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STABILITY OF COSSERAT SOLIDS: SIZE EFFECTS, ELLIPTICITY AND WAVES

RODERIC S. LAKES

We consider stability in Cosserat solids. To obtain restrictions on elastic constants based on positive defi-
nite strain energy, energy terms are tacitly assumed to be independent. In finite-size objects, however, the
terms are linked in Cosserat materials. Therefore, in contrast to classical solids, the stability of Cosserat
solids appears to depend on the size and shape of the specimen, provided strong ellipticity is satisfied.
Stability in the presence of stored energy is possible. Solids with microstructure and stored energy offer
the potential to facilitate attainment of extreme behavior in the presence of spatial gradients. Snap-
through buckling in torsion is envisaged by analogy to the axial buckling concept used for composites
with negative stiffness inclusions. It is possible to support compressive load in a stable manner but to
dissipate energy in the presence of spatial gradients as in torsion or bending.

1. Introduction

Extremely high values of physical properties such as mechanical damping [Lakes 2001; Lakes et al. 2001],
stiffness [Jaglinski et al. 2007], and piezoelectric sensitivity [Wang and Lakes 2001] can be attained in
systems at the margins of stability, in bistable systems that undergo hysteresis, and in composites with
inclusions of negative stiffness. Thus far, metastable and unstable systems have been understood in the
context of classical elasticity. However, many such materials are heterogeneous with a coarse structure
size. Such materials can be modeled as Cosserat solids.

Cosserat elasticity [Cosserat and Cosserat 1909; Mindlin 1965b] incorporates sensitivity to gradients
of rotation by virtue of the coupling between rotations and stresses. The constitutive equations for
linear isotropic Cosserat elasticity, also called micropolar elasticity [Eringen 1968] in the presence of
microinertia, are as follows:

σi j = 2Gεi j + λεkkδi j + κei jk(rk −φk), (1)

mi j = αφk,kδi j +βφi, j + γφ j,i . (2)

There are two rotation variables: φm is the rotation of points, called microrotation, and rk =
1
2 eklmum,l

is the “macro” rotation based on the antisymmetric part of gradient of displacement ui . Here, e jkm is
the permutation symbol. In contrast to classical elasticity, the stress σi j (force per unit area) in Cosserat
elasticity can be asymmetric. The theory incorporates a couple stress mi j (a torque per unit area) which
balances the distributed moment associated with asymmetric stress.

Isotropic Cosserat solids have six elastic constants: λ, G, α, β, γ , κ . Constants λ and G have the
same meaning as in classical elasticity. The Cosserat elasticity constants α, β, γ provide sensitivity to the
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rotation gradient. The Cosserat constant κ governs the coupling between local rotation and the rotation
associated with displacement gradients.

Various other generalized continuum theories are available. We use Cosserat elasticity in our labora-
tory [Lakes 1986; Rueger and Lakes 2016] because suitable solutions of boundary value problems are
available for interpreting experiments.

In the present research, real wave velocity and strong ellipticity are assumed and the size dependence
of the stability of circular cylinders is explored. The rationale is to provide groundwork for developing
gradient sensitive heterogeneous materials with extreme dissipative properties.

2. Range of elastic constants

An assumption of positive definite strain energy leads to restrictions on the elastic constants. For classical
isotropic elasticity, the shear modulus G > 0 and 3λ+ 2G > 0. For Cosserat solids, these additional
restrictions apply [Eringen 1968; 1999]: κ > 0, γ > 0, −γ < β < γ , and 3α+β + γ > 0.

As for physical interpretation, positive definite strain energy corresponds in classical elasticity to
positive shear modulus and positive bulk modulus. Positive moduli are required for a sample of material
to be stable in the absence of constraint.

An assumption of strong ellipticity corresponds to a weaker set of conditions. For classical elasticity,
they are G > 0 and λ+ 2G > 0.

