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TRANSIENT ANALYSIS OF FRACTURE INITIATION
IN A COUPLED THERMOELASTIC SOLID

LOUIS M. BROCK

An isotropic, thermoelastic solid is initially at rest at uniform (absolute) temperature, and contains a
semi-infinite, plane crack. Application of in-plane and normal point forces to each face of the crack
causes transient 3D growth. The related problem of discontinuities in temperature and displacement
that exist on regions that exhibit dynamic similarity is first considered. Asymptotic expressions, whose
inverses are valid near the crack edges for short times, are obtained in integral transform space. These
lead to equations of the Wiener–Hopf type for the fracture problem. Analytical solutions are obtained
and, upon inversion, subjected to a dynamic energy release rate criterion that accounts for kinetic energy.
A particular form of rapid growth in time of the forces is found to cause crack initiation growth rates that
indeed vary with position, but not with time. The influence of particular types of mixed-mode loading
upon crack edge contour and thermal response near the edge is also examined.

1. Introduction

Crack edge location in a transient 3D study is defined by a (possibly nonrectilinear) contour in the crack
plane. The semi-infinite, planar crack in an unbounded isothermal solid is treated in [Brock 2017a].
Fracture is driven by mixed-mode, point force loading on the crack faces. The dynamic energy release
rate criterion [Freund 1972; 1990] is imposed, but with kinetic energy taken into account [Gdoutos
1993]. It is found that a particular time history for the loading can generate a crack edge contour that
varies with position, but not with time. The solution process begins by considering the related problem
of displacement discontinuity generation on a portion of a planar surface in the solid. A set of three
equations is generated that involve six integral transform functions (three components of discontinuity,
three components of planar surface traction). However, the set can be rewritten as three equations of the
Wiener–Hopf type [Morse and Feshbach 1953]. Exact solutions are possible, and upon inversion they
lead to a nonlinear differential equation for the crack edge contour.

The corresponding problem for the coupled thermoelastic solid is treated in [Brock 2017b]. Crack
initiation is the focus, so that:

(a) thermal relaxation [Ignaczak and Ostoja-Starzewski 2010] can be important, and

(b) asymptotic forms of the governing equations for thermal relaxation are viable.

The results are similar in nature to those in [Brock 2017a], with the proviso that response is valid for
short times.
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However, as a first step the possibility of discontinuity in temperature across the crack gap is ignored in
[Brock 2017b]. A consequence is that the solution process again involves three equations of the Wiener–
Hopf type in transform space. In the present article, the possibility of temperature discontinuity is treated.
It will be seen that the solution process must now deal with a set of four equations, with integral transforms
for the temperature discontinuity and heat flux across the planar surface involved. Two of the Wiener–
Hopf equations now yield analytical expressions whose inverses are valid only near the crack edge.
However, imposition of the energy release rate criterion [Freund 1972; 1990] in [Brock 2017a; 2017b],
and subsequent analysis of crack edge contour, actually involve the use of such asymptotic expressions.
Therefore several key results of the present article can be compared with those of [Brock 2017b].

2. Problem statement

A closed crack AC(x0
3 = 0, x0

1 < 0) with boundary C(x0
1 , x0

3) = 0 exists in an unbounded, coupled
thermoelastic, solid. Cartesian coordinates x0 = x0(x0

k ), k = (1, 2, 3) are used. The solid is at rest for
time t ≤ 0 at (absolute) uniform temperature T0. For t > 0 point forces (both shear and compressive)
appear on both crack faces at (x0

1 = 0−, x0
2 = 0, x0

3 = 0±). Brittle fracture is instantaneous, and the crack
extends outward from x0 = 0. The crack now occupies region AC + δA. Boundary C now includes a
concave bulge: √

(x0
1)

2+ (x0
2)

2 = l(ψ, t), l(ψ, t)= V (ψ)t, (1a)

0< V < VR, ψ = tan−1 x0
2

x0
1

(|ψ |< π/2). (1b)

Equation (1) implies a dynamically similar fracture process, and requires that (speed parameter) V not
exceed Rayleigh value VR . Displacement u(uk), traction T (σik) and θ , the change in temperature from T0,
are field variables. For the Lord and Shulman thermal relaxation model [Lord and Shulman 1967; Brock
2009; Ignaczak and Ostoja-Starzewski 2010]:

∇ · T − ρD2u = 0, (2a)

(kT∇
2
− ρCE PD)θ +µαDT0PD(∇ · u)= 0, (2b)

1
µ

T =
[ 2v

1−2v
(∇ · u)1−αDθ

]
+∇u+ u∇ = 0. (2c)

In (2) θ and components (uk, σik) are functions of (x0, t), and (∇,∇2, 1) respectively are gradient and
Laplacian operators and identity tensor. Symbols (D f, ḟ ) represent time differentiation in basis x0 and

P= 1+ t0 D. (3)

Here constants (µ, ρ, v) are shear modulus, mass density and Poisson’s ratio, and (kT ,CE , αD) are
thermal conductivity, specific heat at constant strain, and coefficient of (volumetric) thermal expansion.
Constant t0 is the thermal relaxation time. Equation (1) reflects assumptions that body forces can be ig-
nored, and heat is neither added to, nor extracted from, the solid. Partial uncoupling of (2a) and (2b) gives

u = uS + uD, (4a)
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(∇2
− D2

S)uS = 0, ∇ · uS = 0, (4b)

(c2
D∇

2
− D2

S)uD −αD∇θ = 0, ∇ × uD = 0, (4c)[
(c2

D∇
2
− D2

S)(h∇
2
− DSP)− εDSP∇2](uD, θ)= 0. (4d)

In (4) D = VS DS , and a modification of (3) was used:

P= 1+ h0 DS. (5)

Equation (4) also introduces parameters

VS =

√
µ

ρ
, VD = cDVS, cD =

√
2 1−v

1−2v
, ε =

µT0
ρCE

αD, (6a)

h = kT
CE
√
µρ
, h0 = VSt0. (6b)

In (6) ε is the dimensionless thermal coupling constant, and (h, h0) are thermoelastic characteristic
lengths. Symbols (VS, VD) are, respectively, shear speed and isothermal dilatational speed. In light of
restriction (1b), it is noted that VR < VS and that VR will be shown to depend both on material properties
and the nature of the point forces.

For x0
3 = 0±, (x0

1 , x0
2) ∈ AC + δA (t > 0):

σ3k =−Pkδ(x0
1)δ(x

0
2),

∂θ

∂x0
3

= 0. (7a)

For x0
3 = 0, (x0

1 , x0
2) /∈ AC + δA (t > 0),

[uk] = [θ ] = 0. (7b)

In (7) force Pk is a positive constant, δ( f ) denotes Dirac function, and [ f ] = f (+) − f (−) where
f (±) = f (x0

1 , x0
2 , 0±, t). Equation (7a) reflects the assumption that thermal convection on the crack faces

is negligible. In addition [uk] and [θ ] must vanish continuously on C , but σ3k can exhibit (integrable) sin-
gular behavior on C . For t ≤ 0, (u, T , θ)≡ 0 and for finite t > 0, (u, T , θ) must be bounded as |x0|→∞.

