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NONLINEAR IMPACTING OSCILLATIONS OF PIPE CONVEYING PULSATING
FLUID SUBJECTED TO DISTRIBUTED MOTION CONSTRAINTS

WANG YIKUN, NI QIAO, WANG LIN, LUO YANGYANG AND YAN HAO

The nonlinear dynamics of a simply supported pipe conveying pulsating fluid is investigated by intro-
ducing distributed motion constraints along the pipe axis. The constraints are modeled by trilinear
springs. The flowing fluid in the pipe is pulsatile, which is assumed to have a time-dependent harmonic
component superposed on the steady fluid flow. Attention is concentrated on the potential performance
of the pipe/impacting system with various pulsating frequencies. To investigate the short-wave buckling,
the behaviors of the simply supported pipe with steady internal flow velocities are presented first. The par-
tial differential equations (PDEs) are formulated and then transformed into a set of ordinary differential
equations (ODEs) using the Galerkin’s method. The nonlinear dynamical responses are presented in the
form of bifurcation diagrams, time histories, phase portraits, Poincaré maps and power spectrums. Some
interesting and sometimes unexpected results have been observed under various system parameters.

1. Introduction

The dynamical problem of pipes conveying fluid is an important academic topic with broad industrial
applications, e.g., pump discharge lines, oil pipelines, propellant lines, reactor system components, mi-
crofluidic devices and so forth [Païdoussis 1998; Hu et al. 2016; Wang et al. 2016]. Their oscillation
behavior is also one of the most troublesome problems in engineering applications. These industries
usually utilize high thermal efficiency shell and heat exchanger designs to avoid failure. Some practical
cases often require the devices to be able to work with high flow velocities, which in turn could cause
pipes to experience complicated flow-induced vibrations.

A large number of studies have been devoted to the flow-induced vibrations of pipes due to their rich
dynamical behavior [Païdoussis 1983; Chen 1991; Weaver et al. 2000; Pettigrew et al. 1978; Dai et al.
2014a]. Many researchers focused on the flow-induced vibrations of pipes to get better understanding
of the mechanisms of the system. Studies related to this topic seem to have started in the 1960s. The
stabilities and nonlinear dynamics of pipes conveying fluid were investigated both theoretically and ex-
perimentally. A very comprehensive introduction to the flow-induced vibrations and the associated linear
stability problems can be found in [Chen 1987]. Nonlinear behaviors of slender structures subjected to
axial fluid flows were discussed in details in [Païdoussis 1998]. Indeed, the pipe system exhibits a wide
range of interesting dynamical behaviors under different boundary conditions and motion constraints.
These cases cover a number of factors, such as the parametric excitations in the form of flow fluctuation,
external excitations, various loose supports, articulated or continuous configuration, additional system
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configurations like lumped mass, attached nozzles, elastic foundations, elastic constraints, and various
forms of nonlinearities in the system arising from different aspects.

In the literature many studies have considered either pulsating fluid flows or motion constraints at
one or finite number of locations on the pipe. The dynamics of a pipe conveying fluid was explored
when the flow velocity is harmonically perturbed about a mean value in [Païdoussis and Sundarara-
jan 1975]. Cantilevered and clamped-clamped models were investigated, in which the parametric and
combination resonances were included. The method of averaging is adapted to examine the nonlinear
dynamics of supported pipes conveying pulsating fluid in the vicinity of subharmonic resonances in
[Sri Namachchivaya 1989; Chen 1971]. Several other notable papers on linear analytical models for
these parametric instability problems of simply supported pipes were conducted in [Païdoussis and Issid
1974; Ginsberg 1973; Ariaratnam and Sri Namachchivaya 1986]. They have studied the parametric
and combination resonances and evaluated the instability regions using Bolotin’s method and numerical
Floquet analysis. The nonlinear dynamics of supported pipes conveying pulsating fluid were discussed
in [Sri Namachchivaya 1989; Jayaraman and Narayanan 1996; Chang and Chen 1994; Yoshizawa et al.
1986; Dai et al. 2014b]. From these studies, it is clear that the basic system of a pipe conveying pulsating
fluid could lose stability at sufficiently high flow velocities. Thus, the analysis of subharmonic and
combination resonances was the main interest for simply supported pipes conveying pulsating fluid,
yielding the stability boundaries in the parameter space. For a perspective on the whole field of pipes
conveying pulsating fluid, the interested reader is referred to [Païdoussis 1998].

In [Panda and Kar 2007; 2008; Wang 2009], a simply supported pipe conveying pulsating fluid was
analyzed, in which the nonlinear force considered is associated with the axial extension of the pipe. By
accounting for the nonlinearity resulted from the pipe’s mean axial extension, the combination, principal
parametric and internal resonances of supported pipes were investigated in the first two of these references.
Nonlinear analysis of a cantilevered pipe conveying steady fluid with motion constraints was conducted
in [Païdoussis and Semler 1993]. Two impact models representing the effect of motion constraints,
i.e., cubic and trilinear springs, were introduced in the physical model and taken into account when
deriving the nonlinear equation of motion. Results were obtained numerically in the form of bifurcation
diagrams, phase plots, power spectral diagrams and time traces. Hassan et al. [2005] provided a means
of representing the restraining force by a combination of edge and segmental contacts. The location of
the contact segment during impact was unknown and determined artificially according to the researchers’
interests in their studies. The location of the contact segment may greatly affect the performance of the
system. The nonlinear dynamics of a simply supported pipe conveying pulsating fluid was further studied
in [Wang 2009] by considering the effect of motion constraints modeled by cubic springs; the mean value
of the pulsating velocity was assumed to be higher than the critical one for buckling instability, compared
to the lower values of mean flow velocity used by [Sri Namachchivaya 1989; Sri Namachchivaya and
Tien 1989]. Quasiperiodic and chaotic motions were obtained by using the Galerkin method with a
two-mode approximation (N = 2). In [Xia and Wang 2010], an improved theoretical model for the
dynamics of tube arrays subjected to cross flow was developed, with consideration of the nonlinearity
associated with the mean axial extension of the tube array. The restraining forces were modeled either
by cubic or trilinear springs. In [Tang et al. 2014] another theoretical model was developed to analyze
the fluid-elastic vibration of a single flexible curved pipe, surrounded by rigid cylinders and subjected to
cross-flow as well as loose supports.
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Figure 1. Schematic of the simply supported pipe conveying pulsating fluid with dis-
tributed motion constraints.

The present study initiates to investigate the dynamics of simply supported pipes with both internal
pulsating fluid flow and distributed motion constraints imposed on the pipe. The simply supported pipe
would impact the distributed motion constraints once the oscillation amplitude becomes sufficiently large.
The constraints are modeled as trilinear springs and further improved as distributed constraints acting on
the pipe along its axis. The pulsating internal flow has a time-dependent harmonic component superposed
on the steady flow, such that u = u0(1+ σ sinωτ ), where u0 is the mean flow velocity of the internal
fluid, σ is the pulsating amplitude, and ω is defined as the pulsating frequency of internal fluid flow.
Particular attention is focused on the possible behaviors of the system by varying the values of pulsating
frequencies of the unsteady internal fluid. Some interesting and sometimes unexpected results will be
shown. The bifurcation diagrams, phase portraits, Poincaré maps and power spectral density diagrams
will be constructed to present the dynamical behavior of the pipe system.

2. Equations of motion

In the current work, the simply supported pipe conveying pulsating fluid in the presence of distributed
motion constraints is of length L , cross section area A, flexural rigidity E I , density ρp, mass per unit
length m and coefficient of visco-elastic damping E∗. The internal flowing fluid is of density ρ f , mass
per unit length M and flow velocity U . The distributed motion constraints are modeled by trilinear
springs along the pipe axis, as depicted in Figure 1.

The governing equation of a simply supported pipe in the absence of motion constraints has been
obtained before [Panda and Kar 2007; Panda and Kar 2008; Jin and Song 2005]. The governing equation
will be modified here to describe the behavior of the pipe with motion constraints. It is

E I
∂4w

∂x4 + E∗ I
∂5w

∂t ∂x4 + 2MU
∂2w

∂t ∂x
+ (M +m)

∂2w

∂t2

+

[
MU 2

+M ∂U
∂t
(l − x)−

(
E + E∗ ∂

∂t

) A
2l

∫ l

0

(
∂w

∂x

)2
dx
]
∂2w

∂x2 + F(w)= 0, (1)
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(:S;Figure 2. Diagrammatic view of the contacting force F(w) vs. the transverse displacement w.

in which F(w) represents the effect of the nonlinear motion constraints acting on the pipe. Following
[Païdoussis and Semler 1993], the nonlinear restraining force is given by

F(w)= K
(
w− 1

2(|w+w0| − |w−w0|)
)3
, (2)

in which w0 is the free gap between the pipe wall and the edge of the motion constraints; K is the stiffness
of the trilinear springs. As suggested by [Païdoussis and Semler 1993], this expression of nonlinear force
F(w) agrees well with the experimental tests. A qualitative relation of the nonlinear spring force and the
transverse displacement w is shown in Figure 2. There is no contact when |w|<w0 and there is nonzero
restraining force once |w|>w0.

Introducing the following nondimensional quantities,

η =
w

L
, ξ =

x
L
, d =

w0

L
, τ =

√
E I

m+M
t

L2 , u =

√
M
E I

LU, k =
Kspr L5

E I
,

α =

√
E I

m+M
E∗

L2 , β =
M

m+M
, κ =

AL2

2I

Equation (1) can be rewritten in a dimensionless form as

α
∂5η

∂τ∂ξ 4 +
∂4η

∂ξ 4 +
[
u2
+
√
βu̇(1− ξ)

]∂2η

∂ξ 2 + 2
√
βu

∂2η

∂τ∂ξ
+
∂2η

∂τ 2

− κ
∂2η

∂ξ 2

∫ 1

0

(∂η
∂ξ

)2
dξ − 2ακ

∂2η

∂ξ 2

∫ 1

0

∂η

∂ξ

∂2η

∂τ∂ξ
dξ + f (η)= 0.

(3)

The nondimensional restraining force is expressed as

f (η)= k
(
η− 1

2(|η+ d| − |η− d|)
)3
. (4)

The nondimensional pulsating fluid velocity is described by a sinusoidal fluctuation in τ :

u = u0(1+ σ sinωτ), (5)
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where u0 is the mean flow velocity, σ is the pulsating magnitude and ω the pulsating frequency.
The infinite dimensional model can be discretized via Galerkin’s technique, with the simply supported

beam eigenfunctions φ j (ξ). These eigenfunctions are used as a suitable set of base functions with q j (τ )

being the corresponding generalized coordinates; thus

η(ξ, τ )=

N∑
j=1

φ j (ξ)q j (τ ), (6)

where N is the number of modes taken into calculations. Substituting (6) into (3), multiplying by φi (ξ)

and integrating from 0 to 1 leads to

{q̈}+ [C]{q̇}+ [K ]{q}+ { f (q)}+ {g(q, q̇)} = {0}. (7)

[C], [K ], { f (q)} and {g(q, q̇)} represent the stationary damping and stiffness matrices, column vectors
of the nonlinear restraining forces and geometrically nonlinear terms, respectively. The elements of [C],
[K ], { f (q)} and {g(q, q̇)} are given by

Ci j = αc1
i j + 2

√
βu0(1+ σ sinωτ)c2

i j , Ki j = k1
i j + u2

0(1+ σ sinωτ)2k2
i j +

√
βu0σω cosωτk3

i j ,

fi =

∫ 1

0
φi (ξ) f

( N∑
j=1

φ j (ξ)q j

)
dξ, gi = g1

i jklq j qkql + g2
i jklq j qk q̇l,

(8)

where

c1
i j = λ

4
i δi j , c2

i j =

∫ 1

0
φiφ
′

j dξ, k1
i j = λ1δi j , k2

i j =−λ
2
i δi j , k3

i j =

∫ 1

0
(1− ξ)φiφ

′′

j dξ,

g1
i jkl = g2

i jkl =

∫ 1

0
φ1φ

′′

j

∫ 1

0
φ′kφ

′

ldξdξ.

(9)

The calculation of the values of fi in (8) deserves special attention. As can be seen in (4), the impacting
force f (η) is a function of η. In the numerical algorithm, the values of qi (τ ) for arbitrary time τ can
be calculated from (7) provided that the initial conditions were given, and then the displacement η(ξ, τ )
is obtained using (6). The instantaneous values of η(ξ, τ ) are further substituted into (4), yielding the
values of distributed impacting force along the pipe axis at that time. Finally, the values of fi can be
obtained using the third expression of (8). The interested reader can get the matrix forms of the other
coefficients (Ci j , Ki j , gi ) from [Ni et al. 2015]. For the purpose of numerical computation, we define
p= q̇ and z = [q; p]; equation (9) is then reduced to its first-order form:

ż = Az+ F+G, (10)

where

A=
[

0 I
−K −C

]
, G =

[
0
−g

]
, F =

[
0
−f

]
. (11)

It follows from (10) that A, G and F are 2N × 2N , 2N × 1 and 2N × 1 matrices, respectively.
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3. Results and discussion

In the following, the dynamical behaviors of the simply supported pipe conveying pulsating fluid with
distributed motion constraints will be investigated numerically. To the author’s knowledge, the nonlin-
ear responses of a supported pipe conveying pulsating fluid with relatively high mean flow velocity in
the presence of distributed motion constraints have not yet been explored. Therefore, we analyze the
nonlinear vibrations of hinged–hinged pipes conveying fluid regarding this topic.

As is known that for a simply-supported pipe conveying fluid with a steady flow velocity, divergence
in the first mode occurs at a dimensionless critical flow velocity uc = π [Païdoussis 1998]. The main
aim of this paper is to explore the effects of the pulsating frequency ω with higher mean flow velocity
u0 and the introduction of distributed motion constraints. For that reason, solutions of (10) are obtained
by using the fourth-order Runge–Kutta method, with the following initial conditions employed, z(1)=
· · · = z(N )=−0.001 and z(N + 1)= · · · = z(2N )= 0.

The results to be presented are obtained with N = 4 since this choice is sufficient for predicting the
nonlinear responses of supported pipes, provided that the pulsating frequency is relatively small [Ni et al.
2014]. In the following calculations, some of the physical parameters are chosen to be

α = 0.005, β = 0.64, κ = 5000, k = 5.6× 106, d = 0.044, σ = 0.4. (12)

3.1. Validation of the algorithm. In order to illustrate the effectiveness of the present algorithm, we first
consider the model of a simply supported pipe conveying pulsating fluid without motion constraints. The
system parameters are selected to be those used in [Wang 2009; Ni et al. 2014], i.e., α = 0.005, β = 0.64
and κ = 5000. The mean flow velocity is chosen to be u0 = 4.5 and the pulsating amplitude is σ = 0.4.
It is noted that the bifurcation diagram for N = 2 shown in Figure 3 without motion constraints are in
good agreement with those obtained in those references. This validates the correctness of the present
numerical scheme used in the following analysis.

0 L t Q4 L

Ù L rärrw Ú L räxv â L wrrr

Figure 3. Bifurcation diagram of the mid-point displacement, for N = 2, u0 = 4.5,
σ = 0.4, α = 0.005, β = 0.64 and κ = 5000.
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3.2. Buckling of the pipe with motion constraints for σ = 0 and ω = 0. To investigate the static short-
wave buckling, results will be presented first with the flow velocity assumed to be constant. The pipe
is placed between the two-sided motion constraints, which are described by a trilinear-spring contact
model. As mentioned in the foregoing, [Ni et al. 2014] have proved the effectiveness of the truncating
number N = 4 in the presence of nonlinear motion constraints. So, the buckling analyses are conducted
by truncating (8) at N = 4. To get a good understanding of the buckling style, bifurcation diagrams for
displacements of three points on the pipe will be performed, i.e., for η(0.25, τ ), η(0.5, τ ) and η(0.75, τ ).
That is, whenever the oscillation velocity is zero (i.e., η̇(0.25, τ ), η̇(0.5, τ ) or η̇(0.75, τ ) are equal to
zero), the corresponding displacement will be recorded.

Numerical results shown in Figure 4 are based on the trilinear-spring model. Inspecting Figure 4, it
is easy to find that, with the increasing of flow velocity, the pipe exhibits different types of buckling
instability. For 0 < u0 < 3.14, the pipe stays at the equilibrium position. This is because the flow-
induced effect cannot overcome the damping effect of the system. For 3.15 < u0 < 15.7, the pipe is
buckled with a half-wave configuration. However, as u0 is further increased, the half-wave configuration
becomes flatter in the vicinity of peak displacement, which means more and more parts of the pipe tend to
contact the motion constraints. In this case, the contact ratio between the pipe and the distributed motion
constraints becomes larger. The restraining force acts on the pipe and cuts the wave crest of the buckling
configuration. The configuration of the pipe is symmetrical although it is not exactly a sinusoidal one.
For 15.8 < u0 < 19.7, the pipe along the axial direction behaves like a “W” shape. Interestingly, the
two half-waves occur at the same side of the straight equilibrium position. Moreover, another region of
19.8 < u0 < 25 generates a buckling shape similar to the curve of one period of a sinusoidal function.
Several typical buckling configurations of the pipe for various flow velocities are shown in Figure 5.
These results show the significant influence of motion constraints on the behavior of the pipe system.

ß:rätwá ì; ß:räwá ì; ß:räyw

Q4

Q O s{äy

Figure 4. Bifurcation diagram for η(0.25, τ ) (blue), η(0.5, τ ) (black) and η(0.75, τ )
(red), as the mean velocity u0 varies. (Overlapping red and blue points when u0 < 19.7
indicate symmetry of the pipe shape).
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u0 = 4.5 u0 = 15.3

Q4 L väw Q4 L swäu

u0 = 19.5

Q4 L swäu Q4 L s{äw Q4 L tr

u0 = 20

Figure 5. Buckling configurations of the pipe conveying steady fluid flow for various
flow velocities u0.

3.3. Responses of the pipe with pulsating internal flows. In this subsection, the effects of pulsating
internal flows on the responses of the pipe system will be explored. As mentioned in the foregoing,
in some working conditions, the mean flow velocity may be much higher than uc = π . Therefore, in
this paper, the flow velocity is chosen to be higher than uc. We consider the cases of u0 = 4.5 and
u0 = 6, respectively. Bifurcation diagrams for the midpoint displacement of the pipe are conducted, as
the pulsating frequency ω is varying.

It can be seen from Figure 6 that, for u0 = 4.5 and 0< ω < 20, the dynamics of the pipe/impacting
system are similar to those of the pipe in the absence of motion constraints. This can be expected since
the vibration amplitude of the mid-point of the pipe does not exceed the gap of the motion constraints
in such case. Moreover, the contact force is small at the onset of impacting. Thus, in the range of
0< ω < 20, the pipe has an occurrence of ‘free flight’ between the two-sided constraints. And periodic
motions are detected in the range of 20< ω < 38.7. Compared with the amplitude shown in Figure 3,
the displacement amplitude is limited to be smaller and is slightly larger than the gap distance, indicating
that contact between the motion constraints and pipe occurs. The oscillation of the pipe further evolves
to become chaotic for ω > 38.8, while for a pipe without motion constraints the threshold for chaos is
about ω = 32.8. In fact, in the range of ω > 38.8, quasiperiodic motion might also occur.
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Q4 L väwFigure 6. Bifurcation diagram for the constrained pipe system with u0 = 4.5 at ξ = 0.5.

Q4 L xFigure 7. Bifurcation diagram for the constrained pipe system with u0 = 6 at ξ = 0.5.

Considering the case with relatively high mean flow velocity, i.e., u0 = 6, a quite different result is
obtained, as presented in Figure 7. For u0 = 6, impact between the pipe and constraints would occur
for all pulsating frequencies considered, since the displacement amplitude in the absence of constraints
reaches at a value of 0.494, which is larger than the gap distance between the pipe and constraints. As
the pulsating frequency increases, it follows from Figure 7 that the response of the pipe may be periodic,
quasiperiodic or chaotic. When the pulsating frequency is larger than ω= 10.9, different types of periodic
motion (with periods 1, 2 and 3) might occur.

Sample results of phase plots and power spectral density diagrams for the system with u0 = 4.5 and
u0= 6 are further presented in Figures 8 and 9. It can be seen that the pipe vibrates regularly or irregularly
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ω = 9.5

ω = 30

Q4 L väw

ñ L {äw ñ L ur ñ L u{ä{

ω = 39.9

Figure 8. Phase plots and PSD diagrams for the system with motion constraints for
u0 = 4.5 and three values of ω.

back and forth within the gap, showing periodic motions (Figure 8, middle, and Figure 9, middle and
bottom), chaotic-like motions (top parts of Figures 8 and 9) and transition motions (Figure 8, bottom)
at some particular pulsating frequencies. The Poincaré maps for period-1 and multiperiod motions, as
well as chaotic motions are constructed and shown in Figure 10. In this figure, the number of points in
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ω = 9.5

ω = 30

 

Q4 L x

ñ L {äw ñ L ur ñ L vräz

ω = 40.8

Figure 9. Phase plots and PSD diagrams for the system with motion constraints for
u0 = 6 and three values of ω.

Poincaré maps is twice as big as the number of pulsating period [Cai and Chen 1993]. Thus, the Poincaré
maps for period-1, period-2, and chaotic motions consist of two points, four points, and infinitely many
points, respectively, as seen in Figure 10. It is seen that the Poincaré map for chaos shows a complex
fractal structure.
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ω = 9.5 ω = 30

u0 = 4.5

Q4 L väw ñ L {äw Q4 L väw ñ L ur

ω = 9.5

väw ñ L ur Q4 L x ñ L {äw Q4 L x ñ L vräz

ω = 40.8

u0 = 6

Figure 10. Poincaré maps for chaotic, period-1 and multiperiod motions.

Figure 11 shows mode shapes of the pipe for two sets of system parameters with different mean flow
velocities and pulsating frequencies. To make the oscillation style clearer, only half-period of the motion
is presented since it is a periodic vibration. We can see two phenomena from these mode shapes. The
first is that the pipe deflects like a sinusoidal function in a period when it crosses the straight equilibrium
position. The second is when the pipe bangs on one constraint, the impacting force makes the pipe
rebound from it. Thus, the mode shape also changes at this moment. The time traces shown in Figure 11,
right, imply that the difference between the cases of low and high mean flow velocities is obvious.

3.4. Evolution of the impacting forces between the pipe and constraints. The previous three subsec-
tions have focused on the dynamical behavior of the pipe. We now turn our attention to the evolution of
the impacting forces as the pipe is impacting on the constraints. In Figure 1, two contact modes have been
shown and there may be some other types in describing the contact behavior. Since the aforementioned
two types of contact behavior have been realized in the numerical computation, the impacting force will
be presented. The impacting forces may vary dynamically with time since the contact process changes
quickly as time progresses.
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Figure 11. Special vibration shapes and displace

Q L väw ñ L ur

Q L väw ñ L ur

lacement responses at the mid-point of the pipe under

väw ñ L ur Q L x ñ L ssä{

äw ñ L ur Q L x ñ L ssä{

Figure 11. Special vibration shapes and displacement responses at the mid-point of the
pipe under various load cases. (a) vibration shape for u0 = 4.5, ω = 30; (b) vibration
shape for u0 = 6, ω = 11.9; (c) displacement for u0 = 4.5, ω = 30; (d) displacement for
u0 = 6, ω = 11.9.

Inspecting Figure 5, top left, it is found that the buckling amplitude is smaller than the gap between
the pipe and constraints and hence no contact occurs in this case. For the results shown in the rest of
Figure 5, however, there exist contact forces between the pipe and constraints. These contact forces are
further illustrated in Figure 12. As seen in part (a) of the figure, that impacting force appears at one
side of the pipe, indicating that the pipe sticks to one of the motion constraints, as also schematically
shown in Figure 1, middle. The mode shape of the pipe schematically shown in Figure 1, bottom might
be linked to the distributed impacting force represented in Figure 12(c). The distributed impacting force
shown in Figure 12(b), however, can be regarded as the transition state from Figure 12(a) to Figure 12(c).
As the flow velocity increases from 19.5 to 20, therefore, buckling style of the pipe would change.

4. Conclusions

In this paper, the nonlinear dynamics of a simply supported pipe conveying pulsating fluid is numerically
investigated, with consideration of the effect of distributed motion constraints along the axial direction.
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(a) (b)

(c)

Figure 12. Contacting forces of the distributed motion constraints corresponding to the
buckling styles shown in the middle and bottom parts of Figure 1.

The motion constraints are modeled by trilinear springs. The flow velocity is assumed to be pulsatile.
A parametric analysis is conducted of the effect of the pulsating frequency and motion constraints on the
dynamical behavior of the pipe.

Buckling analysis for a pipe conveying steady fluid flow is conducted first in the presence of distributed
motion constraints. The pipe represents four different buckling types within the considered range of flow
velocity. Then the significant effect of motion constraints on the flow-induced vibration of the pipe with
pulsating fluid is explored. It is shown that the pipe is capable of displaying both periodic and chaotic
motions with increasing the pulsating frequency. It is of particular interest to note that the distributed
impacting force between the pipe and constraints may be associated with the buckling types of the system.
Thus, the present configuration of pipes conveying pulsating fluid flow in the presence of distributed
motion constraints serves as an example of a physical system on which the kaleidoscopical dynamical
behavior could be observed.
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MICRO AND MACRO CRACK SENSING
IN TRC BEAM UNDER CYCLIC LOADING

YISKA GOLDFELD, TILL QUADFLIEG, STAV BEN-AAROSH AND THOMAS GRIES

This paper studies the ability of self-sensory carbon/glass textile reinforced concrete (TRC) beams to distin-
guish between micro- and macrocracking. In the proposed configuration, continuous carbon rovings knitted
into the textile mesh serve both as the structural reinforcement and as the sensory system. The paper faces
the challenge of detecting structural damage within the TRC structure. In this study, damage is defined
as the formation of macroscopic cracks, which lead to the accumulation of significant irreversible residual
deflection and to a reduction of the relative stiffness of the component. We explore experimentally the corre-
lation between the electrical resistance change and the change of the structural properties and suggests crack
detection parameters in order to identify, and mainly to distinguish, between micro- and macrostructural
phenomena. Carbon rovings are found to provide electromechanical sensing capabilities, having the ability
to distinguish between inner micromechanical structural phenomena and macroscopic ones. These obser-
vations are a step towards the applications of SHM techniques by intelligent carbon-based TRC elements.

1. Introduction

Multifunctional textile reinforced concrete (TRC) structures combine the advantages of high performance
material and structural systems with those of integrated structural health monitoring system. The technol-
ogy is based on a biaxial warp knitted fabric made of continuous fiber rovings (glass and carbon), which
are embedded within thin-walled concrete structures, and serve two purposes simultaneously: reinforce-
ment and monitoring. In this structural configuration, the textile reinforcement can easily follow a curved
geometry of the structure. It also allows the reduction of wall thickness, mainly by means of the superior
corrosion resistance of the reinforcement material that makes minimum concrete coverage obsolete.

TRC structures can be found in various applications such as pipes, tanks and shell like structures [Silva
et al. 2011; Shams et al. 2014]. Such structures are inherently susceptible to internal or external damage
such as cracks and material degradation. Yet, such structures are usually characterized by limited ac-
cessibility and inspection possibilities. Unless detected early, such damage would increase maintenance
cost, disrupt operations and possibly lead to a catastrophic failure.

As opposed to reinforced concrete structural elements with steel rebar, which are allowed to be cracked
during their service life, in the case of TRC structures, an adequate design allows for distributed multiple
microcracks along the structures. In the latter case, due to the mechanism of the bonding and stress
transfer between the concrete and the filaments in the roving, macroscopic cracks considerably degrade
the reinforcement roving and reduce its load carrying capacity. The filaments of the roving that are
located along the interface with the concrete (called the sleeve filaments [Bartos 1987; Zhu and Bartos
1997]) break due to the macroscopic cracking and only a reduced number of filaments that are located at

Keywords: crack detection, textile reinforced concrete, carbon rovings, electrical resistivity.
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the core of the roving can further carry the loading (see, for example, [Bentur et al. 2010; Yardimci et al.
2011]). It is therefore essential to explore the damage sensing capabilities of TRC structures in order to
further develop a reliable monitoring routine for early detection and rectification of structural damage.

Damage identification and structural health monitoring (SHM) techniques for reinforced concrete ele-
ments range from traditional methods such as visual inspection or tap tests, to modern techniques based on
embedded or surface mounted strain sensors. The latter are either localized (such as resistor strain gauges
and fiber Bragg grating) or distributed (such as time domain reflectometry in fiber optics; see, for example,
[Khotiaintsev et al. 2013; Klar et al. 2010; Goldfeld and Klar 2013; Antunes et al. 2011; Majumder et al.
2008; Li et al. 2004; Lee 2003]). In the context of sensory TRC elements, there is a range of research
works reporting on the implementation of the sensory devices in the textile grid, such as optic fibers
(e.g., [Krebber et al. 2012; Montanini et al. 2012]). These methods are usually based on implementing
the sensing system in a structural element, which requires physical accommodation in the load-bearing
element. The potential degradation of the effective properties of the host element, and the clear distinction
between the structural system and the sensory one (which is not a part of the load bearing system) are
drawbacks of this approach. Also, stemming from the concept of joining two separate systems together,
the interface between the structural and the sensory systems and the corresponding ability to maintain a
coordinated action of the two are potential weak aspects. Finally, the sensory system itself is commonly
expensive and its implementation is costly, time-consuming, and it requires specially trained personnel.

Using hybrid carbon fiber textiles as reinforcement for a TRC element and utilizing the electrostruc-
tural characteristics of the carbon rovings as a basis for its sensory feature offers a preferred alternative
that overcomes some of the aforementioned drawbacks. The sensory TRC element is based on using the
same array of continuous carbon rovings for the reinforcement required for the load resisting system and,
at the same time, using them as the component providing the structure with the self-sensory feature. For
the case of glass/carbon textile configurations, some carbon rovings replace glass fiber rovings and they
are embedded in a glass textile grid as part of the production process of the textile. The implementation
of the textile in the concrete element is a straightforward act, which is not different than the production
process of standard textile reinforcement within TRC elements. The self-sensing capacity of the sensory
textile is gained by correlating between the electrical response of the carbon rovings and the structural
response of the TRC element. Therefore, the cost and labor inputs needed for converting the standard
TRC component into a sensory one are almost eliminated.

Studies on the use of the electrical conductivity features of carbon fibers for sensing purposes can
be found in the literature; see, for example, [Chen and Chung 1993; McCarter et al. 2007; Vaidya
and Allouche 2011; Wang and Chung 1996; Christner et al. 2012; Horoschenkoff and Christner 2012;
Angelidis et al. 2004; Todoroki and Yoshida 2004; Wen and Chung 1999; Wen et al. 2000; Goldfeld et al.
2016a; 2016b; Quadflieg et al. 2016]. There is a clear distinction between strain sensing and damage
sensing. Strain can be reversible and it is generally monitored within the linear elastic regime of the
structure. Therefore, it is not necessarily accompanied by macroscopic cracks or damage. While in
the case of damage sensing, the mechanism of the electrical response is inherently different. Damage
leads to an irreversible change in the electrical resistance. The more severe the damage is, the greater
the irreversible component of the electrical resistance becomes. The hypothesis of this study is that the
irreversibility of the electrical resistance can be correlated to the structural health. The goal is therefore
to correlate between the electrical response and the structural health. Understanding the correlation in
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the damaged regime is essential for the development of intelligent carbon-based TRC structural elements
with inherent SHM capabilities in the future.

The piezoresistivity (the effect of strain on the resistivity) of short carbon fibers embedded in a cement
matrix has been extensively investigated in the literature (see, for example, [Chen and Chung 1993;
McCarter et al. 2007; Vaidya and Allouche 2011]). The carbon fibers in such applications are an additive
for rendering detectable piezoresistive properties to the concrete mixture by improving the electrical
conductivity of the cast concrete element. Therefore, in this case, the fibers are not the sensor itself.

An alternative sensing concept is obtained by detecting changes to the electrical resistivity of continu-
ous carbon rovings. In this case, the carbon rovings, made of thousands of carbon filaments, serve both as
the structural reinforcement and as the sensory agent. The sensory capability is obtained by monitoring
changes to the electrical resistance of the roving due to straining. Investigations of this concept were
mainly focused on carbon-based polymer or epoxy matrix composites (see, for example, [Wang and
Chung 1996; Christner et al. 2012; Horoschenkoff and Christner 2012; Angelidis et al. 2004; Todoroki
and Yoshida 2004]). Relatively few studies have investigated the piezoresistivity effect of continuous
carbon fiber embedded in a cement matrix. Wen and Chung [1999] and Wen et al. [2000] investigated
the correlation of the changes to the electrical resistance with the straining of a continuous carbon fiber
embedded in cement paste under uniaxial tension. They concluded that the electrical resistance increases
upon tension and that the electrical resistance increase is mostly reversible. Goldfeld et al. [2016a; 2016b]
investigated the piezoresistive effect of hybrid glass/carbon TRC beam elements under monotonic loading
and under cyclic loading, respectively. These two studies moved from the fundamental single roving or
bundle of fibers scale to the integrative TRC structural element scale. It was reported that along the
linear-elastic regime, the integrative electrical resistance can be correlated to the distributed strain, and
since the electrical resistance is mostly reversible, a gauge factor can be defined. Slight irreversibility
was attributed to inner irreversible micromechanical processes, such as degradation of the fiber-concrete
bond strength and breakage of single filaments [Banholzer and Brameshuber 2004; Banholzer et al. 2006;
Bentur et al. 2010; Yardimci et al. 2011].

Damage sensing, which differs from strain sensing, is essential in the case of thin walled TRC struc-
tures. It has been mainly reported for the case of short carbon-based cement composites; see, for example,
[Wen and Chung 2007; Ding et al. 2013; Teomete 2015; Meehan et al. 2010; Yao et al. 2003; Peled et al.
2001; Bontea et al. 2000; Reza et al. 2003]. In the case of damage sensing, the mechanism of the electrical
response is different. Damage leads to irreversible changes in the electrical resistance, depending on the
severity of the damage [Bontea et al. 2000; Reza et al. 2003].

In the case of damage sensing with continuous carbon fibers, most of the studies were focused on
carbon fiber reinforced polymers; see, for example, [Wang and Chung 2006; Chung 2007]. In these
studies, it was reported that the accumulation of damage and irreversible structural response triggered
irreversible changes to resistance.

Studies on damage sensing with continuous carbon rovings embedded in concrete elements were
only focused on the correlation between internal microstructural phenomena, such as the degradation
of the interface between the fiber and the concrete matrix, and the measured electrical resistance; see
[Wen and Chung 1999; Wen et al. 2000; Goldfeld et al. 2016a]. These microstructural phenomena
characterize the linear-elastic regime of the response, which is considered as the healthy state of the
structure and therefore is attributed to the strain sensing. Damage sensing, which extends beyond the
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aforementioned strain sensing concepts is, on the other hand, the most crucial monitoring capability of
thin-walled TRC structures. The goal of the current study is therefore to investigate the structural and the
electrical response of a damaged TRC element. As opposed to [Goldfeld et al. 2016a], which focused
on the piezoresistive behavior of the carbon-based textile along the linear-elastic regime, the present
study focuses on the essential capabilities of the carbon-based textile to sense structural damage in terms
of macroscopic crack and to quantitatively distinguish between micro- and macrostructural phenomena.
The goal is therefore to explore and characterize the correlation between the structural and electrical
responses of a TRC beam before and after cracking.

In this study, the damage state is defined by the formation of a macroscopic crack. In TRC composites,
since the reinforcing rovings are made of thousands of filaments, the bonding and stress mechanism
between the filaments and concrete matrix play a significant role in the load carrying capacity of the
roving and, as a result, of the whole component. Due to increased tension loading, and after formation
of the first matrix crack, the sleeve filaments of the roving break and filaments in the core of the roving
can further carry on the increasing load providing strain hardening behavior. It is commonly modeled
by a telescopic pull-out mechanism (see, for example, [Bartos 1987; Zhu and Bartos 1997; Bentur et al.
2010; Yardimci et al. 2011]) with microcracks being smaller than 100 microns in width during the strain
hardening stage, where significant load can be transferred across the microcrack. Therefore, an adequate
design allows for distributed multiple microcracks along the structures to be considered here as being in
the healthy state. When a macrocrack opens, at the cracked zone all sleeve filaments break, including
progressive breakage of core filaments, as well as extensive displacement in the core filaments, leading to
a significant reduction in the load carrying capacity. Thus, as a result of the widening of one (or several) of
the microcracks into a macrocrack (significantly wider than 100 microns), the strain hardening behavior
turns into a marked softening one, with significant reduction in the load bearing capacity of the TRC
component. The formation of the macrocrack can be seen by a drop of the load-deflection curve, as in
the present study. Therefore, the formation of a macrocrack is defined as the damaged state in this study.

The hypothesis of this study claims that the micro- and macrostructural response are reflected by
the measured electrical response of the carbon rovings. Therefore, the goal is to correlate between the
structural response and the electrical measure, and consequently estimate the structural health.

In order to support the hypothesis of the study, the structural and electrical response of a TRC beam are
experimentally investigated under cyclic loading at the healthy and at the cracked state. The loading cy-
cles extend the predamaged loading process presented in [Goldfeld et al. 2016a] to the damaged cracked-
state. For the sake of completeness, the relevant data from [Goldfeld et al. 2016a] are shortly presented.
The preliminary information regarding the structural and electrical setups is mentioned here again, and
selected results for the healthy state are presented as a reference in order to compare, distinguish and
highlight the differences between the strain and damage sensing capabilities of the carbon rovings.

2. Experimental investigation

The experimental investigation focuses on the crack sensing capabilities of the carbon rovings. It uses the
cyclic loading test conducted in [Goldfeld et al. 2016a] in the precracked range as reference and extends
the cyclic loading to the cracked regime. The generic setups and properties of the sensory textile, the
beam sample, the electrical layout, the testing scheme and the procedure for the compensation for the
effect of the temperature on the sensing system are presented in [Goldfeld et al. 2016a], and (for clarity
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and completeness) will be briefly presented here. In the previous work, the strain sensing capability
at the healthy state was investigated, while the current study focuses on the structural and the sensing
responses of the beam at the cracked regime.

2.1. Sensory textiles. The sensory textile is based on two types of rovings: rovings made of glass, which
are the main reinforcement platform, and rovings made of carbon, which are also used as the sensory
system (see also [Goldfeld et al. 2016a; 2016b]); see Figure 1. The material properties of the glass and
the carbon rovings are given in Table 1.

The reinforcing textile structure consists of a warp-knitted grid of alkali-resistant (AR) glass rovings
and sensory carbon rovings, which are spaced 7–8 mm from each other. The weft direction consists only
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Figure 1. (a) The reinforcement sensory textile; (b) schematic drawing, cross section,
geometrical parameters and loading scheme of the TRC specimen (dimensions in mm)
[Goldfeld et al. 2016a].

glass roving carbon roving

density [tex] 2400 3300
specific mass density [kg/m3] 2680 1800
modulus of elasticity [GPa] 72 240
filament tensile strength [MPa] 1700 (elongation 2.4%) 4000 (elongation 1.7%)
filament diameter [µm] 19 7
filament count – 50000
equivalent cross-sectional area [mm2] 0.9 1.81
electrical resistance [�/m] ∞ 13

Table 1. Material properties of the glass and the carbon rovings.
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of AR glass rovings. In the warp direction, some of AR-glass rovings were replaced by sensory carbon
rovings in a symmetric layout. Placing the carbon rovings only in one direction avoids potential electrical
linking between perpendicular rovings, but limits the sensing capabilities to one chosen direction. The
rovings are knitted with warp-knitting yarns made of polypropylene. The type of knitting stitch is pillar;
its influence on the tensile properties of the roving within the concrete has been investigated in [Stolyarov
et al. 2015a]. The cross-sectional area of the rovings as given in Table 1 is a theoretical value and relates to
the cross section of all filaments counted together and is used for the stress calculation. The cross section
and occupied space of the roving is much bigger, due to the spaces between the filaments. The shape of
the roving cross section also depends in the stitch type, e.g., pillar stitch forms a more circular shaped
cross section, while the tricot stitch forms a more elliptical shaped cross section; see [Stolyarov et al.
2015b]. The textile used had a roving width of 1–2 mm. The production of the glass/carbon textile uses a
conventional process with no specific or special treatment of the textile. The electrical integration of the
carbon fiber rovings into the data acquisition (DAQ) system uses a cast connector, made of conductive
epoxy, at the ends of each carbon roving; see [Goldfeld et al. 2016a].

2.2. TRC beam samples. Beam samples reinforced with the glass/carbon textile have been designed and
manufactured. The specimens are 280 mm long, 70 mm wide and 24 mm thick, according to the loading
setup used in this research (four point bending), and they were reinforced with two layers of the sensory
textile located 4 mm from the upper and lower faces of the element. The thickness was determined in
order to capture both microstructural behavior (so it should not be too thick), as well as macrostructural
behavior (so it should not be too thin). Therefore, the distance between the textiles is determined as
16 mm, and the total thickness of the beams is 24 mm. The width (70 mm) is determined according to
the textile grid (the interval between the rovings is about 7 mm–8 mm). The carbon rovings are located
at the middle of the beam and the influence of the added stiffness of the carbon rovings with respect to
the glass rovings can be averaged along the beam width. The length of the beam (280 mm) is determined
in accordance to the loading scheme and the estimated bending capacity of the beam’s cross section.

Each textile layer includes six longitudinal (0◦) glass rovings and two longitudinal carbon rovings.
The transverse (90◦) rovings are all made of glass fibers; see Figure 1. Special molds were developed
in attempt to maintain a preliminary low level of pretensioning in all four directions to both layers of
the sensory smart textile. The pretensioning was performed manually; see [Goldfeld et al. 2016a]. In
Figure 1, the layout of the beam and its cross sectional properties are given.

A commercial grout mixture (Sika Grout 214) was used for the concrete matrix, which was prepared
with a water per dry material ratio of 0.125. The concrete matrix was not modified with any electrical
conductive component and therefore is considered as an isolating dielectric. The TRC beams were cured
at room temperature for 48 hours. According to EN 196-1:2005, after 28 days, the tensile strength
and the compression strength of the grout were determined. The mean values ± standard deviation are
ft = 11.71± 0.49 MPa and fc = 66.9± 2.77 MPa.