Strong ellipticity is associated with the requirement that waves have a real velocity. For longitudinal
waves to have a real velocity, λ+ 2G must be greater than 0 in both classical and Cosserat elasticity. For
transverse waves in Cosserat solids to have a real velocity at low frequency, G must be greater than 0; in
the high frequency limit [Eringen 1968], G+ 1

2κ > 0. A second set of transverse waves can exist above a
critical frequency. The wave speed v3 is real if γ > 0 and κ > 0; the high frequency limit is c4 =

√
γ /ρ j ,

where ρ is density and j is microinertia. For such waves to exist at high frequency, γ must be greater
than 0. There are also dispersive microrotation waves that exist above a critical frequency governed by
microinertia. Such waves can exist if α+β+γ > 0. As for surface waves, their speed is dominated by the
shear modulus G; for Cosserat solids there is a contribution from κ . So the stability condition based on
plane waves presented [loc. cit.] includes λ+2G>0, G>0, G+ 1

2κ >0, κ >0, α+β+γ >0, and γ >0.
It was suggested [Neff et al. 2016; 2017] that the criteria for real wave velocity in a Cosserat solid

are λ+ 2G > 0, G > 0, and κ > 0. For strong ellipticity, the usual classical condition λ+ 2G > 0 is
supplemented in the Cosserat case [Jeong and Neff 2010] with G+ κ > 0, γ > 0, and α+β + γ > 0.

2.1. Stability of classical solids. Negative values of λ (but not too negative) are consistent with stability;
this entails a negative Poisson’s ratio ν = λ/(2(λ+G)), which is certainly possible [Lakes 1987]. The
stability criterion for Poisson’s ratio of unconstrained objects is −1< ν < 0.5.

Suppose G < 0; strain energy is not positive definite. An unconstrained block of material is then
unstable to shear deformation because the restoring force is reversed. The structural rigidity or spring
constant for shear becomes negative. Any small perturbation causes the block to diverge from its ini-
tial state. Similarly, a negative bulk modulus B = λ+ 2

3 G < 0 entails a volume change instability of
unconstrained blocks.

It is possible for a solid to have a negative bulk modulus, corresponding to a strain energy that is not
positive definite. Such a solid may be stabilized by constraint at the boundaries. The material contains



STABILITY OF COSSERAT SOLIDS: SIZE EFFECTS, ELLIPTICITY AND WAVES 85

0

4

3

2

1

0
1

r

Ω

2

l  = 0.1t

Ψ =1.5
Ψ =1.5

Ψ = 0.5l  = 0.2t

l  = 0.1it

l  = 0.2it

Figure 1. Size effect, rigidity ratio of a round bar vs. radius r , in torsion for N = 0.5
and for various `2

t including negative values for 9 =±0.5 and for 9 =±1.5. When the
normalized torsion rigidity � becomes negative, the bar is unstable in torsion.

stored elastic energy. The effects of constrained negative bulk modulus have been demonstrated in the
laboratory [Moore et al. 2006].

If strong ellipticity fails, then the material exhibits bands of heterogeneous deformation, as is the case
in solid-to-solid phase transformations.

In the following we show that for Cosserat solids, materials with nonpositive definite strain energy
may be stable without constraint if the specimen is sufficiently large in size.

2.2. Stability of Cosserat solids. As with classical solids, a Poisson’s ratio within the range−1<ν < 0.5
is consistent with the stability of a Cosserat solid in the absence of constraint via positive definite strain
energy. The constant β can be negative provided |β/γ |< 1. The criterion 3α+β+γ > 0 allows negative
(but not too negative) values of α.

To obtain the restrictions on elastic constants based on positive definite strain energy, it is assumed
that modes of deformation are independent. In classical elasticity, volumetric and shear deformation
are indeed independent. Such deformations can occur homogeneously without any strain gradient. In
Cosserat elasticity it is assumed [Eringen 1968] that the strain εi j , rotation difference rk−φk , and rotation
gradient φi, j can be varied independently. For a particular specimen geometry, however, these variables
are coupled via the equilibrium equations and by the boundary conditions for the specimen. Deformation
modes that involve a strain gradient are coupled to a rotation gradient. The specifics depend on specimen
size and shape as follows.

Consider the torsional structural rigidity ratio �. This is the Cosserat rigidity of a round rod of
radius r of a Cosserat solid divided by the corresponding classical rigidity. The classical torsional rigidity
is M/θ = G[(π/2)r4

]; M is the applied moment and θ is the angular displacement per length. If
elastic constants obey positive definiteness, there are size effects in which slender rods appear stiffer
than thicker ones. The rigidity (Figure 1) depends on the characteristic length for torsion, defined as
`t =
√
(β + γ )/2G.