3. Discontinuity problem

A common practice for solving crack problems is to represent the relative motion of crack faces as
unknown discontinuities in displacement, e.g., [Barber 1992]. To implement that procedure, the related
problem of discontinuities in (uk, σ3k, θ, ∂θ/∂x0

3) is now considered: The unbounded solid is again at
rest at uniform (absolute) temperature T0 when for time t > 0 the discontinuities are imposed in the same
region AC + δA of the x0

1 x0
2− plane. In place of (7) we have for x0

3 = 0, (x0
1 , x0

2) ∈ AC + δA (t > 0):

[uk] =1k, [σ3k] =6k, [θ ] =2, [∂θ/∂x0
3 ] = d2. (8a)

For x0
3 = 0, (x0

1 , x0
2) /∈ AC + δA (t > 0),

[uk] = [σ3k] = [θ ] = [∂θ/∂x0
3 ] = 0. (8b)
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Here (1k, 6k,2, d2) are continuous functions of (x0
1 , x0

2 , t). They vanish on C and for t ≤ 0 are
bounded in AC + δA for

√

(x0
1)

2
+ (x0

2)
2
→∞. Therefore, as in the crack problem, (u, T , θ) ≡ 0 for

t ≤ 0 and are bounded as |x0| for finite t > 0.

4. Transform solution

An effective procedure, e.g., [Brock and Achenbach 1973], for 2D transient study of semi-infinite crack
extension at constant speed employs

(a) coordinates that translate with the crack edge, and

(b) unilateral temporal and bilateral spatial integral transform [Sneddon 1972].

In view of (1) a translating basis x is defined for |ψ |< 1
2π as

x1 = x0
1 − [c(ψ) cosψ]s, x2 = x0

2 − [c(ψ) sinψ]s, x3 = x0
3 , (9a)

s = VSt, c(ψ)=
V (ψ)

VS
, (9b)

D f = ḟ = VS[∂S f − c(ψ)(∂1 f cosψ + ∂2 f sinψ)], (9c)

∂S f =
∂ f
∂s
, ∂k f =

∂ f
∂xk

, k = (1, 2, 3). (9d)

The temporal Laplace transform operation is

L( f )= f̂ =
∫

f (s) exp(−ps) ds. (10a)

Integration is over positive real s and Re(p) > 0. A double spatial integral transform and inversion,
respectively, can be defined [Sneddon 1972] by

f̃ (p, q1, q2)=

∫∫
f̂ (p, x1, x2) exp[−p(q1x1+ q2x2)] dx1 dx2, (10b)

f̂ (p, x1, x2)=
( p

2π i

)2
∫∫

f̃ (p, q1, q2) exp[p(q1x1+ q2x2)] dq1 dq2. (10c)

Integration in (10b) is over real (x1, x2); integration in (10c) is along the imaginary (q1, q2)-axes. It
is noted that (x, s) have dimensions of length, p has dimensions of inverse length, and (q1, q2) are
dimensionless. Because (1) involves a speed that varies with direction, application of (9) and (10b)
to (2)–(5) and (7) is complicated. Despite use of ψ the discontinuity problem is not axially symmetric.
However, 3D studies of sliding and rolling contact [Brock 2012] and crack growth [Brock 2017a; 2017b]
suggest transformations

Im(q1)= Im(q) cosψ, Im(q2)= Im(q) sinψ, (11a)

x1 = x cosψ, x2 = x sinψ. (11b)

Here Re(q)= 0+, |Im(q)|, |x |<∞ and |ψ |< 1
2π . Parameters (x, ψ) and (q, ψ) resemble quasipolar

coordinates, i.e.,
dx1 dx2 = |x | dx dψ, dq1 dq2 = |q| dq dψ. (11c)
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The uncoupling effect of (11) leads to the combination

f̃ (p, q1, q2)→ f̄ (p, q, ψ), (12a)

f̂ (p, x, ψ)=− p2

2π

∫
|q|
q

f̄ (p, q, ψ) exp(pqx) dq. (12b)

Integration is along the positive (Re(q)= 0+) side of the Im(q)-axis.
In view of (9)–(11) and (12a), (4) and (5) give a corresponding set in transform space by making

formal substitutions

∇ → (pq cosψ, pq sinψ, ∂3), DS→ pβ, ∇2
→ ∂2

3 + p2q2, (13a)

P→ 1+ h0 pβ, (13b)

β = 1− cq. (13c)

Set elements that correspond to (4b)–(4d) are homogeneous, ordinary differential equations in x3, with
characteristic functions pB(q) and A±(p, q):

B(q)=
√
β2
− q2, (14a)

A±(p, q)= p

√( 2β
0+±0−

)2
− q2, (14b)

0± =

√[√
hpβ

1+h0 pβ
± cD

]2

+ ε. (14c)

Focus of this transient study is on the initiation phase of fracture, i.e., small t (and therefore small s).
The Lord and Shulman [1967] model is quite robust for this purpose. Indeed [Brock 2009; Ignaczak
and Ostoja-Starzewski 2010] indicate that h ≈ O(10−9)m, h0 ≈ O(10−10)m so that, in view of (10a),
transform expressions valid for |h0 p| � 1 are sufficient. Result (14b) assumes the form p A±(q) defined
below, and the set corresponding to (4b)–(4d) gives general solutions:

ūS

[
U (±)

1 ,U (±)
2 , (±)

q
B
(U (±)

1 cosψ +U (±)
2 )

]
exp(−pB|x3|), (15a)

ūD = ū++ ū−, θ = θ++ θ−, (15b)

ū± = [q cosψ, q sinψ, (∓)A±]U
(±)
± exp(−p A±|x3|), (15c)

θ± =−C±
β2

αD
pU (±)
± exp(−p A±|x3|). (15d)

Here (U (±)
± ,U (±)

1 ,U (±)
2 ) are unknown functions of (p, q, ψ) and (±) signifies x3 > 0 (+), x3 < 0 (−).

In addition,

A± =
√
β2/c2

±
− q2, (16a)

C± = 1− c2
D/c

2
±
, c± = 1

2(0+±0−), (16b)

0± =
√
(
√
λ± cD)

2
+ ε, λ= h/h0. (16c)
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Combinations of terms in (16) also prove useful:

C+−C− =�=
0+0−

λ
, C+C− =−

ε

λ
, (17a)

c2
+
− c2
−
= 0+0−, c+c− = cD

√
λ. (17b)

The dimensionless terms c± in (16) show that solution behavior is governed by the three wave speeds
(VS, V± = c±VS) where 1< c− < c+. Data, e.g., [Brock 2009; Ignaczak and Ostoja-Starzewski 2010],
suggest moreover that c+ > cD , c− ≈ cD− so that V+ is larger than isothermal dilatational wave speed
VD = cDVS while V− is approximately the same. Bounded behavior for (ûk, θ̂ ) as |x3| →∞ requires in
light of (15) that Re(A±) > 0 and Re(B) > 0 in the q-plane with, respectively, branch cuts

Im(q)= 0, −1
c±−c

< Re(q) < 1
c±+c

, (18a)

Im(q)= 0, −1
1−c

< Re(q) < 1
1+c

. (18b)

It is noted that (18) is valid only so long as c < 1; i.e., V (ψ) < VS
(
|ψ |< 1

2π
)
.