2.3. Sensing concept. The hypothesis of this study is that the measured electrical change of the car-
bon rovings embedded in the concrete beam has the capabilities to distinguish between internal mi-
crostructural phenomena and macroscopic ones. In particular, it aims to explore the correlation of the
electrostructural response to the evaluation of damage.
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In the examined layout, the bending moment diagram is not constant and thus the stress as well as
the damage are not uniformly distributed along the roving. This becomes particularly critical after the
formation of the macroscopic crack. On the other hand, the measured electrical resistance is integrally
attributed to the entire roving monitored from one end to another. Thus, the measured electrical resistance
along each roving is considered as an integrative index. This means that only an integrative value of the
electrical resistance Rx and resistance change 1R can be evaluated. The integrative electrical resistance
of the roving is given in an integral form, (see also [Goldfeld et al. 2016a]):

Rx =

∫ L

0
r(x) dx, (1)

where r(x) represents the electrical resistance per unit length depending on the strain distribution, the
damage distribution and on the temperature change, and L is the length of the beam. Consequently, the
resistance change 1R due to damage can be defined by

1Rmeasured
= (Rdamage

x −R0
x)+1Rtemperature

x =

∫ L

0
r( f (ε(x), damage(x))) dx−R0

x+

∫ L

0
r(1T ) dx . (2)

In the above equations, ε(x) designates the distribution of the strain. In the case of a healthy state
it depends exclusively on the loading scheme and the moment distribution. At the damaged state, ε(x)
is also influenced by the location and severity of the damage along the structure, especially in statically
indeterminate structures. The function damage(x) designates the distribution of the damage along the
structures. Therefore, r( f (ε(x), damage(x))) is the electrical resistance along the roving, which is both
strain and damage dependent, and r(1T ) is the distributed resistance due to temperature change. In
the current study, it is assumed that there is no coupling between the temperature and structural effects.
Therefore, in order to correlate the electrical resistance change to the structural response, linear temper-
ature compensation is performed; further details are given in Section 2.5. R0

x is the reference electrical
resistance, measured before the mechanical loading was applied. The damage sensing capabilities can be
performed by comparing the electrical resistance at the healthy state damage(x)= 0 and at the damaged
state damage(x), or by comparing the electrical resistance change at a specific unknown state before
ε(x) = 0 and after loading ε(x). Both possibilities are discussed in Section 3.3 by means of crack
detection parameters.

From the structural point of view, the distinction between strain sensing and damage sensing is gov-
erned by the micromechanism of the structural response, which is characterized by the bonding mecha-
nism of the roving and the concrete matrix. A simplified constitutive model of the stress-strain diagram of
TRC structures is presented in Figure 2 (see [Mobasher et al. 2014]). The constitutive model of the roving
under internal tensioned loading (Figure 2a) is characterized by a linear strain-stress relationship up to
the macroscopic cracking strain εcr . This part can be represented by the tensile stiffness E . Along this
phase multiple microcracks are formed. Then, after the formation of a macroscopic crack, a postcracking
modulus Ecr can be defined. Ecr is lower than E and its sign depends whether strain softening or strain
hardening characterize the postcracking response. The reduction in the elastic modulus is due to the
breakage of all sleeve filaments at the cracked zone (see, for example, [Bartos 1987; Zhu and Bartos
1997; Bentur et al. 2010; Yardimci et al. 2011]). Along the last phase, only the core filaments within the
rovings are able to carry the tensioned load along the structure, which can be represented by a constant
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Figure 2. Fiber reinforced concrete model: left, tension model; right, compression
model; according to [Mobasher et al. 2014].

lower tensile strength and perfectly plastic behavior, phase III in Figure 2a. In the compression model
(Figure 2b), the stress increases linearly up to the yield strain εcy , and then remains perfectly plastic. In the
current study it is assumed that the strain sensing is represented by the first phase (indicated in Figure 2).
This phase is characterized by internal microstructural process associated to the slight degradation of
the bonding mechanism and therefore by generally linear-elastic behavior. The damage sensing, on the
other hand, is attributed to the second and third phases, after a macrocrack has been formed and only
the core filaments within the roving carry on the load. The hypothesis is that both phases, the pre- and
postcracking, are reflected by the measured electrical resistance.

The inevitable shift from the distributed effect reflected by changes to r( f (ε(x), damage(x))) and the
integrative one reflected by changes in Rx (equations (1) and (2)) establishes the ability to identify struc-
tural events but eliminates the ability to identify its exact location along the roving. Moreover, distributed
small cracks and one severe crack can eventually lead to the same integrative electrical measure. This
means that the exact location of the damage and its pattern cannot be identified by the integrative measure
but only its overall effect in terms of global-integrative indexes. This drawback can be handled by using
various approaches (e.g., segmentation of the TRC elements), which are beyond the scope of the present
paper. Nevertheless, the study will demonstrate the capability of the integrative electrical resistance to
clearly distinguish between a healthy state and a damaged state (after cracking has been formed).

The measurement methodology takes advantage of the continuous configuration of the carbon rovings
within each structural segment. Following the experimental setup outlined in detail in [Goldfeld et al.
2016a; 2016b], the electrical setup uses a Wheatstone bridge scheme; the general layout is illustrated
in Figure 3. In this configuration, the carbon roving is serially implemented along with the external
resistor in the bridge and the voltage change across the bridge is measured. Since the properties of
all other resistors are known, and since only the carbon roving triggers the bridge out of balance, the
voltage change across the bridge can be converted into changes to the integrated electrical resistance of
the carbon fiber roving, Rx as follows:

Rx =
Vin Rc

Vb+αVin
− Rc− Rd , (3)
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Ra = 50 k�

Rb = 50 k�
Rc = 120�

Rd = 120�

Vin = 2.5 V Vb

half bridge
(SCXI module) external resistor

carbon roving
Rx =

∫
r(x) dx

quarter bridge completion
(SCXI module)

Figure 3. Wheatstone bridge circuit setup (generic setup); see also [Goldfeld et al.
2016a]. (Rx designate the resistance of the carbon roving, Vb is the measured voltage.)

where Vin is the excitation voltage, Vb is the signal voltage, α = Rb/(Ra + Rb), and Ra , Rb, Rc and Rd

are known resistors.
In order to measure the resistance according to the above methodology, carbon rovings were connected

to a National Instruments (NI) signal conditioning module (NI-SCXI-1521B) installed in a NI-SCXI-
1000 chassis; see Figure 3. The data acquisition system (DAQ) is NI-USB-6361. Therefore, the resistance
of the resistors of half of the bridge, which are an integrated part of the SCXI module, are Ra = Rb =

50 k�, the resistance of the resistor of the quarter bridge completion, which is also an integrated part
of the module, is Rc = 120�; the external resistor is therefore determined to be Rd = 120� (VISHAY
PTF56120R00BZEK), and thus α = 0.5 and Vin = 2.5 V. The DAQ system has 24 channels, which
allows simultaneous measurement of all four rovings within the loaded beam as well as the one of the
carbon roving within the reference beam (used for the temperature compensation, see Section 2.5).

Due to the resistance of the carbon roving Rx , which is approximately 3.1� before the loading process,
the bridge is not balanced. The initial base value is therefore Vb = 20 mV. In the presented configuration,
the maximum change to Vb was measured as 50µV corresponding to a change of 9.6 m� in the resistance
of the carbon roving.

2.4. Loading and external monitoring. The experimental investigation is based on the cyclic loading
of TRC beam samples. The mechanical testing uses the cyclic testing scheme presented in [Goldfeld
et al. 2016a] and extends the loading and the response to the damaged regime. As opposed to the
previous work, which focused on the piezoresistive behavior of the carbon-based textile along the linear-
elastic regime, the present study focuses on the essential capabilities of the carbon-based textile to sense
structural damage in terms of a macroscopic crack. In order to compare, distinguish and characterize the
electrostructural response before and after cracking, the structural response at the healthy state [Goldfeld
et al. 2016a] is presented here as a reference.

The mechanical testing of the beam was conducted in a displacement control mode. The beam was
tested under a four-points flexural bending scheme with span lengths of 70 mm and 210 mm between
loading and supporting, respectively; see Figure 1. In order to examine the ability of the sensory carbon
rovings to monitor damage, the first five loading cycles were conducted along the healthy state (see
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Figure 4. Ten load cycles of the TRC beam: load and displacement measured at the
middle of the beam vs. time. The healthy state data is from [Goldfeld et al. 2016a].

Figure 5. Load versus displacement (along the ten loading cycles). Healthy state data
is from [Goldfeld et al. 2016a].

the discussion in [Goldfeld et al. 2016a]). Then, an additional loading cycle was conducted up to the
formation of macrocracking, which was indicated by a drop in the measured load. Finally, four additional
loading cycles were conducted at lower load levels. All loading cycles were conducted under a uniform
loading, unloading and reloading rate of 0.1 mm/min.

The test setup also includes monitoring the load, the crosshead movement and the vertical displacement
at the middle of the beam. The load and the displacement versus time curves appear in Figure 4, and
the load versus prescribed displacement curves are shown in Figure 5. The loading pattern includes ten
loading cycles. The load for cycles 1–3 was 0.85 kN, and the load for loading cycles 4–5 was 1 kN.
Additional details of these first five loading cycles, which corresponded to a healthy state of the TRC
beam, are given in [Goldfeld et al. 2016a]. The load level of the sixth loading cycle was determined
by the formation of the macroscopic flexural crack, indicated by a drop in the measured load. It was
observed at a load level of 1.25 kN; see Figures 4 and 5. After the experiment was terminated and the
beam was removed from the loading machine, the width of the crack was measured to be about 0.25 mm.

Therefore, the first three loading cycles refer to load levels that are about 68% of the cracking load,
and the next three loading cycles refer to load levels that are about 80% of the cracking load. Then, four
additional loading cycles were applied. Two (loading cycles 7–8) at a load level of 68% of the cracking
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[Goldfeld et al. 2016a]

Figure 6. Resistance change of the sensory carbon roving embedded in the unloaded
reference beam vs. time (up to t = 5200 s; see [Goldfeld et al. 2016a]).

load and two (loading cycles 9–10) at a load level of 80% of the cracking load. These four loading cycles
are the ones that will be attributed to the detection procedure.

Selecting the same mechanical pattern of loading-unloading-reloading at the healthy state and at the
damaged state is motivated by several aspects. First, the phase of loading and then holding the dis-
placement for 4–5 minutes, for related loading cycles, aims to examine the scenario of exposing the
structure to a short term low load level, which is considered to be the monitoring load level for the
damage identification procedure. The selected pattern is not intended to trigger and detect long term
time dependent behavior, but it can shed light on the short term relaxation effects at the healthy and at
the damaged regimes. This is relevant to the sustained loading period as well as to the period between
one loading cycle, and another and it aims to simulate a real monitoring scenario. Second, it aims
to compare the response at the healthy state and at the damaged state. Choosing the same pattern of
loading cycles before and after damage enables the comparison of structural and electrical responses,
therefore determining whether damage has occurred and to what extent. Third, it enables the correlation
of the electrical response and the load-deflection response, and thus allowing the investigation of the
repeatability of the electrical measure with respect to the structural health, and the possible evolution of
irrecoverable processes at the damaged state.

2.5. Temperature compensation. Parallel to the effect of the mechanical-structural behavior, a change
in temperature also triggers changes to the electrical resistance of the carbon rovings. It was reported
that as the temperature increases, the resistance of the carbon fiber decreases [Xu et al. 2011; Wen et al.
1999; Crasto and Kim 1993; Yang et al. 2009]. Since the carbon rovings are exposed to a continuous
electrical current, the temperature of the rovings increases, leading to resistance change. Therefore,
temperature compensation should be performed in order to exclusively correlate the structural response
and the measured resistance. In this study, the resistance change due to temperature is measured by
a carbon roving embedded in a reference TRC beam (identical to the examined beam) which is not
subjected to a mechanical load. Both beams (the loaded beam and the reference beam) were connected to
the same DAQ system, and the voltage change in the reference beam was simultaneously measured along
the entire process; see [Goldfeld et al. 2016a]. The electrical resistance change in the reference beam is
given in Figure 6. It is solely attributed to the temperature effect, and it is subtracted from the response of
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the beam subjected to the mechanical loading. Note that Figure 6 extends the results given in [Goldfeld
et al. 2016a] beyond the healthy state of the loaded beam (from about t = 5200 s) to the damage state.

3. Results and discussion

3.1. Structural response and temperature effect. The structural behavior for all loading cycles (healthy
and damaged) is presented in Figures 4 and 5, and the effect of temperature on the electrical resistance is
presented in Figure 6. The residual displacement at the end of each load cycle and the relative stiffness,
calculated by the change of the measured load per unit deflection and represented by the slope of the
loading branches in Figure 5, for each load cycle are summarized in Table 2.

The first macroscopic visible flexural crack was detected at a load level of 1.25 kN at the sixth load
cycle (indicated in Figures 4 and 5). It is reflected by a drop in the measured load and by a gradual residual
deflection, as can be seen in Figures 4 and 5 and Table 2. A picture of the beam with its macroscopic
crack (of about 0.25 mm width) is given in Figure 7. The picture was taken after the experiment was
terminated and the beam was removed from the loading machine. It should be noted that this is the only
visible macrocrack that was detected. The lower strain gauge which appears in the figure, and used in
[Goldfeld et al. 2016a], was broken due to the cracking. Immediately after detecting the formation of
the crack, the displacement was held for 300 s. The next loading cycles mimic the loading cycles of the
healthy state. Usually for structural health monitoring purposes, the load level used is much lower than
the load level that actually causes the damage. In the present study, the load levels are the same as the
ones applied at the healthy state, although it is relatively high for monitoring purposes. Choosing the
same load level for the damaged and for the healthy states enables us to investigate and compare the
structural and the electrical responses of the TRC beam, and therefore characterize the discrepancies in
terms of damage sensing parameters.

Based on the load and displacement results, the structural response can be divided into three main
states. The first one (cycles 1–5) corresponds to the generally linear-elastic state. It was thoroughly in-
vestigated in [Goldfeld et al. 2016a] and is considered here again to reference the structural and electrical
response of the damaged state. The second state (sixth cycle) corresponds to the cracking load. The third
state (cycles 7–10) corresponds to the cracked-damaged structural behavior of the beam. The three states
are indicated in Figures 4 and 5.

The structural response of the first state is characterized by a linear-elastic behavior with a negligible
level of hysteresis. The load is slightly relaxed under the prescribed displacement and a small gradual
residual deflection is accumulated after each load cycle (see also Figure 5 and Table 2). This is an outcome
of internal microstructural phenomena related to the interaction between the concrete mixture and the

healthy state (I) cracking cracked state (III)

loading cycle 1 2 3 4 5 6 7 8 9 10

residual 0.046 0.049 0.052 0.069 0.079 0.234 0.234 0.237 0.237 0.237displacement [mm]
relative 5531 7553 7316 6761 6373 6058 3627 3695 3491 3404stiffness [kN/m]

Table 2. Residual displacements and relative stiffness measured at the end of each loading cycle.
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textile mesh [Bentur et al. 2010; Yardimci et al. 2011; Banholzer and Brameshuber 2004; Banholzer et al.
2006] and especially to the degradation and breakage of the outer filaments of the rovings.

Since the response of the first cycle of the healthy state is different from the next four cycles, and
is mainly due to the initial part of the loading that is attributed to the settlement and the slight self-
organization of the test setup [Goldfeld et al. 2016a], it is not considered in the following discussion.

The sixth loading cycle, the second state, defines the formation of multiple microcracks along the
loading brunch. The loading phase of this cycle ends with a gradual load drop as a result of the widening
of one (or several) of these microcracks (formation of a macrocrack), indicated in Figures 4 and 5. Due
to that, the entire filament of the roving along the interface with the concrete matrix at the cracking zone
breaks, which leads to irreversible gradual deflection and to lower stiffness. Once there was indication
of formation of the macrocrack, the displacement was held for about 4–5 minutes and then unloaded.

After the formation of the macroscopic crack, the loading cycles of the third state (cycles 7–10) are
characterized by a new linear-elastic state and the global response is governed by the macroscopic crack.
The structural behavior is linear with almost no hysteresis, load relaxation or accumulation of additional
gradual deflection. In spite of the relatively high levels of load after damage (68% and 80% of the
cracking load), the four cycles at the damaged state reveal a repetitive pattern. It is reflected by the load-
deflection curve (Figure 5) as well. This state is characterized by a lower and consistent slope of the
loading brunches compared to the healthy state (Table 2), which corresponds to the new relative stiffness
of the TRC beam. The reduced stiffness is an outcome of the presence of the macroscopic crack and
its consistent pattern is related to the new linear state. These phenomena define quantitative indicators
for the accumulation of mechanical damage in the beam. Furthermore, it enables one to distinguish
between reversible microstructural phenomena to irreversible macroscopic ones, which is reflected by
the electrical response of the new state. It also allows us to consider loading cycles 7–10 as the monitoring
loading cycles (i.e., the cycles that are of interest), even though they were conducted at a relatively high
load level with respect to the cracking load.

Another aspect that supports the consistent and repeatable structural response in the damaged state is
the residual deflection after each cycle; see Table 2. After the sixth load cycle, the residual deflection
measured at the middle of the beam increases from 0.079 mm (at the end of the first state) to 0.234 mm

Figure 7. Picture of the cracked TRC beam.



592 YISKA GOLDFELD, TILL QUADFLIEG, STAV BEN-AAROSH AND THOMAS GRIES

Figure 8. Resistance change (after temperature compensation) of the sensory carbon
rovings of the loaded beam vs. time. Initial resistance R0 = 3.1�. Healthy state data is
from [Goldfeld et al. 2016a].

(after cracking). This value remains almost constant after each of the last four cycles. Before cracking,
the mechanical behavior is characterized by the microstructural mechanism of the bonding between the
textile and the concrete matrix. After cracking, the structural response is completely different and it is
governed by the mechanism of the macroscopic crack. Any additional internal microstructural process,
if occurred, has almost no effect on the global structural response. The macrostructural response at the
damaged state is repeatable as reflected by the constant residual deflection after each loading cycle and
is more consistent compared to the response at the healthy state. The gradual residual deflection and its
consistent values can define another quantitative indicator for the accumulation of mechanical damage
in the TRC beam.

3.2. Sensing micro- and macrocracks. In order to support the hypothesis of this study, the sensing
capabilities of the carbon rovings is first demonstrated. The sensing methodology and the associated
crack detection approach focus on the electrical response due to mechanical loading before and after a
macrocrack has formed. The changes to the electrical resistance of the carbon rovings during all ten
loading cycles are plotted versus time in Figure 8. The results were temperature compensated using the
results outlined in Figure 6. The results for the two tensed rovings (1 and 2) are presented in Figure 8a
and those for the two compressed rovings (3 and 4) are presented in Figure 8b.
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The reference electrical resistance of the rovings before the loading process was approximately 3.1�.
The resistance change was measured with respect to this value. The averaged initial resistance values R0

x
for each load cycle (for the healthy state and for the damage state) are given in Table 3. It is taken as the av-
erage measured resistance along the unloaded phase before each loading cycle. Note that the actual elec-
trical resistance along the roving is the reference resistance (3.1�) plus the resistance given in Table 3.

The curves and the results outlined in Figure 8 and Table 3 highlight several observations regarding
the sensing capabilities of the carbon rovings along both the healthy and the damage regimes:

(1) It reveals a clear correlation between the electrical readings of the rovings (Figure 8) and the structural
response of the beam (Figures 4 and 5). The sensory system is repeatable and characterized by a generally
constant quality of the readings along all ten loading cycles. Even after the formation of the macroscopic
crack, the electrical readings of the rovings still reflect a sound sensory capability.

(2) It implies that along all loading cycles the correlation is relatively linear. In terms of its mathematical
representation, only a shift of the reference values and a linear scaling are needed in order to correlate
between the structural and the electrical response.

(3) It reveals that the electrical response of the tensed and of the compressed rovings is generally repeat-
able along the entire loading process. It is observed that the readings of the two independent rovings
located at the same height (rovings 1 and 2 in Figure 8a and rovings 3 and 4 in Figure 8b) are very similar.
The constant difference between the compressed rovings was attributed to the initial loading phase of
the first load cycle [Goldfeld et al. 2016a].

(4) It reveals that the electrical resistance increases also when the rovings are compressed. This issue has
been discussed in [Goldfeld et al. 2016a] for the linear-elastic state (state I). The negative correlation of
the compressed rovings is consistent for the healthy and the cracked state. A dimensional change without
a resistivity change would have caused Rx to decrease under compression. In contrast, Rx increases. The
reason for the increase in resistance, and as a result, to the negative correlation, is attributed to changes
to the specific resistivity ρ at the roving level rather than to dimensional changes. For strain sensing
[Goldfeld et al. 2016a] it was assumed that since each carbon roving is comprised of a large number of
filaments (about 50000), under compression, the fiber to fiber interface degrades as the bundle of fibers
slightly separates. In addition, the inner fibers, which are not sufficiently supported by the cement matrix
or by the fiber to fiber contact stresses, are expected to be mostly affected by the compressive stresses.
The latter may increase the misalignment of the fibers, cause localized rotation and deviation from the
roving’s axis, and even cause localized buckling of the fibers. Therefore, it was assumed that all the
above phenomena eventually yield an increase in the specific resistivity at the roving level. Regardless
of the dimensional changes, these effects increase the overall electrical resistance, and yield an increase
in resistance under compressive loading growth and to a negative correlation. The above hypothesis is
also supported by the observation that the negative correlation is stable along the entire load cycle for all
loading cycles (healthy and cracked states).

(5) An interesting observation is related to the electrical resistance change at the moment when the
macrocrack is formed. The structural response is characterized by a drop of the measured load and the
electrical response is characterized by a rapid reduction with several oscillations of the resistance. It is
observed at the tensed rovings and at the compressed rovings; see Figure 8.
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The above observations clearly demonstrate the sensing capabilities of the carbon roving at the linear-
elastic state of the beam, as well as at the damaged state of the beam, which is associated to the formation
of cracking. The comparison between the electrical response of the carbon rovings before the formation
of the cracks and their responses after the formation of the cracks reveals the following observations:

(1) It is observed that in the cracked state the measured electrical resistance is relatively high compared
to the healthy state. After the accumulation of the macroscopic crack at the sixth loading cycle, the
measured electrical resistance increases significantly, and the increase is irreversible. It is mainly visible
at the unloaded state at the beginning of each load cycle; see Table 3. This observation is in good
agreement with the structural responses due to the formation of the macroscopic crack and is correlated
well to the irreversible residual deflection accumulated after the sixth loading cycle.

(2) At the healthy state (state I), a slight irreversible increase of the resistance is observed at the unloaded
phase at the beginning of each load cycle. It is influenced by the accumulation of internal microstructural
cracks [Goldfeld et al. 2016a] and is correlated to the increase of the residual deflection after each load
cycle. On the other hand, the electrical response of the cracked state (state III), which is characterized
by a significant irreversible increase in the electrical resistance, is consistent and repeatable along the
loading cycles. It is correlated to the gradual increase of the residual deflection after the formation of
the macrocrack and its constant value along the unloaded phase of the next loading cycles. From the
microstructural point of view, at the healthy state, the irreversible electrical response is correlated to the
slight hysteretic behavior of the micromechanical response, which was attributed to internal mechanical
phenomena during loading. At the cracked state, the mechanical response is governed by the presence
of the macroscopic crack and no hysteresis or load relaxation is recorded (see Figures 4 and 5), which
is ultimately reflected by the electrical response; see Figure 8.

(3) It is observed that the electrical resistance change due to loading is more pronounced at the healthy
state. At the cracked state the correlation between the pattern of the structural response and the electrical
measure is still valid, but the relative change of the resistance is much lower compared to the healthy state.

The above observations support the hypothesis of the current study that carbon rovings can sense
macrostructural damage and can even distinguish between reversible and irreversible structural phenom-
ena associated to micro- and macrocracks, respectively. This is mainly since the electrical signal is
strongly affected by the microstructural mechanism of the carbon rovings within the concrete matrix. This
study demonstrates these capabilities by assuming an ideal microstructural modeling of the roving within
the concrete. Further investigation — which involves the effect of interfacial damage, its influence on the
shear strength with respect to the fiber strength and with respect to the electrostructural response — in the
context of the influence of the microscale effects on the macroscopic behavior reflected by the electrical
setup define an interesting and relevant direction for additional exploration of the problem at hand.

The next section demonstrates this ability by quantitative crack identification parameters.

3.3. Macrocrack detection. The observations concluded from Figure 8 and Table 3 were used to deter-
mine macrocrack detection parameters. Two are related to the electrical resistance at the unloaded phase,
and one is related to the relative change of the resistance and its pattern during the loading process.

3.3.1. Macrocrack sensing by the electrical resistance at the unloaded phase. It is clearly seen that
at unloaded phases after cracking, the electrical resistance significantly increases, and this increase is
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healthy state (I) cracking cracked state (III)

roving # ↓ load cycle→ 2 3 4 5 6 7 8 9 10

1 (tensed) 1.007 1.069 1.294 1.313 1.448 2.557 2.315 2.422 2.124
2 (tensed) 0.923 0.982 1.239 1.462 1.636 3.040 2.658 2.663 2.426
3 (compressed) 0.760 0.872 0.995 1.066 1.210 1.871 1.728 1.867 1.576
4 (compressed) 1.215 1.505 1.612 1.712 1.786 2.428 2.353 2.497 2.217

Table 3. Initial electrical resistance change measured at the beginning of each load cycle [m�].

irreversible. Moreover, compared to the healthy state, this value is kept almost constant. Therefore,
the study suggests to use the magnitude of the irreversible component of the electrical resistance as an
indicator for the presence of macrocrack.

To correlate the electrical response to the structural response at the healthy state, it is noted that
the internal microstructural phenomena lead to mechanical hysteresis of the load-deflection response
(Figure 4) and to the accumulation of residual deflection after each load cycle (Figures 5 and 2). This
effect is clearly reflected by the electrical response as slight increases of the resistance in the unloaded
state after each load cycle is observed (Figure 8 and Table 2).

The formation of the macroscopic crack at the sixth loading cycle is indicated by a significant increase
of the residual deflection and by a reduction of the relative stiffness. At the beginning of the sixth loading
cycle, the residual deflection measured at the middle of the beam is 0.079 mm and the relative flexural
stiffness of the beam (represented by the slope of the load deflection curve in Figure 5) is 6373 kN/m,
whereas after the formation of the macrocrack the residual deflection increases to 0.234 mm and the
relative flexural stiffness reduces to 3627 kN/m. This behavior is clearly reflected by the measured
electrical resistance. The degradation of the structural health ultimately increases the measured electrical
resistance. The average integrative electrical resistance of the four carbon rovings before the sixth loading
cycle is 1.52 m�, whereas after this cycle the value increases to 2.47 m�.

In the literature, the characteristic behavior of the electrical resistance and the structural response
of continuous carbon rovings was mainly reported and focused on the linear-elastic regime [Wen and
Chung 1999; Wen et al. 2000; Goldfeld et al. 2016a]; the slight irreversibility that was observed in the
resistance was correlated to internal microstructural phenomena. In the current study, it is seen that the
formation of a macroscopic crack increases the electrical resistance significantly, and that this change is
irreversible. Therefore, the resistance measured at an unloaded phase can be used as a crack indicator;
it has the ability to distinguish between internal microstructural processes to external macrostructural
events. In this case, initial information of the resistance of the healthy element at an unloaded phase is
used as a reference value.

Without prior information of the healthy state, the resistance change at the unloaded phases from one
loading cycle to another can be used by itself as a crack indicator. At the linear elastic state (cycles 1–5),
the mechanical response during the loading cycles is governed by microstructural phenomena, leading
to a slight increase in the measured residual deflection after each load cycle (the average increase is
14.6%; see Table 2). It is well reflected by the measured electrical resistance, which increases after each
load cycle by about 20%; see Table 3. At the cracked state (cycles 7–10), the structural response is
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governed by the macroscopic crack and the effect of microstructural behavior is diminished. This leads
to a consistent structural response reflected by an almost constant residual deflection, and as a result, to
a consistent electrical response. For the cracked state, the resistance measured at the unloaded phase
between adjacent loading cycles is in the range from −13% to 8%. Therefore, even without prior data
of the resistance at a reference healthy state, the relative resistance change at an unloaded phase between
two adjacent loading cycles can be used as a crack indicator. That is, a small reduction in the resistance
along the unloaded phase between adjacent loading cycles can lead to the conclusion that the beam has
macroscopically cracked.

The electrical resistance change has a strong correlation with the micromechanical behavior and the
bonding mechanism of the carbon rovings and the concrete matrix. The micromechanical behavior along
the loading cycles can be explained by the telescopic pull-out mechanism in a bundled reinforcement
within brittle matrix [Bartos 1987; Zhu and Bartos 1997; Bentur et al. 2010; Yardimci et al. 2011]. It
is assumed that the carbon rovings are not fully bonded to the concrete matrix, meaning that only the
external sleeve filaments are well bonded to the concrete matrix while the inner core ones are largely
free. Due to mechanical tension loading, the external filaments formed a sleeve in which the filaments
are tightly bonded to the matrix and fail, while the inner core filaments, which are not well bonded, can
engage in slip and provide the stiffness to the concrete. This process is irreversible and is reflected here
by the integrative electrical resistance.

Before the macroscopic crack has been formed (state I in Figures 4, 5 and 8), a gradual bonding degra-
dation between the concrete and the carbon rovings due to loading occurs, which is mainly influenced by
the external sleeve filaments. This leads to a slight irreversible increase in the resistance after each load
cycle. At the damaged state (state III in Figures 4, 5 and 8), due to the formation of the macroscopic
crack, the external sleeve filaments are completely degraded and broken and only the core filaments are
mechanically and electrically connected, which eventually leads to a considerable irreversible increase
in the measured resistance.

3.3.2. Macrocrack sensing by an electrical resistance change along loading cycle. The resistance profile
along the loading cycle can also be used as a damage indicator. Comparing the resistance change of a
similar loading profile before and after macroscopic crack formation can be used to identify the structural
health state. Such results are given in Figures 9 and 10 for four couples of similar loading cycles of healthy
and damaged states and for the tensed and compressed rovings, respectively. The four couples of similar
loading cycles are indicated in the Figures 9 and 10 (cycles 2 and 7 are presented in Figures 9a and 10a;
cycles 3 and 8 are presented in Figures 9b and 10b; cycles 4 and 9 are presented in Figures 9c and 10c;
cycles 5 and 10 are presented in Figures 9d and 10d). In order to consider each load cycle independently,
the resistance change and the load profile along each load cycle are plotted; the starting values of the
resistance are given in Table 3. The results in Figures 9 and 10 show that the electrical readings follow
the structural response for the healthy and for the damaged states. It is clearly observed that the relative
change of the resistance at the damaged state is much lower than the relative change of the resistance at
the healthy state. The maximum values of the relative resistance change 1R/R0 for the eight loading
cycles are given in Table 4. The maximum values of the resistance were evaluated by averaging the
resistance measured along the loading phase. It is seen that for the same loading level, the relative
resistance change of the healthy beam is more than three times higher than the relative resistance change
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healthy state (I) cracked state (III)

roving # ↓ load cycle→ 2 3 4 5 7 8 9 10

1 (tensed) 0.0432 0.0497 0.0424 0.0410 0.0128 0.0152 0.0142 0.0054
2 (tensed) 0.0447 0.0532 0.0519 0.0421 0.0085 0.0115 0.0072 0.0048
3 (compressed) 0.0313 0.0393 0.0302 0.0285 0.0124 0.0123 0.0121 0.0100
4 (compressed) 0.0395 0.0408 0.0324 0.0328 0.0158 0.0143 0.0124 0.0118

Table 4. Maximum relative electrical resistance change 1R/R0.

of the damaged beam. The low relative change in resistance after damage is mainly due to the high initial
resistance at the beginning of each load cycle, which has been increased considerably due to macrocrack;
see Figure 8 and Table 3. Therefore, it can be concluded that comparing the resistance change of similar
loading profiles before and after cracking can be used as an indicator of macrocrack accumulation.

Here again, the electrical resistance can be directly correlated to the micromechanical behavior and the
bonding mechanism of the carbon rovings and the concrete matrix. The telescopic pull-out mechanism,
discussed in the previous section, is well reflected by the integrative resistance change. At the healthy
state, the gradual bonding degradation of the sleeve filaments leads to the slight irreversible increase in the
resistance after each load cycle and to a relatively high resistance change due to loading. At the damaged
state, the external sleeve filaments are completely degraded and broken and only the core filaments,
which comprises 20% of the total filaments [Bentur et al. 2010; Yardimci et al. 2011], are mechanically
and electrically connected. The effect of the matrix penetration on the number of broken filaments
in multifilament fiber composites has been investigated in [Yardimci et al. 2012]. This phenomenon
ultimately leads to a considerable increase in the measured resistance, and as a result, the relatively
small change of the resistance during loading.

4. Summary and conclusions

This paper has taken a step towards exploring the concept of using carbon/glass fiber based textile
reinforcement for self-sensory TRC structural elements. Specifically, it has looked into the sensing
capabilities of the carbon rovings to detect damage, which in the case of TRC structures is defined as the
formation of macrocracking. It was found that the sensory textile can make a clear distinction between
internal microstructural phenomena to external macroscopic structural ones. The micromechanism of the
roving within the concrete matrix governed by the macrostructural response of the TRC element, which
is ultimately reflected by the electrical readings.

The study offered three qualitative crack detection parameters that distinguish between the healthy
state and after the formation of a macrocrack. The parameters are based on the characteristic behavior
of the reversibility of the electrical response with respect to the structural behavior. It was found that at
the linear-elastic regime, the slight mechanical degradation leads to a slight electronically irrecoverable
response. At the damaged state, on the other hand, once the electrical resistance irreversibly increases
after the formation of the macrocrack, it remains repeatable and stable. However, the relative change
of the electrical resistance during the loading cycles at the cracked state is much lower than that of the
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Figure 9. Resistance of the tensed carbon rovings vs. time for each loading cycle: (a)
loading cycles 2 and 7; (b) loading cycles 3 and 8; (c) loading cycles 4 and 9; (d) loading
cycles 5 and 10.

Figure 10. Resistance of the compressed carbon rovings vs. time for each loading cycle:
(a) loading cycles 2 and 7; (b) loading cycles 3 and 8; (c) loading cycles 4 and 9; (d)
loading cycles 5 and 10.
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healthy state. It is mainly due to significant reduction in the number of filaments within the roving that
continues to carry on the loading as well as to pass electrical current.

The findings of this study and the above conclusions validate the idea that the carbon/glass fiber textile
can be used as reinforcement and as a damaged sensory device at the same time. The present study has
focused on the ability of the textile to sense macrocracks during cyclic structural response in a TRC
structural element and to distinguish between healthy to damaged state. The experimental demonstration
of this aspect has taken us one step further towards the development of smart TRC structures.
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STATIC ANALYSIS OF NANOBEAMS USING RAYLEIGH–RITZ METHOD

LAXMI BEHERA AND S. CHAKRAVERTY

Boundary characteristic orthogonal polynomials have been used as shape functions in the Rayleigh–Ritz
method for static analysis of nanobeams. The formulation is based on Euler–Bernoulli and Timoshenko
beam theories in conjunction with nonlocal elasticity theory of Eringen. Application of Rayleigh–Ritz
method converts the problem into a system of linear equations. Some of the parametric studies have been
carried out. The novelty of the method is that it can handle any set of classical boundary conditions (viz.,
clamped, simply supported and free) with ease. Although the assumed shape functions need to satisfy
the geometric boundary condition only, the final solution is for the targeted boundary condition of the
problem or domain. Deflection and rotation shapes for some of the boundary conditions have also been
illustrated.

1. Introduction

Nanosized structures such as nanobeams, nanoplates and nanoshells are commonly used as components
in nanoelectromechanical systems (NEMS) devices. The most distinct characteristic of nanostructures is
that their mechanical properties are size dependent [Ansari et al. 2013; Miller and Shenoy 2000; Xu et al.
2010]. Fundamental knowledge of their mechanical behavior is needed for proper design and application
of nanostructured materials; however, conducting experiments at nanoscale size is quite difficult. In this
regard, size dependent continuum theories came into existence. Among these theories, nonlocal elasticity
theory, pioneered by Eringen [1972], has received much attention in modeling small sized structures.
According to this theory, the stress at a specific point depends on the strain tensors of the entire body.
As such, the nonlocal stress tensor σ at a point x is expressed as [Reddy 2007]

σ =

∫
V

K (|x ′− x |, τ )t (x ′) dx ′,

where V is the volume occupied by the elastic body, τ the material constant which depends on both
internal length (lattice spacing) and external characteristic length (wavelength) and K (|x ′− x |, τ ) denotes
the nonlocal modulus. Also, |x ′− x | is the Euclidean distance and t (x) is the classical macroscopic stress
tensor at a point x and is related to strain ε(x) by Hooke’s law:

t (x)= C(x) : ε(x),

where C is the fourth-order elasticity tensor.
Since it is difficult to solve the integral constitutive relation, an equivalent differential form was pro-

posed [Reddy 2007],
(1− τ 2L2

5
2)σ = t, τ = e0a/L ,

Keywords: Rayleigh–Ritz method, boundary characteristic orthogonal polynomial, nonlocal elasticity theory.
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where e0 is material constant, a the internal characteristic length and L the external characteristic length.
Nonlocal effects considered in the nonlocal elasticity theory play an important role in the analysis and

is determined by the magnitude of nonlocal parameter e0a. The parameter e0a is the scale coefficient
that incorporates the small scale [Wang et al. 2006]. When the nonlocal parameter is zero, we obtain
the constitutive relations of the local theories. Since classical continuum theories do not consider size
effects arising from the small scale, so application of classical continuum theory is not appropriate for
the nanostructures. In this regard, nonlocal elasticity theory has been widely used in the analysis of
nanostructures.

Researchers have applied nonlocal elasticity theory in buckling [Wang et al. 2006; Mohammadi and
Ghannadpour 2010] and vibration [Peddieson et al. 2003; Xu 2006] analyses of beams. Few authors have
also applied nonlocal elasticity theory in bending analysis of beams. Some of them have been cited below.

Reddy and Pang [2008] presented analytical solutions for bending analysis of beams subjected to
four sets of boundary conditions. Aydogdu [2009] developed a general nonlocal beam theory to derive
governing equations from which all the well-known beam theories may be obtained. A nonlocal shear
deformation beam theory has been proposed by Thai [2012]. Analytical solutions have also been pre-
sented for nonlocal sinusoidal shear deformation beam theory [Thai and Vo 2012]. Şimşek and Yurtcu
[2013] examined bending and buckling of functionally graded (FG) nanobeams. Bending solutions have
been presented analytically by Wang et al. [2008] for nanobeams. Some of the numerical methods such
as the Ritz [Ghannadpour et al. 2013], the differential quadrature [Civalek and Demir 2011] and the finite
element method [Alshorbagy et al. 2013; Eltaher et al. 2013] have also been developed for the bending
analysis of nanobeams. Civalek and Akgöz [Civalek et al. 2009] presented deflection shapes and bending
moments for nonlocal Euler–Bernoulli beams subjected to different boundary conditions.

The literature reveals that few works have been done on bending analysis of nanobeams based on Euler–
Bernoulli and Timoshenko beam theories. It is also revealed that few numerical methods have also been
developed for the above mentioned problem. In this article, authors have implemented Rayleigh–Ritz
method with orthogonal polynomials as basis functions. The novelty of the method is that it may handle
any set of boundary conditions with ease. Though this method has been used in classical beams and plates
[Civalek et al. 2009; Behera and Chakraverty 2014; Bhat 1985; 1991; Chakraverty et al. 1999; 2007;
Chakraverty and Petyt 1997; Singh and Chakraverty 1994; Hu et al. 2004], no works have been done in
bending analysis of nanobeams. Boundary characteristic orthogonal polynomials have been applied in
the Rayleigh–Ritz method to analyze effects of nonlocal, boundary condition and slenderness ratio on
the deflection. Nondimensional deflection and rotation shapes have also been shown for three sets of
boundary conditions.

2. Problem formulation

The study is carried out on the basis of Euler–Bernoulli and Timoshenko beam theories in conjunction
with nonlocal elasticity theory of Eringen.

A straight uniform beam with the length L and a rectangular cross-section of thickness h is considered,
as shown in Figure 1. A Cartesian coordinate system (x, y, z) is fixed on the central axis of the beam,
where x , y and z coordinates are taken along the length, width and thickness of the beams [Ansari et al.
2013]. The Rayleigh–Ritz method has been employed for bending analysis. To apply the present method,
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Figure 1. Uniform beam with rectangular cross section and its coordinate system
[Ansari et al. 2013].

we have given a summary of the energies of the structures based on Euler–Bernoulli and Timoshenko
beam theories.

2.1. Euler–Bernoulli beam theory (EBT). The strain energy us may be written as [Wang et al. 2000]

us =
1
2

∫ L

0

∫
A
σxxεxx dA dx, (1)

where L is the length of nanobeam, A is the cross sectional area, σxx is the axial stress and εxx is the
normal strain.

Normal strain εxx is given by the relation

εxx =−z
d2w

dx2 , (2)

where w is the transverse deflection at the point (x, 0) on the midplane of the beam.
Substituting (2) into (1), we get

us =−
1
2

∫ L

0
M

d2w

dx2 dx, (3)

where M is the bending moment and is defined as

M =
∫

A
zσxx dA. (4)

Assuming that the beam is subjected to a transverse load q(x), the potential energy u p may be given as
[Wang et al. 2000]

u p =−
1
2

∫ L

0
qw dx . (5)

Applying the principle of virtual displacement, we may obtain the following governing equation:

d2 M
dx2 + q = 0. (6)
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According to Eringen’s nonlocal elasticity theory, the moment-curvature relation has the following form:

M − (e0a)2
d2 M
dx2 =−E I

d2w

dx2 , (7)

where a is the internal characteristic length (e.g., lattice parameter, C-C bond length and granular dis-
tance) and e0 is a constant appropriate to each material. The magnitude of e0 is determined experimentally
or approximated by matching the dispersion curves of plane waves with those of atomic lattice dynamics.
Here e0a is the scale coefficient that incorporates the small scale effect [Wang et al. 2007]. Also E is
the Young’s modulus and I the second moment of area.

