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EXTREME COSSERAT ELASTIC CUBE STRUCTURE WITH
LARGE MAGNITUDE OF NEGATIVE POISSON’S RATIO

CARLOS ANDRADE, CHAN SOO HA AND RODERIC S. LAKES

A structure consisting of pivoting cubes is presented. It has zero Young’s modulus and zero bulk modulus.
Poisson’s ratio has large negative values in all directions; the structure exhibits anisotropy in Poisson’s
ratio. The structure is compliant in tension but rigid in torsion and bending. The Cosserat characteristic
length tends to infinity.

1. Introduction

A 3D negative Poisson’s ratio material based on transformed open cell polyurethane foam was reported
in [Lakes 1987a]; it had a Poisson’s ratio −0.7. It is possible to approach the isotropic lower limit −1
via structures or lattices with hinges. Negative Poisson’s ratio was analyzed in a model of rods, hinges
and springs [Almgren 1985]; a value of −1 was calculated. A Poisson’s ratio of −1 can be achieved
in 2D structures containing rotating rigid units such as squares [Grima et al. 2005] connected by ideal
hinges. Negative Poisson’s ratio was also studied in 2D systems with rotating hexamers [Wojciechowski
1987; 1989] in the context of thermodynamic stability.

More recent designs with bars linked by ideal pivots allow the structure to undergo arbitrarily large
volumetric strain with zero bulk modulus [Milton 2013]. Negative Poisson’s ratio materials have been
called “dilational” [Milton 1992] because they easily undergo volume changes but are difficult to shear.

It is possible to approach the isotropic lower limit −1 at small strain in the analysis of a hierarchical
two phase composite [Milton 1992] if there is sufficient contrast between constituent properties. A 2D
chiral lattice [Prall and Lakes 1997] exhibits a Poisson’s ratio −1 over a range of strain as shown by
experiment and analysis.

In the present research, we develop a structure made of cubes connected by pivots at their corners.
Poisson’s ratio and sensitivity to gradients are studied.

2. Cube structure

A structure is envisaged of cubes of side length a connected by pivots at the corners; see Figure 1.
Views of the 3× 3× 3 cube structure along principal directions are shown in Figure 2. The rear layers

of the cubes are fully hidden. Deformation results in tilting of the cubes at the pivot points. This tilt
causes void space to appear in the structure giving rise to a volume change. Transverse expansion of the
structure under tension implies a negative Poisson’s ratio.

2.1. Analysis and interpretation.
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Figure 1. Cube structure, oblique view.

Figure 2. Cube structure, principal direction view.

P

←
1
2φ

a

Q R

1
2φ

S BT

1
2θ1

1
2θ2

Figure 3. Analysis of cube structure deformation using two angles.

2.1.1. Elastic moduli and Poisson’s ratio: two angles. We assume that the cubes are rigid and the pivots
are ideal and allow frictionless rotation in all directions. Tensile deformation of the structure freely
occurs in each axial direction: Young’s modulus E = 0. Consequently, changes in volume occur with
no resistance so the bulk modulus is zero. Shear forces in the X direction (Figure 2, left) on adjacent
layers cause no deformation because the cube tilt cannot accommodate such motion. Shear forces in the
Y direction (Figure 2, center) cause no deformation because the edges are in contact, forming a hinge.
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Consequently, the structure resists shear in all directions but allows tensile deformation, suggesting an
extremal negative Poisson’s ratio.

Strain ε depends on cube tilt angle φ, beginning at zero, as follows. Two angles are considered for
simplicity and transparency; the third angle shown in Figure 2 right appears to be small and is neglected
for the present. In Figure 3 consider the change in the length of a vertical line element during deformation.
Points A and B (Figure 2, left) are at pivoted corners; distance a is the cube width. After deformation
the vertical line from P, center of top face, intersects the bottom cube face at R; because tilt occurs
in two orthogonal directions, the intersection is along a diagonal. Points B, S, and T, not necessarily
collinear, are in a horizontal plane. The change in length is 1L = P S− a. The corresponding strain is
εyy = (P S− a)/a.

In triangle P Q R, cos 1
2φ = P Q/(P R)= a/(P R). In triangle B QT , tan 1

2φ = QT /(B Q) so QT =
a 1

2

√
2 tan 1

2φ. Also, PT = a+ QT = a(1+ 1
2

√
2 tan 1

2φ), but in triangle P ST , cos 1
2φ = P S/(PT ) so

P S = PT cos 1
2φ with PT = a+ QT . P S = a(1+ 1

2

√
2 tan 1

2φ) cos 1
2φ.