5. Application to fracture problem: equations for solution

In order that (15) and results in Appendix A represent the transform solution for the fracture problem,
the transforms of (7) must be satisfied. Because (7) does not involve (6k, d2), their transforms can
be dropped. Use of (2c), (9), (10a), (10b), (11) and (12b) then give five equations for transforms of
(σ3k, θ

(±), ∂3θ) along x3 = 0 in terms of transforms of (1k,2). It is noted that for (s > 0, x3 = 0),

σ3k = σ
C
3k − Pkδ(x0

1)δ(x
0
2), (19a)

∂3θ = ∂3θ
C . (19b)

Here (σC
3k, ∂3θ

C) exists for x > 0 in a region generated behind wave front c+s − x − cs > 0. Thus the
corresponding transform exists for Re(q) >−1/(c+− c). The Dirac function term has transform

−
Pk

pβ
(Re(q) < 1/c). (20)

Function (1k,2) occurs for x < 0 in a region generated behind wave front c+s+ x + cs > 0. Thus the
corresponding transform exists for Re(q) < 1/(c++ c). Four transform equations can be written and are
given in Appendix B. There it is noted that

M12(q12)= 0, M12 ≈ R12q4(|q| →∞), q12 =
±1

c12±c
, (21a)

M3(q3)= 0, M3 ≈ R3q4(|q| →∞), q3 =
±1

c3±c
, (21b)

M±(q±R )= 0, M±q4(|q| →∞), q±R =
1

c±R+c
,
−1

c±R−c
. (21c)
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In (21), (R12, R3, R±) are functions of c:

R12 = C+R−−C−R+, R12(c2
12)= 0 (0< c12 < 1), (22a)

R3 = C+a+
R−
b
−C−a−

R+
b
, R3(c2

3)= 0 (0< c3 < 1), (22b)

R± = 4a±b− k2, R±(0)= R±((c±R )
2)= 0 (0< c±R < 1), (22c)

a±(c)=
1

c±

√
c2
±
− c2, b(c)=

√
1− c2, k(c)= c2

− 2. (22d)

Terms (R±,M±) have the form of the Rayleigh function [Achenbach 1976]. Thus (R12, R3) and (M12,M3)

are thermoelastic Rayleigh functions of respectively, variables c and q . Data, e.g., [Brock 2009; Ignaczak
and Ostoja-Starzewski 2010] indicate that in general,

0< c3 < c12 < 1< c− < c+, c− ≈ cD − . (23)

In view of (6) and (9) the fracture problem solution is governed by both (VS, V± = c±VS) and Rayleigh
speeds V12 = c12VS and V3 = c3VS . Moreover, subcritical speed is defined as V (ψ) < V3

(
|ψ |< 1

2π
)
.

6. Solution: Wiener–Hopf equation

The four equations, (B.1) and (B.2), involve eight unknown transforms (σ̄ C
3k , ∂3θ

C) and (1k,2). The
regions of analyticity in the q-plane of the two transform sets differ but can also overlap. Thus (B.1) and
(B.2) can be viewed as a set of coupled equations of the Wiener–Hopf type [Morse and Feshbach 1953;
Achenbach 1976].

Equation (B.1c). It is noted that (A±, B) form products (A++A−+, A+−A−−, B+B−) where

A±
+
=

1
√

c+

√
1± q(c+∓ c), A±

−
=

1
√

c−

√
1± q(c−∓ c), (24a)

B∓ =
√

1± q(1∓ c). (24b)

In (24a) (A+±, A−±) are analytic in, respectively, overlapping half-planes Re(q)>−1/(c±−c) and Re(q)<
1/(c±+ c). Terms (B+, B−) in (24b) are analytic in overlapping half-planes Re(q) >−1/(1− c) and
Re(q) < 1/(1+ c). Study of M3 in (B.3b) leads to construction of function

G3 =−
M3

β2

c2

R3

c2
3− c2

[1+ q(c3− c)][1− q(c3+ c)]
. (25)

Here G3→1(|q|→∞), and has no zeros in the q-plane with branch cut Im(q)=0,−1/(1−c)<Re(q)<
−1/(c+−c), 1/(c++c) <Re(q) < 1/(1+c). Therefore G3 forms G+3 G−3 , where (G+3 ,G−3 ) are defined
by (C.1a) and are analytic in overlapping half-planes Re(q) > −1/(c+ − c) and Re(q) < 1/(c+ + c).
Equation (B.1c) can then be written as

F+

G+3
σ̄C

33
c3− c

1+ q(c3− c)
−

P3

pβ

[
F+

G+3

c3− c
1+ q(c3− c)

−

√
c

g+3

(
1− c

c3

)]
=−µ

�R3

2c2

G−3
F−

( 1
c3+c

− 1
)

p13+
P3

pβ

√
c

g+3

(
1− c

c3

)
,

(26a)
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F+ =
A++A+−

B+
, F− =

A−+A−−
B−

, (26b)

A+
±

(1
c

)
= B+

(1
c

)
= F+

(1
c

)
=

1
√

c
, g+3 = G+3

(1
c

)
. (26c)

The left-hand and right-hand sides of (26a) are analytic for respectively the overlapping half-planes
Re(q) >−1/(c+− c) and Re(q) < 1/(c++ c) so that each side is an analytic continuation of the same
entire function. In connection with (7), 1k must vanish continuously on C for x→ 0−. Equation (10a)
and (12b) therefore require that pq1k , and also the right-hand side of (26a), vanish for |q| →∞. The
entire function itself must then in light of Liouville’s theorem [Morse and Feshbach 1953] vanish, and
(26a) leads to

13 =
2
√

cβ
µp2g+3

F−G+3
c3�M3

[1+ q(c3− c)]P3, (27a)

σ̄C
33 =−

√
cP3

c3 pg+3

G+3
βF+
[1+ q(c3− c)]. (27b)

Examination of the fracture problem solution requires knowledge of (σ̄C
33, 1̇3) for x→ 0− and x→ 0+,

respectively. In view of (9)–(11),

ḟ = VS(∂S − c∂) f, ∂ f =
∂ f
∂x
. (28)

Therefore (13a) shows that expressions for transforms (σ̄C
33, pβ13) that are valid for |q| →∞ suffice in

this regard, and are given by (D.2c) and (D.5c).