Using (6) and (7), M may be obtained as

M =−E I
d2w

dx2 −µq, (8)

where µ= (e0a)2 is the nonlocal parameter.
Combining (3) and (5), the total potential energy of the system may be written as

U = 1
2

∫ L

0

(
E I
(

d2w

dx2

)2

+µq
d2w

dx2 − qw
)

dx . (9)

2.2. Timoshenko beam theory. Based on Timoshenko beam theory, the strain energy us may be given
as [Ansari et al. 2013]

us =
1
2

∫ L

0

∫
A
(σxxεxx + σxzγxz) dA dx, (10)

where σxx is the normal stress, σxz is the transverse shear stress, L is the length of the beam and A is the
cross sectional area of the beam.

In (10), εxx and γxz are the normal and transverse shear strains respectively and are given by

εxx = z dφ
dx
, (11)

γxz = φ+
dw
dx
, (12)

where φ is the rotation due to bending and w the transverse displacement.
Substituting (11) and (12) into (10), one may obtain

us =
1
2

∫ L

0

(
M dφ

dx
+ Q

(
φ+

dw
dx

))
dx, (13)

where M and Q are the bending moment and shear force respectively and are defined as

M =
∫

A
σxx z dA, Q =

∫
A
σxz dA.

The potential energy of the transverse load u p may be described as [Ansari et al. 2013]

u p =−
1
2

∫ L

0
qw dx . (14)
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Based on nonlocal elasticity theory, nonlocal constitutive equations are as follows:

M − (e0a)2
d2 M
dx2 = E I

dφ
dx

(15)

Q = ks G A
(
φ+

dw
dx

)
, (16)

where I is the second moment of area, E is the Young’s modulus, G is the shear modulus and ks is
the shear correction factor in the Timoshenko beam theory to compensate the for error in assuming a
constant shear strain (stress) through the thickness of the beam.

Applying the principle of virtual displacement, one may obtain the following governing equations for
bending analysis:

dM
dx
= Q, (17)

dQ
dx
=−q. (18)

Using (15)–(18), bending moment M may be obtained as

M = E I dφ
dx
− (e0a)2q. (19)

Combining (13) and (14), the total potential energy of the system may be written as

U = 1
2

∫ L

0

(
E I
(dφ

dx

)2
−µq dφ

dx
+ ks G A

(
φ+

dw
dx

)2
− qw

)
dx . (20)

3. Solution methodology

Since conducting experiments at nanoscale size is quite difficult, the development of mathematical
models has become quite important. In this paper, we have studied bending of beams based on Euler–
Bernoulli and Timoshenko beam theories in conjunction with nonlocal elasticity theory. For doing so, we
have applied the Rayleigh–Ritz method with boundary characteristic orthogonal polynomials as shape
functions. Thus, displacement and rotation functions are represented by a series of admissible functions.
Substituting the unknown functions and minimizing the potential energy of the system as a function of
constants, one may find the system of linear equations. The above system of linear equations has been
solved by using MATLAB and the solutions give the deflection parameter.

We define the nondimensional variable X as

X = x/L .

Each of the unknown functions w and φ may be expressed as the sum of series of polynomials, viz.,

w(X)=
n∑

k=1

ck ϕ̂k(X), (21)

φ(X)=
n∑

k=1

dkψ̂k(X), (22)
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where n is the number of terms taken for computation, ck , dk are unknowns and ϕ̂k , ψ̂k are orthonormal
polynomials. First, orthogonal polynomials ϕk have been obtained from a linearly independent set of
functions θk = Fulk , k = 1, 2, 3 . . . , n with lk = X k−1 using the Gram–Schmidt process as follows
[Chakraverty and Petyt 1997]:

ϕ1 = θ1, ϕk = θk −

k−1∑
j=1

βk jϕ j , (23)

where

βk j =
〈θk, ϕ j 〉

〈ϕ j , ϕ j 〉
, k = 2, 3, . . . , n, j = 1, 2, . . . , k− 1.

Here, 〈 , 〉 denotes the inner product of two functions and we define inner product of two functions, say
ϕi and ϕk , as

〈ϕi , ϕk〉 :=

∫ 1

0
ϕi (X)ϕk(X) dX. (24)

Similarly, the norm of the function ϕk is defined as

‖ϕk‖ =

√∫ 1

0
ϕ2

k (X) dX .

Then normalized functions ϕ̂k may be obtained by using the following relation:

ϕ̂k =
ϕk

‖ϕk‖

One may note that same procedure may be followed to obtain ψ̂k . Fu and Fv are the boundary functions
corresponding to unknown functions w and φ, respectively. It may be noted that the boundary polynomial
specifies support conditions, particularly essential boundary conditions. Since ϕ̂k and ψ̂k are sets of
orthogonal polynomials in the interval [0, 1], more rapid convergence and better stability in the numerical
computation may be accomplished.

In Euler–Bernoulli beam theory, Fu = X r (1− X)s , where r will take values of 0, 1, 2 accordingly as
the edge X = 0 is free, simply supported or clamped, respectively. The same justification can be given
to s for the edge X = 1. For Timoshenko beam theory, the following conditions should be satisfied by
the boundary conditions; as such, the boundary functions used for the above said boundary conditions
are given in Table 1:

• W = M = 0 at X = 0 and 1 for simply supported-simply supported (SS),

• W = φ = 0 at X = 0 and 1 for clamped-clamped (CC), and

• W = φ = 0 at X = 0 and W = M = 0 at X = 1 for clamped-simply supported (CS).

Substituting (21) into (9) and minimizing the potential energy of the system as a function of constants
(i.e., ∂U/∂c j = 0), one may obtain following system of linear equations for EBT:

n∑
j=1

ai j c j = Pbi , (25)
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boundary condition Fu Fv

S-S X (1− X) 1
C-S X (1− X) X
C-C X (1− X) X (1− X)

Table 1. Boundary functions used for different edge conditions (TBT).

where ai j =
∫ 1

0 ϕ̂i
′′
ϕ̂ j
′′ dX , bi =

∫ 1
0 ϕ̂i −µ/L2ϕ̂i

′′ dX , i = 1, 2, . . . , n and P = q L4/(E I )
Similarly, substituting (21) and (22) into (20) and minimizing the potential energy of the system as a

function of constants (i.e., ∂U/∂c j = 0 and ∂U/∂d j = 0; j = 1, 2, . . . , n), one may find the following
system of linear equations for Timoshenko beam theory:

[K ]{Y } = P{B}, where K =
[

k1 k2

k3 k4

]
. (26)

Here, k1, k2, k3 and k4 are submatrices and are given by

k1(i, j)=
∫ 1

0
2ks G Aϕ̂i

′
ϕ̂ j
′ dX, k2(i, j)=

∫ 1

0
2ks G ALϕ̂i

′
ψ̂ j dX,

k3(i, j)=
∫ 1

0
2ks G ALψ̂i ϕ̂ j

′ dX, k4(i, j)=
∫ 1

0
(2ks G AL2ψ̂i ψ̂ j + 2E I ψ̂i

′

ψ̂ j
′

) dX.

In (26), Y = {c1 c2 . . . cn d1 d2 . . . dn}
T and B = {b1 b2}

T , where

b1(i)=
∫ 1

0
ϕi dX, b2(i)=

∫ 1

0
µq Lψi

′ dX.

4. Results and discussions

A numerical code has been developed in MATLAB to compute numerical results. Material and geometric
properties of the carbon nanotubes are taken from [Alshorbagy et al. 2013], and are given in Table 2. A
uniformly distributed load (q = 1) has been taken into consideration for three different boundary condi-
tions. The letters C, S and F refer to clamped, simply supported and free edge conditions, respectively.
It is a well-known fact that nondimensional maximum deflection is evaluated at the center of the beam,
which is given by Wmax =−w× 102(E I/(q L4)). Before presenting and discussing the new results, it
is necessary to perform a convergence study and also to validate the present method with other methods
presented in the literature.

Therefore, a convergence study has been carried out for the nondimensional maximum deflection Wmax

of the EBT nanobeam with C-S support. As such, Figure 2 shows convergence of the nanobeam with
L/h = 10 and µ= 1.5 nm2. As can be seen from the figure, n = 4 is sufficient for converged results. It
may be noted that previous published results [Ghannadpour et al. 2013] also show the same number of
terms required for computation.

In order to validate the results obtained by the present method, the nondimensional maximum deflec-
tion is compared in Table 3 with those reported in [Alshorbagy et al. 2013]. In this table, the results are
presented for nonlocal beams with boundary conditions at two ends which are of a variety of combinations
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properties value

E 30 · 106

h 1
ks 5/6
ν 0.19

Table 2. Material properties of the carbon nanotubes.

1 1.5 2 2.5 3 3.5 4
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

W
m

ax

n
Figure 2. Convergence of nondimensional maximum center deflection for EBT.

C-S C-C

µ present [Alshorbagy et al. 2013] present [Alshorbagy et al. 2013]

0 0.50 0.54 0.24 0.26
1 0.52 0.58 0.24 0.26
2 0.59 0.61 0.24 0.26
3 0.60 0.65 0.24 0.26

Table 3. Comparison of nondimensional maximum center deflection (Wmax) for C-S
and C-C boundary conditions.

such as C-S and C-C. Results have been shown for different values of a nonlocal parameter. It is noted
that the results reported by Alshorbagy et al. [2013] are obtained by the finite element model. It can be
seen that there is an excellent agreement between the obtained results in this paper and those reported in
the previous work.

Next, we have carried out some of the parametric studies which are discussed below. One may note
unless mentioned that deflection and rotation would refer to nondimensional maximum center deflection
and nondimensional maximum center rotation respectively.

4.1. Effect of slenderness ratio. Figure 3 illustrates the effect of the slenderness ratio (L/h) on the
deflection of nanobeams. In this figure, we have shown the variation of deflection with slenderness ratio
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Figure 3. Effect of the slenderness ratio on the dimensionless deflection.
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Figure 4. Effect of the nonlocal parameter on the dimensionless deflection.

for both local and nonlocal theories. Here, the slenderness ratio varies from 10 to 50 and the boundary
condition is considered as C-S. Local results may be computed by taking the nonlocal parameter (µ) as
zero. One may note that nonlocal results have been computed for µ = 1 nm2. We have presented the
graphical results for nanobeams based on both EBT and TBT beam theories. One may observe that in
the case of nanobeams based on local EBT, the slenderness ratio has no effect on the beam deflection
whereas in nonlocal EBT, deflection is dependent on the slenderness ratio. It may also be noticed that
in case of nanobeams based on both local and nonlocal TBT, deflection is dependent on the slenderness
ratio. The dependency of the responses on the slenderness ratio for local TBT is uniquely due to the effect
of shear deformation and this dependency becomes strong with the effect of small scale. As slenderness
ratio decreases, the difference between the solutions of EBT and TBT becomes highly important.

4.2. Nonlocal parameter effect. In order to investigate the effect of the nonlocal parameter on the de-
flection, variation of deflection with the scale coefficient has been demonstrated in Figure 4 for different
values of the slenderness ratio (L/h). In this figure, we have considered TBT nanobeams with the C-S
edge condition. Graphical results have been shown for different values of slenderness ratio. It is seen
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Figure 5. Effect of the nonlocal parameter on the dimensionless deflection for different
boundary conditions.

from the figure that deflection varies nonlinearly with the scale coefficient. One may also observe that
all responses of nanobeams with lower aspect ratios are strongly affected by the nonlocal parameter than
those of nanobeams with relatively higher aspect ratios. From these computations, it may be explained
that modeling based on the local beam models may not be suitable, whereas the nonlocal beam models
show an adequate approximation for the nanosized structures [Şimşek and Yurtcu 2013]. It is also noticed
that deflection increases with the scale coefficient, while it is not true in case of buckling and vibration
[Şimşek and Yurtcu 2013]. One may conclude here that the nonlocal beam model produces a larger
deflection than the classical (local) beam model. Therefore, the small scale effects (or nonlocal effects)
should be considered in the analysis of the mechanical behavior of nanostructures.

4.3. Boundary condition effect. Deflections of nanobeams under uniform load have been computed for
different boundary conditions and are shown in Figure 5. In this figure, the effect of deflection on the scale
coefficient has been shown for three sets of boundary conditions, viz., S-S, C-S and C-C. In doing so, we
have taken the slenderness ratio as 10. We observe that C-C has the smallest deflection for a particular
value of the nonlocal parameter. One may note that in the case of C-C edge condition, there is no effect of
the nonlocal parameter on the deflection, whereas in the case of S-S and C-S supports, deflection increases
with an increase in the nonlocal parameter. Hence, the effect of the nonlocal parameter on the deflection
is inconsistent for different boundary conditions. We state some other observations in Section 4.4.

4.4. Deflection and rotation shapes. In this subsection, we examine the behavior of deflection and rota-
tion shapes of nanobeams along its length for different boundary conditions. Figures 6–8 show variation
of deflection with length for S-S, C-S and C-C edge conditions, respectively. It is observed from the
figures that deflection of S-S and C-S nanobeams increases with increases in the nonlocal parameter. It
is due to the fact that increasing nonlocal parameter causes an increase in the bonding force of atoms and
this force is constrained by its boundaries, which increases deflection. Another observation is seen in
that the nonlocal parameter has no effect on the deflection of C-C nanobeams because of its constrained
nature [Alshorbagy et al. 2013]. Next, we have shown variation of rotation with length for S-S, C-S and
C-C edge conditions, respectively in Figures 9–11. It may be noticed that the rotation behaves differently
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Figure 6. Static deflection of S-S nanobeams for different nonlocal parameters.
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Figure 7. Static deflection of C-S nanobeams for different nonlocal parameters.
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Figure 8. Static deflection of C-C nanobeams for different nonlocal parameters.
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Figure 9. Static rotation of S-S nanobeams for different nonlocal parameters.
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Figure 10. Static rotation of C-S nanobeams for different nonlocal parameters.

0 0.2 0.4 0.6 0.8 1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

ro
ta

ti
o

n

 

 

µ=0

µ=1

µ=2

x/L

Figure 11. Static rotation of C-C nanobeams for different nonlocal parameters.
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than that of deflection. Increasing the nonlocal parameter decreases rotation of S-S and C-C nanobeams
up to midlength and afterwards increases in the nonlocal parameter increases rotation. One may also
notice that the nonlocal parameter has no effect on the rotation of C-C nanobeams.

5. Concluding remarks

Boundary characteristic orthogonal polynomials as shape functions have been implemented in the Rayleigh–
Ritz method for static analysis of nanobeams. The formulation is based on both Euler–Bernoulli and
Timoshenko beam theories in conjunction with nonlocal elasticity of Eringen. A system of linear equa-
tions is formed by the applying the present method. The following conclusions may be derived from the
present analysis:

• Slenderness ratio has no effect on the beam deflection in the case of local EBT, whereas in the case
of nonlocal EBT, deflection is dependent on the slenderness ratio.

• It is seen that bending responses vary nonlinearly with the nonlocal parameter. One may also observe
that bending responses of nanobeams with lower aspect ratios are strongly affected by the nonlocal
parameter than those of the nanobeams with relatively higher aspect ratios.

• The nonlocal parameter has no effect on the deflection of C-C nanobeams, whereas in case of S-S
and C-S supports, deflection increases with increases in the nonlocal parameter.
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ANALYSIS OF PEDESTRIAN-INDUCED LATERAL VIBRATION OF A
FOOTBRIDGE THAT CONSIDERS FEEDBACK ADJUSTMENT AND

TIME DELAY

JIA BUYU, CHEN ZHOU, YU XIAOLIN AND YAN QUANSHENG

Research on pedestrian-bridge dynamic interaction has intensified in recent years after the occurrence
of several footbridge accidents caused by pedestrian-induced vibration. This study focuses on the anal-
ysis of pedestrian-induced lateral vibration of footbridges by considering the time delay and feedback
adjustment that occur in the interaction between the pedestrians and the footbridge. A detailed nonlinear
lateral vibration model is first established. Then, the bifurcation and stability of this model around the
critical value of time delay is discussed using a qualitative method. Moreover, response amplitude and
the critical number of pedestrians are evaluated using a multiscale method. Analysis of the results shows
that the time delay and feedback adjustment play important roles in controlling the lateral vibration of
the footbridge.

1. Introduction

Pedestrian load is considerably smaller than vehicle load; consequently, pedestrian-induced vibration of
footbridges has not aroused considerable attention until the occurrence of the Millennium Bridge accident
in London, which was caused by large lateral vibration. Unlike a running vehicle, a pedestrian creates an
alternating motion as they walk with their two legs; this does not only produce a vertical force but also
lateral and longitudinal forces. The normal pedestrian walking frequency ranges from 1.6 Hz to 2.4 Hz
in the vertical direction, from 0.8 Hz to 1.2 Hz in the lateral direction, and from 0.8 Hz to 1.2 Hz in the
longitudinal direction [Živanović et al. 2005]. Meanwhile, the fundamental frequencies of most flexible
footbridges are less than 3.0 Hz, which indicates that the walking frequency of pedestrians falls within
the range of the fundamental frequency of most footbridges. That is, the walking action of a pedestrian
may easily cause resonance on a footbridge. Accidents caused by large vibrations have occurred in recent
years. For example, a steel suspension footbridge in the Sichuan Province in China collapsed in 2010
because of a large lateral vibration caused by walking tourists; the accident left over 28 people injured
[Qin 2013]. Apart from causing collapse failure, the footbridge vibration frequently leads to discomfort
among pedestrians. Pedestrians are highly sensitive to footbridge vibration; therefore, a large footbridge
vibration can make pedestrians feel uncomfortable and even cause panic in a crowd. The large lateral
vibration of the Millennium Bridge is a famous example [Dallard et al. 2001a]. The Millennium Bridge

This research was supported by the National Natural Science Foundation of China (Nos. 51478193), the China Postdoctoral
Science Foundation (Nos. 2016M592490), the Fundamental Research Funds for the Central Universities (Nos. 2015ZM114),
and the Open Fund of State Key Laboratory of Bridge Engineering Structural Dynamics (Nos. 201507).
Keywords: footbridge, nonlinear vibration, lateral displacement, time delay, feedback adjustment.
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was temporarily closed for 20 months until the vibration was reduced by implementing several temporary
solutions. This incident has become a symbol of pedestrian-induced vibration of footbridges.

Since the occurrence of large lateral vibration of the London Millennium Bridge during its inaugu-
ration, experts have started to study the involved mechanisms. In recent years, a number of tests and
theoretic models have been investigated to explain the large lateral vibration of footbridges.

Prior to the retrofit of the Millennium Bridge, a full scale test was implemented [Dallard et al. 2001a].
The test showed that there exists a critical number of pedestrians needed to trigger a divergence of lateral
vibration. The test also showed that the pedestrian-induced lateral force is proportional to the velocity of
bridge, which means the action of pedestrians could be treated as negative viscous dampers. Brownjohn
et al. [2004a; 2004b] performed a test on pedestrians circumambulating on a bridge in the Singapore
Changi Airport. According to the test, pedestrians might slow down or stop moving forward, depending
on the state of bridge vibration. The test also showed that the critical number of pedestrians cannot be
determined in a repeatable way due to the randomness of pedestrian walking characteristics.

While walking on a lateral vibrating footbridge, pedestrians continually adjust their states to walk
comfortably, and the phenomenon of “lock-in” (pedestrians synchronizing their steps with the bridge’s
movement) may occur when the walking frequency of pedestrians is close to the bridge’s lateral natural
frequency, which further enhances the lateral vibration. Dallard et al. [2001a] defined this kind of mecha-
nism as Synchronous Lateral Excitation (SLE). To explain the large pedestrian-induced lateral vibration,
several models have been proposed and classified into linear response models and nonlinear response
models [Ingólfsson et al. 2012]. Linear response models can also be regarded as direct resonance models,
where the lateral vibrations are caused by direct resonance; namely, the pedestrian walking frequency
is in resonance with the natural frequency of one or more lateral vibration modes. Fujino et al. [1993]
considered the direct resonance as the source that excites the large pedestrian-induced lateral vibration
and used a linear monodimensional damped dynamical system to analyze the lateral vibration of the T-
Bridge. The test on the Millennium Bridge [Dallard et al. 2001a] showed that the first lateral frequency
of the central span is 0.48 Hz, which does not fall in the range of pedestrian lateral walking frequencies.
This means the direct resonance is not able to explain the large vibration of the first lateral mode of the
central span of the Millennium Bridge. It is interesting to note that the second lateral frequency of the
central span is around 1 Hz, which may lead to a mixed resonant-parametric excitation. However, such
higher mode excitation will not be considered here, as the research’s object is the large vibration of the
first lateral mode.

For the nonlinear response model, there are several remarkable models. Based on the Dallard model
[Dallard et al. 2001a], which is widely used as a stability criterion to estimate the number of pedestrians
needed to trigger large lateral vibration, Nakamura [2004] proposed a refined model by multiplying the
lateral force with a modulated function. The modulated function represents the self-limiting nature of the
pedestrian synchronization: pedestrians will reduce their walking speed, or completely stop, when the
bridge’s velocity becomes large. Yuan [2006] proposed an empirical model, in which the dynamic load
factor and the probability of synchronization depend on the vibration amplitude. In this model, both of
the self-excited effect caused by the synchronized pedestrians and the forced vibration effect caused by
the unsynchronized pedestrians are considered, and a nonlinear equation for stability criterion is derived
to estimate the critical number of pedestrians. Blekherman [2005] proposed an autoparametric resonance
model to explain the large lateral vibration. Based on the model of Blekherman, the large lateral vibration
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in the footbridge can be attributed to the existence of an integer ratio between vertical and lateral mode
frequencies. For example, there is a 2 : 1 ratio between the third vertical mode frequency (1.89 Hz) and the
second lateral mode frequency (0.95 Hz) in central span of the Millennium Bridge, as well as a 2 : 1 ratio
between the third vertical mode frequency (2.0 Hz) and the first lateral mode frequency (1.0 Hz) in the
T-Bridge. Besides the autoparametric resonance model, there is another parametric resonance nonlinear
model proposed by Piccardo and Tubino [2008], which is based on a displacement-dependent nonlinear
lateral force model. According to this model, the large lateral vibration in the flexible footbridge can be
attributed to the parametric resonance in which the lateral natural frequency is equivalent to half of the
pedestrian lateral walking frequency. For example, in the Millennium Bridge, the first lateral frequency
(0.48 Hz) is nearly half of the pedestrian lateral walking frequency (1.0 Hz).

As mentioned previously, pedestrians will make a feedback adjustment according to the bridge vibra-
tion. During the process of adjustment, there exists a time delay among the pedestrian-bridge interaction.
Based on the Nakamura model, Liu and Xie [2013] proved that the time delay has a great influence on the
lateral vibration of footbridge. Newland [2004] assumed that pedestrian movement was composed of two
parts. The first part is the natural movement of a pedestrian while walking on a stationary pavement; the
second part is the movement caused by the bridge vibration, which is proportional to the bridge amplitude
with a time delay. However, Newland did not conduct a specific study on the effect of time delay.

The Millennium Bridge is used as the background in this study. A qualitative analytical method and a
multiscale method are used to analyze pedestrian-induced lateral vibration of a footbridge by considering
the time delay and feedback adjustment. In addition, the effects of time delay and feedback adjustment
on the critical number of pedestrians and response amplitude are discussed.

2. Basic nonlinear vibration model

A footbridge is modeled as a beam under the action of pedestrians. A segment with length ds, which is
x distance from the beam support, is considered (Figure 1).

The cross sections are assumed to remain normal to the deformed axis. Using the displacement method,
the equilibrium equation of lateral motions at the centroid is obtained as [Chopra 1981]

(ρs A+m p)
∂2w

∂t2 ds+µ2
∂w

∂t
ds =

∂

∂s
(N sin θ − Q cos θ) ds+ fl ds, (1)

where ρs is the density of the footbridge, A is the section area, m p is the crowd mass per meter along the
bridge, w(x, t) is the lateral displacement, µ2 is the lateral damping coefficient of the footbridge, θ is the

w(x, t)

u(x, t)

N
θ

M Q
ds

Q+ ∂Q
∂s ds

M + ∂M
∂s ds N + ∂N

∂s ds

θ + ∂θ
∂s ds

fl

Figure 1. Segment equilibrium.
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section angle, N (x, t) is the axial force, Q(x, t) is the shear force, and fl is the lateral force of pedestri-
ans. Realizing that the pedestrian motion is harmonic and that there exists a time delay (the footbridge
vibration does not vary immediately) between the bridge and the pedestrians when the pedestrians-bridge
action takes place, the expression of fl with consideration of a time delay τ can be written as

fl(t − τ)= λαlm pg cos(ωp(t − τ)), (2)

where λ is the pedestrian synchronous coefficient (according to Piccardo and Tubino [2008], the value
of λ in the Millennium Bridge is set as λ = 0.3), g is the acceleration of gravity, ωp is the pedestrian
walking frequency, and αl is the lateral dynamic loading factor of the first harmonic (the ratio between
the lateral dynamic force and the pedestrian weight).

According to the measured data from the literature [Dallard et al. 2001a], it can be found that the
pedestrian lateral force is proportional to the lateral velocity of footbridge. Thus, it is assumed that there
is a linear relationship between the pedestrian lateral force and the lateral velocity of footbridge, and αl

can be defined as
αl = αl1+αl2

∂w(x, t−τ)
∂t

, (3)

where αl1 is the dynamic load coefficient while walking on stationary pavement and αl2 is the dynamic
load coefficient related to the lateral velocity of footbridge. Subsequently, the pedestrian lateral force
can be rewritten as

fl(t − τ)= λ
[
αl1+αl2

∂w(x, t − τ)
∂t

]
m pg cos(ωp(t − τ)). (4)

The fit method is used to approximate the linear relationship between the dynamic load coefficient
and the lateral velocity of footbridge (Figure 2). The fitting results show that the values of αl1 and αl2 in
the Millennium Bridge are αl1 = 0.04 and αl2 = 0.7.

Assuming that shear force Q(x, t) and moment M(x, t) exhibit the relationship Q = ∂M/∂s =
cos θ(∂M/∂x), then (1) can be rewritten as

(ρs A+m p)
∂2w

∂t2 +µ2
∂w

∂t
=
∂

∂x

(
N sin θ − ∂M

∂x
cos2 θ

)
cos θ + fl(t − τ). (5)
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Figure 2. Dynamic load coefficient versus lateral velocity of footbridge.
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Through the stress integration on the section, the axial force caused by lateral bend is obtained as

N (x, t)=
∫∫

EεN dA = E
∫∫

∂
[∫ x

0

√
1+ (∂w/∂x)2 dx − x

]
∂s

dA, (6)

where εN is the normal strain caused by lateral bend. N (x, t) is rewritten (based on the first-order Taylor
Series expansion of εN and cos θ ) as

N (x, t)≈ E
∫∫

∂
[∫ x

0

[
1+ 1

2(∂w/∂x)2
]

dx − x
]

∂s
cos θ dA

= E
∫∫

1
2

(
∂w

∂x

)2
cos θ dA ≈ 1

2
E A

(
∂w

∂x

)2
. (7)

The moment caused by section rotation is obtained as

M(x, t)= E I
∂θ

∂x
= E I

∂2w

∂x2 . (8)

Taking the first-order Taylor series expansion of sin θ yields sin θ ≈ θ = ∂w/∂x . Accordingly, one
has cos θ ≈ 1− (∂w/∂x)2. Then substituting (7) and (8) into (5), the dynamic equation that contains the
only unknowns of the lateral displacement is obtained as

(ρs A+m p)
∂2w

∂t2 +µ2
∂w

∂t
+ E I ∂

4w

∂x4

=
3
2 E A

(
∂w

∂x

)2 ∂2w

∂x2 + E I ∂
4w

∂x4

(
∂w

∂x

)2
+ 6E I ∂

3w

∂x3
∂2w

∂x2
∂w

∂x
+ 2E I

(
∂2w

∂x2

)3
+ fl(t − τ). (9)

When walking on a lateral vibrating footbridge, pedestrians would adjust their strides to walk comfort-
ably, according to the feedback of vibration. The action exerted by the pedestrians on the bridge changes
with the bridge vibration. During the early stage of adjustment, the pedestrians’ action based on the
feedback of vibration may continually enhance the vibration. However, when the lateral vibration ampli-
tude of bridge becomes large enough to make the pedestrians feel uncomfortable, pedestrians will reduce
their walking speed or stop walking to lower their actions on the bridge, and then the bridge vibration
decreases. These findings suggest that the pedestrians’ feedback adjustment is a very complicated process.
The mechanism of pedestrians’ feedback adjustment involves some uncertain influencing factors, such
as pedestrians’ psychology, bridge deck typology, human-human interaction, etc. Unfortunately, there is
no model or law so far that can precisely describe the pedestrians’ feedback adjustment. In this study, a
factor ζ is used to comprehensively represent these influencing factors. Then the term ζw(t − τ), which
is obtained by multiplying the factor ζ with the lateral displacement of the bridge that allows for the time
delay, is introduced to describe the action of feedback adjustment. By adding the term ζw(t − τ) into
the (9), we obtain the following:

(ρs A+m p)
∂2w

∂t2 +µ2
∂w

∂t
+ E I ∂

4w

∂x4

=
3
2 E A

(
∂w

∂x

)2 ∂2w

∂x2 +E I ∂
4w

∂x4

(
∂w

∂x

)2
+6E I ∂

3w

∂x3
∂2w

∂x2
∂w

∂x
+2E I

(
∂2w

∂x

)3
+ fl(t−τ)+ζw(t−τ). (10)
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This study intends to explain the large first lateral vibration of the central span of the Millennium
Bridge on the basis of parametric vibration. The second-order factor will not be considered in this study,
because the second-order factor corresponds to a direct resonance at second lateral mode (the second
lateral frequency of the central span is close to the pedestrian lateral walking frequency). Therefore, the
first-order mode w(x, t)=ψ(x)w1(t) is only considered, where the mode shape function is considered as

φ(x)= sin(πx/ l). (11)

By using the Galerkin method to execute a discretization, the corresponding modal differential equa-
tion is given as

ẅ1(t)+ζ1ẇ1(t)+ω2
1w1(t)−ζ2 cos(ωp(t−τ))ẇ1(t−τ)+βw3

1(t)−hw1(t−τ)−F0 cos(ωp(t−τ))=0, (12)

where ζ1 = 2ζ0ω1 (ζ0 is the damping ratio of a footbridge), and

ω1 =

√
E Iπ4

l4(ρs A+m p)
, ζ2 =

λαl2m pg
ρs A+m p

, β =
10E Iπ6

+ 3π4l2 E A
8l6(ρs A+m p)

,

F0 =
4λαl1m pg
π(ρs A+m p)

, and h =
4ζ

π(ρs A+m p)
.

3. Critical values of time delay

Let q1(t)= w1(t) and q2(t)= ẇ1(t). Equation (12) can be rewritten as

q̇1(t)= q2(t),

q̇2(t)=−ζ1q2(t)+ ζ2 cos(ωp(t − τ))q2(t − τ)

−ω2
1q1(t)−βq3

1 (t)+ hq1(t − τ)+ F0 cos(ωp(t − τ)).

(13)

Let ζ̄2 = ζ2 cos(ωp(t − τ)). The following characteristic equation that corresponds to (13) can be
obtained by adopting a linearization method [Zhen et al. 2013]:

λ2
+ ζ1λ+ω

2
1− ζ̄2λe−λτ − he−λτ = 0. (14)

Let λ = κ + iν and substitute it into (14). The real part and the imaginary part can be respectively
expressed by

κ2
− ν2
+ ζ1κ +ω

2
1− ζ̄2e−λτ [κ cos(ντ)+ ν sin(ντ)] − he−κτ cos(ντ)= 0, (15)

2κν+ ζ1ν− ζ̄2e−λτ [ν cos(ντ)− κ sin(ντ)] + he−κτ sin(ντ)= 0. (16)

Hopf bifurcation may occur near the origin of (14) when κ changes within a small range around zero;
thus, (15) and (16) can be respectively rewritten as

−ν2
+ω2

1 = ζ̄2ν sin(ντ)+ h cos(ντ), (17)

ζ1ν = ζ̄2ν cos(ντ)− h sin(ντ). (18)

Combining (17) with (18) and considering the elimination of time delay τ yields

ν4
− (2ω2

1+ ζ̄
2
2 − ζ

2
1 )ν

2
+ω4

1− h2
= 0. (19)
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According to (17) and (19), we have

νk =

√√√√2ω2
1+ ζ̄

2
2 − ζ

2
1 ±

√
4h2+ (ζ̄ 2

2 − ζ
2
1 )

2+ 4ω2
1(ζ̄

2
2 − ζ

2
1 )

2
, k = 1, 2; (20)

τn,k =
1
ν1,2

[
arcsin

(
ω2

1− ν
2
1,2√

ζ̄ 2
2 ν

2
1,2+ h2

)
− arctan

( h
ζ̄2ν1,2

)
+ 2nπ

]
, n = 0, 1, 2, 3, . . . k = 1, 2. (21)

When τ = τn,k , the complex conjugate roots of (14) may cross the imaginary axis if the following
conditions are satisfied:

(1) a real root of (19) exists, and

(2) the real part of dλ/dτ is not equal to zero.

The stability and bifurcation of (14) is considered in this study. Note that κ and ν in (15) and (16) are
functions of τ ; hence, the solutions with the form of κ(τ)± iν(τ) are considered. Let κ(τn,k)= 0, νk =

νk(τn,k), and n = 0, 1, 2, 3, . . . , k = 1, 2. Implementing the partial derivative with (15) and (16) yields

[ζ1+ hτ cos(νkτ)− ζ̄2 cos(νkτ)+ ζ̄2τνk sin(νkτ)]
dκ
dτ

+
[
− 2νk + hτ sin(νkτ)− ζ̄2 sin(νkτ)− ζ̄2τνk cos(νkτ)

]dνk

dτ
=−hνk sin(νkτ)+ ζ̄2ν

2
k cos(νkτ), k = 1, 2; (22)

[2νk − hτ sin(νkτ)+ ζ̄2 sin(νkτ)+ ζ̄2τνk cos(νkτ)]
dκ
dτ

+ [ζ1+ hτ cos(νkτ)− ζ̄2 cos(νkτ)+ ζ̄2τνk sin(νkτ)]
dνk

dτ
=−hνk sin(νkτ)− ζ̄2ν

2
k sin(νkτ), k = 1, 2. (23)

Combining (22) with (23) yields
dκ
dτ
=

L1

L2
, (24)

where

L1 =−νk[ζ
2
2 νk + (2ζ̄2ν

2
k + ζ1h) sin(νkτ)+ (2hνk − ζ1ζ̄2νk) cos(νkτ)],

L2 = [ζ1+ hτ cos(νkτ)− ζ̄2 cos(νkτ)+ ζ̄2τνk sin(νkτ)]
2

+ [2νk − hτ sin(νkτ)+ ζ̄2 sin(νkτ)+ ζ̄τνk cos(νkτ)]
2, k = 1, 2.

Substituting τ = τn,1 and τ = τn,2 (τn,1 < τn,2) into (24) yields

dκ
dτ

∣∣∣
τ=τn,1

< 0, n = 0, 1, 2, 3, . . . ; (25)

dκ
dτ

∣∣∣
τ=τn,2

> 0, n = 0, 1, 2, 3, . . . . (26)

According to (25) and (26), the stable and unstable regions can be obtained as follows:
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τ 0

h

τ0,1

τ0,2

Figure 3. Relationship between the critical value of time delay and the feedback adjust-
ment factor.

(1) When dκ/dτ |τ=τn,1 < 0, a pair of eigenvalues cross the imaginary axis, and the real part of the
eigenvalues changes from positive to negative. At that moment, the system tends to be stable with
an increase in time delay.

(2) When dκ/dτ |τ=τn,2 > 0, a pair of eigenvalues cross the imaginary axis, and the real part of the
eigenvalues changes from negative to positive. At that moment, the system tends to be unstable
with an increase in time delay.

Hence, when h has a certain value, time delay τ will have two corresponding critical values, i.e., τn,1

and τn,2, and bifurcations will occur near τn,1 and τn,2. Given that τn,1 < τn,2, the system is initially
stable. When τ arrives at τn,2, bifurcation occurs, and the system has no real solution. Subsequently,
when τ arrives at τn,2, bifurcation occurs again; at that moment, the system has real solutions. These
findings suggest that the lateral vibration of the bridge at first decreases in amplitude as the time delay
increases, then it stops altogether when the time delay is in the range [τn,1τn,2], and then its amplitude
starts increasing again with time delay when the time delay exceeds τn,2.

Figure 3 shows the relationship between the critical value of time delay and the feedback adjustment
factor under n = 0 and ζ̄2 = 0.8ζ2. Some conclusions can be derived from Figure 3 as follows:

(1) When the feedback adjustment factor is fixed at a certain value, the variation of time delay will make
the system shift from a balanced state to an unbalanced state and then to another balanced state.

(2) The critical values of time delay depend on whether the feedback adjustment factor h is positive
(pedestrian exerts a feedback adjustment action in an opposite direction to the displacement) or
negative (pedestrian exerts a feedback adjustment action in the same direction to the displacement).

(3) The critical values of time delay vary dramatically around the point of h = 0, which denotes that a
small feedback adjustment factor will have a relatively large influence on the critical values of time
delay.

The aforementioned analysis belongs to the qualitative analysis domain. In the next section, we will
adopt a quantitative analysis theory (multiscale method) to discuss the influences of time delay and
feedback adjustment on pedestrian-induced lateral vibration of a footbridge.
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4. Nonlinear parametric resonance

Back to (12), since the pedestrian modal mass is usually small compared with the structural modal mass,
ζ2 is naturally small, which can be represented by a small parameter ε; moreover, the terms ζ1, β, h
and F0 are also small, and they are assumed small enough to be of the same order as ε. Hence, these
parameters mentioned above are rewritten as follows:

ζ2 = ε, ζ1 = εζ̃1, β = εβ̃, h = εh̃, F0 = ε F̃0. (27)

Letting r(t)= w1(t) and substituting (27) into (12) yields

r̈(t)+εζ̃1ṙ(t)−ε cos(ωp(t−τ))ṙ(t−τ)ω2
1r(t)+εβ̃r3(t)−εh̃r(t−τ)−ε F̃0 cos(ωp(t−τ))= 0. (28)

The multiscale method is used to solve (28). The first-order approximation with two time scales is
introduced as

r(t)= r0(T0, T1)+ εr1(T0, T1)+ O(ε2), Tn = ε
nt, n = 0, 1;

rτ (t)= r0τ (T0, T1)+ εr1τ (T0, T1)+ O(ε2).
(29)

Consider the following differential operators:

d
dT
=

∂

∂T0
+ ε

∂

∂T1
+ O(ε2)≡ D0+ εD1+ O(ε2),

d2

dT 2 = D2
0 + 2εD0 D1+ O(ε2).

(30)

Substituting (29) and (30) into (28), and equating the same power of ε yields

ε0
: D2

0r0+ω
2
1r0 = 0, (31)

ε1
: D2

0r1+ω
2
1r1 =−2D0 D1r0− ζ̃1 D0r0+ D0r0τ cos(ωp(t − τ))

− β̃r3
0 + h̃r0τ + F̃0 cos(ωp(t − τ)). (32)

The solution to (31) is
r0(T0, T1)= A(T1)e jω1T0 + A(T1)e− jω1T0 . (33)

The time delay term can then be written as

r0τ (T0, T1)= Aτ (T1)e jω1(T0−τ)+ Aτ (T1)e− jω1(T0−τ), (34)

where A(T1) and Aτ (T1) denote the complex functions with respect to T1, which will be determined
later; and A(T1) and Aτ (T1) denote the complex conjugate of A(T1) and Aτ (T1), respectively.

Substituting (33) and (34) into (32) yields

D2
0r1+ω

2
1r1 =−(2D1 Ajω1+ ζ̃1 Ajω1)e jω1T0 +

1
2 jω1(Aτ e j (ωp+ω1)(T0−τ)− Aτ e j (ωp−ω1)(T0−τ))

− β̃(A3e3 jω1T0 + 3A2 Ae jω1T0)+ h̃ Aτ e jω1(T0−τ)+
1
2 F̃0e j (ωpT0−ωpτ)+ cc, (35)

where cc denotes the complex conjugate of all the preceding terms on the right side. On the basis of
(35), parametric vibration will occur when ωp ≈ 2ω1, whereas forced vibration will occur when ωp ≈ ω1.
Parametric vibration and forced vibration cannot occur simultaneously under the action of pedestrian
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lateral force when considering the first lateral mode of bridge; thus, only parameter vibration ωp ≈ 2ω1

is considered in this section. A detuning parameter σ is added, and the equation is assumed as

ωp = 2ω1+ εσ. (36)

Eliminating the secular terms in (35) yields

2D1 Ajω1+ ζ̄1 Ajω1+
1
2 jω1 Aτ e jσT1e− j (ω1+εσ )τ − h̃ Aτ e− jω1τ + 3β̃A2 A = 0. (37)

When the time delay is not large and ε is extremely small, Aτ and Aτ can be respectively rewritten
by using Taylor expansion as follows:

Aτ (T1)= A(T1− ετ)= A(T1)− ετ A′(T1)+
1
2ε

2τ 2 A′′(T1)≈ A(T1), (38)

Aτ (T1)= A(T1− ετ)= A(T1)− ετ A′(T1)+
1
2ε

2τ 2 A′′(T1)≈ A(T1). (39)

Then, (37) becomes

2D1 Ajω1+ ζ̄1 Ajω1+
1
2 jω1 A(T1)e jσT1e− j (ω1+εσ )τ − h̃ A(T1)e− jω1τ + 3β̃A2 A = 0. (40)

For convenience, the complex function A(T1) is written in polar form as

A(T1)=
1
2a1(T1)e jφ1(T1), (41)

where a1(T1) and φ1(T1) are real functions of T1. By substituting (41) into (40) and separating the
resulting equation into real and imaginary parts, we obtain the following:

D1a1 =−
1
2 ζ̃1a1−

1
4a2 cosψ cos((ω1+ εσ )τ)−

1
4a1 sinψ sin((ω1+ εσ )τ)−

h̃a1

2ω1
sin(ω1τ), (42)

D1ψ = σ +
1
2 sinψ cos((ω1+ εσ )τ)−

1
2 cosψ sin((ω1+ εσ )τ)−

3β̃a2
1

4ω1
+

h̃
ω1

cos(ω1τ), (43)

where ψ = σT1− 2φ1. For a steady primary resonance, D1a1 = D1ψ = 0, which leads to the following
equations with consideration of (27):

1
2ζ1+

h
2ω1

sin(ω1τ)=−
1
4ζ2 cosψ cos((ω1+ εσ )τ)−

1
4ζ2 sinψ sin((ω1+ εσ )τ), (44)

εσ −
3βa2

1

4ω1
+

h
ω1

cos(ω1τ)=
1
2ζ2 cosψ sin((ω1+ εσ )τ)−

1
2ζ2 sinψ cos((ω1+ εσ )τ). (45)

By squaring both sides of (44) and (45) and adding the resulting equations, the amplitude-frequency
equation and the phase-frequency equation can be respectively obtained as(

ζ1+
h
ω1

sin(ω1τ)
)2
+

(
εσ −

3βa2
1

4ω1
+

h
ω1

cos(ω1τ)

)2

=
1
4ζ

2
2 , (46)

tanψ =

3βa2
1

4ω1
−

h
ω1

cos(ω1τ)− εσ −
[
ζ1+

h
ω1

cos(ω1τ)
]

tan((ω1+ εσ )τ)[
σ −

3βa2
1

4ω1
+

h
ω1

cos(ω1τ)

]
tan((ω1+ εσ )τ)−

[
ζ1+

h
ω1

cos(ω1τ)
] . (47)
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Figure 4. Relationship between phase angle and time delay (h = 0.05).