Suppose β/γ <−1, or equivalently β + γ < 0, which violates positive definite strain energy. Elastic
constants λ, G, γ , κ are assumed to be positive. Then (`t/r)2 becomes negative; `t is imaginary. This
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is admissible [Mindlin 1965a], given the form of the energy function. Physically in the present context,
negative Cosserat constants corresponding to an imaginary characteristic length entail a destabilizing
influence. Then in (3), the second term provides a negative contribution to the structural rigidity because
(`t/r)2 < 0. The structural rigidity � remains positive, however, if the rod is sufficiently thick (Figure 1).
Observe that one must have α+ β + γ > 0 or the Bessel functions have imaginary arguments, which
suggests instability. Recall the same criterion was required for microrotation waves to exist above a
characteristic frequency and to satisfy strong ellipticity. Plots are shown in Figure 1 for several values of
polar ratio 9 = (β + γ )/(α+β + γ ). To maintain α+β + γ > 0, we assume 9 < 0 when `2

t < 0. This
corresponds to large positive α. Allowing β/γ <−1 can cause torsional instability only for sufficiently
slender rods. Thicker ones are stabilized by the classical term. The stiffening effect does not allow G < 0
for slender rods because they would be unstable to deformation in simple shear. The exact solution for
torsion of a round rod is [Gauthier and Jahsman 1975]

�=

(
1+ 6

{
`t

r

}2)[
1− 4

39χ

1−9χ

]
, (3)

in which χ = I1(pr)/pr I0(pr), p2
= 2κ/(α+β + γ ), and I0, I1 are modified Bessel functions of the

first kind. Recall that � is the ratio of torsional rigidity of the Cosserat solid to that of a classical solid.
The case N = 1 (in which N =

√
κ/(2G+ κ) ), see (4), is simpler; the same phenomena occur as

well. For Cosserat elasticity in the regime N = 1, we have M/θ = G[(π/2)r4
](1+ 6(`t/r)2). Here, G

is the true shear modulus in the absence of gradients.

�= 1+ 6
(
`t

r

)2

. (4)

The case N = 1 is called couple stress elasticity. Stability for anisotropic couple stress solids has been
analyzed [Gourgiotis and Bigoni 2016a; 2016b; Bigoni and Gourgiotis 2016]. Strong ellipticity does
not imply real wave propagation in such couple stress solids, in contrast to classical solids; similarly for
the reverse. Also in the vicinity of the ellipticity criterion, the couple stress solid exhibits folding and
faulting patterns not present in the classical case.

We remark that for9= 1.5, its upper limit, α< 0, assuming positive definite strain energy. For small N,
the rigidity softens below classical values but remains positive, as shown in Figure 2, in harmony with the
stability criterion of positive definiteness. This region was not explored in [Gauthier and Jahsman 1975]
and is not known experimentally. The effect of N is not obvious in (3), however the limit of small N
can be visualized via expansion of the Bessel functions for small argument. In the limit χ→ 1

2 , then for
9 = 1.5 and small N , the rigidity ratio �→ 0. To approach the limit of classical elasticity for a given
range of radius r , α, β, γ → 0, which is not plotted in Figure 2.

As for bending, size effects in rigidity also occur, see (5) and (6). As with torsion, allowing `2
t < 0

(hence β/γ <−1) can cause instability only for sufficiently slender rods (Figure 3). Thicker ones are
stabilized by the classical term. The rigidity ratio for bending of a Cosserat elastic circular rod of radius r
is [Krishna Reddy and Venkatasubramanian 1978]

�= 1+ 8
(
`b

r

)2
(1− (β/γ )2)
(1+ ν)

+
8N 2

(1+ ν)

[
(β/γ + ν)2

ζ(δr)+ 8N 2(1− ν)

]
(5)
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Figure 2. Size effect, rigidity ratio � of a round bar vs. radius r , in torsion for `t = 0.1
and for 9 = 1.5, where the upper limit assumes positive definite energy. Curves are
shown for N = 0.6, 0.4, 0.2, 0.1, 0.05.
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Figure 3. Size effect, rigidity ratio � of a round bar vs. radius r , in bending for N = 0.5,
for `b = 0.2 and for various `2

t including negative values. When the normalized bending
rigidity � becomes negative, the bar is unstable in bending.

