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JIA BUYU, CHEN ZHOU, YU XIAOLIN AND YAN QUANSHENG

Research on pedestrian-bridge dynamic interaction has intensified in recent years after the occurrence
of several footbridge accidents caused by pedestrian-induced vibration. This study focuses on the anal-
ysis of pedestrian-induced lateral vibration of footbridges by considering the time delay and feedback
adjustment that occur in the interaction between the pedestrians and the footbridge. A detailed nonlinear
lateral vibration model is first established. Then, the bifurcation and stability of this model around the
critical value of time delay is discussed using a qualitative method. Moreover, response amplitude and
the critical number of pedestrians are evaluated using a multiscale method. Analysis of the results shows
that the time delay and feedback adjustment play important roles in controlling the lateral vibration of
the footbridge.

1. Introduction

Pedestrian load is considerably smaller than vehicle load; consequently, pedestrian-induced vibration of
footbridges has not aroused considerable attention until the occurrence of the Millennium Bridge accident
in London, which was caused by large lateral vibration. Unlike a running vehicle, a pedestrian creates an
alternating motion as they walk with their two legs; this does not only produce a vertical force but also
lateral and longitudinal forces. The normal pedestrian walking frequency ranges from 1.6 Hz to 2.4 Hz
in the vertical direction, from 0.8 Hz to 1.2 Hz in the lateral direction, and from 0.8 Hz to 1.2 Hz in the
longitudinal direction [Živanović et al. 2005]. Meanwhile, the fundamental frequencies of most flexible
footbridges are less than 3.0 Hz, which indicates that the walking frequency of pedestrians falls within
the range of the fundamental frequency of most footbridges. That is, the walking action of a pedestrian
may easily cause resonance on a footbridge. Accidents caused by large vibrations have occurred in recent
years. For example, a steel suspension footbridge in the Sichuan Province in China collapsed in 2010
because of a large lateral vibration caused by walking tourists; the accident left over 28 people injured
[Qin 2013]. Apart from causing collapse failure, the footbridge vibration frequently leads to discomfort
among pedestrians. Pedestrians are highly sensitive to footbridge vibration; therefore, a large footbridge
vibration can make pedestrians feel uncomfortable and even cause panic in a crowd. The large lateral
vibration of the Millennium Bridge is a famous example [Dallard et al. 2001a]. The Millennium Bridge
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was temporarily closed for 20 months until the vibration was reduced by implementing several temporary
solutions. This incident has become a symbol of pedestrian-induced vibration of footbridges.

Since the occurrence of large lateral vibration of the London Millennium Bridge during its inaugu-
ration, experts have started to study the involved mechanisms. In recent years, a number of tests and
theoretic models have been investigated to explain the large lateral vibration of footbridges.

Prior to the retrofit of the Millennium Bridge, a full scale test was implemented [Dallard et al. 2001a].
The test showed that there exists a critical number of pedestrians needed to trigger a divergence of lateral
vibration. The test also showed that the pedestrian-induced lateral force is proportional to the velocity of
bridge, which means the action of pedestrians could be treated as negative viscous dampers. Brownjohn
et al. [2004a; 2004b] performed a test on pedestrians circumambulating on a bridge in the Singapore
Changi Airport. According to the test, pedestrians might slow down or stop moving forward, depending
on the state of bridge vibration. The test also showed that the critical number of pedestrians cannot be
determined in a repeatable way due to the randomness of pedestrian walking characteristics.

While walking on a lateral vibrating footbridge, pedestrians continually adjust their states to walk
comfortably, and the phenomenon of “lock-in” (pedestrians synchronizing their steps with the bridge’s
movement) may occur when the walking frequency of pedestrians is close to the bridge’s lateral natural
frequency, which further enhances the lateral vibration. Dallard et al. [2001a] defined this kind of mecha-
nism as Synchronous Lateral Excitation (SLE). To explain the large pedestrian-induced lateral vibration,
several models have been proposed and classified into linear response models and nonlinear response
models [Ingólfsson et al. 2012]. Linear response models can also be regarded as direct resonance models,
where the lateral vibrations are caused by direct resonance; namely, the pedestrian walking frequency
is in resonance with the natural frequency of one or more lateral vibration modes. Fujino et al. [1993]
considered the direct resonance as the source that excites the large pedestrian-induced lateral vibration
and used a linear monodimensional damped dynamical system to analyze the lateral vibration of the T-
Bridge. The test on the Millennium Bridge [Dallard et al. 2001a] showed that the first lateral frequency
of the central span is 0.48 Hz, which does not fall in the range of pedestrian lateral walking frequencies.
This means the direct resonance is not able to explain the large vibration of the first lateral mode of the
central span of the Millennium Bridge. It is interesting to note that the second lateral frequency of the
central span is around 1 Hz, which may lead to a mixed resonant-parametric excitation. However, such
higher mode excitation will not be considered here, as the research’s object is the large vibration of the
first lateral mode.