From (46), it can be known that [ζ1 + h/ω1 sin(ω1τ)]
2
≤

1
4ζ

2
2 . Note that ζ2 is probably very small,

hence a physical limit range of h can be obtained as |h| ≤ ω1ζ1.
According to (46) and (47), the time delay and feedback adjustment have made a difference in both

amplitude and phase.
Figure 4 shows the relationship between phase angle and time delay under different detuning parame-

ters when h = 0.05 (rad/s)2. As shown in the figure, phase angle changes with time delay, and it has the
envelope amplitudes around ±90. Moreover, the curves of εσ > 0 and the curves of εσ < 0 are distributed
symmetrically on the opposite two sides of the curve of εσ = 0. It is noted that, when time delay is near
the region centered around τ =−0.23, the difference between the curve of εσ > 0 and that of εσ < 0 is
slight, whereas the difference increases as the time delay becomes farther from the center point.

Solving (46) yields

a1 =

√
4h
3β

cos(ω1τ)+
4ω1

3β
εσ ±

4ω1

3β

√
1
4ζ

2
2 −

(
ζ1+

h
ω1

sin(ω1τ)
)2
. (48)

According to (48), the effect of time delay on response amplitude will be periodic because the time
delay is embedded into the triangular functions.

5. Effects of displacement feedback adjustment and time delay on response amplitude

The central span of the Millennium Bridge is used as the background. According to previous works
[Dallard et al. 2001b; Piccardo and Tubino 2008], the structural parameters are set as ω1 = 2πn1 (n1 =

0.48 Hz), λ = 0.3, ms = 2000 kg/m, m ps = 70 kg, ζ0 = 0.007, and αl2 = 0.7. It is assumed that
200 pedestrians are walking on the bridge. The response of the Millennium Bridge under parametric
resonance (i.e., εσ = 0) is analyzed. Figure 5 shows the effects of the time delay (within a certain
period) and feedback adjustment on the response amplitude, in which the feedback adjustment factors
are set as h=±0.05, h=±0.1, and h=±0.1273 (the limit range of h is calculated as [−0.1273, 0.1273]).

In Figure 5, the solid lines denote stable periodic solutions, whereas the dashed lines denote unstable
solutions. Note that no real solution region, which is shown as zero in the figures, exists because the
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(a) h =−0.05 (b) h =−0.1 (c) h =−0.1273

(d) h = 0.05 (e) h = 0.1 (f) h = 0.1273

Figure 5. Effects of the time delay and feedback adjustment on response amplitude.

pedestrian-induced vibration of the Millennium Bridge will have a crossing phenomenon caused by the
time delay.

The time delay and feedback adjustment significantly affect the response amplitude. As shown in
Figure 5, the maximum response amplitude by considering the time delay and feedback adjustment is
nearly 0.06, which is almost twice that without feedback adjustment.

A comparison between Figures 5a–5c and Figures 5d–5f shows that the distribution of bridge ampli-
tude with regard to the time delay strongly depends on whether the feedback adjustment factor is positive
or negative. Besides, the feedback adjustment factor also affects the maximum response amplitude. The
maximum response amplitude increases with the absolute value of feedback adjustment factor.

Meanwhile, the trend of bridge amplitude depends on the time delay. In some time delay regions, the
bridge vibration that considers the effect of the feedback adjustment is less than that without feedback
adjustment, which means that the feedback adjustment of pedestrians would tend to reduce the bridge
vibration, whereas in some other time delay regions, the feedback adjustment of pedestrians would tend
to raise the bridge vibration.

6. Effects of the time delay and feedback adjustment on the critical number of pedestrians

Note that amplitude a1 should be a real number, as given by

4h
3β

cos(ω1τ)+
4ω1

3β
εσ ±

4ω1

3β

√
1
4ζ

2
2 −

(
ζ1+

h
ω1

sin(ω1τ)
)2
≥ 0. (49)
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Subsequently, (49) results in
ζ2 ≤ ζ2 lim, (50)

where

ζ2 lim = 2

√(
εω1σ+h cos(ω1τ)

ω1

)2
+

(
ζ1+

h
ω1

sin(ω1τ)
)2
. (51)

According to (51), it can be found that the critical value ζ2 lim of ζ2 is related to the time delay and
feedback adjustment factor.

The pedestrians on the bridge are assumed to be uniformly distributed and the same as the mass
distribution of the bridge. This assumption supports the following equation:

m p L = Nm ps, (52)

where N denotes the number of pedestrians on the bridge, and m ps denotes the mass of a single pedestrian.
Combining (50) with (52) yields

N ≤
2Lρs A

√(
εω1σ+h cos(ω1τ)

ω1

)2
+

(
ζ1+

h
ω1

sin(ω1τ)
)2

λαl2m ps g− 2m ps

√(
εω1σ+h cos(ω1τ)

ω1

)2
+

(
ζ1+

h
ω1

sin(ω1τ)
)2
. (53)

Figures 6a and 6b present the N − τ curve under different values of h; Figures 6c and 6d present the
N − h curve under different values of τ . Considering the fact that the time delay varies within a certain
range under the practical situation, the following analysis will focus on the time delay that is within the
range of [−1, 1].

The critical number of pedestrians N depends on different combinations of h and τ . For example,
Figure 6a shows that, when τ ∈ [0.37, 0.67] and h < 0, N decreases with an increase of the absolute
value of h. In other words, when the time delay stays within the range of [0.37, 0.67], the action of the
negative feedback adjustment may tend to cause large bridge vibration. While for the case of [0.52, 1]
and h < 0, N increases with τ , denoting that the increase of time delay may tend to reduce the bridge
vibration. Meanwhile, the results corresponding to h > 0, as shown in Figure 6b, exhibits a trend that is
opposite to that of h < 0.

Figures 6c and 6d show that, when under the case of τ ∈ [−0.18, 0] and h ∈ [0, 0.11], or the case of
τ ∈ [0, 0.18] and h ∈ [−0.11, 0], the corresponding critical number of pedestrians N is consistent with
experimental observation (165∼ 185) on the Millennium Bridge.

It is worth noting that in the case of h = −0.1273 and τ = 0.52, or the case of h = 0.1273 and
τ =−0.52, the critical number of pedestrians N achieves a physical limit of nearly zero. This finding
also demonstrates that the limited range of h is about [−0.1273, 0.1273] from another perspective.

7. Amplitude-frequency response curves

Figure 7 shows the amplitude-frequency response curves of the Millennium Bridge under different num-
bers of pedestrians by assuming that h =−0.11 and τ = 0.18.

Some following conclusions can be derived from Figure 7:
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Figure 6. Relationships between the critical number of pedestrians and time delays and
feedback adjustment factors.
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Figure 7. Amplitude-frequency response curves

(1) The response amplitude has two different solutions, including the stable solution with a large value
and the unstable solution with a small value. The curves of the two solutions are characterized by
the rightward inclined shapes which are asymmetrically distributed around εσ = 0. This suggests
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that bifurcations would occur at the point that is more than twice the first lateral frequency of bridge
causing the divergent lateral vibration amplitudes.

(2) When the number of pedestrians on the bridge decreases, the two solutions become closer to εσ =
0 and the interval between them becomes smaller. This suggests that the number of pedestrians
required to trigger the large lateral vibration decreases as the walking frequency arrives closer to
the point that is twice the first lateral frequency of bridge.

(3) The amplitude increases with the detuning parameter εσ , suggesting that the amplitude would be
larger as the walking frequency becomes greater than twice the bridge’s first lateral frequency. More-
over, it is also observed that the curve tends to be more linear with the increase of εσ , suggesting
that the degree of nonlinearity would be weaker when the pedestrians’ walking frequency becomes
more than twice the bridge’s first lateral frequency.

8. Conclusions

This study has used the Millennium Bridge as the background for an analysis of pedestrian-induced
lateral vibration of a footbridge by considering the time delay and feedback adjustment that occur in
the pedestrian-footbridge interaction. The main contributions of the present study can be summarized as
follows:

(1) The results of the qualitative analysis show that the time delay significantly affects the stability of
the lateral vibration of footbridge. Moreover, the critical value of the time delay depends on the
sign of the feedback adjustment factor.

(2) The influences of time delay and feedback adjustment on response amplitude are significant. The
time delay and feedback adjustment may cause a larger bridge amplitude than that without consid-
ering the time delay and feedback adjustment. The sign of feedback adjustment factor affects the
distribution of bridge amplitude, while the time delay affects the trend of bridge amplitude.

(3) The critical number of pedestrians depends on different combinations of time delay and feedback
adjustment. In some cases, the time delay and feedback adjustment may cause a small value for the
critical number of pedestrians, while in some other cases, the time delay and feedback adjustment
may cause a large value for the critical number of pedestrians. By comparing with the experimental
observation on the Millennium Bridge, the feedback adjustment factor and time delay corresponding
to the large vibration of the Millennium Bridge may be the case of τ ∈ [−0.18, 0] and h ∈ [0, 0.11],
or the case of τ ∈ [0, 0.18] and h ∈ [−0.11, 0].

(4) When the walking frequency approaches the doubled first lateral frequency of bridge, a relatively
small number of pedestrians is required to cause large lateral vibration.
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NEARLY EXACT AND HIGHLY EFFICIENT ELASTIC-PLASTIC
HOMOGENIZATION AND/OR DIRECT NUMERICAL SIMULATION OF

LOW-MASS METALLIC SYSTEMS WITH
ARCHITECTED CELLULAR MICROSTRUCTURES

MARYAM TABATABAEI, DY LE AND SATYA N. ATLURI

Additive manufacturing has enabled the fabrication of lightweight materials with intricate cellular archi-
tectures. These materials are interesting due to their properties which can be optimized upon the choice
of the parent material and the topology of the architecture, making them appropriate for a wide range of
applications including lightweight aerospace structures, energy absorption, thermal management, meta-
materials, and bioscaffolds. In this paper we present the simplest initial computational framework for
the analysis, design, and topology optimization of low-mass metallic systems with architected cellular
microstructures. A very efficient elastic-plastic homogenization of a repetitive Representative Volume
Element (RVE) of the microlattice is proposed. Each member of the cellular microstructure undergoing
large elastic-plastic deformations is modeled using only one nonlinear three-dimensional (3D) beam
element with 6 degrees of freedom (DOF) at each of the 2 nodes of the beam. The nonlinear coupling of
axial, torsional, and bidirectional-bending deformations is considered for each 3D spatial beam element.
The plastic hinge method, with arbitrary locations of the hinges along the beam, is utilized to study the
effect of plasticity. We derive an explicit expression for the tangent stiffness matrix of each member of
the cellular microstructure using a mixed variational principle in the updated Lagrangian corotational
reference frame. To solve the incremental tangent stiffness equations, a newly proposed Newton ho-
motopy method is employed. In contrast to the Newton’s method and the Newton–Raphson iteration
method, which require the inversion of the Jacobian matrix, our homotopy methods avoid inverting it. We
have developed a code called CELLS/LIDS (CELLular Structures/Large Inelastic DeformationS), which
provides the capabilities to study the variation of the mechanical properties of the low-mass metallic
cellular structures by changing their topology. Thus, due to the efficiency of this method we can employ
it for topology optimization design and for impact/energy absorption analyses.

1. Introduction

A lot of natural structures, such as hornbill bird beaks and bird wing bones, are architected cellular
materials, which provide optimum strength and stiffness at low density. Humankind, over the past
few years, has also fabricated cellular materials with more complex architectures in comparison with
previously developed synthetic materials like open-cell metallic foams and honeycombs [Schaedler and
Carter 2016]. Properties of these cellular structures are determined based on their parent materials
and the topology of the microarchitecture. Additive manufacturing technologies and progress in three-
dimensional (3D) printing techniques enable the design of materials and structures with complex cellular

Keywords: architected cellular microstructures, large deformations, plastic hinge approach, nonlinear coupling of
axial-torsional-bidirectional bending deformations, mixed variational principle, homotopy methods.
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microarchitectures, optimized for specific applications. In fact, one of the most interesting characteristics
of cellular structures with pore networks is that they can be designed with desirable properties, making
them appropriate for lightweight structures, metamaterials, energy absorption, thermal management, and
bioscaffolds [Schaedler et al. 2014]. For example, efforts are under way to fabricate bioscaffolds to
repair and replace tissue, cartilage, and bone [Hutmacher 2000; Mota et al. 2015; Valentin et al. 2006;
Han and Gouma 2006]. These architected materials should be fabricated in such a way that they can
meet biocompatibility requirements in addition to the mechanical properties of the tissues at the site of
implantation. Therefore, presentation of a highly efficient computational method to predict and optimize
the mechanical properties of such structures is of interest. Herein, we present a nearly exact and highly
efficient computational method to predict the elastic-plastic homogenized mechanical properties of low-
mass metallic systems with architected cellular microstructures. The framework of the methods presented
in this paper is also germane to the analysis under static as well as impact loads, design, and topology
optimization of cellular solids.

The ultralow-density metallic cellular microlattices have been recently fabricated at HRL Laboratories
[Schaedler et al. 2011; Torrents et al. 2012], suitable for thermal insulation, battery electrodes, catalyst
supports, and acoustic, vibration, or shock energy damping [Gibson and Ashby 1988; Evans et al. 2010;
Lu et al. 2005; Valdevit et al. 2011; Ashby et al. 2000; Wadley 2002]. They produced nickel cellular
microlattices, consisting of hollow tubular members, by preparing a sacrificial polymeric template for
electroless Ni deposition, and then chemically etching the sacrificial template [Schaedler et al. 2011].

Using this process, they fabricated novel nickel-based microlattice materials with structural hierarchy
spanning three different length scales: nm, µm and mm. They obtained a 93% Ni–7% P composition
by weight for microlattices using energy dispersive spectroscopic analysis. They employed quasistatic
axial compression experiments to measure macroscopic mechanical properties such as Young’s moduli
of nickel microlattices. The load P was measured by SENSOTEC load cells, and the displacement δ was
measured using an external LVDT for modulus extraction. Strain-stress curves were obtained based on
engineering stress and strain defined, respectively, as σ = P/A0 and ε = δ/L0. A0 and L0 are the initial
cross-sectional area and length of the sample, respectively.

Salari-Sharif and Valdevit [2014] extracted the Young’s modulus of a series of nickel ultralight mi-
crolattices by coupling experimental results obtained using laser Doppler vibrometry with finite element
(ABAQUS) simulations. Salari-Sharif and Valdevit [2014] fabricated a sandwich configuration by attach-
ing carbon/epoxy face sheets as the top and bottom layers of the ultralight nickel hollow microlattice
thin film [Schaedler et al. 2011]. Furthermore, Salari-Sharif and Valdevit [2014] detected the resonant
frequencies by scanning laser vibrometry and ABAQUS simulations and extracted the relation between
Young’s modulus and the natural frequencies. Then, the effective Young’s moduli of samples were
obtained in the direction normal to the face sheets [Salari-Sharif and Valdevit 2014]. It is worth noting
that for finite element (FE) modeling, a representative volume element (RVE) consisting of only four
members of the cellular microlattice with at least ten thousand of 4-node shell FEs was employed [Salari-
Sharif and Valdevit 2014], resulting in at least ten thousand nodes and, thus, sixty thousand degrees of
freedom (DOF). We should emphasize that in our methodology each member can be modeled by a single
spatial beam element. In other words, to perform a 4-member RVE analysis, we use only four spatial
beam elements and five nodes, with a total of 30 DOF and, thus, at least 2000 times less DOF than in
[Salari-Sharif and Valdevit 2014]. Since the cost of computation in a FE nonlinear analysis varies as the
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n-th power (n between 2 and 3) of the number of DOF, it is clear that we seek to present a far more efficient
analysis procedure than any available commercial software. This provides the capability to simulate the
cellular microstructure using repetitive RVEs consisting of an arbitrary number of members, enabling a
very efficient homogenization and/or direct numerical simulation (DNS) of a cellular macrostructure.

In addition, Schaedler et al. [2011] and Torrents et al. [2012] showed experimentally that nickel-
phosphorous cellular microlattices undergo large effective compressive strains through extensive rota-
tions about remnant node ligaments. Unfortunately, there are no computational studies in the literature
on the large-deformation elastic-plastic analysis of such metallic cellular structures, which is the major
concern of the present study, although there is a vast variety of studies on the large deformation analysis
of space-frames [Besseling 1986; Geradin and Cardona 1988; Mallett and Berke 1966; Izzuddin 2001]
from the era of large space structures for use in outer space. In the realm of space-frame analyses,
numerous studies have been devoted to deriving an explicit expression for the tangent stiffness matrix
of each element, accounting for arbitrarily large rigid rotations, moderately large nonrigid point-wise
rotations, and the stretching-bending coupling [Bathe and Bolourchi 1979; Punch and Atluri 1984; Lo
1992; Kondoh et al. 1986; Kondoh and Atluri 1987]. Some researchers employed displacement-based
approaches using variants of a Lagrangian for either geometrically or materially nonlinear analyses of
frames [Bathe and Bolourchi 1979; Punch and Atluri 1984; Lo 1992]. Kondoh et al. [1986] extended
the displacement approach to evaluate explicitly the tangent stiffness matrix without employing either
numerical or symbolic integration for a beam element undergoing large deformations. Later, Kondoh
and Atluri [1987] presented a formulation on the basis of assumed stress resultants and stress couples,
satisfying the momentum balance conditions in the beam subjected to arbitrarily large deformations.

In order to study the elastic-plastic behavior of cellular members undergoing large deflections, we
employ the mechanism of plastic hinge developed by Hodge [1959], Ueda et al. [1968], and Ueda and
Yao [1982]. In this mechanism, a plastic hinge can be generated at any point along the member as well
as its end nodes, anywhere the plasticity condition in terms of generalized stress resultants is satisfied.
It is worthwhile to mention that contours of the von Mises stress given in [Salari-Sharif and Valdevit
2014] for the 4-member RVE with PBCs show a very high concentration of stress at the junction of
four members. The stress contours were obtained based on linear elastic FE simulations [Salari-Sharif
and Valdevit 2014]. Therefore, it clearly mandates an elastic-plastic analysis, which is undertaken in the
present study. A complementary energy approach in conjunction with the plastic hinge method has been
previously utilized to study elasto-plastic large deformations of space-framed structures [Kondoh and
Atluri 1987; Shi and Atluri 1988]. Shi and Atluri [1988] derived the linearized tangent stiffness matrix
of each finite element in the corotational reference frame in an explicit form and showed that this approach
based on assumed stresses is simpler in comparison with assumed-displacement type formulations. In
contrast to [Shi and Atluri 1988], which presents the linearized tangent stiffness, the current work derives
explicitly the tangent stiffness matrix under the nonlinear coupling of axial, torsional, and bidirectional-
bending deformations.

One of the extensively employed approaches in the literature for the analysis of nonlinear problems
with large deformations or rotations is based on variational principles. For instance, Cai et al. [2009a;
2009b] utilized the primal approach as well as the mixed variational principle [Reissner 1953] in the
updated Lagrangian corotational reference frame to obtain an explicit expression for the tangent stiffness
matrix of the elastic beam elements. Cai et al. [2009a] showed that the mixed variational principle in
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comparison to the primal approach, which requires C1 continuous trial functions for displacements, needs
simpler trial functions for the transverse bending moments and rotations. In fact, the authors assumed
linear trial functions within each element and obtained much simpler tangent stiffness matrices for each
element than those previously presented in the literature [Lo 1992; Kondoh et al. 1986; Simo 1985].
While Cai et al. [2009a] considered only a few macromembers, our analysis is applicable to metallic
cellular microlattices with an extremely large number of repetitive RVEs. Since plasticity and buckling
occur in many members of the microlattice, we found that the Newton-type algorithm that was utilized
in [Cai et al. 2009a] fails. In the present study, we discovered that only our Newton homotopy method
provides convergent solutions in the presence of the plasticity and buckling in a large number of members
of the microlattice.

To solve tangent stiffness equations, we use a Newton homotopy method recently developed to solve
a system of fully coupled nonlinear algebraic equations (NAEs) with as many unknowns as desired [Liu
et al. 2009; Dai et al. 2014]. By using these methods, displacements of the equilibrium state are iteratively
solved without the inversion of the Jacobian (tangent stiffness) matrix. Newton homotopy methods are
advantageous, particularly when the effect of plasticity is going to be studied. It is well known that the
simple Newton’s method as well as the Newton–Raphson iteration method require the inversion of the
Jacobian matrix, which fail to pass the limit load as the Jacobian matrix becomes singular, and require arc-
length methodology which are commonly used in commercial off-the-shelf software such as ABAQUS.
Furthermore, homotopy methods are useful in the following cases: when the system of algebraic equa-
tions is very large in size, when the solution is sensitive to the initial guess, and when the system of
nonlinear algebraic equations is either over- or under-determined [Liu et al. 2009; Dai et al. 2014].

The paper is organized as follows. The theoretical background including the nonlinear coupling of
axial, torsional, and bidirectional-bending deformations for a typical cellular member under large defor-
mation; mixed variational principle in the corotational updated Lagrangian reference frame; the plastic
hinge method; and the equation-solving algorithm accompanying Newton homotopy methods are summa-
rized in Section 2. Section 3 is devoted to the validation of our methodology: a three-member rigid-knee
frame, the Williams toggle problem, and a right-angle bent including the effect of plasticity are compared
with the corresponding results given in the literature. Section 4 analyzes the mechanical behavior of two
different cellular microlattices subjected to tensile, compressive, and shear loading. Throughout this
section, it is shown that our calculated results (Young’s modulus and yield stress) under compressive
loading are very comparable with those measured experimentally by Schaedler et al. [2011] and Torrents
et al. [2012]. Moreover, the progressive development of plastic hinges in the cellular microlattice as
well as its deformed structure are presented. Finally, a summary and conclusion are given in Section 5.
Appendices A, B, C, and D follow.

2. Theoretical background

Throughout this section, the concepts employed to derive nearly exact and highly efficient elastic-plastic
homogenization of low-mass metallic systems with architected cellular microstructures are given. Nonlin-
ear coupling of axial, torsional, and bidirectional-bending deformations; strain-displacement; and stress-
strain relations in the updated Lagrangian corotational frame are described in Section 2.1. Section 2.2 is
devoted to deriving an explicit expression for the tangent stiffness matrix of each member of the cellular
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structure, accounting for large rigid rotations, moderate relative rotations, the bending-twisting-stretching
coupling and elastic-plastic deformations. A solution algorithm is also given in Section 2.3.

2.1. The nonlinear coupling of axial, torsional, and bidirectional-bending deformations for a spatial
beam element with a tubular cross-section. A typical 3D member of a cellular structure is considered,
spanning between nodes 1 and 2 as illustrated in Figure 1. The element is initially straight with arbitrary
cross section and is of the length l before deformation. As seen from Figure 1, three different coordinate
systems are introduced:

(1) the global coordinates (fixed global reference) x̄i with the orthonormal basis vectors ēi ,

(2) the local coordinates for the member in the undeformed state x̃i with the orthonormal basis vectors ẽi ,
and

(3) the local coordinates for the member in the deformed state (current configuration) xi with the or-
thonormal basis vectors of ei (i = 1, 2, 3).

Local displacements at the centroidal axis of the deformed member along ei -directions are denoted
as ui0, (i = 1, 2, 3). Rotation about x1-axis (angle of twist) is denoted by θ̂ , and those about xi -axes,
i = 2, 3, (bend angle) are denoted by θi0, i = 2, 3, respectively. It is assumed that nodes 1 and 2 of
the member undergo arbitrarily large displacements, and rotations between the undeformed state of the
member and its deformed state are arbitrarily finite. Moreover, it is supposed that local displacements
in the current configuration (xi coordinates system) are moderate and the axial derivative of the axial
deflection at the centroid, ∂u10/∂x1 is small in comparison with that of the transverse deflections at the
centroid, ∂ui0/∂x1 (i = 2, 3).

We examine large deformations for a cylindrical member with an unsymmetrical cross section around
x2- and x3-axes and constant cross section along x1-axis subjected to torsion T around x1-axis and
bending moments M2 and M3 around x2- and x3-axes, respectively. It is assumed that the warping
displacement u1T (x2, x3) due to the torsion T is independent of x1 variable, the axial displacement at the
centroid is u10(x1), and the transverse bending displacements at the origin (x2 = x3 = 0) are x20(x1) and

e~~x

node 1

node 1

node 2

node 2

,3 3

e~x ,2 2

e~

~

ex ,2

u30 u20
u102

ex ,1 1

ex ,3 3
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l

,2 2

ex ,1 1
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Figure 1. Nomenclature for the reference frames corresponding to the global, unde-
formed, and deformed states.
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x30(x1) along e2- and e3-directions, respectively. The reason for the consideration of the nonlinear axial,
torsional, and bidirectional-bending coupling for each spatial beam element is the frame-like behavior of
these cellular metallic microlattices. The scanning electron microscopy (SEM) images of microlattices
given by Torrents et al. [2012] show the formation of partial fracture at nodes (for a microlattice with
t = 500 nm), localized buckling (for a microlattice with t = 1.3µm), and plastic hinging at nodes (for
a microlattice with t = 26µm). Therefore, the 3D displacement field for each spatial beam element in
the current configuration is considered as follows using the normality assumption of the Bernoulli–Euler
beam theory:

u1(x1, x2, x3)= u1T (x2, x3)+ u10(x1)− x2
∂u20(x1)

∂x1
− x3

∂u30(x1)

∂x1
,

u2(x1, x2, x3)= u20(x1)− θ̂x3,

u3(x1, x2, x3)= u30(x1)+ θ̂x2.

(1)

The Green–Lagrange strain components in the updated Lagrangian corotational frame ei (i = 1, 2, 3) are

εi j =
1
2(ui, j + u j,i + uk,i uk, j ), (2)

where the index notation •,i denotes ∂ •/∂xi and k is a dummy index. Replacement of (1) into (2) results
in the following strain components:

ε11 = u1,1+
1
2(u1,1)

2
+

1
2(u2,1)

2
+

1
2(u3,1)

2
≈ u10,1+

1
2(u20,1)

2
+

1
2(u30,1)

2
− x2u20,11− x3u30,11,

ε22 = u2,2+
1
2(u1,2)

2
+

1
2(u2,2)

2
+

1
2(u3,2)

2
=

1
2(u1T,2− u20,1)

2
+

1
2 θ̂

2
≈ 0,

ε33 = u3,3+
1
2(u1,3)

2
+

1
2(u2,3)

2
+

1
2(u3,3)

2
≈ 0,

ε12 =
1
2(u1,2+ u2,1)+

1
2 u3,1u3,2 ≈

1
2(u1T,2− θ̂,1x3),

ε13 =
1
2(u1,3+ u3,1)+

1
2 u2,1u2,3 ≈

1
2(u1T,3+ θ̂,1x2),

ε23 =
1
2(u2,3+ u3,2)+

1
2 u1,2u1,3 ≈ 0.

(3)

By defining the following parameters:

2= θ̂,1, N22 =−u20,11, N33 =−u30,11,

ε0
11 = u10,1+

1
2(u20,1)

2
+

1
2(u30,1)

2
= ε0L

11 + ε
0N L
11 , (4)

and employing them into (3), strain components can be rewritten as

ε11 = ε
0
11+ x2N22+ x3N33, ε12 =

1
2(u1T,2−2x3),

ε13 =
1
2(u1T,3+2x2), ε22 = ε33 = ε23 = 0,

(5)

and in the matrix notation as

ε = εL
+ εN , (6)
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in which

εL
=

ε
L
11

εL
12

εL
13

=
u10,1+ x2N22+ x3N33

1
2(u1T,2−2x3)

1
2(u1T,3+2x2)

 , (7)

εN
=

ε
N
11

εN
12

εN
13

=
1

2(u20,1)
2
+

1
2(u30,1)

2

0
0

 . (8)

Similarly, the member generalized strains are determined in the matrix form as

E = EL
+ EN

=


ε0

11
N22

N33

2

 , (9)

where EL
= [u10,1 − u20,11 − u30,11 θ̂,1]

T and EN
=
[ 1

2(u20,1)
2
+

1
2(u30,1)

2 0 0 0
]T .

We consider for now that the member material is linear elastic, thus the total stress tensor (the second
Piola–Kirchhoff stress tensor) S is calculated as

S= S1
+ τ 0. (10)

Here τ 0 is the preexisting Cauchy stress tensor, and S1 is the incremental second Piola–Kirchhoff stress
tensor in the updated Lagrangian corotational frame ei given by

S1
11 = E ε11, S1

12 = 2µε12,

S1
13 = 2µε13, S1

22 = S1
33 = S1

23 ≈ 0,
(11)

in which µ is the shear modulus, µ = E/(2(1+ v)), E is the elastic modulus, and v is the Poisson’s
ratio. Using (5) and (11), the generalized nodal forces for the member shown in Figure 1 subjected to
the twisting and bending moments are calculated as

N11 =

∫
A

S1
11 dA = E(Aε0

11+ I2N22+ I3N33),

M22 =

∫
A

S1
11x2 dA = E(I2ε

0
11+ I22N22+ I23N33),

M33 =

∫
A

S1
11x3 dA = E(I3ε

0
11+ I23N22+ I33N33),

T =
∫

A
(S1

13x2− S1
12x3) dA = µIrr2,

(12)

where A is the area of the cross section; Ii and Ii j (i, j = 2, 3) are the first moment and the second
moment of inertia of the cross section, respectively; I2 =

∫
A x2 dA, I3 =

∫
A x3 dA, I22 =

∫
A x2

2 dA,
I33 =

∫
A x2

3 dA, I23 =
∫

A x2x3 dA, and Irr is the polar moment of inertia, Irr =
∫

A(x
2
2 + x2

3) dA. Using
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the element generalized strains E the element generalized stresses σ are also determined in the matrix
form as

σ = DE, (13)

in which

σ =


N11

M22

M33

T

 , (14)

D =


E A E I2 E I3 0
E I2 E I22 E I23 0
E I3 E I23 E I33 0
0 0 0 µIrr

 . (15)

2.2. Explicit derivation of tangent stiffness matrix undergoing large elasto-plastic deformation. In
this section, the mixed variational principle in the corotational updated Lagrangian reference frame and
a plastic hinge method are employed to obtain explicit expressions for the tangent stiffness matrix of each
member shown in Figure 1. The stiffness matrix is calculated for each member by accounting for large
rigid rotations; moderate relative rotations; the nonlinear coupling of axial, torsional, and bidirectional-
bending deformations; and the effect of plasticity. The functional of the mixed variational principle in the
corotational updated Lagrangian reference frame and the trial functions for the stress and displacement
fields within each element are given in Section 2.2.1. Plastic analysis using the plastic hinge method is
described in Section 2.2.2. The explicit expression of the stiffness matrix in the presence of plasticity
for each cellular member is also presented in Section 2.2.3.

2.2.1. Mixed variational principle in the corotational updated Lagrangian reference frame. Consider-
ation of S1

i j and ui , respectively, as the components of the incremental second Piola–Kirchhoff stress
tensor and the displacement field in the updated Lagrangian corotational frame, the functional of the
mixed variational principle in the same reference frame with orthonormal basis vectors ei is obtained as

HR =

∫
V

{
−B[S1

i j ] +
1
2τ

0
i j uk,i uk, j +

1
2 Si j (ui, j + u j,i )− ρbi ui

}
dV −

∫
Sσ

T̄i ui dS, (16)

where V is the volume in the current corotational reference state, Sσ is the part of the surface with
the prescribed traction, T̄i = T̄ 0

i + T̄ 1
i (i = 1, 2, 3) are the components of the boundary tractions, and

bi = b0
i + b1

i (i = 1, 2, 3) are the components of body forces per unit volume in the current configuration.
The displacement boundary conditions prescribed at the surface Su are also considered as ūi (i = 1, 2, 3),
assumed to be satisfied a priori. Equation (16) is a general variational principle governing stationary
conditions, which with respect to variations δS1

i j and δui results in the following incremental equations
in the corotational updated Lagrangian reference frame:

∂B
∂S1

i j
=

1
2(ui, j + u j,i ), (17)

[S1
i j + τ

0
iku j,k], j + ρb1

i =−τ
0
i j, j − ρb0

i , (18)
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n j [S1
i j + τ

0
iku j,k] − T̄ 1

i =−n jτ
0
i j + T̄ 0

i on Sσ , (19)

where n is the outward unit normal on the surface Sσ . For a group of members Vm (m = 1, 2, . . . , N )
with common surfaces ρm , (16) can be written as

HR =
∑

m

(∫
Vm

{
−B[S1

i j ] +
1
2τ

0
i j uk,i uk, j +

1
2 Si j (ui, j + u j,i )− ρbi ui

}
dV −

∫
Sσm

T̄i ui dS
)
,

m = 1, 2, . . . , N . (20)

If the trial function ui and the test function ∂ui for each member Vm (m = 1, 2, . . . , N ) are chosen in such
a way that the interelement displacement continuity condition is satisfied at ρm a priori, then stationary
conditions of HR for a group of finite elements lead to

∂B/∂S1
i j =

1
2(ui, j + u j,i ) in Vm, (21)

[S1
i j + τ

0
iku j,k], j + ρb1

i =−τ
0
i j, j − ρb0

i in Vm, (22)

[ni (S1
i j + τ

0
iku j,k)]

+
+ [ni (S1

i j + τ
0
iku j,k)]

−
=−[niτ

0
i j ]
+
− [niτ

0
i j ]
− at ρm, (23)

n j [S1
i j + τ

0
iku j,k] − T̄ 1

i =−n jτ
0
i j + T̄ 0

i on Sσm . (24)

Here, + and − denote the outward and inward quantities at the interface, respectively. The continuity of
the displacement at the common interface ρm between elements is determined by

u+i = u−i on ρm . (25)

Applying (5) and (13) into (20) and integrating over the cross sectional area of each element gives

HR =

N∑
m=1

{∫
l

(
−

1
2σ

T D−1σ
)

dl +
∫

l
N 0

11
1
2(u

2
20,1+ u2

30,1) dl

+

∫
l
(N̂11ε

0L
11 + M̂22N22+ M̂33N33+ T̂2) dl − Q̄q

}
, (26)

in which σ 0
= [N 0

11 M0
22 M0

33 T 0
]
T is the initial member generalized stress in the corotational refer-

ence coordinates ei , σ̂ = σ + σ 0
= [N̂11 M̂22 M̂33 T̂ ]T is the total member generalized stress in the

coordinates ei , Q̄ is the nodal external generalized force vector in the global reference frame ēi , and
q is the nodal generalized displacement vector in the coordinates ēi . Equation (26) can be simplified
by applying integration by parts to the third integral term on the right-hand side of the equation. More
details on how to perform the integration are given in Appendix A. Stationary conditions for HR given
in (26) result in

D−1σ = E,

N̂11,1 = 0 in Vm,

T̂,1 = 0 in Vm,

M̂22,11+ [N 0
11u20,1],1 = 0 in Vm,

M̂33,11+ [N 0
11u30,1],1 = 0 in Vm,

(27)
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and the nodal equilibrium equations are obtained from the following relation:

N∑
m=1

{
N̂11δu10|

l
0+ M̂22,1δu20|

l
0− M̂22δu20,1|

l
0+ M̂33,1δu30|

l
0− M̂33δu30,1|

l
0+ T̂ δθ̂ |l0

+ (N 0
11u20,1)δu20|

l
0+ (N

0
11u30,1)δu30|

l
0− Q̄δq

}
= 0. (28)

Herein, the trial functions for the stress and displacement fields within each member Vm (m= 1, 2, . . . , N )
are discussed. We assume that the components of the member generalized stress σ obey the following
relation:

σ = Pβ, (29)

where

P =


1 0 0 0 0 0
0 −1+ x1/ l −x1/ l 0 0 0
0 0 0 1− x1/ l x1/ l 0
0 0 0 0 0 1

 , (30)

β = [n 1m3
2m3

1m2
2m2 m1]

T . (31)

Similarly, the components of the initial member generalized stress σ 0 are determined as

σ 0
= Pβ0, (32)

where
β0
= [n0 1m0

3
2m0

3
1m0

2
2m0

2 m0
1]

T . (33)

Note that i m2(
i m0

2) and i m3(
i m0

3) are, respectively, bending moments (initial ones) around the x2- and
x3-axes at the i-th node. Here, n(n0) and m1(m0

1) are the (initial) axial force and the (initial) twisting
moment along the element, respectively. Therefore, the incremental internal nodal force vector B for the
element shown in Figure 1, with nodes 1 and 2 at the ends, can be expressed as

B = [1 N 1m1
1m2

1m3
2 N 2m1

2m2
2m3]

T , (34)

which can be written as
B =Rβ, (35)

with

R=



1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0


. (36)

From (26), it is seen that only the squares of u20,1 and u30,1 appear within each member. Therefore, we
assume the trial functions for the displacement field in such a way that u20,1 and u30,1 become linear for
each member. Moreover, we suppose that the bend angles around the x2- and x3-axes along the member
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shown in Figure 1 change with respect to the nodal rotations iθ20 and iθ30 (i = 1, 2) via the following
relation:

uθ = Nθ aθ =

[
1− x1/ l 0 x1/ l 0

0 1− x1/ l 0 x1/ l

]
1θ20
1θ30
2θ20
2θ30

 . (37)

Therefore, the nodal generalized displacement vector of the member can be expressed in the updated
Lagrangian corotational frame ei as

a = [1a 2a]T , (38)

where i a (i = 1, 2) is the displacement vector of the i-th node:

i a = [i u10
i u20

i u30
i θ̂ iθ20

iθ30]
T . (39)

The nodal generalized displacement vector of the member a is related to the vector aθ by

aθ = Tθ a, (40)

in which

Tθ =


0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

 . (41)

Applying the trial functions of the stresses, (29) into the (26), the functional of the mixed variational
principle in the corotational updated Lagrangian reference frame can be rewritten as

HR =−HR1+HR2+HR3−HR4. (42)

Here,

HR1 =

N∑
m=1

∫
l

( 1
2σ

T D−1σ
)

dl =
N∑

m=1

∫
l

( 1
2β

T PT C Pβ
)

dl, (43)

HR2 =

N∑
m=1

{
2N 2u10−

1N 1u10+
1
l
(1m3−

2m3)(
2u20−

1u20)+
2m3

2θ30−
1m3

1θ30

+
1
l
(2m2−

1m2)(
2u30−

1u30)+
2m2

2θ20−
1m2

1θ20+
2m1

2θ̂ − 1m1
1θ̂
}

=

N∑
m=1

{BTTa} =
N∑

m=1

{βTRTTa}, (44)

HR3 =

N∑
m=1

∫
l

N 0
11
[ 1

2(u20,1)
2
+

1
2(u30,1)

2] dl =
N∑

m=1

∫
l
σ 0

1
[ 1

2(θ20)
2
+

1
2(θ30)

2] dl

=

N∑
m=1

∫
l

1
2σ

0
1 uT

θ uθ dl =
N∑

m=1

∫
l

1
2σ

0
1 aT Ann a dl, (45)
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HR4 =

N∑
m=1

(aT F− aTTTRβ0), (46)

where

C = D−1, (47)

T=



−1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 1/ l 0 −1 0 0 0 −1/ l 0 0 0
0 −1/ l 0 0 0 −1 0 1/ l 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 −1/ l 0 0 0 0 0 1/ l 0 1 0
0 1/ l 0 0 0 0 0 −1/ l 0 0 0 1


, (48)

Ann = T T
θ NT

θ NθTθ . (49)

Invoking the variational form for the functional of the mixed variational principle results in the following
equation:

N∑
m=1

δβT
(
−

∫
l
(PT C Pβ) dl+RTTa

)
+

N∑
m=1

δaT
(
TTRβ+σ 0

1

∫
l

Ann a dl− F+TTRβ0
)
= 0. (50)

By letting H =
∫

l PT C P dl, G =RTT, KN = σ
1
0

∫
l Ann dl, F0

= GTβ0, (50) can be rewritten as

N∑
m=1

δβT (−Hβ + Ga)+
N∑

m=1

δaT (GTβ + KN a− F+ F0)= 0. (51)

2.2.2. Plasticity effects in the large deformation analysis of members of a cellular microstructure. For
an elastic-perfectly plastic material, the incremental work done on the material per unit volume is dw =
σi j (dε

p
i j + dεe

i j ) in which εe
i j and ε p

i j are elastic and plastic components of strain, respectively, and σi j are
the stress components. Using the plastic hinge method, the plastic deformation is developed along the
member wherever the plasticity condition is satisfied. Therefore, the total work expended in deforming
the material of the body is

W =
∫

V
σi j (dε

p
i j + dεe

i j ) dv =
∫

V
U (εe

i j ) dV +
∑

i

dW p
i , (52)

where U (εe
i j ) is the elastic strain energy density function, and dW p

i is the increment of plastic work at
the i-th plastic hinge. When the theory of plastic potential is applied, the plasticity condition in terms of
the stress components at the i-th node is expressed as

fi (σxi , σyi , . . . , τxyi , . . . , σY )= 0, (53)
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the increment of plastic work at the i-th node can be expressed as

dW p
i = dupT

x, (54)

in which dup, the increment of plastic nodal displacement at the i-th node, is explained in terms of the
function fi (x, σY ):

dup
= dλiφi , (55)

φi =

[
∂ fi (x, σY )

∂x

]
, (56)

where x is the nodal force, and δλi is a positive scalar. Therefore, (52) can be rewritten as

W =
∫

V
U (εe

i j ) dV +
∑

dλiφ
T
i

∣∣
lp

x, (57)

where x̂l = lp is the location of the plastic hinge. A variational form for the plastic work can be written
as

δ

{ N∑
m=1

(∑
dλiφ

T
i

∣∣
lp

)
(Pβ0
+Pβ)

}
=

N∑
m=1

δ
(∑

dλiφ
T
i

∣∣
lp

)
(Pβ0
+Pβ)+

(∑
dλiφ

T
i

∣∣
lp

)
Pδβ

=

N∑
m=1

∑
δ dλiφ

T
i

∣∣
lp
(Pβ0
+Pβ)+

(∑
dλiφ

T
i

∣∣
lp

)
Pδβ

=

N∑
m=1

∑
δdλiφ

T
i

∣∣
lp
(Pβ0
+Pβ)+ δβT PT

(∑
dλiφ

T
i

∣∣
lp

)T
. (58)

2.2.3. Explicit derivation of tangent stiffness accompanying plasticity effects. Using the functional of
the mixed variational principle given in Section 2.2.1, (42)–(46), (57) is expressed as

W =
N∑

m=1

{
−

∫
l

( 1
2β

T PT C Pβ
)

dl+(βTRTTa)+
∫

l

1
2σ

0
1 aT T T

θ NT
θ NθTθ a dl−(aT F−aTTTRβ0)

+

(∑
dλiφ

T
i

∣∣
lp

)
(Pβ0

+ Pβ)
}
. (59)

Then, invoking δW = 0 and using (51) and (58), (51) can be modified to include the effect of plasticity
by introducing new determined matrices β̂, Ĥ , and Ĝ by means of

N∑
m=1

δβ̂T (−Ĥβ̂ + Ĝa)+
N∑

m=1

δaT (ĜT β̂ + KN a− F+ F0)= 0, (60)

with

β̂T
= [βT dλ], Ĥ =

[
H A12

AT
12 0

]
, ĜT

= [GT 0], (61)–(63)
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in which

AT
12 =

[
∂ f
∂N

∂ f

∂ M̂3

(
−1+

lp

l

)
∂ f

∂ M̂3

(
−

lp

l

)
∂ f

∂ M̂2

(
1−

lp

l

)
∂ f

∂ M̂2

lp

l
∂ f

∂ M̂1

]
. (64)

Since δβ̂T in (60) are independent and arbitrary in each element, we have

Ĥβ̂ = Ĝa, (65)

β̂ = Ĥ−1Ĝa. (66)

By letting
∑N

m=1 δaT (ĜT β̂ + KN a− F+ F0)= 0 and substituting β̂ from (66), we obtain

(ĜT Ĥ−1Ĝ+ KN )a− F+ F0
= 0, (67)

Therefore, the stiffness matrix K in the presence of plasticity is derived explicitly as

K= ĜT Ĥ−1Ĝ+KN = GT H−1G+KN−GT H−1 A12CT G= K−GT H−1 A12CT G= K−KP , (68)

where

K = GT H−1G+ KN = KL + KN , (69)

KP = GT H−1 A12CT G, (70)

CT
= (AT

12 H−1 A12)
−1 AT

12 H−1. (71)

Since we are studying the nonlinear coupling of axial, torsional, and bidirectional-bending deformations
for each element, the plasticity condition is introduced by fi (N , M̂1, M̂2, M̂3)= 0 at the location of the
i-th plastic hinge; then

φi =

[
∂ fi

∂N
∂ fi

∂ M̂1

∂ fi

∂ M̂2

∂ fi

∂ M̂3

]T

(72)

and ∑
dλiφ

T
i

∣∣
lp
=

[∑
dλi

∂ fi

∂N

∣∣
lp

∑
dλi

∂ fi

∂ M̂1

∣∣
lp

∑
dλi

∂ fi

∂ M̂2

∣∣
lp

∑
dλi

∂ fi

∂ M̂3

∣∣
lp

]
= [HP θ∗P1 θ

∗

P2 θ
∗

P3], (73)

in which HP is the plastic elongation and θ∗Pi , i = (1, 2, 3) are the plastic rotations at the location of
plastic hinges. Components of the element tangent stiffness matrices, KN , KL , and KP , are presented
in Appendix B. Transformation matrices relating coordinate systems corresponding to the deformed and
undeformed states to the global coordinates system (Figure 1) are given in Appendix C.