with `b =
√
γ /4G as a characteristic length for bending, N =

√
κ/(2G+ κ) as the coupling number, and

ν as Poisson’s ratio. Also δ= N/`b and ζ(δr)= (δr)2[((δr)I0((δr))− I1((δr)))/((δr)I0(δr)−2I1(δr))].
The classical bending rigidity is M/θ = E[(π/4)r4

].
The Bessel term vanishes for β/γ =−ν and is small for N � 1. In this regime we have the following

simpler form (this form also applies for (`b/r)2� 1 but is not as good an approximation):

�= 1+ 8
(
`b

r

)2
(1− (β/γ )2)
(1+ ν)

. (6)

As for other instability modes, the bar is stable under perturbations in extension because Young’s
modulus E is positive and there are no rotation gradients. The rigidity depends only on E and not on any
Cosserat constants. Similarly the bar is stable under perturbations in uniform shear because the shear



88 RODERIC S. LAKES

modulus G is positive and simple shear is also spatially uniform. Similarly a positive bulk modulus B
provides stability with respect to homogeneous volumetric deformation. Sausage deformation involves
shear but the gradients in rotation are small compared to the gradients in torsion and bending so such
deformation is unlikely to cause instability. Also, sausage deformation could initiate from an instability
in surface wave speed. However, this wave speed depends primarily on G and has a correction involving
κ with no effect of β or γ , so the cases considered are stable with respect to surface waves. We do not,
however, know all possible instability modes.

Observe that the threshold radius for instability is similar in torsion and in bending. In contrast to
classical solids, the stability of unconstrained Cosserat solids appears to depend on the size and shape of
the specimen.

3. Experiment

Stored energy may be achieved via an initial compressive strain, sufficient to buckle some of the cell
ribs. Such a deformation was input to a square cross section bar of foam of dimensions 50×50×161 mm.
An open-cell polyurethane foam with cells about 4 mm across and density 0.026 g/cc was used. Cyclic
sinusoidal deformation at 1 Hz in torsion was applied using a tension-torsion frame with a sensitive
torque cell. Calculated peak shear engineering strain was ±20%. Torsion hysteresis was measured with
and without precompression.

Axial precompression was found to result in softening of the apparent torsion rigidity and an increase in
the damping tan δ. For no precompression, tan δ = 0.12. For 5% precompression (the typical threshold
for rib buckling), tan δ = 0.11, and the effective shear modulus softened to 85% of the value for no
compression. For 7.5% precompression, tan δ = 0.19, and the effective shear modulus softened to 77%
of the value for no compression. For 10% precompression, tan δ = 0.21, and the effective shear modulus
softened to 74% of the value for no compression.

Resolution was insufficient to reveal hypothetical regions of local negative structural rigidity. Rib
buckling is known to occur, leading to multiple snap-through events. Softening of moduli and increase
in damping due to such mechanisms are known in other contexts [Lakes et al. 2001].

The experiment reveals coupling between axial precompression and an increase in torsional damping
and softening of torsional rigidity. Ordinarily, in cellular solids the damping tan δ is independent of
the foam cell geometry. If the frequency is sufficiently low so that stress-induced air flow does not
contribute to the damping, foam damping is equal to that of the polymer from which it is made. The
damping increase in the present experiment occurs when the threshold for cell rib buckling is exceeded,
so the increase is interpreted in the context of instability. However, to explicitly demonstrate a Cosserat
aspect of these phenomena, a protocol to measure size effects with and without precompression would
require higher resolution than is currently available.

4. Composites and applications

Composite materials with negative stiffness inclusions are well known [Lakes 2001]; they allow extreme
values of mechanical damping or of stiffness as shown by experiment [Lakes et al. 2001; Jaglinski et al.
2007]. In distributed composites, negative stiffness is achieved by incipient phase transformation of
inclusions. In lumped or discrete systems, negative stiffness is achieved by the postbuckling of structural
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Figure 4. Torsional snap through element with negative incremental torsional rigidity.
Left, top view; right, perspective view.

elements. The negative stiffness, which involves relaxing the requirement of positive definite strain
energy, is stabilized by constraint within a composite or a structure. Thus far the approach [Lakes 2001;
Lakes et al. 2001; Jaglinski et al. 2007] has been classical.