Equation (B.1a) and (B.1b). Algebraic manipulation of (B.1a) and (B.1b) leads to a partial uncoupling:

(
σ̄C

31−
P1

pβ

)
cosψ +

(
σ̄C

32−
P2

pβ

)
sinψ =

µ

�β2

(
M12

2B
p1P + q MAαD2

)
, (29a)(

σ̄C
31−

P1

pβ

)
sinψ −

(
σ̄C

32−
P2

pβ

)
cosψ = µBp1M . (29b)

In view of (24b), (29b) can written in Wiener–Hopf form (compare (26a)):

2
B+
σ̄M −

2
pβ

( 1
B+
−
√

c
)
(P1 sinψ − P2 cosψ)= µpB−1M +

2
√

c
pβ

(P1 sinψ − P2 cosψ), (30a)

σ̄M = σ̄
C
31 sinψ − σ̄C

32 cosψ. (30b)

Behavior of 1k for x→ 0− dictates that both sides of (30a) vanish. Therefore,

σ̄M =
1
pβ
(1−
√

cB+)(P1 sinψ − P2 cosψ), (31a)

1M =
−2
√

c
µp2βB−

(P1 sinψ − P2 cosψ). (31b)
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Equation (B.2) and (29a). Equations (29a) and (B.2) are treated as linear equations for (2,1P), and
are solved simultaneously to yield

αD2=
M12

B M3

( 2
p
αD∂3θ

C
)
+ 4q

MA

M3

ε

λ

β2

µ
[σ̄P − (P1 cosψ + P2 sinψ)], (32a)

p1P =−4q
MA

M3

( 2
p
αD∂3θ

C
)
+

2MC

M3

β2

µ
[σ̄P − (P1 cosψ + P2 sinψ)], (32b)

σ̄P = σ̄
C
31 cosψ + σ̄C

32 sinψ. (32c)

As in the case of M3 functions related to (M12,MA,MC) can be defined as

G12 =−
M12

β2

c2

R12

c2
12− c2

[1+ q(c12− c)][1− q(c12+ c)]
= G+12G−12, (33a)

G A =
MAa+(c)
A+m A(c)

= G+A G−A, m A(c)= a+(c)− a−(c), (33b)

GC =
MCa+(c)
A+mC(c)

= G+C G−C , mC(c)= C+a+(c)−C−a−(c). (33c)

Functions (G+12,G+A,G+C ) and (G−12,G−A,G−C ) are analytic in overlapping halves of the cut q-plane, and
are given by (C.2) and (C.4), respectively. Factorization based on these results does not in general put
(32a) and (32b) in standard Wiener–Hopf form [Achenbach 1976]. Equation (24a) and (24b) show for
|q| →∞ however that

A+
±
≈
√

q
√

1+ c/c±, B+ ≈
√

q
√

1+ c (Re(q) > 0−), (34a)

A−
±
≈
√
−q
√

1− c/c±, B− ≈
√
−q
√

1− c (Re(q) < 0+). (34b)

Equations (21), (B.3) and (34) show that (32) for |q| →∞ depends on (β,
√
±q), and that

√
±q define

overlapping half-planes Re(q) > 0− and Re(q) < 0+ as regions of analyticity. As exemplified by
(D.1), (D.2c) and (D.5c), functions of

√
±q are sufficient for study of solution behavior when |x | ≈

0. Equation (32a) and (32b) then yield Wiener–Hopf equations whose solutions are combined with
asymptotic forms for (31). This process leads to (D.2a) and (D.2b) valid for x → 0+, and (D.4) and
(D.5) valid for x→ 0−.

7. Transform inversions valid on crack plane near C

For (1/
√

q,
√

q) and 1/
√
−q respectively inverse operation (12b) yields

−
p2

π
√

x

∫
+

du
√

u
exp(−pu),

p
2π

1
x3/2

∫
+

du
√

u
exp(−pu) (x > 0), (35a)

−
p2

π
√
−x

∫
+

du
√

u
exp(−pu) (x < 0). (35b)

The “+” signifies integration over the entire positive real u-axis. In view of (37) functions in Appendix D
involve p exp(−pu), and its inverse is recognized as ∂Sδ(s − u) [Abramowitz and Stegun 1972]. The
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point force represents a step-function in time, so for generality we now consider the case

Pk = Pk(VSt), Pk(0)= 0. (36)

Clarity of solution is enhanced if points in the x0
1 x0

2 -plane are located with respect to fixed point x0 = 0.
Therefore the inverses from (D.1)–(D.3) are, by convolution, written as functions of (x0, ψ, s), where
x0 = x + cs, and for

(
s > 0, x0→ cs+, |ψ |< 1

2π
)
,

αD∂3θ
C
≈−

2ε
µ0+0−

m AmC KII
√

c(x0− cs)3/2
, (37)

σC
31 ≈

1
√

c
√

x0− cs

[
sinψ
√

1− c KIII + cosψ
R3

c2 N12KII

]
, (38a)

σC
32 ≈

1
√

c
√

x0− cs

[
− cosψ

√
1− c KIII + sinψ

R3

c2 N12KII

]
, (38b)

σC
33 ≈

K1
√

c
√

x0− cs
c2

R3

√
c+c−
√

1− c
√

c+− c
√

c−− c
. (38c)

In similar fashion (D.4) and (D.5) yield for
(
s > 0, x0→ cs−, |ψ |< 1

2π
)
,

αD2≈
4m A

µ
√

cs− x0

ε

λ
KII, (39)

1̇1 ≈
2VS
√

c
µ
√

cs− x0

[
sinψ
√

1+ c
KIII +mC cosψKII

]
, (40a)

1̇2 ≈
2VS
√

c
µ
√

cs− x0

[
cosψ
√

1+ c
KIII +mC sinψKII

]
, (40b)

1̇3 ≈
2VS
√

c�
µ
√

cs− x0

√
c++ c

√
c−+ c

√
c+c−
√

1+ c
K I . (40c)

In (37)–(40),

K I =
c2

πg+3 R3

(
1− c

c3

)
∂S

∫ s

0

du
√

s−u
d

du
P3, (41a)

KII =
c2

πg+3 R3

(
1− c

c3

)
∂S

∫ s

0

du
√

s−u
d

du
(P1 cosψ + P2 sinψ), (41b)

KIII =
1
π
∂S

∫ s

0

du
√

s− u
d

du
(P1 sinψ + P2 cosψ). (41c)

The roman numeral subscripts reflect the observation that, in a 2D study (ψ = 0) terms (41a), (41b) and
(41c) would be associated with, respectively, the opening, in-plane shear and antiplane shear modes of
fracture [Freund 1990].
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8. Transform inversions valid near C

Expressions for (u̇k, θ) near C for (x0
3 , x3) 6= 0 are also required. In view of (9c) and (28), L(u̇k)= βpūk

and (ūk, θ) can be generated from (15) and Appendix A by setting (d2,6k)= 0 and substituting results
from Appendix D. For x3 6= 0, a more explicit version of inversion formula (12) is useful:

f̃ (p, q1, q2, x3)→ f9(p, q, ψ) exp(−p A|x3|), A = (A±, B), (42a)

f̂ (p, x, ψ, x3)=−
p2

2π

∫
|q|
q

f9(p, q, ψ) exp[p(qx − A|x3|)] dq. (42b)

Result (37) follows from use of Cauchy theory to change the integration path in (12b) to the Re(q)-axis.
For (42b) the path is changed to a contour q(A) in the complex q-plane along which the exponential term
assumes the form exp(−pu), where u is real and positive. Because inversions valid near C are sufficient,
local coordinates (r, ψ, φ) centered on the portion of C that borders δA are introduced:

r =
√

x2
+ x2

3 , φ = tan−1 x3

x
(|φ|< π). (43)

In (42b) q(A±) and q(B) for r ≈ 0 have, respectively, asymptotic forms

−
u

4Q±
, Q± = cosφ∓ ia± sinφ, (44a)

−
u

r Q B
, Q B = cosφ∓ ib sinφ. (44b)

It is noted that (D.4) and (D.5), which depend on 1/
√
−q , are associated in Appendix with operator (±).