2.3. Solution algorithm. To solve the incremental tangent stiffness equations, we employ a Newton
homotopy method [Liu et al. 2009; Dai et al. 2014]. One of the most important reasons that we use the
newly developed scalar homotopy method is that this approach does not need to invert the Jacobian matrix
(the tangent stiffness matrix) to solve NAEs. In the case of complex problems (such as elastic-plastic
analyses of large deformations and near the limit-load points in post-buckling analyses of geometrically
nonlinear frames) where the Jacobian matrix may be singular, the iterative Newton’s methods become
problematic and necessitate the use of arc-length methods found in software such as ABAQUS.
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One of the other advantages of the recently developed homotopy methods is the improved perfor-
mance over the Newton–Raphson method when the Jacobian matrix is nearly singular or is severely
ill-conditioned. For instance, when we considered the problem discussed in Section 3.1 (three-member
rigid-knee frame) using the Newton–Raphson algorithm, the provided code couldn’t converge to capture
the critical load, while it converged rapidly after switching to the homotopy algorithm. Moreover, we
discovered that while the Newton-type algorithm fails to converge, the Newton homotopy method pro-
vides convergent solutions in the presence of plasticity and buckling in a large number of members of
the microlattice. As another benefit of the employed algorithm, our developed CELLS/LIDS code is not
sensitive to the initial guess of the solution vector, unlike the Newton–Raphson method.

The homotopy method was first introduced by Davidenko [1953] to enhance the convergence rate
from a local convergence to a global one for the solution of the NAEs of F(X) = 0; where X ∈ Rn

is the solution vector. This methodology was based on the employment of a vector homotopy func-
tion H(X, t) to continuously transform a function G(X) into F(X). The variable t (0 ≤ t ≤ 1) was
the homotopy parameter, treated as a time-like fictitious variable, and the homotopy function was any
continuous function such that H(X, 0)= 0⇔ G(X)= 0 and H(X, 1)= 0⇔ F(X)= 0. More details
on the vector homotopy functions are given in Appendix D. To improve the vector homotopy method,
Liu et al. [2009] proposed a scalar homotopy function h(X, t) such that h(X, 0)= 0⇔‖G(X)‖ = 0 and
h(X, 1)= 0⇔‖F(X)‖ = 0. They introduced the following scalar fixed-point homotopy function:

h(X, t)= 1
2(t‖F(X)‖2− (1− t)‖X − X0‖

2), 0≤ t ≤ 1. (74)

Later, Dai et al. [2014] suggested more convenient scalar homotopy functions which hold for t ∈ [0,∞)
instead of t ∈ [0, 1]. We consider the following scalar Newton homotopy function to solve the system of
equations F(X)= 0:

hn(X, t)= 1
2‖F(X)‖2+ 1

2Q(t)
‖F(X0)‖

2, t ≥ 0, (75)

resulting in

Ẋ =−1
2

Q̇‖F‖2

Q‖BT F‖2
BT F, t ≥ 0, (76)

where B is the Jacobian (tangent stiffness) matrix evaluated with B = ∂F/∂X and Q(t) is a positive
and monotonically increasing function to enhance the convergence speed. Various possible choices of
Q(t) can be found in [Dai et al. 2014]. Finally, the solution vector X can be obtained by numerically
integrating (76) or using iterative Newton homotopy methods discussed in Appendix D.

3. Representative approach and its validation

This section is devoted to considering the validity of our proposed methodology. To this end, three
different problems are analyzed and compared with results from other methods given in the literature.
The critical load of the three-member rigid-knee frame is computed in Section 3.1. Section 3.2 examines
the classical Williams toggle problem. Section 3.3 is devoted to considering the accuracy and efficiency of
the calculated stiffness matrix in the presence of plasticity by solving the problem of the right-angle bent.
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Figure 2. The geometry of three-member rigid-knee frame and the cross section of elements.
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Figure 3. Load versus displacement at the location of point load.

3.1. Three-member rigid-knee frame. The geometry of the three-member rigid-knee frame and the
cross section of elements are shown in Figure 2. Using the CELLS/LIDS (CELLular Structures/Large
Inelastic DeformationS) code, the longer element is divided into 6 elements and shorter elements are
divided into 3 elements. A transverse perturbation loading 0.001P is also applied at the midpoint of
the longer member. Load versus displacement at the location of point load is plotted in Figure 3 and is
compared with the corresponding results presented by Shi and Atluri [1988]. As it is observed, there is
a good agreement between present calculated results and those obtained in [Shi and Atluri 1988]. Please
note that Shi and Atluri [1988] have also mentioned that their computed critical load is a little higher
than that obtained by Mallett and Berke [1966].

3.2. Classical Williams toggle problem. Williams [1964] developed a theory to study the behavior of
the members of a rigid jointed plane framework and applied it to the case of the rigid jointed toggle.
The classical toggle problem is exhibited in Figure 4, consisting of two rigidly jointed elements with
equal lengths L and anchored at their remote ends. The angle between the element and the horizontal
axis b is related to the length of the elements via the relation L sin(b)= 0.32. The characteristics of the
cross section of elements are also included in Figure 4. The structure is subjected to an external load W
along the z-direction at the apex, as illustrated in Figure 4. The deflection of the apex versus the applied
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Figure 5. Displacement at the apex of toggle versus the applied load.

load is calculated and compared with results given by Williams [1964] in Figure 5. As it is seen, good
correspondence is obtained.

3.3. Elastic-plastic right-angle bent. Throughout this section, the accuracy and efficiency of our method-
ology to consider the effect of plasticity is investigated. To this end, the problem of right-angle bent is
calculated and compared with the results from other works. Two equal members of length l with square
cross sections are located in the xy-plane and are subjected to an external load F along the z-direction
at the midpoint of one element, as shown in Figure 6. Both members are anchored at their remote ends.
Therefore, they are under both bending M and twisting T . The yielding condition for such a perfectly
plastic material subjected to bending and twisting is (M/M0)

2
+ (T/T0)

2
= 1, in which M0 and T0

are, respectively, fully plastic bending and twisting moments. Employing our CELLS/LIDS code, each
member is simulated by four elements. The formation of plastic hinges via the increase of external load
is presented in Figure 6 and the calculated amounts of Fl/M0 at the onset of plastic hinges are compared
with the results given by Shi and Atluri [1988]. The variation of δ× E I/(M0l2) with respect to Fl/M0 is
also plotted in Figure 7. Here, δ is the displacement of the tip of the right-angle bent along the z-direction,
and E is the Young’s modulus. The results also show good agreement with those in [Hodge 1959].

4. Low-mass metallic systems with architected cellular microstructures

This section is devoted to the computational study of large elastic-plastic deformations of the nickel-
based cellular microlattices fabricated at HRL Laboratories [Schaedler et al. 2011; Torrents et al. 2012].
To mimic the fabricated cellular microstructures, we model repetitive RVEs constructed by the strut
members with the same geometry and dimension as the experiment. Each member of the actual cellular
microstructure undergoing large elastic-plastic deformations is modeled by a single spatial beam finite
element with 12 DOF, providing the capability to decrease considerably the number of DOF in compar-
ison with the same simulation using commercial FE software. The strut members are connected in such
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Figure 6. Progressive development of plastic hinges in the right-angle bent. The first
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a way that the topology of the fabricated cellular material is achieved. In the following, more details
on the formation of RVE mimicking the actual microstructural samples are given. The properties of
nickel as the parent material of the architected material is introduced within the CELLS/LIDS code by
the Young’s modulus E s

= 200 GPa and the yield stress σ s
y = 450 MPa. The considered RVE is a Bravais

lattice formed by repeating octahedral unit cells without any lattice members in the basal plane, as shown
in Figure 8. The lattice constant parameter of the unit cell is a; see Figure 8. The RVE is constructed by a
node-strut representation and includes the nodes coordinate and the nodes connectivity, which determines
the length of the members as well as the topology of the microlattice. Furthermore, the present RVE
approach accurately captures the microstructural length scale by introducing the area, the first and the
second moments of inertia, and the polar moment of inertia of the symmetrical/unsymmetrical cross
section of the hollow tube member within the formulation. Periodic boundary conditions (PBCs) are
considered along the x- and y-directions of the RVE, which are the directions perpendicular to the depth
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Figure 8. The unit cell of RVE consisting of an octahedron as well as the geometry of
strut members.

of the thin film microlattice. PBCs are involved by i a|x=0 =
j a|x=na along the x-direction and by

k a|y=0 =
l a|y=ma along the y-direction, in which αa(α = i, j, k, l) is the displacement vector of the α-th

node (39) on the boundary of the RVE, and n or m is determined based on the size of the RVE along
the x- or y-direction, respectively. For example, for the Na × Ma × K a RVE, n = N and m = M .
The depth of the RVE is modeled to be equal to the thickness of the thin film. Section 4.1 studies
the 1a × 1a × 2a RVE including 20 nodes and 32 strut members, and Section 4.2 examines both the
2a × 2a × 2a RVE with 60 nodes and 128 strut members and the 1a × 1a × 4a RVE with 36 nodes
and 64 members. We study the mechanical behavior of the thin film cellular microlattice under tension,
compression, and shear loadings. To this end, nodes on both the top and bottom faces of the RVE are
loaded accordingly. Microlattice members are cylindrical hollow tubes, the dimensions of which are also
included in Figure 8. Torrents et al. [2012] tested samples with the strut member length of L = 1–4 mm,
strut member diameter of D = 100–500µm, wall thickness of t = 100–500 mm, and inclination angle of
θ = 60◦. In Sections 4.1 and 4.2, we analyze the mechanical behavior of two different fabricated cellular
microlattices in which the geometry of their strut members (L , D, t , and θ) are explained, respectively.
Since nonlinear coupling of axial, torsional, and bidirectional-bending deformations is considered for
each member, the plasticity condition is determined by the following relation:

f (N11,M22,M33, T )= 1
M0
{M2

22+M2
33+ T 2

}
1/2
+

N 2
11

N 2
0
− 1= 0, (77)

where M0 and N0 are the fully plastic bending moment and fully plastic axial force, respectively.

4.1. Architected material with more flexibility as compared to parent material. An RVE including
20 nodes and 32 members with PBCs along the x- and y-directions is employed to model a cellular thin
film with the thickness of 2a; see Figure 9. This figure shows the application of the external compressive
loading, which changes according to tensile as well as shear loads. The dimensions of each member in
the microlattice is as follows: L = 1050µm, D = 150µm, and t = 500 nm.

The engineering stress as a function of the engineering strain is presented in Figure 10 for the nickel
cellular microlattice under compressive, tensile, and shear loads. The stress-strain curves corresponding
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Figure 9. 1a× 1a× 2a RVE including 20 nodes and 32 strut members.
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Figure 10. Stress-strain curve of the cellular microlattice subjected to tension, compres-
sion, and shear.

to the tensile and compressive loads result in the overall yield stress of the RVE σy = 15.117 kPa and
the Young’s modulus E = 2.291 MPa. Torrents et al. [2012] measured the respective values σy = 14.2±
2.5 kPa and E = 1.0± 0.15 MPa for their tested microlattice labeled with G (L = 1050± 32µm, D =
160± 24µm, t = 0.55± 0.06µm). The results calculated from our computational methodology agree
excellently with those obtained from experiment by Torrents et al. [2012]. It is found that this architected
material shows a yield stress much smaller than the parent material, which offers more flexibility in
tailoring the response to impulsive loads. In addition, we are able to calculate the shear modulus of the
cellular microlattice from our obtained stress-strain curve corresponding to the shear load, resulting in
G = 1.773 MPa.

The progressive development of plastic hinges as the tensile and compressive loads increase is shown
in Figure 11. The total deformation of the RVE considering the effect of plasticity corresponding to the
step B of compressive loading, step F of tensile loading, and step G of shear loading is also given in
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Figure 11. Progressive development of plastic hinges in cellular microlattice under ten-
sion and compression at different steps of loading shown in Figure 10. Left: plastic
hinges formed at steps A and C . Middle: plastic hinges formed at steps B and D. Right:
plastic hinges formed at step E .

 
 

Figure 12. Total elastic-plastic deformation of the cellular microstructure in red color
at different steps of loading shown in Figure 10. Left: at step B of the compressive
loading. Middle: at step F of the tensile loading. Right: at the step G of shear loading.
The initial unloaded state is also shown (dashed lines).

Figure 12. Since plastic deformation can absorb energy, this architected material will be appropriate for
protection from impacts and shockwaves in applications varying from helmets to vehicles and sporting
gear [Schaedler and Carter 2016].

4.2. Architected material with further increased relative density. In this case, the fabricated sample
is computationally modeled using an RVE consisting of 60 nodes and 128 members with PBCs along
the x- and y-directions; see Figure 13. The strut member dimensions are L = 1200µm, D = 175µm
and t = 26µm. The wall thickness of the member in this case is 52 times greater than that of the
previous case in Section 4.1. The RVE is subjected to both tensile and compressive loading in order to
study the mechanical properties of the architected material. The engineering stress-engineering strain
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Figure 13. 2a× 2a× 2a RVE including 60 nodes and 128 strut members.

en
gi

ne
er

in
g 

st
re

ss
 (

M
P

a)

tensile loading (2×2×2)
compressive loading (2×2×2)
compressive loading (1×1×4)

B A

0 1 2 3 4

engineering strain (%)

8

7

6

5

4

3

2

1

0

Figure 14. Stress-strain curve of the cellular microlattice subjected to tension and compression.

curve is plotted in Figure 14. Stress analysis shows bilinear elastic moduli for this cellular microlattice
subjected to both tension and compression. Elastic modulus for the first phase is calculated as 0.619 GPa
under both tensile and compressive loading. For the second phase it is calculated to be 0.284 GPa under
tension and 0.364 GPa under compression. The yield stress is obtained as 7.2222 MPa and 6.8519 MPa
subjected to tensile and compressive loading, respectively. Plastic hinges emanate at the stress level
6.6667 MPa when the microlattice is under tension and originate at the stress level 6.8519 MPa when the
microlattice is subjected to compression. It is found that both Young’s modulus and the yield stress of
the cellular microlattice increase significantly by increasing the strut thickness. It is well-known that the
elastic modulus and the yield strength of the cellular materials increase with the increase of their relative
density [Gibson and Ashby 1988]. Relative density is calculated as ρ/ρs , where ρ is the mass of the lattice
divided by the total bounding volume v and ρs is the mass of the lattice divided by only the volume of the
constituent solid material vs . Therefore, ρ/ρs = (m/v)/(m/vs)= vs/v in which vs = # of members×
π
[(1

2 D + t
)2
−
( 1

2 D
)2]
× L and v = 8a3 or 2a3 for a 2a × 2a × 2a RVE or a 1a × 1a × 2a RVE,
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Figure 15. 1a× 1a× 4a RVE consisting of 36 nodes and 64 strut members.

respectively. We calculate the relative densities of the cellular microlattices examined through this section
and Section 4.1 as 0.03511 and 0.00066, respectively. Torrents et al. [2012] extracted experimentally
the strain-stress curve of this microlattice (labeled A) under compression. They measured the Young’s
modulus E = 0.58±0.003 GPa and the yield stress σy = 8.510±0.025 MPa for the tested microlattice with
strut diameter D = 175± 26µm, strut length L = 1200± 36µm, and wall thickness t = 26.00± 2.6µm.
We see that there is a very good correspondence between our calculated mechanical properties of the
sample under compressive loading and those measured experimentally by Torrents et al. [2012].

 

 

 

Figure 16. Elastic-plastic deformation of the cellular microstructure in red color at dif-
ferent steps of loading shown in Figure 14. Left: at step A of tensile loading. Right: at
step B of compressive loading. The initial unloaded state is also shown (dashed lines).
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To investigate the effect of the size of the RVE on the macroscale response of the cellular microlattice,
the depth of the 2a× 2a× 2a RVE (Figure 13) is increased by a factor of two. Due to the PBCs along
the x- and y-directions, the size of the RVE along these directions is considered to be 1a. Therefore,
a 1a× 1a× 4a RVE consisting of 36 nodes and 64 strut members is modeled (see Figure 15), and the
corresponding stress-strain curve under compression is included in Figure 14. The stress analysis of this
1a×1a×4a RVE also exhibits bilinear elastic behavior with the elastic moduli of 0.7841 GPa for the first
linear phase and 0.4721 GPa for the second linear phase. The yield stress is calculated to be 7.3704 MPa,
which comes closer to the corresponding experimental value, σy = 8.510± 0.025 MPa, in comparison
with 6.8519 MPa calculated for a 2a× 2a× 2a RVE. Figure 16 shows the elastic-plastic deformation of
the 2a× 2a× 2a RVE under tension and compression.

5. Conclusion

We presented a computational approach for the large elastic-plastic deformation analysis of low-mass
metallic systems with architected cellular microstructures. Studies on this class of materials are of
interest since they can be optimized for specific loading conditions by changing the base material as
well as the topology of the architecture. The repetitive RVE approach is utilized to mimic the fab-
ricated cellular microlattices. The RVE is generated by a node-strut representation consisting of the
coordinate of nodes and the connectivity of nodes. Therefore, we can easily study the effect of the
change of topology on the overall mechanical response of the cellular material by changing both the
coordinates and connectivity of nodes. Moreover, the microstructural length scale of the cellular mate-
rial is accurately captured by introducing the area, the first and the second moments of inertia, and the
polar moment of inertia of the symmetrical/unsymmetrical cross section of the strut member within the
formulation.

In the current methodology, each member of the actual microlattice undergoing large elastic-plastic
deformations is modeled by a single FE with 12 DOF, which enables the study of the static and dynamic
behavior of the macrostructure directly and efficiently by using an arbitrarily large number of members.
We study the nonlinear coupling of axial, torsional, and bidirectional-bending deformations for each 3D
spatial beam element. The effect of plasticity is included by employing the plastic hinge method, and the
tangent stiffness matrix is explicitly derived for each member, utilizing the mixed variational principle in
the updated Lagrangian corotational reference frame. To avoid inverting the Jacobian matrix, we employ
homotopy methods to solve the incremental tangent stiffness equations.

The proposed methodology is validated by comparing the results of the elastic and elastic-plastic large
deformation analyses of some problems with the corresponding results given in the literature. Moreover,
two fabricated cellular microlattices with different dimensional parameters including the unit cell size
and the strut thickness are modeled using different RVEs. We study their mechanical behaviors under
all tensile, compressive, and shear loading. The comparison of the calculated mechanical properties
utilizing the present methodology with the corresponding experimental measurements available in the
literature reveals a very good agreement. Using this developed computational approach, we can homog-
enize any cellular structure easily, and we can design the topology of microstructure for any designated
properties.
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Appendix A. Toward the simplification of (26)

∫
l

N̂11ε
0L
11 dl =

∫
l

N̂11u10,1 dl =−
∫

l
N̂11,1u10 dl + N̂11u10

∣∣l
0, (A.1)∫

l
M̂22N22 dl =−

∫
l

M̂22u20,11 dl =−
∫

l
M̂22,11u20 dl + M̂22,1u20

∣∣l
0− M̂22u20,1

∣∣l
0, (A.2)∫

l
M̂33N33 dl =−

∫
l

M̂33u30,11 dl =−
∫

l
M̂33,11u30 dl + M̂33,1u30

∣∣l
0− M̂33u30,1

∣∣l
0, (A.3)∫

l
T̂2 dl =

∫
l
T̂ θ̂,1 dl =−

∫
l
T̂,1θ̂ dl + T̂ θ̂

∣∣l
0. (A.4)

Appendix B. Expressions for KN , KL and K P

KN =
l
6
σ 0

1



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 0
2 0 0 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0

symm. 0 0 0 0
0 0 0

2 0
2



. (B.1)

To write KL and KP we split them into blocks:

KL =

[
K 11

L K 12
L

K 12
L K 22

L

]
, (B.2)

with

K 11
L =

E
l A



A2 0 0 0 AI3 −AI2

12(−I 2
2+AI22)

l2
12(−I2 I3+AI23)

l2
0 6(I2 I3−AI23)

l
6(−I 2

2+AI22)

l
12(−I 2

3+AI33)

l2
0

6(I 2
3−AI33)

l
6(−I2 I3+AI23)

l
AµIrr

E
0 0

symm. (−3I 2
3 + 4AI33) (3I2 I3− 4AI23)

(−3I 2
2 + 4AI22)


, (B.3)
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K 12
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
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2−AI22)

l2
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6(I 2
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K 22
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E
l A


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l2
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To express KP we first define

S = M0{M2
1 +M2

2 +M2
3 }

1/2, (B.6)

D1 = E
(
−3I 2

3 (l − 2lp)
2 M2

2 N 4
0 − 6I2 I3(l − 2lp)

2 M2 M3 N 4
0

+
(
−3I 2

2 (l − 2lp)
2 M2

3 + 4A(l2
− 3llp + 3l2

p)(I33 M2
2 + 2I23 M2 M3+ I22 M2

3 )
)
N 4

0

+ 4AI3l2 M2 N N 2
0S + 4AI2l2 M3 N N 2

0S + 4A2l2 N 2S2
)
+ AIrr l2 M2

1 N 4
0v, (B.7)

N1 = I3 M2 N 2
0 + I2 M3 N 2

0 + 2ANS, (B.8)

N2 =−AI23 M2+ I2 I3 M2+ I 2
2 M3− AI22 M3, (B.9)

N3 = I 2
3 M2− AI33 M2− AI23 M3+ I2 I3 M3, (B.10)

N4 =
(
−3I 2

3 (l − 2lp)M2− 3I2 I3(l − 2lp)M3+ 2A(2l − 3lp)(I33 M2+ I23 M3)
)
N 2

0 + 2AI3l NS, (B.11)

N5 =
(
−3I2(l − 2lp)(I3 M2+ I2 M3)+ 2A(2l − 3lp)(I23 M2+ I22 M3)

)
N 2

0 + 2AI2l NS, (B.12)

N6 =
(
−3I2(l − 2lp)(I3 M2+ I2 M3)+ 2A(l − 3lp)(I23 M2+ I22 M3)

)
N 2

0 − 2AI2l NS, (B.13)

N7 =
(
3I 2

3 (l − 2lp)M2+ 3I2 I3(l − 2lp)M3− 2A(l − 3lp)(I33 M2+ I23 M3)
)
N 2

0 + 2AI3l NS. (B.14)

Here N0 and M0 are the fully plastic axial force and the fully plastic bending moment, respectively.
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Then write

KP =


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, (B.18)
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−

Al(EN1)
2
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−
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0N1

lD1
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6E2(l−2lp)N3 N 2
0N1

lD1

−
36E2(l−2lp)

2N 2
2 N 4

0
Al3D1

−
36E2(l−2lp)

2N3N2 N 4
0

Al3D1

symm.
−

36E2(l−2lp)
2N 2

3 N 4
0

Al3D1


, (B.19)

12K 12
P =



−
AE Irr l M1 N 2

0N1v
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−

E2N1N7

D1
−

E2N1N6
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−
6E Irr (l−2lp)M1N2 N 4

0 v

lD1
−

6E2(l−2lp)N2 N 2
0N7

Al2D1
−

6E2(l−2lp)N2 N 2
0N6

Al2D1

−
6E Irr (l−2lp)M1N3 N 4

0 v

lD1
−

6E2(l−2lp)N3 N 2
0N7

Al2D1
−

6E2(l−2lp)N3 N 2
0N6

Al2D1


, (B.20)
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22K 12
P =
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−

AI 2
rr l M2

1 N 4
0 v

2
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0N7v

D1
−

E Irr M1 N 2
0N6v
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E2N4N7
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−

E2N10N4

AlD1

symm. E2N10N5

AlD1

 , (B.21)
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22 K 22
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

AI 2
rr l M2

1 N 4
0 v

2

D1

E Irr M1 N 2
0N7v

D1

E Irr M1 N 2
0N6v

D1

(EN7)
2

AlD1

E2N6N7

AlD1

symm. (EN6)
2

AlD1

 , (B.24)

Appendix C. Transformation matrices between coordinate systems

Referring to Figure 1, x̄i are the global coordinates and ēi are the corresponding orthonormal basis
vectors. Similarly, x̃i and ẽi are respectively the local coordinates and the corresponding basis vectors
of the undeformed state and xi and ei are those of the deformed state. Herein, transformation matrices
relating local coordinates corresponding to the deformed and undeformed states to the global coordinates
are discussed. If αXi denote the global coordinates of the α-th node of the element in the undeformed
state, then the local orthonormal basis vectors of the undeformed state can be described with respect to
those of the global coordinates as

ẽ1 = (1X̃1 ē1+1X̃2 ē2+1X̃3 ē3)/L̃, (C.1)

ẽ2 = (ē3× ẽ1)/|ē3× ẽ1|, (C.2)

ẽ3 = ẽ1× ẽ2, (C.3)

in which

1X̃ i =
2 X i −

1 X i i = 1, 2, 3, (C.4)

L̃ = {(1X̃1)
2
+ (1X̃2)

2
+ (1X̃3)

2
}

1/2. (C.5)
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Thus, ẽi and ēi (i = 1, 2, 3) are related via the following equation [Simo 1985]:

ẽ1

ẽ2

ẽ3

=
 1X̃1/L̃ 1X̃2/L̃ 1X̃3/L̃

−1X̃2/S̃ 1X̃1/S̃ 0

−1X̃11X̃3/(L̃ S̃) −1X̃21X̃3/(L̃ S̃) S̃/L̃


ē1

ē2

ē3

 , (C.6)

where

S̃ = {(1X̃1)
2
+ (1X̃2)

2
}

1/2. (C.7)

Therefore, the matrix transforming global coordinates to the local coordinates of the undeformed state is
obtained as

T̃ =

 1X̃1/L̃ 1X̃2/L̃ 1X̃3/L̃

−1X̃2/S̃ 1X̃1/S̃ 0

−1X̃11X̃3/(L̃ S̃) −1X̃21X̃3/(L̃ S̃) S̃/L̃

 . (C.8)

Note that, for the case when the element is parallel to the x̄3-axis, the local coordinates for the undeformed
state are determined by

ẽ1 = ē3, ẽ2 = ē2, ẽ3 =−ē1. (C.9)

Similarly, the transformation matrix relating local coordinates of the deformed state to the global coordi-
nates can be obtained. For this case, αX ′i is introduced to describe the global coordinates of the α-th node
of the element in the deformed state. Therefore, orthonormal basis vectors in the corotational reference
coordinate system ei can be chosen as

e1 = (1X1 ē1+1X2 ē2+1X3 ē3)/L , (C.10)

e2 = (ẽ3× e1)/|ẽ3× e1|, (C.11)

e3 = e1× e2, (C.12)

where 1X i =
2 X ′i −

1 X ′i and L = {(1X1)
2
+ (1X2)

2
+ (1X3)

2
}

1/2.
By replacing ẽ3 from (C.6) into (C.11), we obtain

e1

e2

e3

=


1X1/L 1X2/L 1X3/L

−
1X̃21X̃31X3

L̃ S̃LL
−

1X2 S̃
L L̃L

1X̃11X̃31X3

L̃ S̃LL
−

1X1 S̃
L L̃L

−
1X̃11X̃31X2

L̃ S̃LL
+

1X11X̃21X̃3

L L̃ S̃L

A31 A32 A33


ē1

ē2

ē3

 (C.13)

where

A31 =
1X̃11X̃31X11X3

L̃ S̃L2L
+
1X2

1 S̃

L2 L̃L
+
1X̃21X̃31X21X3

L̃ S̃L2L
+
1X2

2 S̃

L2 L̃L
,
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A32 =
1X̃11X̃31X11X2

L̃ S̃L2L
−
1X2

11X̃21X̃3

L2 L̃ S̃L
−
1X̃21X̃31X2

3

L̃ S̃L2L
−
1X21X3 S̃

L2 L̃L
,

A33 =
1X̃11X̃31X11X3

L̃ S̃L2L
+
1X2

1 S̃

L2 L̃L
+
1X̃21X̃31X21X3

L̃ S̃L2L
+
1X2

2 S̃

L2 L̃L
,

L=
{(
−
1X̃21X̃31X3

L̃ S̃L
−
1X2 S̃

L L̃

)2

+

(
1X̃11X̃31X3

L̃ S̃L
+
1X1 S̃

L L̃

)2

+

(
−
1X̃11X̃31X2

L̃ S̃L
+
1X11X̃21X̃3

L L̃ S̃

)2}1/2

. (C.14)

Thus, the transformation matrix is obtained as

T =


1X1/L 1X2/L 1X3/L

−
1X̃21X̃31X3

L̃ S̃LL
−

1X2 S̃
L L̃L

1X̃11X̃31X3

L̃ S̃LL
+

1X1 S̃
L L̃L

−
1X̃11X̃31X2

L̃ S̃LL
+

1X11X̃21X̃3

L L̃ S̃L

B31 B32 B33

 , (C.15)

where

B31 =
1X̃11X̃31X11X3

L̃ S̃L2L
+
1X2

1 S̃

L2 L̃L
+
1X̃21X̃31X21X3

L̃ S̃L2L
+
1X2

2 S̃

L2 L̃L
,

B32 =
1X̃11X̃31X11X2

L̃ S̃L2L
−
1X2

11X̃21X̃3

L2 L̃ S̃L
−
1X̃21X̃31X2

3

L̃ S̃L2L
−
1X21X3 S̃

L2 L̃L
,

B33 =
1X̃11X̃31X11X3

L̃ S̃L2L
+
1X2

1 S̃

L2 L̃L
+
1X̃21X̃31X21X3

L̃ S̃L2L
+
1X2

2 S̃

L2 L̃L
.

Finally, the transformation matrix for changing the generalized element coordinates consisting of
12 components in the global reference frame to the corresponding coordinates in the corotational refer-
ence frame is given by

Q=


T 0

T
T

0 T

 . (C.16)

Then, components of the second-order tensors, such as the tangent stiffness matrix, as well as first-order
tensors, like the generalized nodal displacements and the generalized nodal forces, are transformed to
the global coordinates system based on quotient rule using the presented transformation matrices.

Appendix D.

Two of the extensively used vector homotopy functions are the fixed-point homotopy function and the
Newton homotopy function, defined respectively as

HF (X, t)= t F(X)+ (1− t)(X − X0)= 0, 0≤ t ≤ 1, (D.1)
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HN (X, t)= t F(X)+ (1− t)(F(X)− F(X0))= 0, 0≤ t ≤ 1. (D.2)

Here, X0 represents the initial guess of the solution. Using the vector homotopy method, the solution of
F(X)= 0 can be obtained by numerically integrating the following relation:

Ẋ =−
(
∂H
∂X

)−1 ∂H
∂t
, 0≤ t ≤ 1, (D.3)

which requires the inversion of the matrix ∂H/∂X at each iteration.
A series of iterative Newton homotopy methods has also been developed, where Q(t) does not need to

be determined [Dai et al. 2014]. Considering Ẋ = λu, the general form of the scalar Newton homotopy
function becomes

Ẋ =−
Q̇(t)

2Q(t)
‖F(X)‖2

FT Bu
u. (D.4)

Using the forward Euler method, (D.4) is discretized and the general form of the iterative Newton homo-
topy method is obtained as

X (t +1t)= X (t)− (1− γ )
FT Bu
‖Bu‖2

u, (D.5)

where −1< γ < 1.
The reason homotopy methods converge with the required accuracy in the case of complex problems

(in the presence of the plasticity and buckling in a large number of members of the microlattice) is
thanks to raising the position of the driving vector u in Ẋ = λu to introduce the best descent direction
in searching the solution vector X . In the so-called continuous Newton method we have u = B−1 F,
resulting in loss of accuracy from inverting the Jacobian matrix when it is singular or severely ill-
conditioned, leading to oscillatory, nonconvergent behavior. Whereas in (76), we have u = BT F with
λ = − 1

2 Q̇‖F‖2/(Q‖BT F‖2), and it can also be expressed by two vectors such as F and BT F. The
hypersurface formulated in (75) defines a future cone in the Minkowski space Mn+1 in terms of the
residual vector F and a positive and monotonically increasing function Q(t) as

X T gX = 0, (D.6)

where

X =
[

F(X)/‖F(X0)‖

1/
√

Q(t)

]
, (D.7)

g =
[

In 0n×1

01×n −1

]
, (D.8)

and In is the n× n identity matrix. Then the solution vector X is searched along the path kept on the
manifold defined by the following equation:

‖F(X)‖2 = ‖F(X0)‖
2

Q(t)
. (D.9)

Therefore, an absolutely convergent property is achieved by guaranteeing Q(t) as a monotonically in-
creasing function of t . In fact, (D.9) enforces the residual error ‖F(X)‖ to vanish when t is large.
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TRANSIENT ANALYSIS OF FRACTURE INITIATION
IN A COUPLED THERMOELASTIC SOLID

LOUIS M. BROCK

An isotropic, thermoelastic solid is initially at rest at uniform (absolute) temperature, and contains a
semi-infinite, plane crack. Application of in-plane and normal point forces to each face of the crack
causes transient 3D growth. The related problem of discontinuities in temperature and displacement
that exist on regions that exhibit dynamic similarity is first considered. Asymptotic expressions, whose
inverses are valid near the crack edges for short times, are obtained in integral transform space. These
lead to equations of the Wiener–Hopf type for the fracture problem. Analytical solutions are obtained
and, upon inversion, subjected to a dynamic energy release rate criterion that accounts for kinetic energy.
A particular form of rapid growth in time of the forces is found to cause crack initiation growth rates that
indeed vary with position, but not with time. The influence of particular types of mixed-mode loading
upon crack edge contour and thermal response near the edge is also examined.

1. Introduction

Crack edge location in a transient 3D study is defined by a (possibly nonrectilinear) contour in the crack
plane. The semi-infinite, planar crack in an unbounded isothermal solid is treated in [Brock 2017a].
Fracture is driven by mixed-mode, point force loading on the crack faces. The dynamic energy release
rate criterion [Freund 1972; 1990] is imposed, but with kinetic energy taken into account [Gdoutos
1993]. It is found that a particular time history for the loading can generate a crack edge contour that
varies with position, but not with time. The solution process begins by considering the related problem
of displacement discontinuity generation on a portion of a planar surface in the solid. A set of three
equations is generated that involve six integral transform functions (three components of discontinuity,
three components of planar surface traction). However, the set can be rewritten as three equations of the
Wiener–Hopf type [Morse and Feshbach 1953]. Exact solutions are possible, and upon inversion they
lead to a nonlinear differential equation for the crack edge contour.

The corresponding problem for the coupled thermoelastic solid is treated in [Brock 2017b]. Crack
initiation is the focus, so that:

(a) thermal relaxation [Ignaczak and Ostoja-Starzewski 2010] can be important, and

(b) asymptotic forms of the governing equations for thermal relaxation are viable.

The results are similar in nature to those in [Brock 2017a], with the proviso that response is valid for
short times.

Keywords: thermoelastic, relaxation, transient, fracture, kinetic energy, crack contour.
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However, as a first step the possibility of discontinuity in temperature across the crack gap is ignored in
[Brock 2017b]. A consequence is that the solution process again involves three equations of the Wiener–
Hopf type in transform space. In the present article, the possibility of temperature discontinuity is treated.
It will be seen that the solution process must now deal with a set of four equations, with integral transforms
for the temperature discontinuity and heat flux across the planar surface involved. Two of the Wiener–
Hopf equations now yield analytical expressions whose inverses are valid only near the crack edge.
However, imposition of the energy release rate criterion [Freund 1972; 1990] in [Brock 2017a; 2017b],
and subsequent analysis of crack edge contour, actually involve the use of such asymptotic expressions.
Therefore several key results of the present article can be compared with those of [Brock 2017b].