So the strain in terms of tilt angle is

εyy =
(
1+ 1

2

√
2 tan 1

2φ
)

cos 1
2φ− 1. (1)

If the angle is sufficiently large, the force has a line of action passing through a pivot. The force
generates no moment to cause further rotation. For εxx as seen in the XY plane, the geometry is similar.
However, viewed in the z direction, the effect of θ1 alone gives the following in the linear regime of
small angle:

εθ1
xx =

1
2 tan 1

2φ, (2)

but θ2 rotates the corresponding point on the right face center down, reducing the distance, yielding a
strain

εxx =+
1

2
√

2
tan 1

2φ. (3)

The Poisson’s ratio is, for small angle,

νxy =−
εxx

εyy
=−

( 1
2
√

2
tan 1

2φ
)

(
1+
√

2
2

tan 1
2φ

)
cos 1

2φ− 1
. (4)

From the definition, νyx = 1/νxy . For small angle, νxy = −
1
2 , νyx = −2. The structure is therefore

anisotropic even though Young’s modulus E = 0 in all directions.
As for εzz as seen in the Y Z plane, εzz = εxx by virtue of a similar construction (neglecting tilt in the

third orthogonal direction). So νzx =−1, νxz =−1.
This analysis makes the simplifying assumption that tilt in the third direction is small compared with

tilt in the two directions considered. Tilt in all three directions is considered in the numerical approach
below.

2.1.2. Bending. The classical bending rigidity of a bar is MR = E I with R as the principal bending
radius of curvature and I is the area moment of inertia. Moment M is about the y axis; the z axis is
along the bar. The rigidity depends only on Young’s modulus E not on Poisson’s ratio ν. The effect
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Figure 4. Cube structure viewed along the principal directions. All points are located
at the center of cube faces. Here, φ is an angle between diagonal lines of adjacent
cubes; θ1 and θ2 represent angles between cube edges when the structure is viewed in
the corresponding principal directions. For the structure shown, φ = 42.17◦, θ1 = 30◦

and θ2 = 28.96◦.

of Poisson’s ratio is to alter the deformation field. For positive Poisson’s ratio the cross sections curve
oppositely to the principal bending curve, the familiar anticlastic curvature. A negative Poisson’s ratio
causes curvature in the same direction as the bending curve, synclastic curvature [Lakes 1987a]. The
three-dimensional displacement field for pure bending of a linear elastic homogeneous, isotropic bar of
rectangular section is

ux =−
z2
+ ν(x2

− y2)

2R
, u y =−ν

xy
R
, uz =

xz
R
. (5)

So if Young’s modulus E tends to zero, it should be easy to bend the bar with no effort regardless of
Poisson’s ratio, provided the bar obeys classical elasticity.

The cube structure, while easy to deform in tension (E = 0), is rigid in bending. To visualize this, in
the XY plane in the left image in Figure 2, expansion of a line along direction AB due to bending due
to a Z moment is accompanied by contraction along line cd. The pivoted cube structure requires either
expansion or contraction in all directions, so the structure is rigid to bending. Lines AB and cd are in
different planes but that does not affect the argument because the classical motion has the same sign on
the front and back.

Bending differs from axial extension in that bending entails gradients in strain and rotation. Classical
elasticity is insensitive to gradients but Cosserat elasticity allows such sensitivity. Rigidity of the structure
to bending combined with a zero tensile Young’s modulus implies a Cosserat characteristic length that
tends to infinity. Again, the cubes are assumed to be rigid and the pivots are assumed to be ideal.

2.1.3. Elastic moduli and Poisson’s ratio: numerical model, three angles. Figure 4 illustrates views of
the structure along the principal directions and points on the center of cube faces that were used to
compute Poisson’s ratio via a numerical model. Moreover, θ1 and θ2 represent angles between cube
edges when the structure is viewed in the corresponding principal directions.

To determine the effect of motion in all three angles, the cube structure was modeled by SolidWorks
commercial CAD software. In this analysis, a cube structure was modeled with a cube side length
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of 10 mm and with various inclined angles φ of 7.07, 14.13, 21.18, 42.17, 62.74, and 82.56 degrees.
Poisson’s ratio in the principal directions was obtained as follows. The “mate” feature in SolidWorks
was used to make hinge constraints on corners. Distance was then measured using the software. The
effect is purely geometrical so there was no need to use tools such as ANSYS APDL.