For the nonlinear response model, there are several remarkable models. Based on the Dallard model
[Dallard et al. 2001a], which is widely used as a stability criterion to estimate the number of pedestrians
needed to trigger large lateral vibration, Nakamura [2004] proposed a refined model by multiplying the
lateral force with a modulated function. The modulated function represents the self-limiting nature of the
pedestrian synchronization: pedestrians will reduce their walking speed, or completely stop, when the
bridge’s velocity becomes large. Yuan [2006] proposed an empirical model, in which the dynamic load
factor and the probability of synchronization depend on the vibration amplitude. In this model, both of
the self-excited effect caused by the synchronized pedestrians and the forced vibration effect caused by
the unsynchronized pedestrians are considered, and a nonlinear equation for stability criterion is derived
to estimate the critical number of pedestrians. Blekherman [2005] proposed an autoparametric resonance
model to explain the large lateral vibration. Based on the model of Blekherman, the large lateral vibration
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in the footbridge can be attributed to the existence of an integer ratio between vertical and lateral mode
frequencies. For example, there is a 2 : 1 ratio between the third vertical mode frequency (1.89 Hz) and the
second lateral mode frequency (0.95 Hz) in central span of the Millennium Bridge, as well as a 2 : 1 ratio
between the third vertical mode frequency (2.0 Hz) and the first lateral mode frequency (1.0 Hz) in the
T-Bridge. Besides the autoparametric resonance model, there is another parametric resonance nonlinear
model proposed by Piccardo and Tubino [2008], which is based on a displacement-dependent nonlinear
lateral force model. According to this model, the large lateral vibration in the flexible footbridge can be
attributed to the parametric resonance in which the lateral natural frequency is equivalent to half of the
pedestrian lateral walking frequency. For example, in the Millennium Bridge, the first lateral frequency
(0.48 Hz) is nearly half of the pedestrian lateral walking frequency (1.0 Hz).

As mentioned previously, pedestrians will make a feedback adjustment according to the bridge vibra-
tion. During the process of adjustment, there exists a time delay among the pedestrian-bridge interaction.
Based on the Nakamura model, Liu and Xie [2013] proved that the time delay has a great influence on the
lateral vibration of footbridge. Newland [2004] assumed that pedestrian movement was composed of two
parts. The first part is the natural movement of a pedestrian while walking on a stationary pavement; the
second part is the movement caused by the bridge vibration, which is proportional to the bridge amplitude
with a time delay. However, Newland did not conduct a specific study on the effect of time delay.

The Millennium Bridge is used as the background in this study. A qualitative analytical method and a
multiscale method are used to analyze pedestrian-induced lateral vibration of a footbridge by considering
the time delay and feedback adjustment. In addition, the effects of time delay and feedback adjustment
on the critical number of pedestrians and response amplitude are discussed.

2. Basic nonlinear vibration model

A footbridge is modeled as a beam under the action of pedestrians. A segment with length ds, which is
x distance from the beam support, is considered (Figure 1).

The cross sections are assumed to remain normal to the deformed axis. Using the displacement method,
the equilibrium equation of lateral motions at the centroid is obtained as [Chopra 1981]

(ρs A+m p)
∂2w

∂t2 ds+µ2
∂w

∂t
ds =

∂

∂s
(N sin θ − Q cos θ) ds+ fl ds, (1)

where ρs is the density of the footbridge, A is the section area, m p is the crowd mass per meter along the
bridge, w(x, t) is the lateral displacement, µ2 is the lateral damping coefficient of the footbridge, θ is the

w(x, t)

u(x, t)

N
θ

M Q
ds

Q+ ∂Q
∂s ds

M + ∂M
∂s ds N + ∂N

∂s ds

θ + ∂θ
∂s ds

fl

Figure 1. Segment equilibrium.
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section angle, N (x, t) is the axial force, Q(x, t) is the shear force, and fl is the lateral force of pedestri-
ans. Realizing that the pedestrian motion is harmonic and that there exists a time delay (the footbridge
vibration does not vary immediately) between the bridge and the pedestrians when the pedestrians-bridge
action takes place, the expression of fl with consideration of a time delay τ can be written as

fl(t − τ)= λαlm pg cos(ωp(t − τ)), (2)

where λ is the pedestrian synchronous coefficient (according to Piccardo and Tubino [2008], the value
of λ in the Millennium Bridge is set as λ = 0.3), g is the acceleration of gravity, ωp is the pedestrian
walking frequency, and αl is the lateral dynamic loading factor of the first harmonic (the ratio between
the lateral dynamic force and the pedestrian weight).