Nonpositive definite strain energy entails stored elastic energy in the material. If the material is a
Cosserat solid, energy may be stored in the rotational degrees of freedom in an unconstrained object. It
is possible to store energy in the material by controlled microbuckling of ribs, as has been done in foams
and composites. Stored energy may also be incorporated via a prestrain or during the fabrication of the
composite.

As for purely rotational freedom, we envisage torsional snap-through elements (Figure 4) as inclusions.
Such a discrete element, either used alone with rotational constraint or embedded in a classical matrix,
can be stable while containing stored energy in a neutral position. Torsional snap through elements
contribute a negative torsion rigidity; in a composite, the total rigidity can be positive by virtue of the
stiffness of the surrounding matrix material. Torsion through the element’s negative stiffness region can
give rise to partial softening of the torsion rigidity: hysteresis, and mechanical damping, corresponding
to similar phenomena observed in classical composites with negative stiffness inclusions. Consequently,
there is the potential to support compressive load in a stable manner but to dissipate energy in the presence
of spatial gradients as in torsion or bending.

Composites based on Cosserat solids outside the usual range of elastic constants offer the potential of
extreme values of damping of torsional waves independently of the ability to support axial load. In the
context of waves, material properties can approach the margins of strong ellipticity. Wave cut off may be
manipulated by the control of gradient sensitivity rather than by adding extra inertia, as is done in most
“metamaterials”.

5. Discussion

Stability of materials has been studied in the context of positive definite strain energy and of ellipticity.
If a classical material has positive definite strain energy then it is stable in the absence of constraint.
If it obeys strong ellipticity then it is stable with respect to the formation of bands of heterogeneous
deformation and with respect to instability associated with waves.

More restrictive views than the assumption of positive definiteness have been taken. In classical
elasticity, it had been believed, and even stated in textbooks, that Poisson’s ratio of isotropic solids must
be positive; negative values are now well known [Lakes 1987]. In Cosserat solids it had been claimed
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that 1
2κ < G but this claim was shown to be incorrect [Cowin 1970]. Also, allowing the full stable range

of Cosserat constants implies that torsion and bending stiffness can diverge as rod radius becomes small.
This has been considered to be mathematically unpalatable and also can present difficulties in obtaining
stable fits of experimental data to analytical curves [Neff et al. 2010]. If, however, 9 = 1.5 and β = γ ,
then the structural rigidity is bounded as the radius becomes small. Size effect experiments on isotropic
dense foam [Lakes 1986] are consistent with such a notion. However, a definitive experimental test of
the concept has not been done; some known Cosserat solids such as bone are highly anisotropic, and
open cell foams and lattices can exhibit various degrees of anisotropy as well as strong size effects.

The value of β/γ (pertinent to stability limits) can be probed as follows. For square section bars, the
cross section shape changes in bending as shown both theoretically and experimentally. Classical linear
tilt of lateral surfaces becomes a sigmoid shape in Cosserat solids [Lakes and Drugan 2015]. Experiment
shows that for an open cell foam, β/γ > 0 and is consistent with β/γ = 1. If β/γ were to be sufficiently
negative, the curve of lateral surfaces would be of opposite sign.

By contrast, views less restrictive than positive definiteness have been taken. For example, continuum
models were compared with corresponding structural lattice analyses. It was argued, based on such a
comparison, that stability conditions should be applied to volume elements considerably larger than the
structural length scale of the material to be studied [Brulin and Hjalmars 1981]. This concept leads to
stability conditions weaker than those obtained from positive definite strain energy in Cosserat solids.
However, the role of boundary conditions in objects of finite size was not considered, in contrast to the
perspective taken here.

As for experiment, torsional damping increases when axial precompression suffices to buckle ribs.
This could be useful in vibration damping applications but is not definitive in a Cosserat interpretation.
As for waves, transmitted longitudinal wave amplitude in a foam is reduced by compression below and
near the cut off frequency [Balch and Lakes 2017].

6. Conclusion

In contrast to classical solids, the stability of Cosserat solids appears to depend on the size and shape
of the specimen provided strong ellipticity is satisfied. For Cosserat solids, materials with nonpositive
definite strain energy due to stored energy in the rotational freedom may be stable without constraint if
the specimen is sufficiently large in size.
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