To obtain Poisson’s ratio of the cube structure, strain and Poisson’s ratio were determined in terms of
the distances. First, strains in the principal directions due to the angle φ were computed, as given in the
following equations:

In xy plane,

εxx =
|Q R,x QL ,x | − 2a

2a
, (6a)

εyy =
|PT,y PB,y| − 2a

2a
. (6b)

In xz plane,

εxx =
|TR,x TL ,x | − 2a

2a
, (6c)

εzz =
|RT,z RB,z| − 2a

2a
. (6d)

In yz plane,

εzz =
|NR,z RL ,z| − 2a

2a
, (6e)

εyy =
|MT,y MB,y| − 2a

2a
. (6f)

In the above, a is the cube side length and |Q R,x QL ,x | denotes a distance between Q R and QL in the
x direction in the xy plane after deformation; εxx is then equal to (|Q R,x QL ,x | − 2a)/2a. With strains
found in (6), Poisson’s ratio in the principal directions are

νxy =−
εxx

εyy
=−
|Q R,x QL ,x | − 2a

|PT,y PB,y| − 2a
, (7a)

νxz =−
εxx

εzz
=−
|TR,x TL ,x | − 2a

|RT,z RB,z| − 2a
, (7b)

νzy =−
εzz

εyy
=−
|NR,z RL ,z| − 2a

|MT,y MB,y| − 2a
. (7c)

From numerical results, it was found that εxx,num from the xy and the xz planes were identical (i.e.,
ε

xy-plane
xx,num = ε

xz-plane
xx,num ). Similarly, εyy,num in the xy plane agreed exactly with the one in the yz plane, and

εzz,num were the same for the xz and the yz planes (i.e., εxy-plane
yy,num = ε

yz-plane
yy,num and εxz-plane

zz,num = ε
yz-plane
zz,num ).

This confirms that cube structures modeled by the employed CAD software were correctly designed and
interpreted since the computed strains were the same regardless of views in different principal directions.
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Figure 5. Strains of a cube structure as a function of the angle φ.

As a result, the superscript of strains obtained numerically were omitted in this paper as follows, unless
stated otherwise.

A comparison of strains between analytical and numerical approaches was made, as shown in Figure 5.
The strain εyy between these two approaches agreed well with one another throughout the range of φ.

The strain εxx also agreed over the narrower range of strain consistent with the simplifying assumptions
in that analysis including neglect of the effect of the tilt in the third orthogonal direction and of higher
nonlinearity.

As illustrated in Figure 4, left, and Figure 4, right, the effect of the orthogonal tilt is small when the
angle φ is small. From this, it was expected that εxx,num and εzz,num be similar when φ is small, and
this can be observed in Figure 5. In this regime (i.e., for small φ), strains are almost linear as a function
of angle. In contrast, nonlinearity occurs when φ is large. The effect of the tilt in the third orthogonal
direction can be quantified by θ1 and θ2 that represent angles between adjacent cube edges when the
structure is viewed in the corresponding principal directions. For small φ, these two angles are similar.

In summary, for small strain, the Poisson’s ratios νzx and νxz obtained by two-angle analysis and three-
angle numerical methods are equal with a value of −1, as illustrated in Figure 6. For other directions,
the simple analysis and numerical results agree with the appropriate small angle range.

3. Physical model

Physical models were made to aid visualization and to illustrate the concepts. An initial model was
made with cubes cut from polymer foam. A design was assembled digitally using Solidworks 2016.
Cubes were prepared using Solidworks in .stl (StereoLithography) format for export to a 3D printer. The
method was fused deposition method (FDM). The print resolution (i.e., the minimum size of a stand
alone feature) was 0.5 mm. These cubes, 2 cm wide, were manufactured using a Dimension Elite 3D
printer, and made of Stratasys ABSplus P430 thermoplastic. Pivots can be made by 3D printing but
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Figure 6. Poisson’s ratio in all the principal directions.

they are subject to considerable friction which would interfere with the demonstration of the concept.
Therefore a fibrous tape was cut into a dog-bone shape. Segments were taped to adjacent cubes, leaving
the slender portion as a pivot. A 3× 3× 6 model was made with Z as the long direction.

