily observable in soft materials.

In the current study, we have assumed that the solid cylinder or tube is made of an isotropic elastic
material. Our study can be easily extended to the case when the tube is helically reinforced by two
families of identical fibres. The symmetry of the fibres ensures that axisymmetric deformations are
again possible, and as far as such deformations are concerned, the tube would behave effectively like an
isotropic material. However, as demonstrated in a recent study for the pure inflation case [Wang and Fu
2017], it is expected that the fibres will have a drastic effect on localized bulging. To be more precise,
using fibre reinforcement can be a very effective method to construct nonbulging tubes.

Finally, we remark that the bifurcation condition derived in the present paper is only a necessary
condition for localized bulging to occur. Strictly speaking, whether localized bulging can actually take
place at the critical value of rotation can only be established by a weakly nonlinear analysis. However,
from our experience with the pure inflation case for which both analytical and experimental results are
available, we expect that the existence of localized bulging configurations should be the norm rather than
the exception.
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