In the case of contour q(B) therefore, (35a) and (35b) respectively are replaced by

−
p
πc

B(+)
√

2r

∫
+

du
√

u
exp(−pu), (∓)

p
πc

B(−)
√

2r

∫
+

du
√

u
exp(−pu). (45a)

In the case of contour q(A±) replacements are

−
p
πc

A(+)
±
√

2r

∫
+

du
√

u
exp(−pu), (∓)

p
πc

A(−)
±
√

2r

∫
+

du
√

u
exp(−pu). (45b)

In (45), (B(±), A(±)± ) are factors of the real (+) and imaginary (−) parts of (
√

Q1,
√

Q±):

B(±) =
√

1(±)(cosφ)/B8, B8 =
√

1− c2 sin2 φ, (46a)

A(±)
± =

√
1(±)(cosφ)/A±8, A±8 =

√
1− c2/c2

±
sin2 φ. (46b)

Convolution involving (38) is again introduced, and results for u̇k(r→ 0) follow:

u̇1 ≈

√
2c

µ
√

r

[√
c++ c

√
c−+ c

c2
√

1+ c
√

c+c−
P(+)3 K I −

P(−)12

c2 KII sgn(φ)
]

cosψ

−

√
c

µ
√

2r

B(−)KIII
√

1+ c
sgn(φ) sinψ, (47a)
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u̇2 ≈

√
2c

µ
√

r

[√
c++ c

√
c−+ c

c2
√

1+ c
√

c+c−
P(+)3 K I −

P(−)12

c2 KII sgn(φ)
]

sinψ

+

√
c

µ
√

2r

B(−)KIII
√

1+ c
sgn(φ) cosψ, (47b)

u̇3 ≈

√
2c

µ
√

r

[√
c++ c

√
c−+ c

c2
√

1+ c
√

c+c−
P(−)3 K I sgn(φ)−

P(+)12

c2 KII

]
. (47c)

In (47),
(
|ψ |< 1

2π, |φ|< π
)

and

P(+)3 =
k
2

(
C+
a−

A(+)− −
C−
a+

A(+)+

)
+ b�B(+), (48a)

P(−)3 =
k
2
(C+A(−)− −C−A(−)+ )+�B(−), (48b)

P(+)12 = C+a+A(+)− −C−a−A(+)+ +
kmC

2b
B(+), (48c)

P(−)12 = C+a+A(−)− −C−a−A(−)+ +
k
2

mC B(−). (48d)

For
(
r→ 0, |ψ |< 1

2π, |φ|< π
)

temperature change takes the form

θ ≈
ε

µλ

√
2c

αD
√

r

[
T(−)12

KII

c2 sgn(φ)−T(+)3

√
c++ c

√
c−+ c

c2√c+c−
√

1+ c
K I

]
, (49a)

T(−)12 = a−A(−)+ − a+A(−)− , T(+)3 =
k
2

(
A(+)+
a+
−

A(+)−
a−

)
. (49b)

9. Criterion: dynamic energy release rate

A standard criterion for brittle fracture, e.g., [Freund 1972], equates the rate at which surface energy is
released to the rate of work associated with traction and relative displacements in the fracture zone T. In
this study heat is neither added to, nor extracted from, the solid. Therefore, if kinetic energy is included
[Gdoutos 1993] the equation takes the form

D
∫∫

δA
eF dx0

1 dx0
2 =

∫∫
T
σC

3k1̇k dx0
1 dx0

2 + D
∫∫∫

123

1
2ρu̇k u̇k dx0

1 dx0
2 dx0

3 . (50)

Here eF is the surface energy per unit area, and is generally assumed to be constant [de Boer et al. 1988;
Skriver and Rosengaard 1992]. Fracture zone T is a strip of infinitesimal thickness in the x0

1 x0
2 -plane

that straddles the portion of C that borders δA. Subscript 123 signifies integration over the solid. Use
of transport theory [Malvern 1969] and translating basis x expressed in terms of (x, ψ, x3 = 0) gives for
the first term in (47)

V eF s
∫
9

dψ c
√

c2+ (c′)2, f ′ = d f
dψ
. (51)
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Here 9 signifies integration over |ψ |< 1
2π . Use of x for the integration over T gives∫
9

dψ
∫ cs+

cs−
|x0|σ

C
3k1̇k dx0. (52a)

In light of (38) and (40) it can be shown [Freund 1972] that the integrand of (52a) features Dirac function
δ(x0−cs). Moreover, linear behavior in s displayed in (50) places a restriction on ∂S Pk , e.g., [Achenbach
and Brock 1973]. That is, V must in general vary with time. One case, however, for which time-
invariance is valid is

∂S Pk = pk
√

s. (52b)

Equation (41) and (52a) then give

π
s
µ

∫
9

V dψ
[

R3

c2 N12mC K 2
II+

√
1−c
1+c

(
K 2

III +�
R3

c2

√
c++ c

√
c−+ c

√
c+− c

√
c−− c

K 2
I

)]
, (52c)

K I =
c2

g+3 R3

(
1− c

c3

)
p3, (53a)

KII =
c2

g+3 R3

(
1− c

c3

)
(p1 cosψ + p2 sinψ), (53b)

KIII = p1 sinψ − p2 cosψ. (53c)

Equation (47) is singular near C . The last integration in (50) can then be, via transport theory [Malvern
1969], taken over the surface of a tube of radius rC → 0 that encloses the portion of C that borders δA.
Integration can be performed with coordinates (43) and expressions (47) and (53), so that the last term
in (50) becomes

−
s
µ

∫
9

V dψ
√

c2+ (c′)2
[(

1+ c
c+

)(
1+ c

c−

) K 2
I EI

c3(1+ c)
+

K 2
II

c3 EII +
K 2

IIIEIII

c(1+ c)

]
. (54)

Coefficients (EI ,EII,EIII) are defined, in light of (48), as

EI =

∫
9

cosφ[(P(+)3 )2+ (P(−)3 )2] dφ, (55a)

EII =

∫
9

cosφ[(P(+)12 )
2
+ (P(−)12 )

2
] dφ, (55b)

EIII =

∫
9

cosφ(B(−))2 dφ. (55c)

Here 8 signifies integration over range |φ|< π . Equations (51), (52c) and (54) all involve integration
with respect to ψ , so that (50) gives for |ψ |< 1