According to the measured data from the literature [Dallard et al. 2001a], it can be found that the
pedestrian lateral force is proportional to the lateral velocity of footbridge. Thus, it is assumed that there
is a linear relationship between the pedestrian lateral force and the lateral velocity of footbridge, and αl

can be defined as
αl = αl1+αl2

∂w(x, t−τ)
∂t

, (3)

where αl1 is the dynamic load coefficient while walking on stationary pavement and αl2 is the dynamic
load coefficient related to the lateral velocity of footbridge. Subsequently, the pedestrian lateral force
can be rewritten as

fl(t − τ)= λ
[
αl1+αl2

∂w(x, t − τ)
∂t

]
m pg cos(ωp(t − τ)). (4)

The fit method is used to approximate the linear relationship between the dynamic load coefficient
and the lateral velocity of footbridge (Figure 2). The fitting results show that the values of αl1 and αl2 in
the Millennium Bridge are αl1 = 0.04 and αl2 = 0.7.

Assuming that shear force Q(x, t) and moment M(x, t) exhibit the relationship Q = ∂M/∂s =
cos θ(∂M/∂x), then (1) can be rewritten as

(ρs A+m p)
∂2w

∂t2 +µ2
∂w

∂t
=
∂

∂x

(
N sin θ − ∂M

∂x
cos2 θ

)
cos θ + fl(t − τ). (5)

0.10

0.08

0.06

0.04

0.02

0

D
yn

am
ic

 lo
ad

 c
oe

ff
ic

ie
nt

Velocity of footbridge
0 0.02 0.04 0.06 0.08 0.10

Static
f = 0.95
f = 0.75
Linear fit

Figure 2. Dynamic load coefficient versus lateral velocity of footbridge.
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Through the stress integration on the section, the axial force caused by lateral bend is obtained as

N (x, t)=
∫∫

EεN dA = E
∫∫

∂
[∫ x

0

√
1+ (∂w/∂x)2 dx − x

]
∂s

dA, (6)

where εN is the normal strain caused by lateral bend. N (x, t) is rewritten (based on the first-order Taylor
Series expansion of εN and cos θ ) as

N (x, t)≈ E
∫∫

∂
[∫ x

0

[
1+ 1

2(∂w/∂x)2
]

dx − x
]

∂s
cos θ dA

= E
∫∫

1
2

(
∂w

∂x

)2
cos θ dA ≈ 1

2
E A

(
∂w

∂x

)2
. (7)

The moment caused by section rotation is obtained as

M(x, t)= E I
∂θ

∂x
= E I

∂2w

∂x2 . (8)

Taking the first-order Taylor series expansion of sin θ yields sin θ ≈ θ = ∂w/∂x . Accordingly, one
has cos θ ≈ 1− (∂w/∂x)2. Then substituting (7) and (8) into (5), the dynamic equation that contains the
only unknowns of the lateral displacement is obtained as

(ρs A+m p)
∂2w

∂t2 +µ2
∂w

∂t
+ E I ∂

4w

∂x4

=
3
2 E A

(
∂w

∂x

)2 ∂2w

∂x2 + E I ∂
4w

∂x4

(
∂w

∂x

)2
+ 6E I ∂

3w

∂x3
∂2w

∂x2
∂w

∂x
+ 2E I

(
∂2w

∂x2

)3
+ fl(t − τ). (9)

When walking on a lateral vibrating footbridge, pedestrians would adjust their strides to walk comfort-
ably, according to the feedback of vibration. The action exerted by the pedestrians on the bridge changes
with the bridge vibration. During the early stage of adjustment, the pedestrians’ action based on the
feedback of vibration may continually enhance the vibration. However, when the lateral vibration ampli-
tude of bridge becomes large enough to make the pedestrians feel uncomfortable, pedestrians will reduce
their walking speed or stop walking to lower their actions on the bridge, and then the bridge vibration
decreases. These findings suggest that the pedestrians’ feedback adjustment is a very complicated process.
The mechanism of pedestrians’ feedback adjustment involves some uncertain influencing factors, such
as pedestrians’ psychology, bridge deck typology, human-human interaction, etc. Unfortunately, there is
no model or law so far that can precisely describe the pedestrians’ feedback adjustment. In this study, a
factor ζ is used to comprehensively represent these influencing factors. Then the term ζw(t − τ), which
is obtained by multiplying the factor ζ with the lateral displacement of the bridge that allows for the time
delay, is introduced to describe the action of feedback adjustment. By adding the term ζw(t − τ) into
the (9), we obtain the following:

(ρs A+m p)
∂2w

∂t2 +µ2
∂w

∂t
+ E I ∂

4w

∂x4

=
3
2 E A

(
∂w

∂x

)2 ∂2w

∂x2 +E I ∂
4w

∂x4

(
∂w

∂x

)2
+6E I ∂

3w

∂x3
∂2w

∂x2
∂w

∂x
+2E I

(
∂2w

∂x

)3
+ fl(t−τ)+ζw(t−τ). (10)
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This study intends to explain the large first lateral vibration of the central span of the Millennium
Bridge on the basis of parametric vibration. The second-order factor will not be considered in this study,
because the second-order factor corresponds to a direct resonance at second lateral mode (the second
lateral frequency of the central span is close to the pedestrian lateral walking frequency). Therefore, the
first-order mode w(x, t)=ψ(x)w1(t) is only considered, where the mode shape function is considered as