The physical model was observed to be easy to stretch provided only one or two cubes on each end
were held gently and allowed to rotate. The structure expanded fully in tension under its own weight.
The model was rigid to torsion as well as to shear in different directions. The model was also rigid to
cantilever bending. In both cases, slight movement associated with slack in the pivots was observed.

4. Discussion

Several negative Poisson’s ratio structures with rotating hinged elements are known. In addition to
rotating squares [Grima et al. 2005], one can have rotating rhombi [Attard and Grima 2008], triangles
[Grima and Evans 2006], edge connected cuboids of different sizes [Attard and Grima 2012], and com-
plex hinged structures [Milton 2013]. Such pivoted structures, including the present one, exhibit a hard
nonlinearity when the structural elements come into contact and when the lattice is fully extended. Even
so, the geometry of hinged structures has been used to help explain [Attard and Grima 2008] the negative
Poisson’s ratio of materials in which the effects arise on the molecular scale.

For the present ideal structure with rigid cubes and frictionless pivots, Young’s modulus is zero in
tension provided the end cubes are allowed to rotate as is the case in stress control. Although tensile
deformation freely occurs, the structure is rigid in bending and torsion. Classical elasticity cannot account
for such behavior but Cosserat [Cosserat and Cosserat 1909] (micropolar [Eringen 1968]) elasticity,
which allows sensitivity to gradients, can do so. Cosserat theory provides characteristic length parameters
as elastic constants. If the specimen size is not too much greater than the characteristic length, size effects
are observed in bending and torsion; the effective modulus in bending exceeds the true Young’s modulus
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in tension. Such effects are known in a variety of foams including negative Poisson’s ratio foam [Rueger
and Lakes 2016]. However the range of Poisson’s ratio is the same in Cosserat solids as in classical ones
so coarse cell structure is not needed to control the Poisson’s ratio [Lakes 1987b]. The cube structure will
be rigid to bending and torsion independent of how small the cubes are in comparison with the specimen
size, provided the cubes are rigid and the pivots are ideal. This implies a characteristic length that is
infinitely large. Such singular behavior arises from the geometrical constraints in a highly idealized
structure. Similar singular behavior likely occurs in other negative Poisson’s ratio hinged structures and
in structures made using sliding elements [Gourgiotis and Bigoni 2016]. Extremely large Cosserat effects
leading to folding and faulting can occur in highly anisotropic materials that admit couple stress [Bigoni
and Gourgiotis 2016]. Three-dimensional structures are of particular interest because in 3D, classical
bending can occur either via shear at constant volume, as in rubbery materials, or via local volume change
with constant shape, as when Poisson’s ratio tends to −1. A material or structure that does not allow
bending cannot be classically elastic.

5. Conclusions

A structure of pivoting cubes is presented. It has negative Poisson’s ratio of large magnitude in each
direction and a tensile modulus of zero. It is rigid to bending, therefore it is not classically elastic. The
structure behaves as an extreme Cosserat solid.

Acknowledgements

We gratefully acknowledge support of this research by the National Science Foundation via Grant CMMI-
1361832 and by the SURE program.

References

[Almgren 1985] R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio =−1”, J. Elasticity 15:4 (1985),
427–430.

[Attard and Grima 2008] D. Attard and J. N. Grima, “Auxetic behaviour from rotating rhombi”, Phys. Status Solidi B 245:11
(2008), 2395–2404.

[Attard and Grima 2012] D. Attard and J. N. Grima, “A three-dimensional rotating rigid units network exhibiting negative
Poisson’s ratios”, Phys. Status Solidi B 249:7 (2012), 1330–1338.

[Bigoni and Gourgiotis 2016] D. Bigoni and P. A. Gourgiotis, “Folding and faulting of an elastic continuum”, Proc. R. Soc.
Lond. A 472:2187 (2016), art. id. 20160018.

[Cosserat and Cosserat 1909] E. Cosserat and F. Cosserat, Théorie des corps déformables, Hermann et Fils, Paris, 1909.

[Eringen 1968] A. C. Eringen, “Theory of micropolar elasticity”, pp. 621–729 in Fracture: an advanced treatise, II: Mathe-
matical fundamentals, edited by H. Liebowitz, Academic Press, New York, 1968.