2π ,

µeF

√
c2+ (c′)2 =

K 2
I

1+ c

(
1+ c

c+

)(
1+ c

c−

)[πb�R3

c2a+a−
−

EI

c3

√
c2+ (c′)2

]
+ K 2

II

[
πR3

c2 N12mC −
EII

c3

√
c2+ (c′)2

]
+

K 2
III

1+ c

[
πb−

EIII

c

√
c2+ (c′)2

]
. (56)
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10. Aspects of solution behavior

Formula (56) is a nonlinear differential equation for c(ψ). Asymptotic expressions preserved the singular
behavior of (σC

3k, 1̇k, u̇k) and were therefore sufficient for derivation of (56). The singular behavior seen
in asymptotic expression (49) for θ is also useful in generating a finite measure of thermal response
near C . Norm ‖θ‖ is defined as

‖θ‖ =

√∮
θ2 dl. (57)

Equation (57) involves (49a) in a line integral for given ψ taken counterclockwise about the circumfer-
ence of the circle of radius r = rC → 0. Because dl = r dφ integration is over range |φ|< π , so that (57)
gives for |ψ |< 1

2π the finite result

‖θ‖ =

√
2c

µc2

ε

λαD

√(
1+ c

c+

)(
1+ c

c−

) K 2
I

1+ c
TI + K 2

IITII, (58a)

TI =

∫
8

(T(+)3 )2 dφ, TII =

∫
8

(T(−)12 )
2 dφ. (58b)

Equations (56) and (58) are somewhat complicated and opaque. Insight concerning c(ψ) and ‖θ‖,
based partly on analytical expressions, is possible by considering values of parameter V (ψ) that are
not negligible, but well below critical, i.e., c/c3 ≈ O(10−1). To this end first-order expansions in c2

for (P(±)12 ,P(±)3 ,B(−)) and (T(+)3 ,T(−)12 ) are developed and given by (E.1)–(E.3). Integration in (55) is
performed on the basis of (E.1) and (E.2), and (56) gives for |ψ |< 1

2π asymptotic form

µeF

π

√
c2+ (c′)2 ≈

p2
3

kC
[1+ E0

I c
√

c2+ (c′)2]

+
1

kC
(p1 cosψ + p2 sinψ)2

[
1/�+ E0

IIc
√

c2+ (c′)2
]

+ (p1 sinψ − p2 cosψ)2[1+ E0
IIIc
√

c2+ (c′)2], (59a)

E0
I =

5
32

(
1+ 1

c2
D

)
, E0

II =
1
32

4+ 3c2
D

c2
D − 1

, E0
III =

1
4
, (59b)

kC = 2
(

1− 1
c2

D

)
. (59c)

Use of (E.1), (E.3) and (58b) leads to an asymptotic form of (58a) for |ψ |< 1
2π :

‖θ‖ ≈
ε

λαD

√
33πc

8µ(c2
D − 1)

√
p2

3 + (p1 cosψ + p2 sinψ)2. (60)

Equation (59a) differs from its counterpart in [Brock 2017b] in that it does depend on thermal properties,
i.e., �. In the previous work, thermal properties have a second-order, i.e., O(c4) effect. Equation (60)
differs from its counterpart in that the relative influence of compression and shear loading depends only
on ψ and the values of pk . Equation (59) and (60) are now used to study two cases.
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11. Case A: pure compression

Here p1 = p2 = 0, p3 = pA > 0. Problem symmetry exists with respect to the x0
1 x0

3 -plane, and (59)
reduces to

(1− c2
A E0

I z)z = 1, (61a)

z = c
cA
, cA =

πp2
A

µeF kC
. (61b)

When kinetic energy is, respectively, neglected (E0
I = 0) and included, (61a) gives

c(ψ)= cA, (62a)

c(ψ)= cE
A =

1
2E0

I cA
(1−

√
1− 4E0

I c2
A). (62b)

Equation (62) describes circular crack edge extension zone contours. Equation (60) gives for (62a) and
(62b) respectively the constant values

‖θ‖ ≈
ε

λαD

√
33π pA

8µ(c2
D − 1)

(
√

cA,
√

cE
A). (63)

For illustration consider a generic metal with properties [de Boer et al. 1988; Skriver and Rosengaard
1992; Brock 2009; Ignaczak and Ostoja-Starzewski 2010]

µ= 79 GPa, eF = 2.2 J/m2, VS = 3094 m/s, cD = 2,

c+ = 4.5452, c− = 1.997, c3 = 0.9332, T0 = 294 K,

αD = 89.6(10−6)K−1, ε = 0.05044, h = 3.1862(10−9)m, h0 = 1.547(10−10)m.

Calculations for cA, cE
A and ‖θ‖ are given in Table 1 for different values of pA. There cE

A > cA, thus
showing that neglect of kinetic energy leads to under-prediction of crack extension speed V cosψ . This
effect decreases with increasing pA however. Entries for ‖θ‖ that correspond to (cA, cE

A) behave in the
same manner, but the under-prediction effect is more pronounced. It is noted that the same behavior is
exhibited in [Brock 2017b]. However, there the effect of increasing pA on the under-prediction of ‖θ‖
is less pronounced.

12. Case B: mixed-mode loading

Here (p1 = fB p3, p2 = 0, p3 = pB) with (0 < fB < 1, pB > 0). Problem symmetry again exists with
respect to the x0

1 x0
3 -plane, and (59) can now reduce for |ψ |< 1

2π to√
z2+ (z′)2 [1− z(�0+�1 cos2 ψ)] = 1+ f 2

BkC + f 2
B(1/�− kC) cos2 ψ, (64a)

‖θ‖ =
εpB

λαD

√
33πc(ψ)

8µ(c2
D − 1)

√
1+ f 2

B cos2 ψ, (64b)

z =
c(ψ)
cB

, cB =
πp2

B

µeF kC
. (64c)
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kinetic energy neglected

f A 1 3 5 10 15

cA 0.00127 0.01143 0.03174 0.12694 0.28562
fN 0.05509 0.49578 1.37714 5.50834 12.3934

kinetic energy included

f A 1 3 5 10 15

cE
A 0.02017 0.01143 0.31741 0.12734 0.29032

fN 0.21957 0.49578 1.37727 5.51726 12.4959

Table 1. Case A: cA, cF
A , ‖θ‖ = fN (10−1)Km1/2 for pA = f A(104)N/m3/2.

When kinetic energy is neglected we have �0 =�1 = 0; when it is included,

�0 = c2
B(E

0
I + kC f 2

B E0
III), �1 = c2

B f 2
B(E

0
II − kC E0

III). (65)

Explicit ψ-dependence of (64a) implies that the crack extension zone contour is not a circular arc, and
that obtaining an analytical solution for c(ψ) may not be simple. Analysis in [Brock 2017b] suggests
use of series representation:

c(ψ)= cB

[
g0+

N∑
1

g2 j

2 j
cos2 j ψ

]
. (66)

Substitution of (66) into (64a) and equating coefficients of terms cos2 j ψ gives recursive equations for
(g0, g2 j ). Equations for (g0, g2) are quadratic, and solutions are given in Appendix F. Equations for
(g4, g6, . . .) are linear.