φ(x)= sin(πx/ l). (11)

By using the Galerkin method to execute a discretization, the corresponding modal differential equa-
tion is given as

ẅ1(t)+ζ1ẇ1(t)+ω2
1w1(t)−ζ2 cos(ωp(t−τ))ẇ1(t−τ)+βw3

1(t)−hw1(t−τ)−F0 cos(ωp(t−τ))=0, (12)

where ζ1 = 2ζ0ω1 (ζ0 is the damping ratio of a footbridge), and

ω1 =

√
E Iπ4

l4(ρs A+m p)
, ζ2 =

λαl2m pg
ρs A+m p

, β =
10E Iπ6

+ 3π4l2 E A
8l6(ρs A+m p)

,

F0 =
4λαl1m pg
π(ρs A+m p)

, and h =
4ζ

π(ρs A+m p)
.

3. Critical values of time delay

Let q1(t)= w1(t) and q2(t)= ẇ1(t). Equation (12) can be rewritten as

q̇1(t)= q2(t),

q̇2(t)=−ζ1q2(t)+ ζ2 cos(ωp(t − τ))q2(t − τ)

−ω2
1q1(t)−βq3

1 (t)+ hq1(t − τ)+ F0 cos(ωp(t − τ)).

(13)

Let ζ̄2 = ζ2 cos(ωp(t − τ)). The following characteristic equation that corresponds to (13) can be
obtained by adopting a linearization method [Zhen et al. 2013]:

λ2
+ ζ1λ+ω

2
1− ζ̄2λe−λτ − he−λτ = 0. (14)

Let λ = κ + iν and substitute it into (14). The real part and the imaginary part can be respectively
expressed by

κ2
− ν2
+ ζ1κ +ω

2
1− ζ̄2e−λτ [κ cos(ντ)+ ν sin(ντ)] − he−κτ cos(ντ)= 0, (15)

2κν+ ζ1ν− ζ̄2e−λτ [ν cos(ντ)− κ sin(ντ)] + he−κτ sin(ντ)= 0. (16)

Hopf bifurcation may occur near the origin of (14) when κ changes within a small range around zero;
thus, (15) and (16) can be respectively rewritten as

−ν2
+ω2

1 = ζ̄2ν sin(ντ)+ h cos(ντ), (17)

ζ1ν = ζ̄2ν cos(ντ)− h sin(ντ). (18)

Combining (17) with (18) and considering the elimination of time delay τ yields

ν4
− (2ω2

1+ ζ̄
2
2 − ζ

2
1 )ν

2
+ω4

1− h2
= 0. (19)
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According to (17) and (19), we have

νk =

√√√√2ω2
1+ ζ̄

2
2 − ζ

2
1 ±

√
4h2+ (ζ̄ 2

2 − ζ
2
1 )

2+ 4ω2
1(ζ̄

2
2 − ζ

2
1 )

2
, k = 1, 2; (20)

τn,k =
1
ν1,2

[
arcsin

(
ω2

1− ν
2
1,2√

ζ̄ 2
2 ν

2
1,2+ h2

)
− arctan

( h
ζ̄2ν1,2

)
+ 2nπ

]
, n = 0, 1, 2, 3, . . . k = 1, 2. (21)

When τ = τn,k , the complex conjugate roots of (14) may cross the imaginary axis if the following
conditions are satisfied:

(1) a real root of (19) exists, and

(2) the real part of dλ/dτ is not equal to zero.

The stability and bifurcation of (14) is considered in this study. Note that κ and ν in (15) and (16) are
functions of τ ; hence, the solutions with the form of κ(τ)± iν(τ) are considered. Let κ(τn,k)= 0, νk =

νk(τn,k), and n = 0, 1, 2, 3, . . . , k = 1, 2. Implementing the partial derivative with (15) and (16) yields

[ζ1+ hτ cos(νkτ)− ζ̄2 cos(νkτ)+ ζ̄2τνk sin(νkτ)]
dκ
dτ

+
[
− 2νk + hτ sin(νkτ)− ζ̄2 sin(νkτ)− ζ̄2τνk cos(νkτ)

]dνk

dτ
=−hνk sin(νkτ)+ ζ̄2ν

2
k cos(νkτ), k = 1, 2; (22)

[2νk − hτ sin(νkτ)+ ζ̄2 sin(νkτ)+ ζ̄2τνk cos(νkτ)]
dκ
dτ

+ [ζ1+ hτ cos(νkτ)− ζ̄2 cos(νkτ)+ ζ̄2τνk sin(νkτ)]
dνk

dτ
=−hνk sin(νkτ)− ζ̄2ν

2
k sin(νkτ), k = 1, 2. (23)