2. Problem statement

A closed crack AC(x0
3 = 0, x0

1 < 0) with boundary C(x0
1 , x0

3) = 0 exists in an unbounded, coupled
thermoelastic, solid. Cartesian coordinates x0 = x0(x0

k ), k = (1, 2, 3) are used. The solid is at rest for
time t ≤ 0 at (absolute) uniform temperature T0. For t > 0 point forces (both shear and compressive)
appear on both crack faces at (x0

1 = 0−, x0
2 = 0, x0

3 = 0±). Brittle fracture is instantaneous, and the crack
extends outward from x0 = 0. The crack now occupies region AC + δA. Boundary C now includes a
concave bulge: √

(x0
1)

2+ (x0
2)

2 = l(ψ, t), l(ψ, t)= V (ψ)t, (1a)

0< V < VR, ψ = tan−1 x0
2

x0
1

(|ψ |< π/2). (1b)

Equation (1) implies a dynamically similar fracture process, and requires that (speed parameter) V not
exceed Rayleigh value VR . Displacement u(uk), traction T (σik) and θ , the change in temperature from T0,
are field variables. For the Lord and Shulman thermal relaxation model [Lord and Shulman 1967; Brock
2009; Ignaczak and Ostoja-Starzewski 2010]:

∇ · T − ρD2u = 0, (2a)

(kT∇
2
− ρCE PD)θ +µαDT0PD(∇ · u)= 0, (2b)

1
µ

T =
[ 2v

1−2v
(∇ · u)1−αDθ

]
+∇u+ u∇ = 0. (2c)

In (2) θ and components (uk, σik) are functions of (x0, t), and (∇,∇2, 1) respectively are gradient and
Laplacian operators and identity tensor. Symbols (D f, ḟ ) represent time differentiation in basis x0 and

P= 1+ t0 D. (3)

Here constants (µ, ρ, v) are shear modulus, mass density and Poisson’s ratio, and (kT ,CE , αD) are
thermal conductivity, specific heat at constant strain, and coefficient of (volumetric) thermal expansion.
Constant t0 is the thermal relaxation time. Equation (1) reflects assumptions that body forces can be ig-
nored, and heat is neither added to, nor extracted from, the solid. Partial uncoupling of (2a) and (2b) gives

u = uS + uD, (4a)
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(∇2
− D2

S)uS = 0, ∇ · uS = 0, (4b)

(c2
D∇

2
− D2

S)uD −αD∇θ = 0, ∇ × uD = 0, (4c)[
(c2

D∇
2
− D2

S)(h∇
2
− DSP)− εDSP∇2](uD, θ)= 0. (4d)

In (4) D = VS DS , and a modification of (3) was used:

P= 1+ h0 DS. (5)

Equation (4) also introduces parameters

VS =

√
µ

ρ
, VD = cDVS, cD =

√
2 1−v

1−2v
, ε =

µT0
ρCE

αD, (6a)

h = kT
CE
√
µρ
, h0 = VSt0. (6b)

In (6) ε is the dimensionless thermal coupling constant, and (h, h0) are thermoelastic characteristic
lengths. Symbols (VS, VD) are, respectively, shear speed and isothermal dilatational speed. In light of
restriction (1b), it is noted that VR < VS and that VR will be shown to depend both on material properties
and the nature of the point forces.

For x0
3 = 0±, (x0

1 , x0
2) ∈ AC + δA (t > 0):

σ3k =−Pkδ(x0
1)δ(x

0
2),

∂θ

∂x0
3

= 0. (7a)

For x0
3 = 0, (x0

1 , x0
2) /∈ AC + δA (t > 0),

[uk] = [θ ] = 0. (7b)

In (7) force Pk is a positive constant, δ( f ) denotes Dirac function, and [ f ] = f (+) − f (−) where
f (±) = f (x0

1 , x0
2 , 0±, t). Equation (7a) reflects the assumption that thermal convection on the crack faces

is negligible. In addition [uk] and [θ ] must vanish continuously on C , but σ3k can exhibit (integrable) sin-
gular behavior on C . For t ≤ 0, (u, T , θ)≡ 0 and for finite t > 0, (u, T , θ) must be bounded as |x0|→∞.

3. Discontinuity problem

A common practice for solving crack problems is to represent the relative motion of crack faces as
unknown discontinuities in displacement, e.g., [Barber 1992]. To implement that procedure, the related
problem of discontinuities in (uk, σ3k, θ, ∂θ/∂x0

3) is now considered: The unbounded solid is again at
rest at uniform (absolute) temperature T0 when for time t > 0 the discontinuities are imposed in the same
region AC + δA of the x0

1 x0
2− plane. In place of (7) we have for x0

3 = 0, (x0
1 , x0

2) ∈ AC + δA (t > 0):

[uk] =1k, [σ3k] =6k, [θ ] =2, [∂θ/∂x0
3 ] = d2. (8a)

For x0
3 = 0, (x0

1 , x0
2) /∈ AC + δA (t > 0),

[uk] = [σ3k] = [θ ] = [∂θ/∂x0
3 ] = 0. (8b)
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Here (1k, 6k,2, d2) are continuous functions of (x0
1 , x0

2 , t). They vanish on C and for t ≤ 0 are
bounded in AC + δA for

√

(x0
1)

2
+ (x0

2)
2
→∞. Therefore, as in the crack problem, (u, T , θ) ≡ 0 for

t ≤ 0 and are bounded as |x0| for finite t > 0.

4. Transform solution

An effective procedure, e.g., [Brock and Achenbach 1973], for 2D transient study of semi-infinite crack
extension at constant speed employs

(a) coordinates that translate with the crack edge, and

(b) unilateral temporal and bilateral spatial integral transform [Sneddon 1972].

In view of (1) a translating basis x is defined for |ψ |< 1
2π as

x1 = x0
1 − [c(ψ) cosψ]s, x2 = x0

2 − [c(ψ) sinψ]s, x3 = x0
3 , (9a)

s = VSt, c(ψ)=
V (ψ)

VS
, (9b)

D f = ḟ = VS[∂S f − c(ψ)(∂1 f cosψ + ∂2 f sinψ)], (9c)

∂S f =
∂ f
∂s
, ∂k f =

∂ f
∂xk

, k = (1, 2, 3). (9d)

The temporal Laplace transform operation is

L( f )= f̂ =
∫

f (s) exp(−ps) ds. (10a)

Integration is over positive real s and Re(p) > 0. A double spatial integral transform and inversion,
respectively, can be defined [Sneddon 1972] by

f̃ (p, q1, q2)=

∫∫
f̂ (p, x1, x2) exp[−p(q1x1+ q2x2)] dx1 dx2, (10b)

f̂ (p, x1, x2)=
( p

2π i

)2
∫∫

f̃ (p, q1, q2) exp[p(q1x1+ q2x2)] dq1 dq2. (10c)

Integration in (10b) is over real (x1, x2); integration in (10c) is along the imaginary (q1, q2)-axes. It
is noted that (x, s) have dimensions of length, p has dimensions of inverse length, and (q1, q2) are
dimensionless. Because (1) involves a speed that varies with direction, application of (9) and (10b)
to (2)–(5) and (7) is complicated. Despite use of ψ the discontinuity problem is not axially symmetric.
However, 3D studies of sliding and rolling contact [Brock 2012] and crack growth [Brock 2017a; 2017b]
suggest transformations

Im(q1)= Im(q) cosψ, Im(q2)= Im(q) sinψ, (11a)

x1 = x cosψ, x2 = x sinψ. (11b)

Here Re(q)= 0+, |Im(q)|, |x |<∞ and |ψ |< 1
2π . Parameters (x, ψ) and (q, ψ) resemble quasipolar

coordinates, i.e.,
dx1 dx2 = |x | dx dψ, dq1 dq2 = |q| dq dψ. (11c)
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The uncoupling effect of (11) leads to the combination

f̃ (p, q1, q2)→ f̄ (p, q, ψ), (12a)

f̂ (p, x, ψ)=− p2

2π

∫
|q|
q

f̄ (p, q, ψ) exp(pqx) dq. (12b)

Integration is along the positive (Re(q)= 0+) side of the Im(q)-axis.
In view of (9)–(11) and (12a), (4) and (5) give a corresponding set in transform space by making

formal substitutions

∇ → (pq cosψ, pq sinψ, ∂3), DS→ pβ, ∇2
→ ∂2

3 + p2q2, (13a)

P→ 1+ h0 pβ, (13b)

β = 1− cq. (13c)

Set elements that correspond to (4b)–(4d) are homogeneous, ordinary differential equations in x3, with
characteristic functions pB(q) and A±(p, q):

B(q)=
√
β2
− q2, (14a)

A±(p, q)= p

√( 2β
0+±0−

)2
− q2, (14b)

0± =

√[√
hpβ

1+h0 pβ
± cD

]2

+ ε. (14c)

Focus of this transient study is on the initiation phase of fracture, i.e., small t (and therefore small s).
The Lord and Shulman [1967] model is quite robust for this purpose. Indeed [Brock 2009; Ignaczak
and Ostoja-Starzewski 2010] indicate that h ≈ O(10−9)m, h0 ≈ O(10−10)m so that, in view of (10a),
transform expressions valid for |h0 p| � 1 are sufficient. Result (14b) assumes the form p A±(q) defined
below, and the set corresponding to (4b)–(4d) gives general solutions:

ūS

[
U (±)

1 ,U (±)
2 , (±)

q
B
(U (±)

1 cosψ +U (±)
2 )

]
exp(−pB|x3|), (15a)

ūD = ū++ ū−, θ = θ++ θ−, (15b)

ū± = [q cosψ, q sinψ, (∓)A±]U
(±)
± exp(−p A±|x3|), (15c)

θ± =−C±
β2

αD
pU (±)
± exp(−p A±|x3|). (15d)

Here (U (±)
± ,U (±)

1 ,U (±)
2 ) are unknown functions of (p, q, ψ) and (±) signifies x3 > 0 (+), x3 < 0 (−).

In addition,

A± =
√
β2/c2

±
− q2, (16a)

C± = 1− c2
D/c

2
±
, c± = 1

2(0+±0−), (16b)

0± =
√
(
√
λ± cD)

2
+ ε, λ= h/h0. (16c)
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Combinations of terms in (16) also prove useful:

C+−C− =�=
0+0−

λ
, C+C− =−

ε

λ
, (17a)

c2
+
− c2
−
= 0+0−, c+c− = cD

√
λ. (17b)

The dimensionless terms c± in (16) show that solution behavior is governed by the three wave speeds
(VS, V± = c±VS) where 1< c− < c+. Data, e.g., [Brock 2009; Ignaczak and Ostoja-Starzewski 2010],
suggest moreover that c+ > cD , c− ≈ cD− so that V+ is larger than isothermal dilatational wave speed
VD = cDVS while V− is approximately the same. Bounded behavior for (ûk, θ̂ ) as |x3| →∞ requires in
light of (15) that Re(A±) > 0 and Re(B) > 0 in the q-plane with, respectively, branch cuts

Im(q)= 0, −1
c±−c

< Re(q) < 1
c±+c

, (18a)

Im(q)= 0, −1
1−c

< Re(q) < 1
1+c

. (18b)

It is noted that (18) is valid only so long as c < 1; i.e., V (ψ) < VS
(
|ψ |< 1

2π
)
.

5. Application to fracture problem: equations for solution

In order that (15) and results in Appendix A represent the transform solution for the fracture problem,
the transforms of (7) must be satisfied. Because (7) does not involve (6k, d2), their transforms can
be dropped. Use of (2c), (9), (10a), (10b), (11) and (12b) then give five equations for transforms of
(σ3k, θ

(±), ∂3θ) along x3 = 0 in terms of transforms of (1k,2). It is noted that for (s > 0, x3 = 0),

σ3k = σ
C
3k − Pkδ(x0

1)δ(x
0
2), (19a)

∂3θ = ∂3θ
C . (19b)

Here (σC
3k, ∂3θ

C) exists for x > 0 in a region generated behind wave front c+s − x − cs > 0. Thus the
corresponding transform exists for Re(q) >−1/(c+− c). The Dirac function term has transform

−
Pk

pβ
(Re(q) < 1/c). (20)

Function (1k,2) occurs for x < 0 in a region generated behind wave front c+s+ x + cs > 0. Thus the
corresponding transform exists for Re(q) < 1/(c++ c). Four transform equations can be written and are
given in Appendix B. There it is noted that

M12(q12)= 0, M12 ≈ R12q4(|q| →∞), q12 =
±1

c12±c
, (21a)

M3(q3)= 0, M3 ≈ R3q4(|q| →∞), q3 =
±1

c3±c
, (21b)

M±(q±R )= 0, M±q4(|q| →∞), q±R =
1

c±R+c
,
−1

c±R−c
. (21c)
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In (21), (R12, R3, R±) are functions of c:

R12 = C+R−−C−R+, R12(c2
12)= 0 (0< c12 < 1), (22a)

R3 = C+a+
R−
b
−C−a−

R+
b
, R3(c2

3)= 0 (0< c3 < 1), (22b)

R± = 4a±b− k2, R±(0)= R±((c±R )
2)= 0 (0< c±R < 1), (22c)

a±(c)=
1

c±

√
c2
±
− c2, b(c)=

√
1− c2, k(c)= c2

− 2. (22d)

Terms (R±,M±) have the form of the Rayleigh function [Achenbach 1976]. Thus (R12, R3) and (M12,M3)

are thermoelastic Rayleigh functions of respectively, variables c and q . Data, e.g., [Brock 2009; Ignaczak
and Ostoja-Starzewski 2010] indicate that in general,

0< c3 < c12 < 1< c− < c+, c− ≈ cD − . (23)

In view of (6) and (9) the fracture problem solution is governed by both (VS, V± = c±VS) and Rayleigh
speeds V12 = c12VS and V3 = c3VS . Moreover, subcritical speed is defined as V (ψ) < V3

(
|ψ |< 1

2π
)
.

6. Solution: Wiener–Hopf equation

The four equations, (B.1) and (B.2), involve eight unknown transforms (σ̄ C
3k , ∂3θ

C) and (1k,2). The
regions of analyticity in the q-plane of the two transform sets differ but can also overlap. Thus (B.1) and
(B.2) can be viewed as a set of coupled equations of the Wiener–Hopf type [Morse and Feshbach 1953;
Achenbach 1976].

Equation (B.1c). It is noted that (A±, B) form products (A++A−+, A+−A−−, B+B−) where

A±
+
=

1
√

c+

√
1± q(c+∓ c), A±

−
=

1
√

c−

√
1± q(c−∓ c), (24a)

B∓ =
√

1± q(1∓ c). (24b)

In (24a) (A+±, A−±) are analytic in, respectively, overlapping half-planes Re(q)>−1/(c±−c) and Re(q)<
1/(c±+ c). Terms (B+, B−) in (24b) are analytic in overlapping half-planes Re(q) >−1/(1− c) and
Re(q) < 1/(1+ c). Study of M3 in (B.3b) leads to construction of function

G3 =−
M3

β2

c2

R3

c2
3− c2

[1+ q(c3− c)][1− q(c3+ c)]
. (25)

Here G3→1(|q|→∞), and has no zeros in the q-plane with branch cut Im(q)=0,−1/(1−c)<Re(q)<
−1/(c+−c), 1/(c++c) <Re(q) < 1/(1+c). Therefore G3 forms G+3 G−3 , where (G+3 ,G−3 ) are defined
by (C.1a) and are analytic in overlapping half-planes Re(q) > −1/(c+ − c) and Re(q) < 1/(c+ + c).
Equation (B.1c) can then be written as

F+

G+3
σ̄C

33
c3− c

1+ q(c3− c)
−

P3

pβ

[
F+

G+3

c3− c
1+ q(c3− c)

−

√
c

g+3

(
1− c

c3

)]
=−µ

�R3

2c2

G−3
F−

( 1
c3+c

− 1
)

p13+
P3

pβ

√
c

g+3

(
1− c

c3

)
,

(26a)
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F+ =
A++A+−

B+
, F− =

A−+A−−
B−

, (26b)

A+
±

(1
c

)
= B+

(1
c

)
= F+

(1
c

)
=

1
√

c
, g+3 = G+3

(1
c

)
. (26c)

The left-hand and right-hand sides of (26a) are analytic for respectively the overlapping half-planes
Re(q) >−1/(c+− c) and Re(q) < 1/(c++ c) so that each side is an analytic continuation of the same
entire function. In connection with (7), 1k must vanish continuously on C for x→ 0−. Equation (10a)
and (12b) therefore require that pq1k , and also the right-hand side of (26a), vanish for |q| →∞. The
entire function itself must then in light of Liouville’s theorem [Morse and Feshbach 1953] vanish, and
(26a) leads to

13 =
2
√

cβ
µp2g+3

F−G+3
c3�M3

[1+ q(c3− c)]P3, (27a)

σ̄C
33 =−

√
cP3

c3 pg+3

G+3
βF+
[1+ q(c3− c)]. (27b)

Examination of the fracture problem solution requires knowledge of (σ̄C
33, 1̇3) for x→ 0− and x→ 0+,

respectively. In view of (9)–(11),

ḟ = VS(∂S − c∂) f, ∂ f =
∂ f
∂x
. (28)

Therefore (13a) shows that expressions for transforms (σ̄C
33, pβ13) that are valid for |q| →∞ suffice in

this regard, and are given by (D.2c) and (D.5c).

Equation (B.1a) and (B.1b). Algebraic manipulation of (B.1a) and (B.1b) leads to a partial uncoupling:

(
σ̄C

31−
P1

pβ

)
cosψ +

(
σ̄C

32−
P2

pβ

)
sinψ =

µ

�β2

(
M12

2B
p1P + q MAαD2

)
, (29a)(

σ̄C
31−

P1

pβ

)
sinψ −

(
σ̄C

32−
P2

pβ

)
cosψ = µBp1M . (29b)

In view of (24b), (29b) can written in Wiener–Hopf form (compare (26a)):

2
B+
σ̄M −

2
pβ

( 1
B+
−
√

c
)
(P1 sinψ − P2 cosψ)= µpB−1M +

2
√

c
pβ

(P1 sinψ − P2 cosψ), (30a)

σ̄M = σ̄
C
31 sinψ − σ̄C

32 cosψ. (30b)

Behavior of 1k for x→ 0− dictates that both sides of (30a) vanish. Therefore,

σ̄M =
1
pβ
(1−
√

cB+)(P1 sinψ − P2 cosψ), (31a)

1M =
−2
√

c
µp2βB−

(P1 sinψ − P2 cosψ). (31b)
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Equation (B.2) and (29a). Equations (29a) and (B.2) are treated as linear equations for (2,1P), and
are solved simultaneously to yield

αD2=
M12

B M3

( 2
p
αD∂3θ

C
)
+ 4q

MA

M3

ε

λ

β2

µ
[σ̄P − (P1 cosψ + P2 sinψ)], (32a)

p1P =−4q
MA

M3

( 2
p
αD∂3θ

C
)
+

2MC

M3

β2

µ
[σ̄P − (P1 cosψ + P2 sinψ)], (32b)

σ̄P = σ̄
C
31 cosψ + σ̄C

32 sinψ. (32c)

As in the case of M3 functions related to (M12,MA,MC) can be defined as

G12 =−
M12

β2

c2

R12

c2
12− c2

[1+ q(c12− c)][1− q(c12+ c)]
= G+12G−12, (33a)

G A =
MAa+(c)
A+m A(c)

= G+A G−A, m A(c)= a+(c)− a−(c), (33b)

GC =
MCa+(c)
A+mC(c)

= G+C G−C , mC(c)= C+a+(c)−C−a−(c). (33c)

Functions (G+12,G+A,G+C ) and (G−12,G−A,G−C ) are analytic in overlapping halves of the cut q-plane, and
are given by (C.2) and (C.4), respectively. Factorization based on these results does not in general put
(32a) and (32b) in standard Wiener–Hopf form [Achenbach 1976]. Equation (24a) and (24b) show for
|q| →∞ however that

A+
±
≈
√

q
√

1+ c/c±, B+ ≈
√

q
√

1+ c (Re(q) > 0−), (34a)

A−
±
≈
√
−q
√

1− c/c±, B− ≈
√
−q
√

1− c (Re(q) < 0+). (34b)

Equations (21), (B.3) and (34) show that (32) for |q| →∞ depends on (β,
√
±q), and that

√
±q define

overlapping half-planes Re(q) > 0− and Re(q) < 0+ as regions of analyticity. As exemplified by
(D.1), (D.2c) and (D.5c), functions of

√
±q are sufficient for study of solution behavior when |x | ≈

0. Equation (32a) and (32b) then yield Wiener–Hopf equations whose solutions are combined with
asymptotic forms for (31). This process leads to (D.2a) and (D.2b) valid for x → 0+, and (D.4) and
(D.5) valid for x→ 0−.

7. Transform inversions valid on crack plane near C

For (1/
√

q,
√

q) and 1/
√
−q respectively inverse operation (12b) yields

−
p2

π
√

x

∫
+

du
√

u
exp(−pu),

p
2π

1
x3/2

∫
+

du
√

u
exp(−pu) (x > 0), (35a)

−
p2

π
√
−x

∫
+

du
√

u
exp(−pu) (x < 0). (35b)

The “+” signifies integration over the entire positive real u-axis. In view of (37) functions in Appendix D
involve p exp(−pu), and its inverse is recognized as ∂Sδ(s − u) [Abramowitz and Stegun 1972]. The
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point force represents a step-function in time, so for generality we now consider the case

Pk = Pk(VSt), Pk(0)= 0. (36)

Clarity of solution is enhanced if points in the x0
1 x0

2 -plane are located with respect to fixed point x0 = 0.
Therefore the inverses from (D.1)–(D.3) are, by convolution, written as functions of (x0, ψ, s), where
x0 = x + cs, and for

(
s > 0, x0→ cs+, |ψ |< 1

2π
)
,

αD∂3θ
C
≈−

2ε
µ0+0−

m AmC KII
√

c(x0− cs)3/2
, (37)

σC
31 ≈

1
√

c
√

x0− cs

[
sinψ
√

1− c KIII + cosψ
R3

c2 N12KII

]
, (38a)

σC
32 ≈

1
√

c
√

x0− cs

[
− cosψ

√
1− c KIII + sinψ

R3

c2 N12KII

]
, (38b)

σC
33 ≈

K1
√

c
√

x0− cs
c2

R3

√
c+c−
√

1− c
√

c+− c
√

c−− c
. (38c)

In similar fashion (D.4) and (D.5) yield for
(
s > 0, x0→ cs−, |ψ |< 1

2π
)
,

αD2≈
4m A

µ
√

cs− x0

ε

λ
KII, (39)

1̇1 ≈
2VS
√

c
µ
√

cs− x0

[
sinψ
√

1+ c
KIII +mC cosψKII

]
, (40a)

1̇2 ≈
2VS
√

c
µ
√

cs− x0

[
cosψ
√

1+ c
KIII +mC sinψKII

]
, (40b)

1̇3 ≈
2VS
√

c�
µ
√

cs− x0

√
c++ c

√
c−+ c

√
c+c−
√

1+ c
K I . (40c)

In (37)–(40),

K I =
c2

πg+3 R3

(
1− c

c3

)
∂S

∫ s

0

du
√

s−u
d

du
P3, (41a)

KII =
c2

πg+3 R3

(
1− c

c3

)
∂S

∫ s

0

du
√

s−u
d

du
(P1 cosψ + P2 sinψ), (41b)

KIII =
1
π
∂S

∫ s

0

du
√

s− u
d

du
(P1 sinψ + P2 cosψ). (41c)

The roman numeral subscripts reflect the observation that, in a 2D study (ψ = 0) terms (41a), (41b) and
(41c) would be associated with, respectively, the opening, in-plane shear and antiplane shear modes of
fracture [Freund 1990].
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8. Transform inversions valid near C

Expressions for (u̇k, θ) near C for (x0
3 , x3) 6= 0 are also required. In view of (9c) and (28), L(u̇k)= βpūk

and (ūk, θ) can be generated from (15) and Appendix A by setting (d2,6k)= 0 and substituting results
from Appendix D. For x3 6= 0, a more explicit version of inversion formula (12) is useful:

f̃ (p, q1, q2, x3)→ f9(p, q, ψ) exp(−p A|x3|), A = (A±, B), (42a)

f̂ (p, x, ψ, x3)=−
p2

2π

∫
|q|
q

f9(p, q, ψ) exp[p(qx − A|x3|)] dq. (42b)

Result (37) follows from use of Cauchy theory to change the integration path in (12b) to the Re(q)-axis.
For (42b) the path is changed to a contour q(A) in the complex q-plane along which the exponential term
assumes the form exp(−pu), where u is real and positive. Because inversions valid near C are sufficient,
local coordinates (r, ψ, φ) centered on the portion of C that borders δA are introduced:

r =
√

x2
+ x2

3 , φ = tan−1 x3

x
(|φ|< π). (43)

In (42b) q(A±) and q(B) for r ≈ 0 have, respectively, asymptotic forms

−
u

4Q±
, Q± = cosφ∓ ia± sinφ, (44a)

−
u

r Q B
, Q B = cosφ∓ ib sinφ. (44b)

It is noted that (D.4) and (D.5), which depend on 1/
√
−q , are associated in Appendix with operator (±).

In the case of contour q(B) therefore, (35a) and (35b) respectively are replaced by

−
p
πc

B(+)
√

2r

∫
+

du
√

u
exp(−pu), (∓)

p
πc

B(−)
√

2r

∫
+

du
√

u
exp(−pu). (45a)

In the case of contour q(A±) replacements are

−
p
πc

A(+)
±
√

2r

∫
+

du
√

u
exp(−pu), (∓)

p
πc

A(−)
±
√

2r

∫
+

du
√

u
exp(−pu). (45b)

In (45), (B(±), A(±)± ) are factors of the real (+) and imaginary (−) parts of (
√

Q1,
√

Q±):

B(±) =
√

1(±)(cosφ)/B8, B8 =
√

1− c2 sin2 φ, (46a)

A(±)
± =

√
1(±)(cosφ)/A±8, A±8 =

√
1− c2/c2

±
sin2 φ. (46b)

Convolution involving (38) is again introduced, and results for u̇k(r→ 0) follow:

u̇1 ≈

√
2c

µ
√

r

[√
c++ c

√
c−+ c

c2
√

1+ c
√

c+c−
P(+)3 K I −

P(−)12

c2 KII sgn(φ)
]

cosψ

−

√
c

µ
√

2r

B(−)KIII
√

1+ c
sgn(φ) sinψ, (47a)
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u̇2 ≈

√
2c

µ
√

r

[√
c++ c

√
c−+ c

c2
√

1+ c
√

c+c−
P(+)3 K I −

P(−)12

c2 KII sgn(φ)
]

sinψ

+

√
c

µ
√

2r

B(−)KIII
√

1+ c
sgn(φ) cosψ, (47b)

u̇3 ≈

√
2c

µ
√

r

[√
c++ c

√
c−+ c

c2
√

1+ c
√

c+c−
P(−)3 K I sgn(φ)−

P(+)12

c2 KII

]
. (47c)

In (47),
(
|ψ |< 1

2π, |φ|< π
)

and

P(+)3 =
k
2

(
C+
a−

A(+)− −
C−
a+

A(+)+

)
+ b�B(+), (48a)

P(−)3 =
k
2
(C+A(−)− −C−A(−)+ )+�B(−), (48b)

P(+)12 = C+a+A(+)− −C−a−A(+)+ +
kmC

2b
B(+), (48c)

P(−)12 = C+a+A(−)− −C−a−A(−)+ +
k
2

mC B(−). (48d)

For
(
r→ 0, |ψ |< 1

2π, |φ|< π
)

temperature change takes the form

θ ≈
ε

µλ

√
2c

αD
√

r

[
T(−)12

KII

c2 sgn(φ)−T(+)3

√
c++ c

√
c−+ c

c2√c+c−
√

1+ c
K I

]
, (49a)

T(−)12 = a−A(−)+ − a+A(−)− , T(+)3 =
k
2

(
A(+)+
a+
−

A(+)−
a−

)
. (49b)

9. Criterion: dynamic energy release rate

A standard criterion for brittle fracture, e.g., [Freund 1972], equates the rate at which surface energy is
released to the rate of work associated with traction and relative displacements in the fracture zone T. In
this study heat is neither added to, nor extracted from, the solid. Therefore, if kinetic energy is included
[Gdoutos 1993] the equation takes the form

D
∫∫

δA
eF dx0

1 dx0
2 =

∫∫
T
σC

3k1̇k dx0
1 dx0

2 + D
∫∫∫

123

1
2ρu̇k u̇k dx0

1 dx0
2 dx0

3 . (50)

Here eF is the surface energy per unit area, and is generally assumed to be constant [de Boer et al. 1988;
Skriver and Rosengaard 1992]. Fracture zone T is a strip of infinitesimal thickness in the x0

1 x0
2 -plane

that straddles the portion of C that borders δA. Subscript 123 signifies integration over the solid. Use
of transport theory [Malvern 1969] and translating basis x expressed in terms of (x, ψ, x3 = 0) gives for
the first term in (47)

V eF s
∫
9

dψ c
√

c2+ (c′)2, f ′ = d f
dψ
. (51)
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Here 9 signifies integration over |ψ |< 1
2π . Use of x for the integration over T gives∫
9

dψ
∫ cs+

cs−
|x0|σ

C
3k1̇k dx0. (52a)

In light of (38) and (40) it can be shown [Freund 1972] that the integrand of (52a) features Dirac function
δ(x0−cs). Moreover, linear behavior in s displayed in (50) places a restriction on ∂S Pk , e.g., [Achenbach
and Brock 1973]. That is, V must in general vary with time. One case, however, for which time-
invariance is valid is

∂S Pk = pk
√

s. (52b)

Equation (41) and (52a) then give

π
s
µ

∫
9

V dψ
[

R3

c2 N12mC K 2
II+

√
1−c
1+c

(
K 2

III +�
R3

c2

√
c++ c

√
c−+ c

√
c+− c

√
c−− c

K 2
I

)]
, (52c)

K I =
c2

g+3 R3

(
1− c

c3

)
p3, (53a)

KII =
c2

g+3 R3

(
1− c

c3

)
(p1 cosψ + p2 sinψ), (53b)

KIII = p1 sinψ − p2 cosψ. (53c)

Equation (47) is singular near C . The last integration in (50) can then be, via transport theory [Malvern
1969], taken over the surface of a tube of radius rC → 0 that encloses the portion of C that borders δA.
Integration can be performed with coordinates (43) and expressions (47) and (53), so that the last term
in (50) becomes

−
s
µ

∫
9

V dψ
√

c2+ (c′)2
[(

1+ c
c+

)(
1+ c

c−

) K 2
I EI

c3(1+ c)
+

K 2
II

c3 EII +
K 2

IIIEIII

c(1+ c)

]
. (54)

Coefficients (EI ,EII,EIII) are defined, in light of (48), as

EI =

∫
9

cosφ[(P(+)3 )2+ (P(−)3 )2] dφ, (55a)

EII =

∫
9

cosφ[(P(+)12 )
2
+ (P(−)12 )

2
] dφ, (55b)

EIII =

∫
9

cosφ(B(−))2 dφ. (55c)

Here 8 signifies integration over range |φ|< π . Equations (51), (52c) and (54) all involve integration
with respect to ψ , so that (50) gives for |ψ |< 1

2π ,

µeF

√
c2+ (c′)2 =

K 2
I

1+ c

(
1+ c

c+

)(
1+ c

c−

)[πb�R3

c2a+a−
−

EI

c3

√
c2+ (c′)2

]
+ K 2

II

[
πR3

c2 N12mC −
EII

c3

√
c2+ (c′)2

]
+

K 2
III

1+ c

[
πb−

EIII

c

√
c2+ (c′)2

]
. (56)
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10. Aspects of solution behavior

Formula (56) is a nonlinear differential equation for c(ψ). Asymptotic expressions preserved the singular
behavior of (σC

3k, 1̇k, u̇k) and were therefore sufficient for derivation of (56). The singular behavior seen
in asymptotic expression (49) for θ is also useful in generating a finite measure of thermal response
near C . Norm ‖θ‖ is defined as

‖θ‖ =

√∮
θ2 dl. (57)

Equation (57) involves (49a) in a line integral for given ψ taken counterclockwise about the circumfer-
ence of the circle of radius r = rC → 0. Because dl = r dφ integration is over range |φ|< π , so that (57)
gives for |ψ |< 1

2π the finite result

‖θ‖ =

√
2c

µc2

ε

λαD

√(
1+ c

c+

)(
1+ c

c−

) K 2
I

1+ c
TI + K 2

IITII, (58a)

TI =

∫
8

(T(+)3 )2 dφ, TII =

∫
8

(T(−)12 )
2 dφ. (58b)

Equations (56) and (58) are somewhat complicated and opaque. Insight concerning c(ψ) and ‖θ‖,
based partly on analytical expressions, is possible by considering values of parameter V (ψ) that are
not negligible, but well below critical, i.e., c/c3 ≈ O(10−1). To this end first-order expansions in c2

for (P(±)12 ,P(±)3 ,B(−)) and (T(+)3 ,T(−)12 ) are developed and given by (E.1)–(E.3). Integration in (55) is
performed on the basis of (E.1) and (E.2), and (56) gives for |ψ |< 1

2π asymptotic form

µeF

π

√
c2+ (c′)2 ≈

p2
3

kC
[1+ E0

I c
√

c2+ (c′)2]

+
1

kC
(p1 cosψ + p2 sinψ)2

[
1/�+ E0

IIc
√

c2+ (c′)2
]

+ (p1 sinψ − p2 cosψ)2[1+ E0
IIIc
√

c2+ (c′)2], (59a)

E0
I =

5
32

(
1+ 1

c2
D

)
, E0

II =
1
32

4+ 3c2
D

c2
D − 1

, E0
III =

1
4
, (59b)

kC = 2
(

1− 1
c2

D

)
. (59c)

Use of (E.1), (E.3) and (58b) leads to an asymptotic form of (58a) for |ψ |< 1
2π :

‖θ‖ ≈
ε

λαD

√
33πc

8µ(c2
D − 1)

√
p2

3 + (p1 cosψ + p2 sinψ)2. (60)

Equation (59a) differs from its counterpart in [Brock 2017b] in that it does depend on thermal properties,
i.e., �. In the previous work, thermal properties have a second-order, i.e., O(c4) effect. Equation (60)
differs from its counterpart in that the relative influence of compression and shear loading depends only
on ψ and the values of pk . Equation (59) and (60) are now used to study two cases.
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11. Case A: pure compression

Here p1 = p2 = 0, p3 = pA > 0. Problem symmetry exists with respect to the x0
1 x0

3 -plane, and (59)
reduces to

(1− c2
A E0

I z)z = 1, (61a)

z = c
cA
, cA =

πp2
A

µeF kC
. (61b)

When kinetic energy is, respectively, neglected (E0
I = 0) and included, (61a) gives

c(ψ)= cA, (62a)

c(ψ)= cE
A =

1
2E0

I cA
(1−

√
1− 4E0

I c2
A). (62b)

Equation (62) describes circular crack edge extension zone contours. Equation (60) gives for (62a) and
(62b) respectively the constant values

‖θ‖ ≈
ε

λαD

√
33π pA

8µ(c2
D − 1)

(
√

cA,
√

cE
A). (63)

For illustration consider a generic metal with properties [de Boer et al. 1988; Skriver and Rosengaard
1992; Brock 2009; Ignaczak and Ostoja-Starzewski 2010]

µ= 79 GPa, eF = 2.2 J/m2, VS = 3094 m/s, cD = 2,

c+ = 4.5452, c− = 1.997, c3 = 0.9332, T0 = 294 K,

αD = 89.6(10−6)K−1, ε = 0.05044, h = 3.1862(10−9)m, h0 = 1.547(10−10)m.

Calculations for cA, cE
A and ‖θ‖ are given in Table 1 for different values of pA. There cE

A > cA, thus
showing that neglect of kinetic energy leads to under-prediction of crack extension speed V cosψ . This
effect decreases with increasing pA however. Entries for ‖θ‖ that correspond to (cA, cE

A) behave in the
same manner, but the under-prediction effect is more pronounced. It is noted that the same behavior is
exhibited in [Brock 2017b]. However, there the effect of increasing pA on the under-prediction of ‖θ‖
is less pronounced.

12. Case B: mixed-mode loading

Here (p1 = fB p3, p2 = 0, p3 = pB) with (0 < fB < 1, pB > 0). Problem symmetry again exists with
respect to the x0

1 x0
3 -plane, and (59) can now reduce for |ψ |< 1

2π to√
z2+ (z′)2 [1− z(�0+�1 cos2 ψ)] = 1+ f 2

BkC + f 2
B(1/�− kC) cos2 ψ, (64a)

‖θ‖ =
εpB

λαD

√
33πc(ψ)

8µ(c2
D − 1)

√
1+ f 2

B cos2 ψ, (64b)

z =
c(ψ)
cB

, cB =
πp2

B

µeF kC
. (64c)
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kinetic energy neglected

f A 1 3 5 10 15

cA 0.00127 0.01143 0.03174 0.12694 0.28562
fN 0.05509 0.49578 1.37714 5.50834 12.3934

kinetic energy included

f A 1 3 5 10 15

cE
A 0.02017 0.01143 0.31741 0.12734 0.29032

fN 0.21957 0.49578 1.37727 5.51726 12.4959

Table 1. Case A: cA, cF
A , ‖θ‖ = fN (10−1)Km1/2 for pA = f A(104)N/m3/2.

When kinetic energy is neglected we have �0 =�1 = 0; when it is included,

�0 = c2
B(E

0
I + kC f 2

B E0
III), �1 = c2

B f 2
B(E

0
II − kC E0

III). (65)

Explicit ψ-dependence of (64a) implies that the crack extension zone contour is not a circular arc, and
that obtaining an analytical solution for c(ψ) may not be simple. Analysis in [Brock 2017b] suggests
use of series representation:

c(ψ)= cB

[
g0+

N∑
1

g2 j

2 j
cos2 j ψ

]
. (66)

Substitution of (66) into (64a) and equating coefficients of terms cos2 j ψ gives recursive equations for
(g0, g2 j ). Equations for (g0, g2) are quadratic, and solutions are given in Appendix F. Equations for
(g4, g6, . . .) are linear.

Calculations for c and ‖θ‖ are listed in Table 2 (kinetic energy neglected) and Table 3 (kinetic energy
included) for various values of ψ and loading ratio fB . Compression load p3 = pB = 5(104)N/m1/2 is
used, and the same generic metal featured in Table 1. Entries for c show that increasing fB (i.e., relative
importance of shear loading) produces crack contours that are somewhat elliptical. That is the maximum
rate of crack extension into the solid is less than the rate at which new crack surface spreads along the
original, semi-infinite crack contour. Inclusion of kinetic energy appears to enhance the deviation from a
circular arc. It is also noted that the relation between the two rates is the reverse of that found in [Brock
2017b], where discontinuity in temperature across the crack plane is not allowed.

Entries in Table 2 and Table 3 indicate that increasing fB also enhances ‖θ‖. When kinetic energy is
neglected the maximum value occurs directly ahead of the translating point forces. When kinetic energy
is included however, ‖θ‖ can achieve maximum values for |ψ | 6= 0 when fB is large enough. A maximum
for |ψ | 6= 0 is also seen in [Brock 2017b], which however only considered the case p1 = p3.

13. Some observations

This paper extends the range of [Brock 2017a; 2017b] for 3D dynamic fracture by considering a transient
problem with mixed-mode loading in a thermoelastic solid with relaxation. The solid is initially at rest
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kinetic energy neglected

fB =
1
4 fB =

1
3 fB =

1
2 fB =

2
3 fB = 1.0

ψ = 0◦ : c 0.03417 0.03605 0.04136 0.04881 0.06522
fN 1.47304 1.54726 1.7578 2.0526 2.79198

ψ = 15◦ : c 0.03421 0.03612 0.0.0415 0.04906 0.0663
fN 1.47091 1.54344 1.74908 2.03649 2.76738

ψ = 30◦ : c 0.03431 0.03629 0.04191 0.04975 0.06914
fN 1.46503 1.53287 1.72458 1.99105 2.689

ψ = 45◦ : c 0.03444 0.03654 0.04248 0.05075 0.07279
fN 1.45689 1.51811 1.68996 1.92525 2.5544

ψ = 60◦ : c 0.03458 0.03678 0.04305 0.05179 0.07619
fN 1.44862 1.05301 1.65333 1.8545 2.38568

ψ = 75◦ : c 0.34674 0.03696 0.04348 0.05259 0.07852
fN 1.4425 1.49167 1.62539 1.79905 2.23758

ψ = 90◦ : c 0.03471 0.03702 0.04364 0.05209 0.07934
fN 1.44024 1.48747 1.61492 1.77788 2.17748

Table 2. Case B: c, ‖θ‖ = fN (10−6)Km1/2 for pB = 5(104)N/m3/2, various fB =

p1/pB and ψ .

at uniform (absolute) temperature, and contains a semi-infinite, closed slit. Shearing and compressive
point forces are applied just behind the crack edge, and initiate brittle fracture. Dynamic similarity is
assumed, i.e., extension rate of points on the crack edge is constant in time, but can vary with location.

Unilateral temporal and spatial transforms are employed. In the latter case however, use is made
of variable transformations based on quasipolar coordinates. Focus upon fracture initiation, moreover,
justifies use of asymptotic expressions that, in integral transform space, give four equations that relate
discontinuity in crack surface temperature, crack opening, crack plane heat flux and traction. The equa-
tions can be rewritten in Wiener–Hopf [Morse and Feshbach 1953; Achenbach 1976] form. Analytical
solutions for transforms with inverse valid near the crack edge are obtained. Such inverses are sufficient
to derive the nonlinear differential equation for the crack edge contour and an exact formula for the norm
of the change in crack edge temperature.

As is predictable [Achenbach and Brock 1973], assumption of dynamic similarity restricts the type of
time variation of the point forces. A suitable type is identified, however, and used to study an example of
pure compression (Case A) and one of mixed-mode loading (Case B). For Case A, the extending portion
of the crack edge is circular, and the norm of temperature near the edge is constant. In Case B, extending
portion of the crack edge is elliptical, with the maximum rate of extension into the solid being less than
the expansion rate of new crack surface along the original rectilinear crack contour. The temperature
norm is also not constant. In both cases, inclusion of kinetic energy gives larger extension rates and
temperature norms. However, this effect decreases as the force magnitudes are increased.
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kinetic energy included

fB =
1
4 fB =

1
3 fB =

1
2 fB =

2
3 fB = 1.0

ψ = 0◦ : c 0.03414 0.0361 0.04172 0.04843 0.05253
fN 1.47228 1.54833 1.76545 2.04463 2.5057

ψ = 15◦ : c 0.03422 0.03616 0.04183 0.05063 0.05526
fN 1.47116 1.5444 1.75575 2.06896 2.5266

ψ = 30◦ : c 0.03432 0.03632 0.04213 0.05078 0.06204
fN 1.4652 1.53346 1.72904 2.01157 2.5473

ψ = 45◦ : c 0.03444 0.03648 0.04258 0.05122 0.0697
fN 1.45696 1.51838 1.69195 1.9342 2.4996

ψ = 60◦ : c 0.03458 0.03678 0.04309 0.05194 0.07551
fN 1.44864 1.50301 1.65411 1.85707 2.37501

ψ = 75◦ : c 0.03467 0.03696 0.0435 0.05263 0.07858
fN 1.4425 1.49169 1.62577 1.79968 2.23839

ψ = 90◦ : c 0.03471 0.03702 0.04365 0.05293 0.07945
fN 1.44024 1.48747 1.61516 1.77844 2.17899

Table 3. Case B: c, ‖θ‖ = fN (10−6)Km1/2 for pB = 5(104)N/m3/2, various fB =

p1/pB and ψ .

