Recent Issues
Volume 20, 4 issues
Volume 20
Issue 4, 377–436
Issue 3, 269–376
Issue 2, 125–267
Issue 1, 1–124
Volume 19, 5 issues
Volume 19
Issue 5, 747–918
Issue 4, 541–746
Issue 3, 303–540
Issue 2, 157–302
Issue 1, 1–156
Volume 18, 5 issues
Volume 18
Issue 5, 621–764
Issue 4, 427–565
Issue 3, 293–425
Issue 2, 143–291
Issue 1, 1–141
Volume 17, 5 issues
Volume 17
Issue 5, 403–501
Issue 4, 297–401
Issue 3, 193–296
Issue 2, 97–192
Issue 1, 1–95
Volume 16, 5 issues
Volume 16
Issue 5, 595–696
Issue 4, 389–594
Issue 3, 237–388
Issue 2, 105–235
Issue 1, 1–104
Volume 15, 5 issues
Volume 15
Issue 5, 555–633
Issue 4, 435–554
Issue 3, 291–434
Issue 2, 185–289
Issue 1, 1–184
Volume 14, 5 issues
Volume 14
Issue 5, 601–770
Issue 4, 449–599
Issue 3, 309–448
Issue 2, 193–308
Issue 1, 1–191
Volume 13, 5 issues
Volume 13
Issue 5, 607–714
Issue 4, 421–605
Issue 3, 247–419
Issue 2, 141–246
Issue 1, 1–139
Volume 12, 5 issues
Volume 12
Issue 5, 563–722
Issue 4, 353–561
Issue 3, 249–351
Issue 2, 147–247
Issue 1, 1–146
Volume 11, 5 issues
Volume 11
Issue 5, 491–617
Issue 4, 329–490
Issue 3, 197–327
Issue 2, 91–196
Issue 1, 1–90
Volume 10, 5 issues
Volume 10
Issue 5, 537–630
Issue 4, 447–535
Issue 3, 207–445
Issue 2, 105–206
Issue 1, 1–103
Volume 9, 5 issues
Volume 9
Issue 5, 465–574
Issue 4, 365–463
Issue 3, 259–363
Issue 2, 121–258
Issue 1, 1–119
Volume 8, 8 issues
Volume 8
Issue 8-10, 385–523
Issue 5-7, 247–384
Issue 2-4, 109–246
Issue 1, 1–107
Volume 7, 10 issues
Volume 7
Issue 10, 887–1007
Issue 8-9, 735–885
Issue 7, 613–734
Issue 6, 509–611
Issue 5, 413–507
Issue 4, 309–412
Issue 3, 225–307
Issue 2, 119–224
Issue 1, 1–117
Volume 6, 9 issues
Volume 6
Issue 9-10, 1197–1327
Issue 7-8, 949–1195
Issue 6, 791–948
Issue 5, 641–790
Issue 1-4, 1–639
Volume 5, 6 issues
Volume 5
Issue 6, 855–1035
Issue 5, 693–854
Issue 4, 529–692
Issue 3, 369–528
Issue 2, 185–367
Issue 1, 1–183
Volume 4, 10 issues
Volume 4
Issue 10, 1657–1799
Issue 9, 1505–1656
Issue 7-8, 1185–1503
Issue 6, 987–1184
Issue 5, 779–986
Issue 4, 629–778
Issue 3, 441–627
Issue 2, 187–440
Issue 1, 1–186
Volume 3, 10 issues
Volume 3
Issue 10, 1809–1992
Issue 9, 1605–1807
Issue 8, 1403–1604
Issue 7, 1187–1401
Issue 6, 1033–1185
Issue 5, 809–1031
Issue 4, 591–807
Issue 3, 391–589
Issue 2, 195–389
Issue 1, 1–193
Volume 2, 10 issues
Volume 2
Issue 10, 1853–2066
Issue 9, 1657–1852
Issue 8, 1395–1656
Issue 7, 1205–1394
Issue 6, 997–1203
Issue 5, 793–996
Issue 4, 595–791
Issue 3, 399–594
Issue 2, 201–398
Issue 1, 1–200
Volume 1, 8 issues
Volume 1
Issue 8, 1301–1500
Issue 7, 1097–1299
Issue 6, 957–1095
Issue 5, 837–956
Issue 4, 605–812
Issue 3, 407–604
Issue 2, 205–406
Issue 1, 3–200
Abstract
We present novel governing operators in the theory of peridynamics (PD) which will
allow the extension of PD to applications that require local boundary conditions
(BC). Due to its nonlocal nature, the original PD governing operator uses nonlocal
BC. The novel operators agree with the original PD operator in the bulk of the
domain and simultaneously enforce local Dirichlet or Neumann BC. Our construction
is straightforward and easily accessible. The main ingredients are antiperiodic and
periodic extensions of kernel functions together with even and odd parts of functions.
We also present governing operators that enforce antiperiodic and periodic BC and
the corresponding compatibility conditions for the right-hand side function in a given
operator equation. Finally, we present the basic idea in extending the 1D
construction to 2D.
Keywords
nonlocal operator, peridynamics, boundary condition,
integral operator
Milestones
Received: 5 September 2016
Revised: 23 January 2017
Accepted: 3 February 2017
Published: 20 May 2017