[Gourgiotis and Bigoni 2016] P. A. Gourgiotis and D. Bigoni, “Stress channelling in extreme couple-stress materials, I: Strong
ellipticity, wave propagation, ellipticity, and discontinuity relations”, J. Mech. Phys. Solids 88 (2016), 150–168.

[Grima and Evans 2006] J. N. Grima and K. E. Evans, “Auxetic behavior from rotating triangles”, J. Mater. Sci. 41:10 (2006),
3193–3196.

[Grima et al. 2005] J. N. Grima, A. Alderson, and K. E. Evans, “Auxetic behaviour from rotating rigid units”, Phys. Status
Solidi B 242:3 (2005), 561–575.

[Lakes 1987a] R. S. Lakes, “Foam structures with a negative Poisson’s ratio”, Science 235:4792 (1987), 1038–1040.

http://dx.doi.org/10.1007/BF00042531
http://dx.doi.org/10.1002/pssb.200880269
http://dx.doi.org/10.1002/pssb.201084223
http://dx.doi.org/10.1002/pssb.201084223
http://dx.doi.org/10.1098/rspa.2016.0018
https://tinyurl.com/theoriecorpspdf
http://dx.doi.org/10.1016/j.jmps.2015.09.006
http://dx.doi.org/10.1016/j.jmps.2015.09.006
http://dx.doi.org/10.1007/s10853-006-6339-8
http://dx.doi.org/10.1002/pssb.200460376
http://dx.doi.org/10.1126/science.235.4792.1038


EXTREME COSSERAT ELASTIC CUBE STRUCTURE WITH NEGATIVE POISSON’S RATIO 101

[Lakes 1987b] R. S. Lakes, “Negative Poisson’s ratio materials”, Science 238:4826 (1987), 551.

[Milton 1992] G. W. Milton, “Composite materials with Poisson’s ratios close to −1”, J. Mech. Phys. Solids 40:5 (1992),
1105–1137.

[Milton 2013] G. W. Milton, “Complete characterization of the macroscopic deformations of periodic unimode metamaterials
of rigid bars and pivots”, J. Mech. Phys. Solids 61:7 (2013), 1543–1560.

[Prall and Lakes 1997] D. Prall and R. S. Lakes, “Properties of a chiral honeycomb with a Poisson’s ratio of −1”, Int. J. Mech.
Sci. 39:3 (1997), 305–314.

[Rueger and Lakes 2016] Z. Rueger and R. S. Lakes, “Cosserat elasticity of negative Poisson’s ratio foam: experiment”, Smart
Mater. Struct. 25:5 (2016), art. id. 054004.

[Wojciechowski 1987] K. W. Wojciechowski, “Constant thermodynamic tension Monte Carlo studies of elastic properties of a
two-dimensional system of hard cyclic hexamers”, Mol. Phys. 61:5 (1987), 1247–1258.

[Wojciechowski 1989] K. W. Wojciechowski, “Two-dimensional isotropic system with a negative Poisson ratio”, Phys. Lett. A
137:1-2 (1989), 60–64.

Received 28 Nov 2017. Revised 18 Dec 2017. Accepted 22 Dec 2017.

CARLOS ANDRADE: carlos.andrade.von@gmail.com
University of Wisconsin, Madison, WI, United States

CHAN SOO HA: ha3@wisc.edu
University of Wisconsin, Madison, WI, United States

RODERIC S. LAKES: rlakes@wisc.edu
Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1126/science.238.4826.551
http://dx.doi.org/10.1016/0022-5096(92)90063-8
http://dx.doi.org/10.1016/j.jmps.2012.08.011
http://dx.doi.org/10.1016/j.jmps.2012.08.011
http://dx.doi.org/10.1016/S0020-7403(96)00025-2
http://dx.doi.org/10.1088/0964-1726/25/5/054004
http://dx.doi.org/10.1080/00268978700101761
http://dx.doi.org/10.1080/00268978700101761
http://dx.doi.org/10.1016/0375-9601(89)90971-7
mailto:carlos.andrade.von@gmail.com
mailto:ha3@wisc.edu
mailto:rlakes@wisc.edu
http://msp.org



	1. Introduction
	2. Cube structure
	2.1. Analysis and interpretation
	2.1.1. Elastic moduli and Poisson's ratio: two angles
	2.1.2. Bending
	2.1.3. Elastic moduli and Poisson's ratio: numerical model, three angles


	3. Physical model
	4. Discussion
	5. Conclusions
	Acknowledgements
	References