Analysis considers the Lord and Shulman [1967] thermal relaxation model. Sub-Rayleigh crack ex-
tension rates are treated and, in contrast to [Brock 2017b], thermoelastic properties affect both the rates
and crack edge temperature norm. The difference represents the inclusion of temperature discontinuity.
Another difference with [Brock 2017b] is that the role of compression/shear ratio in mixed-mode loading
is examined here.

Appendix A

U (±)
1 =

q B
β2 13 cosψ −

1
2Bβ2

(
B261

µp
+ q26M

µp
sinψ

)
(∓)

q
2β2

63

µp
cosψ (±)

1
2β2 (T11+ 2q21M sinψ), (A.1a)

U (±)
2 =

q B
β2 13 sinψ −

1
2Bβ2

(
B262

µp
− q26M

µp
cosψ

)
(∓)

q
2β2

63

µp
sinψ (±)

1
2β2 (T12− 2q21M cosψ). (A.1b)

U (±)
+ =

1
2�β2 A+

[
αD

p2 d2+C−(T13+ q6P)

]
(∓)

1
2�β2

[
αD

p
2+C−

(
63

µp
+ 2q1P

)]
, (A.1c)
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U (±)
− =

−1
2�β2 A−

[
αD

p2 d2+C+(T13+ q6P)

]
(±)

1
2�β2

[
αD

p
2+C+

(
63

µp
+ 2q1P

)]
, (A.1d)

T = β2
− 2q2. (A.2)

1P =11 cosψ +12 sinψ, 1M =11 sinψ −12 cosψ, (A.3a)

6P =61 cosψ +62 sinψ, 6M =61 sinψ −62 cosψ. (A.3b)

Appendix B

1
µ

(
σ̄C

31−
P1

pβ

)
=

cosψ
�β2

(
pM12

2B
1P + q MAαD2

)
+ pB1M sinψ, (B.1a)

1
µ

(
σ̄C

32−
P2

pβ

)
=

sinψ
�β2

(
pM12

2B
1P + q MAαD2

)
− pB1M cosψ, (B.1b)

1
µ

(
σ̄C

33−
P3

pβ

)
=

pB
2A+A−

M313

�β2 . (B.1c)

∂3θ
C
=

ε

αD0+0−
p2q MA1P −

p
2�

MC2. (B.2)

M12 = C−M+−C+M−, (B.3a)

M3 = C−
A−
B

M+−C+
A+
B

M−, (B.3b)

MA = A+− A−, MC = C+A+−C−A−, (B.3c)

M± = T 2
+ 4q2 A±B. (B.3d)

Appendix C

G±3 (q)= exp
[

1
π

∫
du

u∓ c
S3(u)

q(u∓ c)± 1

]
(1< u < c+), (C.1a)

S3(u)=− tan−1 1
4�

k2(u)mC(u)

a+(u)a−(u)
√

u2− 1
(1< u < c−), (C.1b)

S3(u)= tan−1 a+(u)
C−

[
4�

√
u2− 1
k2(u)

−
c−C+
√

u2
− c2
−

]
(c− < c < c+). (C.1c)

G±12(q)= exp
[

1
π

∫
du

u∓ c
S12(u)

q(u∓ c)± 1

]
(1< u < c+), (C.2a)

S12(u)= tan−1 4
�

nC(u)
k2(u)

√
u2− 1 (1< u < c−), (C.2b)

nC(u)= C−a+(u)−C+a−(u) (C.2c)
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S12(u)= tan−1 C−a+(u)

�

4
k2(u)
√

u2− 1
−

C+
c−

√
u2
− c2
−

(c− < u < c+). (C.2d)

G±A(q)= exp
[

1
π

∫
1

u∓c
tan−1

√

u2
− c2
−

c−a+(u)
du

q(u∓ c)± 1

]
(c− < u < c+). (C.3)

G±C (q)= exp
[

1
π

∫
1

u∓c
tan−1 C−

√

u2
− c2
−

c−C+a+(u)
du

q(u∓ c)± 1

]
(c− < u < c+). (C.4)

Appendix D

Asymptotic (|q| →∞) expressions with inverses valid for x3 = 0, x→ 0+:

αD∂3θ
C
≈−

ε
√

q
µ0+0−

4c2m AmC

g+3 R3
√

c

(
1− c

c3

)
(P1 cosψ + P2 sinψ). (D.1)

σ̄C
31 ≈−

sinψ
p
√

q

√
1− c
√

c
(P1 sinψ − P2 cosψ)−

cosψ
p
√

q
N12

g+3
√

c

(
1− c

c3

)
(P1 cosψ + P2 sinψ), (D.2a)

σ̄C
32 ≈−

cosψ
p
√

q

√
1− c
√

c
(P1 sinψ − P2 cosψ)−

sinψ
p
√

q
N12

g+3
√

c

(
1− c

c3

)
(P1 cosψ + P2 sinψ), (D.2b)

σ̄C
33 ≈

P3

p
√

q
1

g+3

(
1− c

c3

) √
c+c−
√

1− c
√

c
√

c+− c−
√

c−− c
. (D.2c)

N12 = 1+
8ε
λ

m2
A

R3
(D.3)

Asymptotic (|q| →∞) expressions with inverses valid for x3 = 0, x→ 0−:

αD2≈−
4ε

0+0−

m A

µp
√
−q

c2

√
c g+3 R3

(
1− c

c3

)
(P1 cosψ + P2 sinψ) (D.4)

pβ11 ≈−
2 sinψ
µp
√
−q

√
c

√
1+ c

(P1 sinψ − P2 cosψ)

−
2 cosψ
µp
√
−q

c2√c
g+3 R3

(
1− c

c3

)
(P1 cosψ + P2 sinψ), (D.5a)

pβ12 ≈−
2 cosψ
µp
√
−q

√
c

√
1+ c

(P1 sinψ − P2 cosψ)

−
2 sinψ
µp
√
−q

c2√c
g+3 R3

(
1− c

c3

)
(P1 cosψ + P2 sinψ), (D.5b)

pβ13 ≈
2P3

µp
√
−q

�c2

g+3 R3

(
1− c

c3

) √
c

√
c+c−
√

1+ c

√
c++ c

√
c−+ c. (D.5c)
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Appendix E

A(+)
± ≈

√
1+ cosφ

[
1+

c2

4c2
±

(1− cosφ) cosφ
]
, (E.1a)

A(−)
± ≈

√
1− cosφ

[
1−

c2

4c2
±

(1+ cosφ) cosφ
]
, (E.1b)

B(+) ≈
√

1+ cosφ
[
1+ 1

4 c2(1− cosφ) cosφ
]
, (E.1c)

B(−) ≈
√

1− cosφ
[
1− 1

4 c2(1+ cosφ) cosφ
]
. (E.1d)

P(+)3 ≈−
�c2

2c2
D

√
1+ cosφ

[
1− 1

2 cosφ(c2
D − 1)(1− cosφ)

]
, (E.2a)

P(−)3 ≈
�c2

2c2
D

√
1− cosφ

[
c2

D +
1
2 cosφ(1− c2

D)(1+ cosφ)
]
, (E.2b)

P(+)12 ≈
�c2

4c2
D

√
1+ cosφ cosφ(1− cosφ)(c2

D − 1), (E.2c)

P(−)12 ≈−
�c2

2c2
D
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1− cosφ

[
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D +
1
2 cosφ(1+ cosφ)(c2

D − 1)
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. (E.2d)

T(+)3 ≈
�c2

2c2
D

√
1+ cosφ

[
1+ 1

2 cosφ(1− cosφ)
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, (E.3a)

T(−)12 ≈−
�c2

2λ2
D
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1− 1

2 cosφ(1+ cosφ)
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. (E.3b)

Appendix F

Kinetic energy neglected:

g0 = 1+ f 2
BkC , (F.1a)

g2 =−
1
2 g0

[
1−

√
1+ 2/g0(2 fB)

2(1/�− kC)
]
. (F.1b)

Kinetic energy included:

g0 =
1

2�0
(1−CB), CB =

√
1− 4�0(1+ f 2

BkC), (F.2a)

g2 =−2F1/F2
2
[
1−

√
1− F0(F2/F1)

2]. (F.2b)

F0 =�1g3
0(2−CB)− 2 f 2

B(1/�− kC)(1+ f 2
BkC), (F.3a)

F1 = (1+ f 2
BkC)CB, F2 = 1+CB . (F.3b)
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GEOMETRICALLY NONLINEAR COSSERAT ELASTICITY IN THE PLANE:
APPLICATIONS TO CHIRALITY

SEBASTIAN BAHAMONDE, CHRISTIAN G. BÖHMER AND PATRIZIO NEFF

Modeling two-dimensional chiral materials is a challenging problem in continuum mechanics because
three-dimensional theories reduced to isotropic two-dimensional problems become nonchiral. Various
approaches have been suggested to overcome this problem. We propose a new approach to this problem
by formulating an intrinsically two-dimensional model which does not require references to a higher
dimensional one. We are able to model planar chiral materials starting from a geometrically nonlinear
Cosserat-type elasticity theory. Our results are in agreement with previously derived equations of mo-
tion but can contain additional terms due to our nonlinear approach. Plane wave solutions are briefly
discussed within this model.

A list of symbols can be found on page 707.

1. Introduction

Classical elasticity theory assumes structureless material points. These points are not allowed to possess
an additional so-called microstructure which could take into account properties like orientation or volume
of the material points. It is possible to extend the theory of classical elasticity to take into account this
additional structure; this is known as the Cosserat [1909] model. In the Cosserat continuum, material
points can, for instance, experience rotations without stretches. Therefore, in addition to the standard
deformation field ϕ there is an independent rotation field R, which means that R is an orthogonal ma-
trix. Many models in continuum mechanics were motivated by this idea, which has resulted in many
interesting research lines, sometimes with varying names [Ericksen and Truesdell 1957; Toupin 1962;
1964; Ericksen 1962a; 1962b; 1967; Mindlin 1964; Eringen and Suhubi 1964; Suhubi and Eringen 1964;
Green and Rivlin 1964; Schaefer 1967; Eringen 1999]

The three-dimensional static nonlinear Cosserat model has seen a tremendous increase of interest in
recent years [Neff 2006b; Neff and Münch 2009; Münch et al. 2011; Neff et al. 2008; Fischle et al. 2017;
Borisov et al. 2016; Fischle and Neff 2017c]. This is connected to its potential to model uncommon
effects like lattice rotations. Working with the manifold SO(3) of proper rotations requires, however,
many new tools from the mathematical and implementational side. Expositions regarding the mathemat-
ical treatment can be found in [Neff 2004a; 2006a; Neff and Münch 2008; Neff et al. 2015; Lankeit et al.
2017]; similarly for computational results in [Fischle and Neff 2017a; 2017b]. The Cosserat approach
is maybe best known for its ability to model thin shell structures. Here, the additional orthogonal frame
provided by the Cosserat theory fits well into the theory of deformable surfaces [Neff 2004b; 2007; Neff

MSC2000: 74J35, 74A35, 74J30, 74A30.
Keywords: Cosserat continuum, geometrically nonlinear micropolar elasticity, chiral materials, planar models.
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et al. 2010; Bîrsan and Neff 2013; 2014; Sander et al. 2016]. Not much is known, regrettably, in the case
of general nonlinear dynamics. Our contribution [Böhmer et al. 2016] sheds some light in this direction.

One of the major unresolved issues of the theory is the precise matter in which elastic deformations
(macroscopic) and Cosserat microrotations are coupled. If we consider a quadratic ansatz in the stretch
tensor, it usually comes down to writing a coupling term of the form µc‖skew(U − 1)‖2, in which
µc ≥ 0 is known as the Cosserat couple modulus. The effect of this coupling term is clear by increasing
µc→∞. Then the Cosserat rotations become the continuum rotations R = polar F . A similar effect
can be obtained by instead considering the coupling µc‖RT polar F − 1‖2. Both terms induce the same
linear response. It is important to note that the geometrically nonlinear Cosserat model can be used also
with µc ≡ 0, a possibility which is meaningless in the linear Cosserat model. In the case µc = 0 one has
a Cosserat model with symmetric stresses, whereas stretches may be nonsymmetric.

Cosserat elasticity is generally formulated as a three-dimensional continuum mechanics theory and
planar problems are usually considered by restricting either displacements or microrotations to the plane.
One sometimes speaks of the first planar problem when u= (u1, u2, 0) and rotations are constrained to be
about the z-direction. The second planar problem deals with the opposite situation where u = (0, 0, u3)

while the rotations are constrained about the x-axis and y-axis; see for instance [Ostoja-Starzewski and
Jasiuk 1995; Joumaa and Ostoja-Starzewski 2011].

Chirality1 or handedness is a common feature in various fields of science. It refers to the possibility of
an object or system to be distinguishable from its mirror image. Many molecules in chemistry are chiral,
most often due to the presence of an asymmetric carbon atom. Chiral materials have been of interest in
continuum mechanics since the 1980s. When one is interested in studying chiral materials [Lakes and
Benedict 1982; Lakes 2001], it turns out that a three-dimensional theory when reduced to an isotropic
two-dimensional problem becomes nonchiral [Lakes 2001; Rosi and Auffray 2016; Liu et al. 2012b].

Typically, a chiral term in a three-dimensional elasticity model would be of the form

(RT F)i j Ci jmn(RT Curl R)mn, (1-1)

where Ci jmn is a material tensor; see also Appendix A. If one considers an isotropic material tensor of the
form c1δi jδmn+c2δimδ jn+c3δinδ jm , then the above term yields three contributions. It turns out that these
three terms identically vanish when the first Cosserat planar problem is considered2. For instance, based
on representation theorems [Cheverton and Beatty 1981], a total of 20 invariants were discussed, five of
which are chiral according to our formulation in Appendix A. However, a direct calculation verifies that
all chiral terms vanish when the deformation gradient is confined to the plane; see (2-1).

Hence, studying two-dimensional chiral materials requires a new approach. One such approach is the
use of strain gradient theories; see [Rosi and Auffray 2016], for instance. Another approach goes back to
[Liu et al. 2012b] where chirality was introduced in the two-dimensional setting by revisiting isotropic
fourth-order tensors and identifying an extra piece in the constitutive relation. It was subsequently shown
that this additional part of the elastic tensor can indeed give a meaningful model with chirality. The model

1“I call any geometrical figure, or group of points, chiral, and say that it has chirality if its image in a plane mirror, ideally
realized, cannot be brought to coincide with itself” (Lord Kelvin 1894).

2It might be possible to construct chiral terms using nonlinear functionals beyond the usual quadratic terms which yield a
nontrivial planar theory.



GEOMETRICALLY NONLINEAR COSSERAT ELASTICITY IN THE PLANE: APPLICATIONS TO CHIRALITY 691

considered in [Liu et al. 2012b] is based on linear Cosserat elasticity; see also [Liu et al. 2012a; Liu and
Hu 2016].

In the present paper, we approach this problem from a very different point of view. We begin by
carefully studying the basic formulation of geometrically nonlinear Cosserat elasticity in the plane
by following three different routes. First, we will follow the standard approach of formulating three-
dimensional Cosserat elasticity and restricting it to the plane, thereby recalling the first and second
Cosserat problems, respectively. Next we will formulate an intrinsically two dimensional model. After
stating the energy functional of our model, the equations of motion are rigorously derived using the
calculus of variations. Our intrinsically two-dimensional formulation requires no reference to a theory in
three dimensions. Within this setting we are able to introduce a new displacement vector which allows
us to model planar chiral materials without the use of new constitutive relations. Our model, which is
geometrically nonlinear, yields equations very similar to those reported in [Liu et al. 2012b] when we
assume small rotations and small displacements. However, due to our nonlinear theory as a starting point,
we find an additional contribution which naturally appears in the equations of motion.

2. The Cosserat problem in the plane

We are interested in studying the dynamical geometrically nonlinear Cosserat problem in the plane and
this immediately poses the rather interesting question of how to formulate such a theory. On the one
hand, one could simply start with three-dimensional Cosserat elasticity and consider an ansatz which
reduces the equations to the planar case. This approach yields two different types of models, often
called the first and second Cosserat planar model; see for instance [Joumaa and Ostoja-Starzewski 2011].
However, as Cosserat elasticity takes into account the possible microrotations of matter points, we must
recall that rotations in the plane are very different from those in three dimensions, since the latter need
not commute. An intrinsically two-dimensional model of Cosserat elasticity could thus be formulated,
which would differ from the three-dimensional case restricted to the plane.

2.1. The first Cosserat planar problem. The first Cosserat planar problem is defined by u = (u1, u2, 0)
and a = (0, 0, a3), where the vector a defines the axis of the Cosserat rotation. This means we can begin
with a three-dimensional setup confined to the xy-plane, with rotations about the z-axis only. In this case
the deformation is given by ϕ = (ϕ1(x, y), ϕ2(x, y), z) so that the deformation gradient F reads

F =∇ϕ =

ϕ1,x ϕ1,y 0
ϕ2,x ϕ2,y 0

0 0 1

 . (2-1)

Next we consider the rotations in the xy-plane. We call the angle of rotation φ = φ(x, y), which yields

R =

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

 . (2-2)

Now we can compute RT Curl R, a useful curvature measure of the Cosserat theory [Neff and Münch
2008]. Using the index notation, it can be written as

(Curl R)i j = ε jmn∂m Rin, (2-3)
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where ε jmn is the Levi-Civita symbol. For the given orthogonal matrix (2-2) this is given by

RT Curl R =


0 0 −φx

0 0 −φy

0 0 0

 . (2-4)

At this point we already see the root cause of the problem when trying to formulate the desired theory.
All the components of RT Curl R restricted to the plane are zero. We also note that the components of
this matrix are determined by the object gradφ; this means effectively a vector with two components
which already points towards an intrinsically two-dimensional model.

A direct calculation establishes

dev(RT Curl R)= 1
2

 0 0 −φx

0 0 −φy

−φx −φy 0

 ,
skew(RT Curl R)= 1

2

 0 0 −φx

0 0 −φy

φx φy 0

 ,
tr(RT Curl R)= 0. (2-5)

The important issue at this point is that there are no planar contributions in any of the irreducible parts
of RT Curl R in (2-5).

Also, we can compute the nonsymmetric stretch tensor, which gives

U = RT F =

ϕ1,x cosφ+ϕ2,x sinφ ϕ1,y cosφ+ϕ2,y sinφ 0
ϕ2,x cosφ−ϕ1,x sinφ ϕ2,y cosφ−ϕ1,y sinφ 0

0 0 1

 . (2-6)

This implies that the irreducible parts of U = RT F and RT Curl R are orthogonal in the sense that

tr(RT Curl R) tr(RT F)= 0,

〈dev(RT Curl R), dev(RT F)〉 = 0,

〈skew(RT Curl R), skew(RT F)〉 = 0. (2-7)

This implies that we cannot construct interaction terms between the displacements and the microrotations.
Interaction terms of the above form were considered in [Böhmer and Tamanini 2015; Böhmer et al. 2016].
These terms allow for a natural coupling between elastic deformations and the microrotations which, for
instance, gives rise to soliton solutions; see [Böhmer et al. 2016].

Let us also remark that in case of the finite theory one may as well consider the irreducible components
of FT F rather and RT F . The form of F given in (2-1) implies that FT F will be the same form as U
given by (2-6). Hence, all inner product considered in (2-7) would also vanish which implies that it is
also not possible to construct interaction terms in the finite theory.

However, one can still construct interaction terms, albeit less natural ones. Consider the Frobenius
norm of the dislocation density tensor

‖(RT Curl R)‖2 = φ2
x +φ

2
y, (2-8)
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which agrees with the vector norm of gradφ. Hence, the only option to construct an interaction term
would be to consider an expression of the form

Vinteraction ∝ ‖(RT Curl R)‖ tr(RT F). (2-9)

An interaction of this type is quite unnatural since we are not considering the inner products of objects
in the same irreducible spaces, which is what led to (2-7). From a more mathematical point of view, the
presence of the square root in (2-9) might cause differentiability issues when the orthogonal matrix R
approaches a constant rotation.

It is also clear from (2-6) that the polar part of any deformation tensor restricted to the plane will be
of the same form as the rotation matrix (2-2) which means we could, in principle, construct the Cosserat
couple term which contains the term RT polar F .

2.2. The second Cosserat planar problem. The second Cosserat planar problem is defined by u =
(0, 0, u3) and a = (a1, a2, 0). This means ϕ = (x, y, ϕ3(t, x, y)), so that elastic displacements are only
allowed along the direction perpendicular to the plane. The rotations can be about the x-axis and the
y-axis in this case. While this is mathematically well-defined, this is less well motivated than the first
Cosserat problem from a practical point of view.

The deformation gradient of the second Cosserat planar model is given by

F =∇ϕ =

 1 0 0
0 1 0
ϕ3,x ϕ3,y 1

 . (2-10)

Next we consider the rotations about the x and about the y axes. We call the respective angles of rotation
α = α(t, x, y) and β = β(t, x, y) so that

R =

α2/`2
+ cos ` β2/`2 (1− cos `)αβ/`2 sin ` β/`

(1− cos `)αβ/`2 cos ` α2/`2
+β2/`2

−sin ` α/`
−sin ` β/` sin ` α/` cos `

 , (2-11)

where `=
√
α2+β2. Due to the more complicated structure of the rotation matrix, the second Cosserat

planar problem differs from the first problem substantially. This is due to our geometrically nonlinear
setup which allows for large rotations. The explicit form of RT Curl R is rather involved and therefore we
will not state it explicitly. It suffices to mention that the only vanishing components are (RT Curl R)31 =

(RT Curl R)32 = 0. It is instructive, however, to consider this quantity assuming small rotations α, β� 1,
in which case one finds

RT Curl R '

 βy −βx 0
−αy αx 0

0 0 αx +βy

 . (2-12)

One interesting aspect of this equation is the presence of the (zz) components. When linear Cosserat
elasticity is considered, as in [Joumaa and Ostoja-Starzewski 2011], then the curvature tensor does not
have this component and is indeed restricted to the plane. In the nonlinear setting this is no longer the
case which also motivates a different approach to the planar case.
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It is clear that the stretch tensor U = RT F is not orthogonal to any of the components of RT Curl R.
Therefore the aforementioned coupling terms could in principle be constructed. However, this construc-
tion appears to be quite unnatural when compared to the first Cosserat problem.

The conceptual problem of using either the first or the second Cosserat planar model is simply that
both theories differ considerably, and also differ from the nonlinear theory. This motivates us to formulate
an intrinsically two-dimensional model which does not refer to the three-dimensional setting altogether.

3. Intrinsic planar model

3.1. Basic quantities. In order to formulate an intrinsically two-dimensional model we simply begin
with the two-dimensional deformation vector ϕ = (ϕ1, ϕ2) so that the deformation gradient reads

F =∇ϕ =
(
ϕ1,x ϕ1,y

ϕ2,x ϕ2,y

)
. (3-1)

Similar to rotations about the z-axis in the first Cosserat planar model, we consider a two-dimensional
rotation matrix where, as before, we call the angle ϑ = ϑ(x, y) so that

R =
(

cosϑ −sinϑ
sinϑ cosϑ

)
. (3-2)

These definitions are purely two-dimensional and do not require the higher dimensional setting. However,
as expected, the components of the intrinsic deformation gradient are identical to the planar components
of the corresponding three-dimensional one; see (2-1). Likewise, the intrinsic rotation matrix has the
planar components of the three-dimensional rotation matrix (2-2) of the first Cosserat planar problem.

The first object which requires a more careful approach is the matrix curl of the curvature measure.
In three dimensions the matrix curl requires the object ε jmn , see (2-3). However, the Levi-Civita tensor
ε jmn is a three-dimensional object which has no geometrical meaning in any dimension other than three.
Therefore, one has to change this definition and adopt it to the planar case.

Let us begin by recalling the lesser-known fact that the vector curl is sometimes introduced in two
dimensions to give a scalar quantity. Consequently, one would expect the two-dimensional matrix curl to
give a vector. It turns out that this follows quite naturally when the Levi-Civita symbol in two dimensions
is considered. Namely, it has two indices εi j , instead of εi jk in three dimensions. Hence, the contraction
of the partial derivative of a matrix with the Levi-Civita gives a vector. This leads us to define the
two-dimensional matrix curl RT Curl R in the following way:

(Curl R)i := εrs∂r Ris . (3-3)

This matrix curl maps matrices to vectors, as expected.
This definition is quite natural in the present context as can be seen by computing the quantity

RT Curl R, which then becomes

RT Curl R =
(
ϑx

ϑy

)
= gradϑ. (3-4)

This result contains the two nonvanishing components of the three-dimensional object RT Curl R; com-
pare with (2-4).
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Now, we are faced with a similar problem as before: we cannot simply couple the two-dimensional
vector (the two-dimensional Cosserat curvature measure) to the deformation gradient which is, of course,
a 2× 2 matrix. However, we can proceed as follows. Let us write any vector v as v = |v|v̂, which we
can view as the irreducible decomposition of the vector into a scalar |v| and a direction v̂ with |v̂| = 1.
Applied to the vector RT Curl R, we can consider the scalar quantity ‖RT Curl R‖ which can be coupled
to the trace part of the deformation gradient. Hence, we can consider the term

Vinteraction ∝ tr(RT F)‖RT Curl R‖, (3-5)

which in the two-dimensional setting is a natural choice. We recall that in the three-dimensional case we
could write a very similar term, namely (2-9), however, it was not well justified in that setting.

The main point to note is that modeling planar material requires, independently of the approach, two
geometrically different quantities: Matrix-valued objects (which describe the elastic deformations) and
vectors (which describe the rotations about the axis perpendicular to the material). Any model which
attempts at introducing interactions between these two quantities needs to address the principal issue of
how such couplings can be achieved.

Since R is still an orthogonal matrix, it appears best to consider the coupling based on RT polar F ,
which does not involve conceptual problems in either dimensions two or three.

The Cosserat model is cast in a variational framework on the reference configuration. The dynamical
equations follow from a generalized Hamiltonian principle. A replacement of the first Piola–Kirchhoff
tensor of classical nonlinear elasticity is easily seen to be ∂V/∂Fi j with V being the energy function of
the model considered.

3.2. Elastic energy and curvature energy. We write the energy functional for the elastic deformation
as

Velastic(F, R)= µ‖sym RT F − 1‖2+ 1
2λ(tr(sym(RT F)− 1))2, (3-6)

where λ and µ are the standard elastic Lamé parameters in two dimensions. For the dynamical treatment,
we will need to subtract kinetic energy, which we assume to be of the form 1

2ρ‖ϕ̇‖
2.

The three-dimensional energy functional of the microrotations Vrotational is based on the energy func-
tional containing ‖RT Curl R‖2

R3×3 . It is natural to consider the same functional form in two dimensions
using the matrix curl defined in R2, as in (3-3).

Using the previously stated (3-4), we write the two-dimensional curvature energy as

Vcurvature(∇ϑ)= µL2
c‖R

T Curl R‖2
R2 = µL2

c‖gradϑ‖2
R2, (3-7)

where Lc is the characteristic length and µ is the shear modulus from above. We emphasize that this
(vector) norm is computed in two dimensions by using the subscript R2; this is to avoid confusion with
the 3D (matrix) norm in R3×3. The simple form of the energy when expressed in vector form is in fact
expected as rotations in the plane are characterized by only one angle ϑ .

In order to study the dynamical problem, we will need to subtract kinetic energy, which we assume
to be of the form ρrot‖ϑ̇‖

2 where ρrot is the scalar rotational density. One could also choose the kinetic
energy as tr( ˙RT ˙R) as this is somewhat more natural; however, a direct calculation gives that tr( ˙RT ˙R)=
2‖ϑ̇‖2, which means that they only differ by a factor of 2.



696 SEBASTIAN BAHAMONDE, CHRISTIAN G. BÖHMER AND PATRIZIO NEFF

3.3. Interaction and coupling terms. Next, we wish to introduce a coupling between the elastic displace-
ments and the microrotations. To do so, we will “couple” the irreducible parts of the elastic deformation
with the microrotations. This gives

Vinteraction(F, R)= µLcχ‖RT Curl R‖ tr(RT F), (3-8)

where χ is the coupling constant which was first introduced in [Böhmer and Tamanini 2015; Böhmer
et al. 2016].

Finally, we will consider the Cosserat couple term we assume to be given by

Vcoupling(F, R)= µc‖RT polar F − 1‖2, (3-9)

where µc ≥ 0 is the Cosserat couple modulus. Alternatively, one can consider the coupling

Vcoupling(2)(F, R)= µc‖skew(RT F − 1)‖2, (3-10)

which induces the same linear response as the coupling containing the polar part.
The complete static model is therefore given by

V = Velastic+ Vcurvature+ Vinteraction+ Vcoupling

= µ‖sym(RT F − 1)‖2
R2×2 +

1
2λ
(
tr(sym(RT F − 1))

)2
+µL2

c‖R
T Curl R‖2

R2

+µLcχ‖RT Curl R‖R2 tr(RT F)+µc‖RT polar F − 1‖2
R2×2 . (3-11)

Where necessary, we indicated the space over which the norm has to be computed. This is only to clarify
this expression as it should be clear from the context which is the appropriate space.

3.4. Modeling to chiral lattices. The proposed intrinsic model can be applied to chiral lattices. It turns
out that considering small elastic displacements and small microrotations leads to a model very similar
to the one studied in [Liu et al. 2012b] with an additional term contributing to the dynamics of the
microrotations. In order to allow for chirality to be incorporated into our approach we define the quantity

u∗i = εi j u j . (3-12)

In the three-dimensional setting one could not construct a term like this as the object εi j is intrinsically
two-dimensional. The corresponding term in three dimensions is εi jk which would map the vector uk to
a matrix. The two-dimensional Levi-Civita symbol εi j is identical to our rotation matrix R for ϑ =−π/2.
This means we can write

ε =

(
0 1
−1 0

)
. (3-13)

Thus, the vector u∗ is the vector u rotated by 90◦ in the counterclockwise direction and is given by

u∗ = εu =
(

0 1
−1 0

)(
u1

u2

)
=

(
u2

−u1

)
. (3-14)

Now we define the corresponding deformation gradient of the rotated vector

F∗ = 1+∇u∗, (3-15)
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so that we can define a corresponding elastic energy

V ∗elastic(F
∗, R)= µ∗‖sym RT F∗− 1‖2+ 1

2λ
∗
(
tr(sym(RT F∗)− 1)

)2
+µ∗c‖skew(RT F∗− 1)‖2. (3-16)

The use of F∗ in this new elastic energy is the only difference to (3-6). This means we are introducing
a new elastic energy which depends on the rotated vector u∗. Let us emphasize again that an analogous
construction in three dimensions cannot be achieved.

Due to these new terms based on u∗, we can also define the following mixing terms

Vmixing = m1 tr[(sym(RT F∗)− 1)T (sym(RT F)− 1)] +m2 tr(RT F∗− 1) tr(RT F − 1), (3-17)

where we note that we could also introduce a third mixing term of the form

m3 tr[(skew(RT F∗− 1))T (skew(RT F − 1))].

As this term will not be required in what follows, we will neglect this contribution henceforth.
Putting together everything that is needed to model chiral effects leads to the energy functional

Vchiral(F, F∗, R)= Vcurvature+ Velastic+ V ∗elastic+ Vmixing+ Vcoupling(2). (3-18)

4. Equations of motion

In the following subsections we will state the equations of motion of our model which are derived using
the calculus of variations. While most of this is fairly standard from a mathematical point of view, it is
instructive to provide enough detail of this derivation, most of which can be found in Appendix B. We
work predominantly in the matrix notation and we also need to consider variations with respect to the
polar part of the deformation gradient, which is a nonstandard result. Also our use of matrix curls and
matrix divergences requires a careful treatment, which is shown.

4.1. Field equations without chiral terms. The complete variational energy functional of the nonlinear
Cosserat micropolar theory in 2D will be the sum of each variational term, so we have

δV = δVcurvature+ δVelastic+ δVinteraction+ δVcoupling. (4-1)

Rotations in two dimensions depend only on one angle and one can verify that

δR =−(cosϑ ε+ sinϑ I )δϑ =−εRδϑ, (4-2)

where ε is the 2D Levi-Civita matrix. While we computed the variations with respect to δF , we are in
fact interested in the variations with respect to the displacements δu. So, let M be an arbitrary matrix;
then we can easily find the relation between δF and δu which is given by

〈A, δF〉 = A : δF =−(Div M)δu, (4-3)

or in other words, we need to integrate by parts once more to arrive at the equations of motions in the
displacements.



698 SEBASTIAN BAHAMONDE, CHRISTIAN G. BÖHMER AND PATRIZIO NEFF

We can now use (4-2) and (4-3) to rewrite the variations of Appendix B as follows:

δVelastic =−(µF RT F − 2(µ+ λ)F + λ tr(RT F)F) : (εR)δϑ

−Div[µ(RFT R+ F)− 2(µ+ λ)R+ λ tr(RT F)R]δu, (4-4)

δVcurvature =−2µL2
c div(gradϑ)δϑ, (4-5)

δVinteraction =−µLcχ
(

div
[
tr(RT F) gradϑ

‖gradϑ‖

]
+‖gradϑ‖F

)
: (εR)δϑ

−µLcχ Div[‖(gradϑ)‖R]δu, (4-6)

δVcoupling = 2µc polar F : (εR)δϑ + 2µc Div
[ 1

tr(U )
(R− polar F RT polar F)

]
δu. (4-7)

4.2. Fully nonlinear equations without chiral terms. The variations with respect to our two dynamical
variables, the vector u and the scalar ϑ , give two Euler–Lagrange equations. The equations of motion
including kinetic energy for the displacement vector u are now written in their final form, which is

ρut t = Div
[
2µR sym(RT F)+ λ tr(RT F)R− 2(µ+ λ)R

+
4µc

tr(
√

FT F)
polar F skew(RT polar F)+µLcχ‖(RT Curl R)‖R

]
. (4-8)

Here we used the useful identities 2 polar F skew(RT polar F)=−R+polar F RT polar F , and moreover,
2R sym(RT F)= RFT R+ F .

Before stating the equation of motion for the rotation, let us have a closer look at the various terms. The
first line corresponds to the equations of nonlinear elasticity and the second line contains the interaction
term and the Cosserat couple term.

Variations with respect to the rotation yield the following equation of motion:

ρrotϑt t = µL2
c div(RT Curl R)− (µ+ λ) tr(εRT F)+ 1

2µ tr(ε(RT F)2)+ 1
2λ tr(RT F) tr(εRT F)

+
1
2µLcχ

{
div
[

RT Curl R

‖RT Curl R‖
tr(RT F)

]
+‖(RT Curl R)‖ tr(εRT F)

}
−µc tr(εRT polar F). (4-9)

The most complicated term comes from the interaction term and, in particular, the presence of the square-
root when we work with the norm of RT Curl R. One has to be careful with this term as the square root
is not differentiable at the origin. Due to the nonlinear nature of these equations it is very difficult to find
explicit solutions or make generic statements about such solutions.

4.3. Fully nonlinear equations of the chiral model. The complete variational energy functional of the
nonlinear Cosserat micropolar theory with chiral terms is given by

δV = δVcurvature+ δVelastic+ δV ∗elastic+ δVmixing+ δVcoupling(2). (4-10)
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The equations of motion of the chiral model for the displacement u are given by

ρut t = Div
[
2µR sym(RT F)+ λ tr(RT F)R− 2(µ+ λ)R+µc(F − RFT R)

]
−Div

[
µ∗(R(F∗)T R+ F∗)− 2(µ∗+ λ∗)R+ λ∗ tr(RT F∗)R+µ∗c(R(F

∗)T R− F∗)
]
: ε

−Div
[ 1

2 m1
(
εT RFT R+ R(F∗)T R+ F : ε+ F∗− 2(R : ε+ R)

)
+m2

(
tr(RT F∗)R+ tr(RT F)(R : ε)− (R : ε+ R)

)
+

1
2 m3(F : ε+ F∗− (F RT εT F + εT F RF))

]
. (4-11)

Additionally, the equation of motion for ϑt t is given by

ρrotϑt t = µL2
c div(RT Curl R)− (µ+ λ) tr(εRT F)+ 1

2µ tr(ε(RT F)2)

+
1
2λ tr(RT F) tr(εRT F)+µc tr(εRT F RT )

+
[
µ∗F∗RT F∗− 2(µ∗+ λ∗)F∗+ λ∗ tr(RT F∗)F∗+µ∗c F∗RT F∗

+
1
2 m1(F RT εT F + εT F RF − 2(F + F∗))

+m2(tr(RT F∗)F + tr(RT F)F∗− (F + F∗))

−
1
2 m3(F RT εT F + εT F RF)

]
: (−εR). (4-12)

Before having a closer look at these equations and discussing applications to chiral lattices, we will
briefly state two special solutions to the equations without chiral terms.

4.4. Special solution — no displacements, static and homogeneous microrotations. One of the sim-
plest possible solutions can be sought in the form u ≡ 0 and ϑ = ϑ0, where ϑ0 is a constant angle. Using
this ansatz, the equations for the displacements (4-8) are identically satisfied. Equation (4-9) for the
microrotations reduces to the simple equation(

λ+µ+µc− (λ+µ) cosϑ0
)

sinϑ0 = 0. (4-13)

This equation has two somewhat trivial solutions when ϑ0 = 0 or ϑ = π . These correspond to all the
oriented material points to be aligned horizontally. Interestingly, there are more solutions, and their
properties depend on the value of the Cosserat couple modulus µc. If µc = 0, then (4-13) is also satisfied
by ϑ0 =

1
2π or ϑ0 =

3
2π which corresponds to all the oriented material points to be aligned vertically.

On the other hand, if µc > 0, then we find

cosϑ0 = 1+
µc

λ+µ
, (4-14)

for which a solution exits provided that λ+µ≤ 0. This, however, contradicts the standard assumptions
of linear elasticity. These results appear to be consistent with our expectations of the theory.

4.5. Special solution — no displacements, static and homogeneous microrotations with chiral terms.
Next, let us consider u ≡ 0 and ϑ = ϑ0 in the equations with chiral terms. The equations for the
displacements (4-8) are again identically satisfied. Equation (4-9) for the microrotations reduces to[
−m1− 2m2− λ+ λ

∗
−µ−µc1+µ

∗

+ (m1+ 2m2−m3−µc−µ
∗

c + λ+ λ
∗
+µ+µ∗) cosφ0

]
sinφ0 = 0, (4-15)



700 SEBASTIAN BAHAMONDE, CHRISTIAN G. BÖHMER AND PATRIZIO NEFF

where we also include the chiral and the mixing terms. As before, this equation has two trivial solutions
when ϑ0 = 0 or ϑ = π . Lastly,

cosϑ0 = 1+
µc1+µc+µ

∗
c − 2λ∗− 2µ∗+m3

λ+ λ∗+µ+µ∗−µc−µ∗c +m1+ 2m2−m3
, (4-16)

for which a solution exists provided that the fraction is between 0 and −2. Due to the extra parameters
present in this theory there is no a priori reason for this equation to have no solutions.

5. Applications to chiral lattices

Finally, we are able to demonstrate that our intrinsic two-dimensional model is applicable to chiral lattices.
In doing so it is shown that it may not be necessary to begin with a three-dimensional theory and reduce
it to the plane.

5.1. Equations of motion. By assuming small microrotations and small elastic displacements, we arrive
at the following set of equations where we rescaled ρrot =

1
4%rot to match the factors used in [Liu et al.

2012b] and also introduce ϑ =−φ. This gives

ρ
∂2u1

∂t2 = (λ+2µ+µ∗+µ∗c)u1,xx+(µ+µc+λ
∗
+2µ∗)u1,yy+(λ+µ−µc−λ

∗
−µ∗+µ∗c)u2,xy

+
( 1

2 m1+m2
)
(−2u1,xy + u2,xx − u2,yy)− 2(2λ∗+ 2µ∗−µ∗c)φx + 2µcφy, (5-1)

and the second equation

ρ
∂2u2

∂t2 = (µ+µc+λ
∗
+2µ∗)u2,xx+(λ+2µ+µ∗+µ∗c)u2,yy+(λ+µ−µc−λ

∗
−µ∗+µ∗c)u1,xy

+
( 1

2 m1+m2
)
(u1,xx − u1,yy + 2u2,xy)− 2µcφx − 2(2λ∗+ 2µ∗−µ∗c)φy . (5-2)

Lastly, the equation for the microrotations is given by

%rot
∂2φ

∂t2 = 2d1(φxx +φyy)+ 4(2λ∗+ 2µ∗−µ∗c −µc)φ+ 2µc(u2,x − u1,y)

− 2(µ∗c − 2λ∗− 2µ∗)(u1,x + u2,y). (5-3)

Setting 2d1 = γ , µ∗ =−µ∗c = A, λ∗ =−2A, and 1
2 m1+m2 =−A, we recover the equations reported in

[Liu et al. 2012b, (17)]. The only difference is an additional term in the rotational equation; namely this
becomes

%rot
∂2φ

∂t2 = γ (φxx +φyy)− 4(µc+ A)φ+ 2µc(u2,x − u1,y)− 2A(u1,x + u2,y), (5-4)

where the term −4Aφ is the additional contribution. We believe that this term is present due to our
starting point being the fully nonlinear model. Consequently, when studying plane wave solutions of this
modified model, we expect some changes with respect to the wave speeds and the ratio of the amplitudes
of the elastic waves, as will be discussed henceforth. It appears that our model can also be used in the
context of tetrachiral lattices; see the equations of motion reported in [Chen et al. 2014].
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5.2. Plane wave solutions for the chiral model. Along the lines of [Böhmer et al. 2011; 2016; Liu
et al. 2012b; Böhmer and Obukhov 2012; Böhmer and Tamanini 2015], for instance, we can now study
plane wave solutions of our more general model. For concreteness, let us consider a plane wave in the
x-direction only. Then our ansatz for the displacements and microrotations is taken to beu

v

φ

=
û
v̂

φ̂

 eikx−iωt , (5-5)

where k is the wave number and ω is the angular frequency. The quantities û, v̂, φ̂ denote the correspond-
ing amplitudes. Substituting (5-5) into the equations of motion by replacing this form in (5-1)–(5-3) and
using the above renaming of constants 2d1 = γ , µ∗ =−µ∗c = A, λ∗ =−2A, 1

2 m1+m2 =−A, we can
rewrite the equations in the following form:k2(λ+ 2µ)− ρω2

−Ak2 2i Ak
−Ak2 k2(µc+µ)− ρω

2
−2ikµc

−2i Ak 2ikµc (γ k2
+ 4µc+ 4A)− %rotω

2

û
v̂

φ̂

= 0. (5-6)

As one would expect, the above equation is very similar to the one reported in [Liu et al. 2012b] with the
difference of the additional term 4A in the final component of the matrix. It is straightforward to show
that the ratio of the amplitudes of the displacements is given by

û
v̂
=

A(k2µ− ρω2)

A2k2−µc(k2(λ+ 2µ)− ρω2)
. (5-7)

Next, let us find the dispersion relation using this ratio, which gives

v =
ω

k
=

√
û/v̂(µc(λ+ 2µ)− A2)+ Aµ

ρ(µcû/v̂+ A)
. (5-8)

The two interesting limits of this relation are when the ratio of the amplitudes is either very small or very
large. In these cases we find

vt := vû/v̂→0 =
√
µ/ρ, (5-9)

which is the well-known speed for the transversal elastic wave. Likewise,

vl := vû/v̂→∞ =

√
λ+ 2µ
ρ
−

A2

ρµc
, (5-10)

so that we note that the longitudinal wave’s speed is decreased by the chiral term A. The dispersion
relation is shown in Figure 1. For this wave speed to be positive requires that the constant A satisfies the
inequality

A2 > µc(λ+ 2µ). (5-11)

Finally, we can consider the specific case where we only have displacements for the horizontal direc-
tion u, so that v = 0. In this case we use the ansatz u = û cos(kx−ωt+ δu) and φ = φ̂ cos(kx−ωt+ δφ).
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ω/k

vl

vt

û/v̂

Figure 1. Visualization of the dispersion relation (5-8) as a function of the ratio of
amplitudes û/v̂. The dashed lines indicate the limiting cases when û/v̂→ 0 (bottom)
and û/v̂→∞ (top), respectively.