Combining (22) with (23) yields
dκ
dτ
=

L1

L2
, (24)

where

L1 =−νk[ζ
2
2 νk + (2ζ̄2ν

2
k + ζ1h) sin(νkτ)+ (2hνk − ζ1ζ̄2νk) cos(νkτ)],

L2 = [ζ1+ hτ cos(νkτ)− ζ̄2 cos(νkτ)+ ζ̄2τνk sin(νkτ)]
2

+ [2νk − hτ sin(νkτ)+ ζ̄2 sin(νkτ)+ ζ̄τνk cos(νkτ)]
2, k = 1, 2.

Substituting τ = τn,1 and τ = τn,2 (τn,1 < τn,2) into (24) yields

dκ
dτ

∣∣∣
τ=τn,1

< 0, n = 0, 1, 2, 3, . . . ; (25)

dκ
dτ

∣∣∣
τ=τn,2

> 0, n = 0, 1, 2, 3, . . . . (26)

According to (25) and (26), the stable and unstable regions can be obtained as follows:
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τ 0

h

τ0,1

τ0,2

Figure 3. Relationship between the critical value of time delay and the feedback adjust-
ment factor.

(1) When dκ/dτ |τ=τn,1 < 0, a pair of eigenvalues cross the imaginary axis, and the real part of the
eigenvalues changes from positive to negative. At that moment, the system tends to be stable with
an increase in time delay.

(2) When dκ/dτ |τ=τn,2 > 0, a pair of eigenvalues cross the imaginary axis, and the real part of the
eigenvalues changes from negative to positive. At that moment, the system tends to be unstable
with an increase in time delay.

Hence, when h has a certain value, time delay τ will have two corresponding critical values, i.e., τn,1

and τn,2, and bifurcations will occur near τn,1 and τn,2. Given that τn,1 < τn,2, the system is initially
stable. When τ arrives at τn,2, bifurcation occurs, and the system has no real solution. Subsequently,
when τ arrives at τn,2, bifurcation occurs again; at that moment, the system has real solutions. These
findings suggest that the lateral vibration of the bridge at first decreases in amplitude as the time delay
increases, then it stops altogether when the time delay is in the range [τn,1τn,2], and then its amplitude
starts increasing again with time delay when the time delay exceeds τn,2.

Figure 3 shows the relationship between the critical value of time delay and the feedback adjustment
factor under n = 0 and ζ̄2 = 0.8ζ2. Some conclusions can be derived from Figure 3 as follows:

(1) When the feedback adjustment factor is fixed at a certain value, the variation of time delay will make
the system shift from a balanced state to an unbalanced state and then to another balanced state.

(2) The critical values of time delay depend on whether the feedback adjustment factor h is positive
(pedestrian exerts a feedback adjustment action in an opposite direction to the displacement) or
negative (pedestrian exerts a feedback adjustment action in the same direction to the displacement).

(3) The critical values of time delay vary dramatically around the point of h = 0, which denotes that a
small feedback adjustment factor will have a relatively large influence on the critical values of time
delay.

The aforementioned analysis belongs to the qualitative analysis domain. In the next section, we will
adopt a quantitative analysis theory (multiscale method) to discuss the influences of time delay and
feedback adjustment on pedestrian-induced lateral vibration of a footbridge.
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4. Nonlinear parametric resonance

Back to (12), since the pedestrian modal mass is usually small compared with the structural modal mass,
ζ2 is naturally small, which can be represented by a small parameter ε; moreover, the terms ζ1, β, h
and F0 are also small, and they are assumed small enough to be of the same order as ε. Hence, these
parameters mentioned above are rewritten as follows:

ζ2 = ε, ζ1 = εζ̃1, β = εβ̃, h = εh̃, F0 = ε F̃0. (27)

Letting r(t)= w1(t) and substituting (27) into (12) yields

r̈(t)+εζ̃1ṙ(t)−ε cos(ωp(t−τ))ṙ(t−τ)ω2
1r(t)+εβ̃r3(t)−εh̃r(t−τ)−ε F̃0 cos(ωp(t−τ))= 0. (28)

The multiscale method is used to solve (28). The first-order approximation with two time scales is
introduced as

r(t)= r0(T0, T1)+ εr1(T0, T1)+ O(ε2), Tn = ε
nt, n = 0, 1;

rτ (t)= r0τ (T0, T1)+ εr1τ (T0, T1)+ O(ε2).
(29)

Consider the following differential operators:

d
dT
=

∂

∂T0
+ ε

∂

∂T1
+ O(ε2)≡ D0+ εD1+ O(ε2),

d2

dT 2 = D2
0 + 2εD0 D1+ O(ε2).