Calculations for c and ‖θ‖ are listed in Table 2 (kinetic energy neglected) and Table 3 (kinetic energy
included) for various values of ψ and loading ratio fB . Compression load p3 = pB = 5(104)N/m1/2 is
used, and the same generic metal featured in Table 1. Entries for c show that increasing fB (i.e., relative
importance of shear loading) produces crack contours that are somewhat elliptical. That is the maximum
rate of crack extension into the solid is less than the rate at which new crack surface spreads along the
original, semi-infinite crack contour. Inclusion of kinetic energy appears to enhance the deviation from a
circular arc. It is also noted that the relation between the two rates is the reverse of that found in [Brock
2017b], where discontinuity in temperature across the crack plane is not allowed.

Entries in Table 2 and Table 3 indicate that increasing fB also enhances ‖θ‖. When kinetic energy is
neglected the maximum value occurs directly ahead of the translating point forces. When kinetic energy
is included however, ‖θ‖ can achieve maximum values for |ψ | 6= 0 when fB is large enough. A maximum
for |ψ | 6= 0 is also seen in [Brock 2017b], which however only considered the case p1 = p3.

13. Some observations

This paper extends the range of [Brock 2017a; 2017b] for 3D dynamic fracture by considering a transient
problem with mixed-mode loading in a thermoelastic solid with relaxation. The solid is initially at rest
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kinetic energy neglected

fB =
1
4 fB =

1
3 fB =

1
2 fB =

2
3 fB = 1.0

ψ = 0◦ : c 0.03417 0.03605 0.04136 0.04881 0.06522
fN 1.47304 1.54726 1.7578 2.0526 2.79198

ψ = 15◦ : c 0.03421 0.03612 0.0.0415 0.04906 0.0663
fN 1.47091 1.54344 1.74908 2.03649 2.76738

ψ = 30◦ : c 0.03431 0.03629 0.04191 0.04975 0.06914
fN 1.46503 1.53287 1.72458 1.99105 2.689

ψ = 45◦ : c 0.03444 0.03654 0.04248 0.05075 0.07279
fN 1.45689 1.51811 1.68996 1.92525 2.5544

ψ = 60◦ : c 0.03458 0.03678 0.04305 0.05179 0.07619
fN 1.44862 1.05301 1.65333 1.8545 2.38568

ψ = 75◦ : c 0.34674 0.03696 0.04348 0.05259 0.07852
fN 1.4425 1.49167 1.62539 1.79905 2.23758

ψ = 90◦ : c 0.03471 0.03702 0.04364 0.05209 0.07934
fN 1.44024 1.48747 1.61492 1.77788 2.17748

Table 2. Case B: c, ‖θ‖ = fN (10−6)Km1/2 for pB = 5(104)N/m3/2, various fB =

p1/pB and ψ .

at uniform (absolute) temperature, and contains a semi-infinite, closed slit. Shearing and compressive
point forces are applied just behind the crack edge, and initiate brittle fracture. Dynamic similarity is
assumed, i.e., extension rate of points on the crack edge is constant in time, but can vary with location.

Unilateral temporal and spatial transforms are employed. In the latter case however, use is made
of variable transformations based on quasipolar coordinates. Focus upon fracture initiation, moreover,
justifies use of asymptotic expressions that, in integral transform space, give four equations that relate
discontinuity in crack surface temperature, crack opening, crack plane heat flux and traction. The equa-
tions can be rewritten in Wiener–Hopf [Morse and Feshbach 1953; Achenbach 1976] form. Analytical
solutions for transforms with inverse valid near the crack edge are obtained. Such inverses are sufficient
to derive the nonlinear differential equation for the crack edge contour and an exact formula for the norm
of the change in crack edge temperature.

As is predictable [Achenbach and Brock 1973], assumption of dynamic similarity restricts the type of
time variation of the point forces. A suitable type is identified, however, and used to study an example of
pure compression (Case A) and one of mixed-mode loading (Case B). For Case A, the extending portion
of the crack edge is circular, and the norm of temperature near the edge is constant. In Case B, extending
portion of the crack edge is elliptical, with the maximum rate of extension into the solid being less than
the expansion rate of new crack surface along the original rectilinear crack contour. The temperature
norm is also not constant. In both cases, inclusion of kinetic energy gives larger extension rates and
temperature norms. However, this effect decreases as the force magnitudes are increased.
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kinetic energy included

fB =
1
4 fB =

1
3 fB =

1
2 fB =

2
3 fB = 1.0

ψ = 0◦ : c 0.03414 0.0361 0.04172 0.04843 0.05253
fN 1.47228 1.54833 1.76545 2.04463 2.5057

ψ = 15◦ : c 0.03422 0.03616 0.04183 0.05063 0.05526
fN 1.47116 1.5444 1.75575 2.06896 2.5266

ψ = 30◦ : c 0.03432 0.03632 0.04213 0.05078 0.06204
fN 1.4652 1.53346 1.72904 2.01157 2.5473

ψ = 45◦ : c 0.03444 0.03648 0.04258 0.05122 0.0697
fN 1.45696 1.51838 1.69195 1.9342 2.4996

ψ = 60◦ : c 0.03458 0.03678 0.04309 0.05194 0.07551
fN 1.44864 1.50301 1.65411 1.85707 2.37501

ψ = 75◦ : c 0.03467 0.03696 0.0435 0.05263 0.07858
fN 1.4425 1.49169 1.62577 1.79968 2.23839

ψ = 90◦ : c 0.03471 0.03702 0.04365 0.05293 0.07945
fN 1.44024 1.48747 1.61516 1.77844 2.17899

Table 3. Case B: c, ‖θ‖ = fN (10−6)Km1/2 for pB = 5(104)N/m3/2, various fB =

p1/pB and ψ .

Analysis considers the Lord and Shulman [1967] thermal relaxation model. Sub-Rayleigh crack ex-
tension rates are treated and, in contrast to [Brock 2017b], thermoelastic properties affect both the rates
and crack edge temperature norm. The difference represents the inclusion of temperature discontinuity.
Another difference with [Brock 2017b] is that the role of compression/shear ratio in mixed-mode loading
is examined here.