Provided the phase difference between the two waves is 1
2π , this means δφ − δu =

1
2π , one can find a

special solution to the linearised equations given by

û =−
2µc

Ak
φ̂, ρ =

k2(µc(λ+ 2µ)− A2)

µcω2 , %rot =
γ k2
+ 4A
ω2 . (5-12)

This is an interesting result as solutions of this type imply conditions that have to be satisfied regarding
the parameters of the theory. There does not exist a nontrivial solution when µc = 0; in this case one
finds u = v = φ = 0. This is consistent with theoretical considerations since the choice µc = 0 is not
admitted in the linearised context.

5.3. Other possible applications. Our intrinsic two-dimensional model might be particularly suited to
describe materials like graphene and carbon nanotubes. These materials have unusual properties which
make them valuable for applications in nanotechnology. The mathematical description of electrons prop-
agating in graphene, for example, requires the use of the two-dimensional massless Dirac equation. The
microstructure of Cosserat elasticity lends itself naturally to consider applications in this area, and some
research along those lines is ongoing. In [Caillerie et al. 2006] a homogenization was applied to model a
graphene sheet, while applications of Cosserat elasticity were considered in [De Cicco and Ieşan 2013]
and also [Yang et al. 2016]. Elastic properties of graphene were studied in [Cadelano et al. 2010]. Carbon
nanotubes, on the other hand, were studied in the context of Cosserat elasticity in [Selmi et al. 2014]. It
will be interesting to apply our approach to some of these models in the future.

6. Conclusions

The primary motivation of this paper was the formulation of an intrinsic two-dimensional, geometrically
nonlinear Cosserat theory of elasticity that could be used to model, amongst other features, chiral lattices.
Our construction circumvents the problems one faces when reducing a three-dimensional isotropic and
chiral theory to the plane. It is well known that the resulting two-dimensional theory is no longer chiral.
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Our model is intrinsically two-dimensional and does not refer to a three-dimensional model for its
construction. Chirality is introduced into this model by defining a new rotated deformation gradient F∗,
see (3-15), which is constructed from the deformation vector rotated by 1

2π in the counterclockwise
direction. This deformation gradient is then used to define a new elastic energy and also new interaction
terms between the deformation gradient F and the new quantity F∗. This approach is different to other
approaches as we are directly modeling the planar chiral material.

Due to our intrinsic approach, our model displays a certain flexibility in the sense that it depends
on up to 10 different elastic constants and the characteristic length Lc. These are the two-dimensional
elastic (Lamé) constants µ, λ, the Cosserat couple modulus µc, and the interaction term χ . Moreover,
we have the corresponding constants µ∗, λ∗, µ∗c and finally the three constants m1,m2,m3. This allows
us to formulate previously studied models using our intrinsic approach. It would also be interesting to
apply our approach to other two-dimensional materials like graphene.

Finally, let us draw the attention back to the question of how to obtain a chiral two-dimensional
model. We have seen that using a quadratic ansatz in the three-dimensional Cosserat model necessarily
cannot give a two-dimensional chiral model, no matter our effort. However, it is not clear whether this
problematic issue can be avoided by using some higher order (nonquadratic) model in the first place. If
this were possible, the chiral effect would be absent under linearization. Therefore, more experimental
evidence is needed to decide whether chirality can and should appear already as a discernible effect in
an infinitesimal neighborhood of the identity.
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Appendix A: Chirality and the matrix curl

Let us define the new deformation vector ϕ# by

ϕ#(x, y, z) := ϕ(−x,−y,−z). (A-1)

This means we evaluate the function ϕ at the inverted coordinate (−x,−y,−z). However, we will
work in the original Cartesian coordinate system and will not make the coordinate transformation of the
previous appendix. Then, one verifies that

F#
=∇ϕ#

=−∇ϕ(−x,−y,−z)=−F(−x,−y,−z), (A-2)

because of the chain rule. Under this “inversion” the deformation gradient picks up a sign, making it
noninvariant. On the other hand, FT F is invariant.

Next, let us define the new orthogonal matrix R# which we define by

R#
:= −R(−x,−y,−z), (A-3)
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where an additional minus sign was included in the definition. Then one immediately finds (R#)T =

−R(−x,−y,−z)T =−(RT )(−x,−y,−z) and

Curl R#
=

∂y R#
xz − ∂z R#

xy ∂z R#
xx − ∂x R#

xz ∂x R#
xy − ∂y R#

xx

∂y R#
yz − ∂z R#

yy ∂z R#
yx − ∂x R#

yz ∂x R#
yy − ∂y R#

yx

∂y R#
zz − ∂z R#

zy ∂z R#
zx − ∂x R#

zz ∂x R#
zy − ∂y R#

zx

 . (A-4)

Each single derivative will yield a minus sign by virtue of the chain rule. For instance,

∂y R#
:= −∂y R(−x,−y,−z)= ∂−y R(−x,−y,−z)= (∂y R)(−x,−y,−z). (A-5)

Hence, applying this through all terms in the matrix curl of R#, one arrives at

Curl R#
= (Curl R)(−x,−y,−z). (A-6)

Finally, one can study the curvature measure (R#)T Curl R# which satisfies

(R#)T Curl R#
=−(RT )(−x,−y,−z)(Curl R)(−x,−y,−z)=−(RT Curl R)(−x,−y,−z). (A-7)

This result shows the desired chiral properties. Consequently, we showed that the term 〈FT F, RT Curl R〉
is chiral.

Appendix B: Variations and equations of motion

Each of the four parts of our energy functional (3-11) and (3-18) are considered separately. The various
matrix derivatives that occur in this calculation are computed using standard formulae, all of which can
be found nicely presented in [Petersen and Pedersen 2012].

B.1. Elastic energy Velastic. We can rewrite the elastic energy functional as

Velastic = µ‖sym RT F − 1‖2+ 1
2λ
(
tr(sym(RT F)− 1)

)2

= 2µ− 2µ tr(F RT )+ 1
2µ
(
tr(RT F RT F)+ tr(F FT )

)
+ 2λ− 2λ tr(RT F)+ 1

2λ(tr(R
T F))2. (B-1)

Now we can compute the variations of this energy functional:

δVelastic(F, R)= 1
2µ
( d

dR
[tr(RT F RT F)] : δR+ d

dF

[
tr(RT F RT F)+ d

dF
(tr(F FT ))

]
: δF

)
− 2(µ+ λ)

( d
dR
(tr(RT F)) : δR+ d

dF
(tr(RT F)) : δF

)
+

1
2λ
( d

dR
[tr(RT F)]2 : δR+ d

dF
[tr(RT F)]2 : δF

)
. (B-2)

Now, computing the various matrix derivatives yields

δVelastic(F, R)= 〈µ(RFT R+ F)− 2(µ+ λ)R+ λ tr(RT F)R, δF〉

+ 〈µF RT F − 2(µ+ λ)F + λ tr(RT F)F, δR〉. (B-3)
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If we want to study the dynamical problem, we will need to subtract the kinetic energy term

Velastic,kinetic =
1
2ρ‖ϕ̇‖

2. (B-4)

Here ρ is the density. If we vary this term we will obtain δVelastic,kinetic =−ρϕ̈δϕ, where we neglected a
boundary term when integrating by parts once. Next, using that ∇ϕ = 1+∇u implies δϕ = δu. Hence,
the elastic kinetic term can finally be written as

δVelastic,kinetic =−ρüδu. (B-5)

B.2. Curvature energy Vcurvature. The curvature energy functional depends only on the rotation angle ϑ
so that

Vcurvature(ϑ)= µL2
c‖gradϑ‖2. (B-6)

Variations with respect to δϑ are well known (we are dealing with a standard vector), and one finds

δVcurvature =−2µL2
c div(gradϑ)δϑ =−2µL2

c1ϑδϑ, (B-7)

where, as before, we have neglected a boundary term. Recall that div gradϑ is the scalar Laplacian 1ϑ .
If we want to study the dynamical problem, we will need to subtract the kinetic energy term

Vcurvature,kinetic = ρrot‖ϑ̇‖
2. (B-8)

Variations with respect to δϑ lead to

δVcurvature,kinetic =−2ρrotϑ̈δϑ, (B-9)

up to a boundary term.

B.3. Interaction energy Vinteraction. The interaction term is

Vinteraction(F, R)= µLcχ‖RT Curl R‖ tr(RT F)= µLcχ‖gradϑ‖ tr(RT F). (B-10)

Computing the variations with respect to R and F yields

δVinteraction(F, ϑ)= µLcχ tr(RT F) gradϑ
‖gradϑ‖

δ(gradϑ)

+µLcχ‖gradϑ‖
( d

dF
[tr(RT F)] : δF + d

dR
[tr(RFT )] : δR

)
=−µLcχ

gradϑ
‖gradϑ‖

grad[tr(RT F)]δϑ −µLcχ tr(RT F) div
[ gradϑ
‖gradϑ‖

]
δϑ

+µLcχ〈‖(gradϑ)‖F, δR〉+µLcχ〈‖gradϑ‖R, δF〉, (B-11)

which is probably the most complicated of all terms.

B.4. Cosserat couplings Vcoup. We have the energy functional of the coupling as follows

Vcoupling(F, R)= µc‖RT polar F − 1‖2 = 4µc− 2µc tr(RT polar F). (B-12)

The variations of polar F with respect to F are somewhat nonstandard; however, the result is well-
known and has been reported for instance in [Chen and Wheeler 1993; Rosati 1999]. In particular, in
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two dimensions, the result is straightforward to verify directly. We briefly recall that the polar part of F
can be written as polar F = F(FT F)−1/2. Then

δVcoupling(F, R)=−2µc polar F : δR− 2µc

[ d
dF
(tr(RT polar F))

]
: δF. (B-13)

Using the chain rule for matrix differentiation we find

d
dFml

(tr(RT polar F))= tr
[( d

d polar F
tr(RT polar F)

)T d polar F
dFml

]
= tr

[
RT d polar F

dFml

]
.

(B-14)

Following [Chen and Wheeler 1993; Rosati 1999] we have

d polar F
dF

=
1

tr(U )
(I− polar(F) �̂ polar(F)T ), (B-15)

where we followed the notation used in [Rosati 1999]. Recall that U is the positive definite symmetric part
of the polar decomposition F = polar(F)U . The symbol �̂ denotes the operation (A �̂ B)i jkl = Ail B jk

for any two matrices A and B. In addition we use the notation I= 1 �̂ 1. Putting this together yields

tr
[

RT d polar F
dFml

]
=

1
tr(U )

[R− R RT R]. (B-16)

Finally, we will obtain the variations δVcoupling, which are given by

δVcoupling(F, R)=−2µc〈R, δR〉−
2µc

tr(U )
〈R− R RT R, δF〉. (B-17)

Now we will focus on the second coupling term (3-10) that can be rewritten as follows

Vcoupling(2)(F, R)= 3µc+
1
2µc tr[FT F − RT F RT F], (B-18)

which yields

δVcoupling(2)(F, R)= µc〈F − RFT R, δF〉−µc〈RT F, δR〉. (B-19)

B.5. Chiral terms. Let us begin by computing the term δV ∗elastic. A direct calculation yields

δV ∗elastic=−Div
[
µ∗(R(F∗)T R+F∗)−2(µ∗+λ∗)R+λ∗ tr(RT F∗)R+µ∗c(R(F

∗)T R−F∗)
]
:εδu

+
[
µ∗F∗RT F∗− 2(µ∗+ λ∗)F∗+ λ∗ tr(RT F∗)F∗+µ∗c F∗RT F∗

]
: (−εR)δϑ. (B-20)

Next, we consider the mixing terms

δVmixing =
1
2 m1

(
δ[tr(RT F∗RT F)] + δ[tr(F(F∗)T )] − 2δ[tr(RT F∗)+ tr(RT F)]

)
+m2

(
δ[tr(RT F∗) tr(RT F)] − δ[tr(RT F∗)+ tr(RT F)]

)
+

1
2 m3

(
δ[tr(F(F∗)T )] − δ[tr(RT F∗RT F)]

)
. (B-21)
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These variations are slightly more involved than the previous ones, so some additional details are given
in the following. The first three respective terms are given by

δ[tr(RT F∗RT F)] = (F RT εT F + εT F RF) : δR+ (εT RFT R+ RFT εT R) : δF, (B-22)

δ[tr(F(F∗)T )] = F : δF∗+ F∗ : δF = [(F : ε)+ F∗] : δF, (B-23)

δ[tr(RT F∗)+ tr(RT F)] = (R : ε+ R) : δF + (F + F∗) : δR. (B-24)

The fourth and final term is given by

δ[tr(RT F∗) tr(RT F)]=
(
tr(RT F∗)F+tr(RT F)F∗

)
: δR+

(
tr(RT F∗)R+tr(RT F)(R : ε)

)
: δF. (B-25)

Therefore, the complete variations are given by

δVmixing =
[ 1

2 m1(F RT εT F + εT F RF − 2(F + F∗))

+m2
(
tr(RT F∗)F + tr(RT F)F∗− (F + F∗)

)
−

1
2 m3(F RT εT F + εT F RF)

]
: δR

+
[1

2 m1
(
εT RFT R+ R(F∗)T R+ F : ε+ F∗− 2(R : ε+ R)

)
+m2

(
tr(RT F∗)R+ tr(RT F)(R : ε)− (R : ε+ R)

)
+

1
2 m3(F : ε+ F∗− (F RT εT F + εT F RF))

]
: δF. (B-26)

List of Symbols

1 identity matrix
ϕ deformation vector in 3D and 2D
φ rotation angle in 3D
u displacement vector
a rotation vector
F =∇ϕ = I +∇u deformation gradient
Fi j = δi j + ui, j = δi j + ∂ j ui deformation gradient in index notation
R = exp(A) rotation matrix
A skew-symmetric matrix generating R
ε 2D Levi-Civita symbol, ε12 = 1=−ε21, ε11 = ε22 = 0
U = RT F nonsymmetric stretch tensor, first Cosserat deformation tensor
F = RU = polar(F)U classical polar decomposition
(Curl M)i = εrs∂r Mis matrix curl in 2D
(Div M)i = ∂s Mis matrix divergence in 2D
sym M = 1

2(M +MT ) symmetric part of matrix M
skew M = 1

2(M −MT ) skew-symmetric part of M
dev M = M − 1

3 tr(M)1 deviatoric or trace-free part of M
ϑ rotation angle in 2D
R = (cosϑ)1− (sinϑ)ε rotation in 2D
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Remark. We write the above tensors R and U with superposed bars in order to distinguish them from
the factors R and U of the classical polar decomposition F = RU , in which R = polar F is orthogonal
and U is positive definite, symmetric, and is a standard notation in elasticity. We also note the standard
relation FT F = (RU )T (RU )=U T RT T U =U T U =U 2 so that U =

√
FT F .

We will use the Frobenius scalar product defined as

〈A, B〉 = A : B = Ai j Bi j = tr(ABT ). (B-27)
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TRANSIENT RESPONSE OF MULTILAYERED ORTHOTROPIC STRIPS
WITH INTERFACIAL DIFFUSION AND SLIDING

XU WANG AND PETER SCHIAVONE

We use transfer matrix and state-space methods to derive exact solutions for the time-dependent and
plane strain deformations of simply supported multilayered orthotropic elastic strips with simultaneous
interfacial diffusion and rate-dependent sliding. Our analysis considers the corresponding interfacial
tractions as the fundamental state variables. As a result, a homogeneous state-space equation can be
obtained by enforcing the interfacial diffusion and sliding conditions. The relaxation times of the mul-
tilayered orthotropic strip and the evolution of the interfacial tractions can then be determined from the
derived state-space equation. Once the transient interfacial tractions are known, all of the field variables
at any time and at any position of the multilayered strip can be conveniently obtained.

1. Introduction

Interfacial diffusion and sliding are responsible for many phenomena at high temperatures [Sofronis and
McMeeking 1994; Mori et al. 1997; He and Hu 2003] and are also closely related to room temperature
plastic deformations in nanocrystalline materials [Wei et al. 2008]. The combined effect of interfacial
diffusion and sliding in particulate, fibrous, laminated composites and in polycrystalline solids has been
investigated in [Sofronis and McMeeking 1994; Kim and McMeeking 1995; Onaka et al. 1998; 1999;
He and Hu 2003; Wang and Pan 2010; Wang et al. 2016; Wang and Wang 2016; Wei et al. 2008].

Most of the early discussions on laminated plates with rate-dependent imperfect interfaces are confined
to short range diffusion-induced rate-dependent sliding (or viscous) interfaces in which the diffusion-
induced long range mass transport at the interface is absent (see, for example, [He and Jiang 2003; Chen
and Lee 2004]). Chen and Lee [2004] adopted power series expansions to approximate the variations of
field variables with time. Very recently, Wang and Wang [2016] studied the time-dependent deformations
of multilayered isotropic elastic strips with interfacial diffusion and sliding under cylindrical bending.

In this research, we endeavor to study the plane strain deformations of multilayered orthotropic elastic
strips with simultaneous interfacial diffusion and sliding. First, we derive a general solution for displace-
ments and stresses in a homogeneous orthotropic layer following Suo’s method [1990]. Secondly, we
use this general solution to obtain a transfer matrix relating the displacements and tractions on the upper
interface of an orthotropic layer to those on its lower interface. Next, we derive a homogeneous state-
space equation with interfacial tractions as state variables by imposing the interfacial diffusion and sliding
conditions and by utilizing the transfer matrix method. It is noted that the construction of the state-space
equation differs from that in [Wang and Wang 2016] in that here, the state vector is composed of the
traction components on all of the existing interfaces whereas in that paper, the state vector is composed

Keywords: multilayered orthotropic strip, interfacial diffusion and sliding, transfer matrix, state-space equation, relaxation
time.
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of functions of time appearing in the expressions of displacements and stresses in all of the isotropic
layers. Finally, the relaxation times and the transient elastic field in the multilayered strip can then be
obtained by solving the corresponding state-space equation.

2. Analysis of a multilayered orthotropic strip

In a Cartesian coordinate system xi (i = 1, 2, 3), let ui and σi j represent the displacements and stresses.
As shown in Figure 1, we consider the plane strain deformations of a strip composed of N orthotropic
elastic layers, labeled 1, 2, . . . , N from the bottom up. The x2 = 0 plane coincides with the bottom
surface of the strip and the x2-axis is perpendicular to the strip. The strip of width l is simply supported
at x1 = 0 and x1 = l. The thickness of layer j is h j and the total thickness of the strip is h =

∑N
j=1 h j .

The subscript j or the superscript ( j) will be used to denote the associated quantities in layer j . The
strip is subjected only to a sinusoidal pressure loading p = p0 sin kx1 with k = π/ l applied on its top
surface. The boundary and interface conditions for the problem are specified as follows:

σ
(N )
22 =−p0 sin kx1, σ

(N )
12 = 0, at x2 = h; (1a)

σ
(1)
22 = σ

(1)
12 = 0 at x2 = 0; (1b)

σ
( j+1)
22 = σ

( j)
22 , σ

( j+1)
12 = σ

( j)
12 , u̇( j)

2 − u̇( j+1)
2 = D j

∂2σ
( j)
22

∂x2
1
,

ϑ j [u̇
( j+1)
1 − u̇( j)

1 ] = σ
( j)
12 , at x2 =

j∑
n=1

hn, j = 1, 2, . . . , N−1; (1c)

σ
(1)
11 = σ

(2)
11 = · · · = σ

(N )
11 = 0, and x1 = 0 and x1 = l; (1d)

where the overdot denotes differentiation with respect to the time t , and D j and ϑ j are, respectively, the
interface diffusion constant and viscosity for the interface between layer j and layer j + 1.

traction-free surface

orthotropic layer N

orthotropic layer 2

orthotropic layer 1 interfacial diffusion
and sliding

sinusoidal pressure: p = p  sin kx
0 1

x

h

l

2

x1

Figure 1. A multilayered orthotropic elastic strip with interfacial diffusion and rate-
dependent sliding.
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Let si j be the reduced elastic compliances in a certain layer. The general solution for displacements
and stresses in this layer can be derived using the method proposed in [Suo 1990] as

u1

cos kx1
u2

sin kx1

=
s11λ

2

k

 (n+m)2−δ (n−m)2−δ (n+m)2−δ (n−m)2−δ
λ

n+m
−δλ(n+m) λ

n−m
−δλ(n−m) δλ(n+m)− λ

n+m
δλ(n−m)− λ

n−m




C1ekλ(n+m)x2

C2ekλ(n−m)x2

C3e−kλ(n+m)x2

C4e−kλ(n−m)x2

 ,


σ12

cos kx1
σ22

sin kx1

= [λ(n+m) λ(n−m) −λ(n+m) −λ(n−m)
1 1 1 1

]
C1ekλ(n+m)x2

C2ekλ(n−m)x2

C3e−kλ(n+m)x2

C4e−kλ(n−m)x2

 , (2)

where C1, C2, C3, C4 are coefficients to be determined, and λ, ρ, δ, n, m are dimensionless parameters
defined by

λ=

(
s22

s11

)1/4

, ρ =
2s12+ s66

2
√

s11s22
(ρ >−1), δ =

s12
√

s12s22
(−1≤ δ <min{ρ, 1}),

n =
[ 1

2(ρ+ 1)
]1/2

, m =
[ 1

2(ρ− 1)
]1/2

.

(3)

The general solution in (2) is valid only for the nondegenerate case of ρ 6= 1. For the degenerate case
ρ = 1 [Suo 1990], the displacements and stresses can be derived as

u1 = [ekxλ2 (C1+ xλ2 C2)+ e−kxλ2 (C3+ xλ2 C4)] cos kx1,

u2 = λ
{

ekxλ2
[
C1+

(
xλ2 −

3−4ν̃
k

)
C2

]
− e−kxλ2

[
C3+

(
xλ2 +

3−4ν̃
k

)
C4

]}
sin kx1,

(4)

σ12 = 2λµ̃
{
ekxλ2 [kC1+ (kxλ2 − 1+ 2ν̃)C2] − e−kx2[kC3+ (kxλ2 + 1− 2ν̃)C4]

}
cos kx1,

σ22 = 2µ̃
{
ekxλ2 [kC1+ (kxλ2 − 2+ 2ν̃)C2] + e−kxλ2 [kC3+ (kxλ2 + 2− 2ν̃)C4]

}
sin kx1,

(5)

where xλ2 = λx2; C1, C2, C3, C4 are coefficients to be determined and

µ̃=
1

s66
=

1
2(
√

s11s22− s12)
=

λ2

2s22(1− δ)
,

ν̃ = 1−
√

s11s22
√

s11s22− s12
= 1−

2
√

s11s22

s66
=

δ

δ− 1
≤

1
2
.

(6)

Remark. Note that ρ = 1 is degenerate in the sense that we have kλ(n +m) = kλ(n −m) = kλ and
−kλ(n+m)=−kλ(n−m)=−kλ in (2).

When ρ = λ= 1 for a transversely isotropic layer [Suo 1990], with isotropy being a special case, (4)
and (5) simply reduce to those in [He and Jiang 2003]. It is interesting to note that the general solutions
(2), (4) and (5) can be adapted to study the surface instability of orthotropic films due to surface van der
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Waals forces [Wang and Li 2017]. From (2), (4) and (5) it follows that the displacements and tractions
on the lower interface of layer j can be expressed in terms of those on its upper interface as[

ũ( j)
0

σ̃
( j)
0

]
= Q(K j , δ j , ρ j )

[
ũ( j)

1

σ̃
( j)
1

]
, (7)

where the subscripts 0 and 1 denote, respectively, the values on the lower and upper interfaces of layer j ,

ũ( j)
=
[
u( j)

1 u( j)
2 /λ j

]T
, σ̃ ( j)

=
[
λ j s

( j)
11 σ

( j)
12 /k λ2

j s
( j)
11 σ

( j)
22 /k

]T
, K j = kh jλ j ; (8)

Q(K , δ, ρ)=
cosh[K (n+m)]

4nm

×


(n+m)2− δ 0 0 [δ(n−m)2− 1][1− δ(n+m)2]

0 δ− (n−m)2 [1− δ(n−m)2][1− δ(n+m)2] 0
0 −1 (n+m)2− δ 0
1 0 0 δ− (n−m)2


+

cosh[K (n−m)]
4nm

×


δ− (n−m)2 0 0 [1− δ(n−m)2][1− δ(n+m)2]

0 (n+m)2− δ [δ(n−m)2− 1][1− δ(n+m)2] 0
0 1 δ− (n−m)2 0
−1 0 0 (n+m)2− δ



+
sinh[K (n+m)]

4nm(n+m)


0 (n+m)2− δ −[(n+m)2− δ]2 0

δ(n+m)2− 1 0 0 [n−m− δ(n+m)]2

−(n+m)2 0 0 1− δ(n+m)2

0 1 δ− (n+m)2 0



+
sinh[K (n−m)]

4nm(n+m)


0 δ(n+m)2− 1 [n−m− δ(n+m)]2 0

(n+m)2− δ 0 0 −[(n+m)2− δ]2

1 0 0 δ− (n+m)2

0 −(n+m)2 1− δ(n+m)2 0


for ρ 6= 1; (9a)

and

Q(K , δ, ρ)= cosh(K )

I+ K
2


0 1/(1− ν̃) −1/(1− ν̃)2 0

−1/(1− ν̃) 0 0 1/(1− ν̃)2

−1 0 0 1/(1− ν̃)
0 1 −1/(1− ν̃) 0




+
sinh(K )

2


K/(1− ν̃) (1− 2ν̃)/(1− ν̃) −(3− 4ν̃)/(1− ν̃)2 −K/(1− ν̃)2

(1− 2ν̃)/(1− ν̃) −K/(1− ν̃) K/(1− ν̃)2 −(3− 4ν̃)/(1− ν̃)2

−1 −K K/(1− ν̃) −(1− 2ν̃)/(1− ν̃)
K −1 −(1− 2ν̃)/(1− ν̃) −K/(1− ν̃)

 for ρ = 1.

(9b)
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In writing (8), the factors cos kx1 and sin kx1 in the displacements and stresses have been excluded.
Here Q(K , δ, ρ) is a 4×4 transfer matrix. For convenience in the subsequent analysis, the transfer matrix
is written in the following partitioned form

Q(K j , δ j , ρ j )=

[
Q( j)

1 Q( j)
2

Q( j)
3 Q( j)

4

]
, (10)

where Q( j)
1 , Q( j)

2 , Q( j)
3 and Q( j)

4 are four 2× 2 submatrices.
It follows from (7) that the displacements on the two interfaces of layer j can be expressed in terms

of the tractions on the two interfaces of the layer as follows:

ũ( j)
1 = [Q

( j)
3 ]
−1σ̃

( j)
0 − [Q

( j)
3 ]
−1 Q( j)

4 σ̃
( j)
1 ,

ũ( j)
0 = Q( j)

1 [Q
( j)
3 ]
−1σ̃

( j)
0 +

[
Q( j)

2 − Q( j)
1 [Q

( j)
3 ]
−1 Q( j)

4

]
σ̃
( j)
1 .

(11)

In view of the fact the tractions are continuous across all of the interfaces, we have from the above
that

ũ( j)
1 =

1
α j−1β j−1

[Q( j)
3 ]
−1 L j−1σ̃

( j−1)
1 − [Q( j)

3 ]
−1 Q( j)

4 σ̃
( j)
1 , (12a)

ũ( j+1)
0 =

1
α jβ j

Q( j+1)
1 [Q( j+1)

3 ]
−1 L j σ̃

( j)
1 +

[
Q( j+1)

2 − Q( j+1)
1 [Q( j+1)

3 ]
−1 Q( j+1)

4

]
σ̃
( j+1)
1 , (12b)

where

α j =
λ j+1

λ j
, β j =

√√√√ s( j)
11 s( j)

22

s( j+1)
11 s( j+1)

22

, L j =

[
1 0
0 α j

]
. (13)

The interfacial diffusion and sliding conditions on the interface between layer j and layer j + 1 in
(1c) can be equivalently expressed as

L j ˙̃u
( j+1)
0 − ˙̃u( j)

1 =3 j σ̃
( j)
1 , j = 1, 2, . . . , N − 1, (14)

where

3 j =


k

λ j s
( j)
11 ϑ j

0

0
k3 D j

λ3
j s
( j)
11

 . (15)

Substituting (12) into (14), we arrive at

R( j)
1
˙̃σ
( j−1)
1 + R( j)

2
˙̃σ
( j)
1 + R( j)

3
˙̃σ
( j+1)
1 =3 j σ̃

( j)
1 , j = 1, 2, . . . , N − 1, (16)

where

R( j)
1 =−

1
α j−1β j−1

[Q( j)
3 ]
−1 L j−1,

R( j)
2 = [Q

( j)
3 ]
−1 Q( j)

4 +
1

α jβ j
L j Q( j+1)

1 [Q( j+1)
3 ]

−1 L j ,

R( j)
3 = L j

[
Q( j+1)

2 − Q( j+1)
1 [Q( j+1)

3 ]
−1 Q( j+1)

4

]
.

(17)
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By considering the fact that the pressure prescribed on the top surface of the multilayered strip is static
and that the bottom surface of the strip is traction-free (i.e., ˙̃σ (0)1 =

˙̃σ
(1)
0 =

˙̃σ
(N )
1 = 0), (16) can be recast

into the following standard homogeneous state-space equation:

Aξ̇ = Bξ , (18)
where

ξ =


σ̃
(1)
1

σ̃
(2)
1
...

σ̃
(N−1)
1

 , (19)

A=



R(1)2 R(1)3 0 0 · · · 0

R(2)1 R(2)2 R(2)3 0 · · · 0
...

...
...

...
. . .

...

0 · · · 0 R(N−2)
1 R(N−2)

2 R(N−2)
3

0 · · · 0 0 R(N−1)
1 R(N−1)

2


, (20)

B = diag[31 32 · · · 3N−1]. (21)

It is observed that

(i) the state vector ξ is composed of the 2(N − 1) traction components on all of the existing N − 1
interfaces;

(ii) the dimensionless matrix A can be completely determined by the following dimensionless parame-
ters of the N layers: δ j , ρ j , K j ( j = 1, 2, . . . , N ) and α j , β j ( j = 1, 2, . . . , N − 1); and

(iii) the matrix B having the dimension of 1/time depends on the diffusion and sliding properties of the
N − 1 interfaces and is independent of the thicknesses of all the layers.

The general solution to the homogeneous state-space equation in (18) is simply given by

ξ(t)= exp(A−1 Bt)ξ(0), t ≥ 0, (22)

where exp(A−1 Bt) is the state transition matrix, and the initial state ξ(0) can be simply determined by
assuming that all of the interfaces are initially perfectly bonded. Indeed, by assuming that all of the
interfaces are initially perfectly bonded, we can derive the relationship[

ũ(1)0

σ̃
(1)
0

]
=

[
M11 M12

M21 M22

][ũ(N )1

σ̃
(N )
1

]
at t = 0, (23)

where the four 2× 2 sub-matrices M11, M12, M21 and M22 are given by[
M11 M12

M21 M22

]
= Q(K1, δ1, ρ1)× T (α1, β1)× Q(K2, δ2, ρ2)× T (α2, β2)× · · ·

×T (αN−1, βN−1)× Q(KN , δN , ρN ),
(24)

with
T (α, β)= diag[1 α αβ β]. (25)
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In view of the fact that σ̃ (1)0 = 0 and σ̃ (N )1 =−(p0

√
s(N )11 s(N )22 /k)[0 1]T at any time, we find from (23)

that

ũ(N )1 =

p0

√
s(N )11 s(N )22

k
M−1

21 M22

[
0
1

]
at t = 0. (26)

Consequently, the initial displacements and tractions on the upper interface of layer j at can be arrived
at by using the recursion relation[

ũ( j)
1

σ̃
( j)
1

]
= T (α j , β j )× Q(K j+1, δ j+1, ρ j+1)

[
ũ( j+1)

1

σ̃
( j+1)
1

]
, j = N − 1, N − 2, . . . , 1 at t = 0. (27)

The initial state ξ(0) can then be extracted from the above expression. It is seen from (22) that as
time t approaches infinity, all of the interfacial tractions will be relaxed to zero. The evolution of the
displacements on the upper interfaces of the N layers can then be obtained from (12a). Consequently,
the field variables at any position within layer j and at any time can be determined from (7) with h j

reinterpreted as the distance to the upper interface of layer j . In addition, the relaxation times of the
multilayered strip can be obtained by solving the following generalized eigenvalue problem:

(A+ ηB)v = 0, (28)

where η is the eigenvalue and v the associated eigenvector. Equation (28) follows immediately from
(18) by assuming the solution to be of the form ξ = ve−t/η. The 2(N − 1) positive real eigenvalues
η1, η2, . . . , η2(N−1) are just the 2(N − 1) relaxation times of the laminated plate.

3. Illustrative examples and discussion

In this section, we demonstrate the exact solution derived in the previous section via

(i) a bilayered strip,

(ii) a trilayered strip, and

(iii) a 1001-layered strip.

Remember that the factors cos kx1 and sin kx1 have been excluded in the illustrations of displacements
and stresses.

3.1. A bilayered strip. We first consider a bilayered orthotropic strip. For a bilayered strip with N = 2,
both A and B are 2× 2 matrices and are given by

A= R(1)2 [Q
(1)
3 ]
−1 Q(1)

4 +
1

α1β1
L1 Q(2)

1 [Q
(2)
3 ]
−1 L1,

B =31.

(29)

In this case, analytical expressions of the two relaxation times of the bilayered strip are given by

η1,2 =−(A11χ + A22γ )±
√
(A11χ − A22γ )

2
+ 4A12 A21χγ > 0, (30)
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Figure 2. The larger relaxation time η1 of a bilayered strip as a function of K1 for
different values of α1 with δ1 = δ2 =−

1
3 , ρ1 = ρ2 = 0.5, β1 = 1, h1 = h2, χ = γ = t0.

where

χ =
λ1s(1)11 ϑ1

2k
, γ =

λ3
1s(1)11

2k3 D1
. (31)

We illustrate in Figures 2 and 3 the two relaxation times η1 and η2 as functions of K1 for different
values of α1 with δ1 = δ2 =−

1
3 , ρ1 = ρ2 = 0.5, β1 = 1, h1 = h2, χ = γ = t0. The elastic constants for

layer 2 are obtained after an in-plane coordinate rotation of the angle π/2 for layer 1. It is seen from
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Figure 3. The smaller relaxation time η2 of a bilayered strip as a function of K1 for
different values of α1 with δ1 = δ2 =−

1
3 , ρ1 = ρ2 = 0.5, β1 = 1, h1 = h2, χ = γ = t0.
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Figure 4. The evolution of the normal and shear tractions on the interface with δ1 =

δ2 =−
1
3 , ρ1 = ρ2 = 0.5, K1 = 1, α1 = 0.5, β1 = 1, h1 = h2, χ = γ = t0.

the two figures that as the thickness of the strip increases (or equivalently K1 increases), the relaxation
times decrease. Figure 4 shows the evolution of the normal and shear tractions on the interface with
δ1= δ2=−

1
3 , ρ1=ρ2=0.5, K1=1, α1=0.5, β1=1, h1=h2, χ=γ = t0. It is observed from Figure 4 that

(i) the shear traction decays faster than the normal traction;

(ii) the interfacial tractions evolve on the time scale of the larger relaxation time η1 = 138.8522t0 and
their magnitudes are minimal when t > 3η1.

When h1, h2→∞, the two relaxation times of a bilayered strip are given explicitly by

η1,2 = 2χ(n1+α
−1
1 β−1

1 n2)+ 2γ (n1+α1β
−1
1 n2)

± 2
√
[χ(n1+α

−1
1 β−1

1 n2)− γ (n1+α1β
−1
1 n2)]

2
+χγ [1+ δ1−β

−1
1 (1+ δ2)]

2, (32)

where χ and γ have been defined by (31). The above analytical result is derived using analytic continu-
ation and the positive definite Hermitian matrix for an orthotropic material in [Suo 1990, (9.6)]. If the
two half-planes of the bimaterial are elastically isotropic, we have

α1 = λ1 = λ2 = n1 = n2 = 1, β1 =
µ2(1− ν1)

µ1(1− ν2)
; s( j)

11 =
1− ν j

2µ j
, δ j =

ν j

ν j − 1
, j = 1, 2, (33)

where µ and ν are the shear modulus and Poisson’s ratio. In this case, (32) simply reduces to [Wang and
Wang 2016, (38)].

Furthermore, we note that the relaxation times in Figures 2 and 3 for K1 = 5 are very close to the
result in (32).
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3.2. A trilayered strip. Next we consider a trilayered orthotropic strip. For a trilayered strip with N = 3,
both A and B are 4× 4 matrices and are given by

A=

[
R(1)2 R(1)3

R(2)1 R(2)2

]
, B = diag[31 32]. (34)

It is convenient to numerically determine the four relaxation times in the trilayered strip. For example,
if the parameters of the trilayered strip are chosen as

δ1 = δ2 = δ3 =−
1
3 , ρ1 = ρ2 = ρ3 = 0.5, h1 = h2 = h3, K1 = 1,

α1 =
1
α2
= 0.5, β1 = β2 = 1, ϑ1 = ϑ2, D1 = D2, χ = γ = t0, (35)

where χ and γ have been defined by (31); the four relaxation times of the trilayered strip are determined
as

η1 = 258.9914t0, η2 = 38.3432t0, η3 = 21.5497t0, η4 = 13.6673t0. (36)

In this example, the top and bottom layers have identical elastic constants, whilst the elastic constants
for the middle layer are obtained after an in-plane coordinate rotation of the angle π/2 for the top
or bottom layer. We illustrate in Figure 5 the evolution of the normal and shear tractions on the two
interfaces. It is observed from Figure 5 that

(1) the tractions on the lower interface and the shear stress on the upper interface will eventually change
sign with time whilst the normal traction on the upper interface will always maintain its sign;

(2) on each interface, the shear traction decays faster than the normal traction;

(3) at any instant, the magnitude of the normal traction on the upper interface is always higher than that
on the lower interface.

3.3. A 1001-layered strip. Finally, we consider a strip composed of 1001 identical orthotropic layers
of equal thickness. The diffusional and sliding properties on all of the interfaces are identical (i.e.,
ϑ1 = ϑ2 = · · · = ϑ1000 and D1 = D2 = · · · = D1000). Our results indicate that the relaxation times are
independent of the specific value of δ. We further set K1 = 1 and χ = γ = t0, where χ and γ have been
defined by (31). The variation of all the 2(N − 1)= 2000 relaxation times η j as a decreasing function
of j for different values of ρ is illustrated in Figure 6. It is observed from Figure 6 that

(i) the relaxation times are increasing functions of ρ, which implies that a decrement in ρ will expedite
the relaxation process;

(ii) the curve for ρ→−1 forms the lower bound of the relaxation times;

(iii) there is a large jump between η1001 and η1002, there is a small jump between η999 and η1000.

4. Conclusions

Based on the rigorous theory of elasticity, we derive an exact solution to the plane strain problem as-
sociated with a multilayered orthotropic elastic strip with simultaneous interfacial diffusion and rate-
dependent sliding. By using the transfer matrix method and by enforcing the diffusion and sliding
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Figure 5. The evolution of the normal and shear tractions on the two interfaces in the
trilayered strip described by (35).
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conditions on all of the existing interfaces, we obtain a homogeneous state-space equation with state
variables identified as the traction components on the interfaces. Once the initial values of the interfacial
tractions are known by assuming that initially all interfaces are perfectly bonded, the evolution of the
state variables can be uniquely determined. It is seen that the transfer matrix Q(K , δ, ρ) and the state
transition matrix exp(A−1 Bt) are the key components of our solution. Using Matlab, numerical results
for relaxation times and evolution of interfacial tractions for bilayered, trilayered and 1001-layered or-
thotropic strips are presented to demonstrate the exact solution. The solution strategy adopted in this
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research can also be employed to study the case in which the orthotropic elastic coefficients of each
layer vary continuously along the thickness direction.
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