(30)

Substituting (29) and (30) into (28), and equating the same power of ε yields

ε0
: D2

0r0+ω
2
1r0 = 0, (31)

ε1
: D2

0r1+ω
2
1r1 =−2D0 D1r0− ζ̃1 D0r0+ D0r0τ cos(ωp(t − τ))

− β̃r3
0 + h̃r0τ + F̃0 cos(ωp(t − τ)). (32)

The solution to (31) is
r0(T0, T1)= A(T1)e jω1T0 + A(T1)e− jω1T0 . (33)

The time delay term can then be written as

r0τ (T0, T1)= Aτ (T1)e jω1(T0−τ)+ Aτ (T1)e− jω1(T0−τ), (34)

where A(T1) and Aτ (T1) denote the complex functions with respect to T1, which will be determined
later; and A(T1) and Aτ (T1) denote the complex conjugate of A(T1) and Aτ (T1), respectively.

Substituting (33) and (34) into (32) yields

D2
0r1+ω

2
1r1 =−(2D1 Ajω1+ ζ̃1 Ajω1)e jω1T0 +

1
2 jω1(Aτ e j (ωp+ω1)(T0−τ)− Aτ e j (ωp−ω1)(T0−τ))

− β̃(A3e3 jω1T0 + 3A2 Ae jω1T0)+ h̃ Aτ e jω1(T0−τ)+
1
2 F̃0e j (ωpT0−ωpτ)+ cc, (35)

where cc denotes the complex conjugate of all the preceding terms on the right side. On the basis of
(35), parametric vibration will occur when ωp ≈ 2ω1, whereas forced vibration will occur when ωp ≈ ω1.
Parametric vibration and forced vibration cannot occur simultaneously under the action of pedestrian
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lateral force when considering the first lateral mode of bridge; thus, only parameter vibration ωp ≈ 2ω1

is considered in this section. A detuning parameter σ is added, and the equation is assumed as

ωp = 2ω1+ εσ. (36)

Eliminating the secular terms in (35) yields

2D1 Ajω1+ ζ̄1 Ajω1+
1
2 jω1 Aτ e jσT1e− j (ω1+εσ )τ − h̃ Aτ e− jω1τ + 3β̃A2 A = 0. (37)

When the time delay is not large and ε is extremely small, Aτ and Aτ can be respectively rewritten
by using Taylor expansion as follows:

Aτ (T1)= A(T1− ετ)= A(T1)− ετ A′(T1)+
1
2ε

2τ 2 A′′(T1)≈ A(T1), (38)

Aτ (T1)= A(T1− ετ)= A(T1)− ετ A′(T1)+
1
2ε

2τ 2 A′′(T1)≈ A(T1). (39)

Then, (37) becomes

2D1 Ajω1+ ζ̄1 Ajω1+
1
2 jω1 A(T1)e jσT1e− j (ω1+εσ )τ − h̃ A(T1)e− jω1τ + 3β̃A2 A = 0. (40)

For convenience, the complex function A(T1) is written in polar form as

A(T1)=
1
2a1(T1)e jφ1(T1), (41)

where a1(T1) and φ1(T1) are real functions of T1. By substituting (41) into (40) and separating the
resulting equation into real and imaginary parts, we obtain the following:

D1a1 =−
1
2 ζ̃1a1−

1
4a2 cosψ cos((ω1+ εσ )τ)−

1
4a1 sinψ sin((ω1+ εσ )τ)−

h̃a1

2ω1
sin(ω1τ), (42)

D1ψ = σ +
1
2 sinψ cos((ω1+ εσ )τ)−

1
2 cosψ sin((ω1+ εσ )τ)−

3β̃a2
1

4ω1
+

h̃
ω1

cos(ω1τ), (43)

where ψ = σT1− 2φ1. For a steady primary resonance, D1a1 = D1ψ = 0, which leads to the following
equations with consideration of (27):

1
2ζ1+

h
2ω1

sin(ω1τ)=−
1
4ζ2 cosψ cos((ω1+ εσ )τ)−

1
4ζ2 sinψ sin((ω1+ εσ )τ), (44)

εσ −
3βa2

1

4ω1
+

h
ω1

cos(ω1τ)=
1
2ζ2 cosψ sin((ω1+ εσ )τ)−

1
2ζ2 sinψ cos((ω1+ εσ )τ). (45)

By squaring both sides of (44) and (45) and adding the resulting equations, the amplitude-frequency
equation and the phase-frequency equation can be respectively obtained as(

ζ1+
h
ω1

sin(ω1τ)
)2
+

(
εσ −

3βa2
1

4ω1
+

h
ω1

cos(ω1τ)

)2

=
1
4ζ

2
2 , (46)

tanψ =

3βa2
1

4ω1
−

h
ω1

cos(ω1τ)− εσ −
[
ζ1+

h
ω1

cos(ω1τ)
]

tan((ω1+ εσ )τ)[
σ −

3βa2
1

4ω1
+

h
ω1

cos(ω1τ)

]
tan((ω1+ εσ )τ)−

[
ζ1+

h
ω1

cos(ω1τ)
] . (47)
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Figure 4. Relationship between phase angle and time delay (h = 0.05).