Appendix A

U (±)
1 =

q B
β2 13 cosψ −

1
2Bβ2

(
B261

µp
+ q26M

µp
sinψ

)
(∓)

q
2β2

63

µp
cosψ (±)

1
2β2 (T11+ 2q21M sinψ), (A.1a)

U (±)
2 =

q B
β2 13 sinψ −

1
2Bβ2

(
B262

µp
− q26M

µp
cosψ

)
(∓)

q
2β2

63

µp
sinψ (±)

1
2β2 (T12− 2q21M cosψ). (A.1b)

U (±)
+ =

1
2�β2 A+

[
αD

p2 d2+C−(T13+ q6P)

]
(∓)

1
2�β2

[
αD

p
2+C−

(
63

µp
+ 2q1P

)]
, (A.1c)
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U (±)
− =

−1
2�β2 A−

[
αD

p2 d2+C+(T13+ q6P)

]
(±)

1
2�β2

[
αD

p
2+C+

(
63

µp
+ 2q1P

)]
, (A.1d)

T = β2
− 2q2. (A.2)

1P =11 cosψ +12 sinψ, 1M =11 sinψ −12 cosψ, (A.3a)

6P =61 cosψ +62 sinψ, 6M =61 sinψ −62 cosψ. (A.3b)

Appendix B

1
µ

(
σ̄C

31−
P1

pβ

)
=

cosψ
�β2

(
pM12

2B
1P + q MAαD2

)
+ pB1M sinψ, (B.1a)

1
µ

(
σ̄C

32−
P2

pβ

)
=

sinψ
�β2

(
pM12

2B
1P + q MAαD2

)
− pB1M cosψ, (B.1b)

1
µ

(
σ̄C

33−
P3

pβ

)
=

pB
2A+A−

M313

�β2 . (B.1c)

∂3θ
C
=

ε

αD0+0−
p2q MA1P −

p
2�

MC2. (B.2)

M12 = C−M+−C+M−, (B.3a)

M3 = C−
A−
B

M+−C+
A+
B

M−, (B.3b)

MA = A+− A−, MC = C+A+−C−A−, (B.3c)

M± = T 2
+ 4q2 A±B. (B.3d)

Appendix C

G±3 (q)= exp
[

1
π

∫
du

u∓ c
S3(u)

q(u∓ c)± 1

]
(1< u < c+), (C.1a)

S3(u)=− tan−1 1
4�

k2(u)mC(u)

a+(u)a−(u)
√

u2− 1
(1< u < c−), (C.1b)

S3(u)= tan−1 a+(u)
C−

[
4�

√
u2− 1
k2(u)

−
c−C+
√

u2
− c2
−

]
(c− < c < c+). (C.1c)

G±12(q)= exp
[

1
π

∫
du

u∓ c
S12(u)

q(u∓ c)± 1

]
(1< u < c+), (C.2a)

S12(u)= tan−1 4
�

nC(u)
k2(u)

√
u2− 1 (1< u < c−), (C.2b)

nC(u)= C−a+(u)−C+a−(u) (C.2c)
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S12(u)= tan−1 C−a+(u)

�

4
k2(u)
√

u2− 1
−

C+
c−

√
u2
− c2
−

(c− < u < c+). (C.2d)

G±A(q)= exp
[

1
π

∫
1

u∓c
tan−1

√

u2
− c2
−

c−a+(u)
du

q(u∓ c)± 1

]
(c− < u < c+). (C.3)

G±C (q)= exp
[

1
π

∫
1

u∓c
tan−1 C−

√

u2
− c2
−

c−C+a+(u)
du

q(u∓ c)± 1

]
(c− < u < c+). (C.4)

Appendix D

Asymptotic (|q| →∞) expressions with inverses valid for x3 = 0, x→ 0+:

αD∂3θ
C
≈−

ε
√

q
µ0+0−

4c2m AmC

g+3 R3
√

c

(
1− c

c3

)
(P1 cosψ + P2 sinψ). (D.1)

σ̄C
31 ≈−

sinψ
p
√

q

√
1− c
√

c
(P1 sinψ − P2 cosψ)−

cosψ
p
√

q
N12

g+3
√

c

(
1− c

c3

)
(P1 cosψ + P2 sinψ), (D.2a)

σ̄C
32 ≈−

cosψ
p
√

q

√
1− c
√

c
(P1 sinψ − P2 cosψ)−

sinψ
p
√

q
N12

g+3
√

c

(
1− c

c3

)
(P1 cosψ + P2 sinψ), (D.2b)

σ̄C
33 ≈

P3

p
√

q
1

g+3

(
1− c

c3

) √
c+c−
√

1− c
√

c
√

c+− c−
√

c−− c
. (D.2c)

N12 = 1+
8ε
λ

m2
A

R3
(D.3)

Asymptotic (|q| →∞) expressions with inverses valid for x3 = 0, x→ 0−:

αD2≈−
4ε

0+0−

m A

µp
√
−q

c2

√
c g+3 R3

(
1− c

c3

)
(P1 cosψ + P2 sinψ) (D.4)

pβ11 ≈−
2 sinψ
µp
√
−q

√
c

√
1+ c

(P1 sinψ − P2 cosψ)

−
2 cosψ
µp
√
−q

c2√c
g+3 R3

(
1− c

c3

)
(P1 cosψ + P2 sinψ), (D.5a)

pβ12 ≈−
2 cosψ
µp
√
−q

√
c

√
1+ c

(P1 sinψ − P2 cosψ)

−
2 sinψ
µp
√
−q

c2√c
g+3 R3

(
1− c

c3

)
(P1 cosψ + P2 sinψ), (D.5b)

pβ13 ≈
2P3

µp
√
−q

�c2

g+3 R3

(
1− c

c3

) √
c

√
c+c−
√

1+ c

√
c++ c

√
c−+ c. (D.5c)
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Appendix E

A(+)
± ≈

√
1+ cosφ

[
1+

c2

4c2
±

(1− cosφ) cosφ
]
, (E.1a)

A(−)
± ≈

√
1− cosφ

[
1−

c2

4c2
±

(1+ cosφ) cosφ
]
, (E.1b)

B(+) ≈
√

1+ cosφ
[
1+ 1

4 c2(1− cosφ) cosφ
]
, (E.1c)

B(−) ≈
√

1− cosφ
[
1− 1

4 c2(1+ cosφ) cosφ
]
. (E.1d)

P(+)3 ≈−
�c2

2c2
D

√
1+ cosφ

[
1− 1

2 cosφ(c2
D − 1)(1− cosφ)

]
, (E.2a)

P(−)3 ≈
�c2

2c2
D

√
1− cosφ

[
c2

D +
1
2 cosφ(1− c2

D)(1+ cosφ)
]
, (E.2b)

P(+)12 ≈
�c2

4c2
D

√
1+ cosφ cosφ(1− cosφ)(c2

D − 1), (E.2c)

P(−)12 ≈−
�c2

2c2
D

√
1− cosφ

[
c2

D +
1
2 cosφ(1+ cosφ)(c2

D − 1)
]
. (E.2d)

T(+)3 ≈
�c2

2c2
D

√
1+ cosφ

[
1+ 1

2 cosφ(1− cosφ)
]
, (E.3a)

T(−)12 ≈−
�c2

2λ2
D

√
1− cosφ

[
1− 1

2 cosφ(1+ cosφ)
]
. (E.3b)

Appendix F

Kinetic energy neglected:

g0 = 1+ f 2
BkC , (F.1a)

g2 =−
1
2 g0

[
1−

√
1+ 2/g0(2 fB)

2(1/�− kC)
]
. (F.1b)

Kinetic energy included:

g0 =
1

2�0
(1−CB), CB =

√
1− 4�0(1+ f 2

BkC), (F.2a)

g2 =−2F1/F2
2
[
1−

√
1− F0(F2/F1)

2]. (F.2b)

F0 =�1g3
0(2−CB)− 2 f 2

B(1/�− kC)(1+ f 2
BkC), (F.3a)

F1 = (1+ f 2
BkC)CB, F2 = 1+CB . (F.3b)
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