From (46), it can be known that [ζ1 + h/ω1 sin(ω1τ)]
2
≤

1
4ζ

2
2 . Note that ζ2 is probably very small,

hence a physical limit range of h can be obtained as |h| ≤ ω1ζ1.
According to (46) and (47), the time delay and feedback adjustment have made a difference in both

amplitude and phase.
Figure 4 shows the relationship between phase angle and time delay under different detuning parame-

ters when h = 0.05 (rad/s)2. As shown in the figure, phase angle changes with time delay, and it has the
envelope amplitudes around ±90. Moreover, the curves of εσ > 0 and the curves of εσ < 0 are distributed
symmetrically on the opposite two sides of the curve of εσ = 0. It is noted that, when time delay is near
the region centered around τ =−0.23, the difference between the curve of εσ > 0 and that of εσ < 0 is
slight, whereas the difference increases as the time delay becomes farther from the center point.

Solving (46) yields

a1 =

√
4h
3β

cos(ω1τ)+
4ω1

3β
εσ ±

4ω1

3β

√
1
4ζ

2
2 −

(
ζ1+

h
ω1

sin(ω1τ)
)2
. (48)

According to (48), the effect of time delay on response amplitude will be periodic because the time
delay is embedded into the triangular functions.

5. Effects of displacement feedback adjustment and time delay on response amplitude

The central span of the Millennium Bridge is used as the background. According to previous works
[Dallard et al. 2001b; Piccardo and Tubino 2008], the structural parameters are set as ω1 = 2πn1 (n1 =

0.48 Hz), λ = 0.3, ms = 2000 kg/m, m ps = 70 kg, ζ0 = 0.007, and αl2 = 0.7. It is assumed that
200 pedestrians are walking on the bridge. The response of the Millennium Bridge under parametric
resonance (i.e., εσ = 0) is analyzed. Figure 5 shows the effects of the time delay (within a certain
period) and feedback adjustment on the response amplitude, in which the feedback adjustment factors
are set as h=±0.05, h=±0.1, and h=±0.1273 (the limit range of h is calculated as [−0.1273, 0.1273]).

In Figure 5, the solid lines denote stable periodic solutions, whereas the dashed lines denote unstable
solutions. Note that no real solution region, which is shown as zero in the figures, exists because the
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(a) h =−0.05 (b) h =−0.1 (c) h =−0.1273

(d) h = 0.05 (e) h = 0.1 (f) h = 0.1273

Figure 5. Effects of the time delay and feedback adjustment on response amplitude.

pedestrian-induced vibration of the Millennium Bridge will have a crossing phenomenon caused by the
time delay.

The time delay and feedback adjustment significantly affect the response amplitude. As shown in
Figure 5, the maximum response amplitude by considering the time delay and feedback adjustment is
nearly 0.06, which is almost twice that without feedback adjustment.

A comparison between Figures 5a–5c and Figures 5d–5f shows that the distribution of bridge ampli-
tude with regard to the time delay strongly depends on whether the feedback adjustment factor is positive
or negative. Besides, the feedback adjustment factor also affects the maximum response amplitude. The
maximum response amplitude increases with the absolute value of feedback adjustment factor.

Meanwhile, the trend of bridge amplitude depends on the time delay. In some time delay regions, the
bridge vibration that considers the effect of the feedback adjustment is less than that without feedback
adjustment, which means that the feedback adjustment of pedestrians would tend to reduce the bridge
vibration, whereas in some other time delay regions, the feedback adjustment of pedestrians would tend
to raise the bridge vibration.

6. Effects of the time delay and feedback adjustment on the critical number of pedestrians

Note that amplitude a1 should be a real number, as given by

4h
3β

cos(ω1τ)+
4ω1

3β
εσ ±

4ω1

3β

√
1
4ζ

2
2 −

(
ζ1+

h
ω1

sin(ω1τ)
)2
≥ 0. (49)
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Subsequently, (49) results in
ζ2 ≤ ζ2 lim, (50)

where

ζ2 lim = 2

√(
εω1σ+h cos(ω1τ)

ω1

)2
+

(
ζ1+

h
ω1

sin(ω1τ)
)2
. (51)

According to (51), it can be found that the critical value ζ2 lim of ζ2 is related to the time delay and
feedback adjustment factor.

The pedestrians on the bridge are assumed to be uniformly distributed and the same as the mass
distribution of the bridge. This assumption supports the following equation:

m p L = Nm ps, (52)

where N denotes the number of pedestrians on the bridge, and m ps denotes the mass of a single pedestrian.
Combining (50) with (52) yields

N ≤
2Lρs A

√(
εω1σ+h cos(ω1τ)

ω1

)2
+

(
ζ1+

h
ω1

sin(ω1τ)
)2

λαl2m ps g− 2m ps

√(
εω1σ+h cos(ω1τ)

ω1

)2
+

(
ζ1+

h
ω1

sin(ω1τ)
)2
. (53)

Figures 6a and 6b present the N − τ curve under different values of h; Figures 6c and 6d present the
N − h curve under different values of τ . Considering the fact that the time delay varies within a certain
range under the practical situation, the following analysis will focus on the time delay that is within the
range of [−1, 1].

The critical number of pedestrians N depends on different combinations of h and τ . For example,
Figure 6a shows that, when τ ∈ [0.37, 0.67] and h < 0, N decreases with an increase of the absolute
value of h. In other words, when the time delay stays within the range of [0.37, 0.67], the action of the
negative feedback adjustment may tend to cause large bridge vibration. While for the case of [0.52, 1]
and h < 0, N increases with τ , denoting that the increase of time delay may tend to reduce the bridge
vibration. Meanwhile, the results corresponding to h > 0, as shown in Figure 6b, exhibits a trend that is
opposite to that of h < 0.

Figures 6c and 6d show that, when under the case of τ ∈ [−0.18, 0] and h ∈ [0, 0.11], or the case of
τ ∈ [0, 0.18] and h ∈ [−0.11, 0], the corresponding critical number of pedestrians N is consistent with
experimental observation (165∼ 185) on the Millennium Bridge.

It is worth noting that in the case of h = −0.1273 and τ = 0.52, or the case of h = 0.1273 and
τ =−0.52, the critical number of pedestrians N achieves a physical limit of nearly zero. This finding
also demonstrates that the limited range of h is about [−0.1273, 0.1273] from another perspective.

7. Amplitude-frequency response curves

Figure 7 shows the amplitude-frequency response curves of the Millennium Bridge under different num-
bers of pedestrians by assuming that h =−0.11 and τ = 0.18.

Some following conclusions can be derived from Figure 7:
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Figure 6. Relationships between the critical number of pedestrians and time delays and
feedback adjustment factors.
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Figure 7. Amplitude-frequency response curves

(1) The response amplitude has two different solutions, including the stable solution with a large value
and the unstable solution with a small value. The curves of the two solutions are characterized by
the rightward inclined shapes which are asymmetrically distributed around εσ = 0. This suggests
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that bifurcations would occur at the point that is more than twice the first lateral frequency of bridge
causing the divergent lateral vibration amplitudes.

(2) When the number of pedestrians on the bridge decreases, the two solutions become closer to εσ =
0 and the interval between them becomes smaller. This suggests that the number of pedestrians
required to trigger the large lateral vibration decreases as the walking frequency arrives closer to
the point that is twice the first lateral frequency of bridge.

(3) The amplitude increases with the detuning parameter εσ , suggesting that the amplitude would be
larger as the walking frequency becomes greater than twice the bridge’s first lateral frequency. More-
over, it is also observed that the curve tends to be more linear with the increase of εσ , suggesting
that the degree of nonlinearity would be weaker when the pedestrians’ walking frequency becomes
more than twice the bridge’s first lateral frequency.

8. Conclusions

This study has used the Millennium Bridge as the background for an analysis of pedestrian-induced
lateral vibration of a footbridge by considering the time delay and feedback adjustment that occur in
the pedestrian-footbridge interaction. The main contributions of the present study can be summarized as
follows:

(1) The results of the qualitative analysis show that the time delay significantly affects the stability of
the lateral vibration of footbridge. Moreover, the critical value of the time delay depends on the
sign of the feedback adjustment factor.

(2) The influences of time delay and feedback adjustment on response amplitude are significant. The
time delay and feedback adjustment may cause a larger bridge amplitude than that without consid-
ering the time delay and feedback adjustment. The sign of feedback adjustment factor affects the
distribution of bridge amplitude, while the time delay affects the trend of bridge amplitude.

(3) The critical number of pedestrians depends on different combinations of time delay and feedback
adjustment. In some cases, the time delay and feedback adjustment may cause a small value for the
critical number of pedestrians, while in some other cases, the time delay and feedback adjustment
may cause a large value for the critical number of pedestrians. By comparing with the experimental
observation on the Millennium Bridge, the feedback adjustment factor and time delay corresponding
to the large vibration of the Millennium Bridge may be the case of τ ∈ [−0.18, 0] and h ∈ [0, 0.11],
or the case of τ ∈ [0, 0.18] and h ∈ [−0.11, 0].

(4) When the walking frequency approaches the doubled first lateral frequency of bridge, a relatively
small number of pedestrians is required to cause large lateral vibration.
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