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ELECTROMECHANICAL FIELDS IN A
NONUNIFORM PIEZOELECTRIC SEMICONDUCTOR ROD

GUANGYING YANG, JIANKE DU, JI WANG AND JIASHI YANG

We study electromechanical fields in a piezoelectric semiconductor rod nonuniformly doped with im-
purities producing holes and electrons. The phenomenological theory of piezoelectric semiconductors
consisting of the equations of piezoelectricity and the conservation of charge for holes and electrons is
used, which was reduced to a one-dimensional model for thin rods in a previous paper. In this paper the
one-dimensional theory is linearized for low electric potential or voltage. Solutions from the linearized
one-dimensional equations are obtained for three specific doping profiles: linear doping, piecewise linear
doping with fundamentally important applications in PN junctions, and sinusoidal doping. Various elec-
tromechanical fields produced by the doping are calculated and examined. The results are fundamental
to piezoelectric semiconductor devices or piezotronics.

1. Introduction

Piezoelectric materials can be dielectrics (insulators) or semiconductors although most of the time they
are used as dielectrics. Historically, there were early attempts on making piezoelectric semiconductor
devices decades ago but the research essentially became dormant (see the review [Hickernell 2003]).
However, relatively recently, various piezoelectric semiconductor nanostructures have been synthesized
such as ZnO fibers, tubes, belts, spirals and films [Wang 2003; 2010; Kumar and Kim 2011; Lee et al.
2012; 2014]. They can be made into single structures [Gao and Wang 2009; Hu et al. 2010; Araneo et al.
2012; Ji et al. 2013] or in arrays [Shen et al. 2010; Chen et al. 2007; Yoo et al. 2009; Xue et al. 2010],
and have been used to make energy harvesters for converting mechanical energy into electrical energy
[Gao et al. 2007; Choi et al. 2009; Romano et al. 2011; Asthana et al. 2014; Liao et al. 2014], field effect
transistors [Wang 2003; 2010; Wang et al. 2006], acoustic charge transport devices [Büyükköse et al.
2014], as well as strain, gas, humidity and chemical sensors [Wang 2003; Yu et al. 2010]. The study
of piezoelectric semiconductor materials and devices is growing rapidly and has formed a new research
area called piezotronics. It also presents a new class of coupled-field problems in mechanics.

For device application, the basic behaviors of piezoelectric semiconductors regarding the motion of
charge carriers under the action of the electric potential produced by mechanical loads through piezoelec-
tric coupling can be described by a phenomenological theory [Hutson and White 1962] consisting of the
equations of linear piezoelectricity [Auld 1973] and the conservation of charge for electrons and holes
[Pierret 1983]. Because of the anisotropy of piezoelectric materials, the electromechanical couplings in
them, and the nonlinearity associated with the drift currents of electrons and holes which are the products
of the unknown carrier concentrations and the unknown electric field [Pierret 1983], theoretical analyses
of piezoelectric semiconductor devices normally present considerable mathematical challenges. In spite
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of the mathematical difficulties, researchers have studied a series of useful problems of piezoelectric
semiconductors including thickness vibration of plates [Wauer and Suherman 1997; Li et al. 2015],
propagation of plate and surface waves [Collet 2008; Gu and Jin 2015], electromechanical fields around
a hole [Zhang and Hu 2014] and in an inclusion [Yang et al. 2006], fields near cracks [Yang 2005; Hu
et al. 2007; Sladek et al. 2014a; 2014b; Zhao et al. 2016a; 2016b; Fan et al. 2016], fields and waves in a
rod with excessive electrons [Zhang et al. 2016a; 2016b], static extension of a fiber [Zhang et al. 2017a;
2017b], static bending of a fiber [Gao and Wang 2007; 2009; Fan et al. 2017; Zhang et al. ≥ 2018], and
structural theories of plates [Yang and Zhou 2005], shells [Yang et al. 2005], and rods [Li et al. ≥ 2018].

In this paper we study electromechanical fields in a nonuniformly doped piezoelectric semiconduc-
tor rod. We consider three specific doping profiles. The case of linear doping is for the most basic
understanding of nonuniform doping. The case of piecewise linear doping is for the understanding of
the formation of a PN junction and the prediction of its structure and fields, which is fundamentally
important in piezotronics applications. The case of sinusoidal doping is for some further understanding
of nonuniform doping with potentials in applications.

2. Phenomenological theory of piezoelectric semiconductors

This section presents a brief summary of the three-dimensional theory of piezoelectric semiconductors.
We use the Cartesian tensor notation. The indices i , j , k, and l assume 1, 2, and 3. A comma followed
by an index indicates a partial derivative with respect to the coordinate associated with the index. A
superimposed dot represents a time derivative. The theory consists of [Auld 1973; Pierret 1983]

T j i, j = ρüi , Di,i = ρ
e
= q(p− n+ N+D − N−A ), J p

i,i =−q ṗ, J n
i,i = qṅ, (1)

where T is the stress tensor, ρ the mass density, u the mechanical displacement vector, D the electric
displacement vector, ρe the charge density, q = 1.6× 10−19 C the electronic charge, p and n the con-
centrations of holes and electrons, N+D and N−A the concentrations of impurities of donors and accepters,
and J p

i and J n
i the hole and electron current densities. Equation (1)1 is the stress equation of motion

or the linear momentum equation (Newton’s law). Equation (1)2 is the charge equation of electrostatics
(Gauss’s law). Equations (1)3 and (1)4 are the conservation of charge for electrons and holes, respectively
which are also called continuity equations. Constitutive relations accompanying (1) can be written in the
form [Auld 1973; Pierret 1983]

Si j = s E
i jkl Tkl + dki j Ek, Di = dikl Tkl + ε

T
ik Ek,

J p
i = qpµp

i j E j − q D p
i j p, j , J n

i = qnµn
i j E j + q Dn

i j n, j ,
(2)

where S is the strain tensor, E the electric field vector, s E
i jkl the elastic compliance, dki j the piezoelectric

constants, εT
i j the dielectric constants, µn

i j and µp
i j the carrier mobility, Dn

i j and D p
i j the carrier diffusion

constants. The equations on the first line of (2) are the usual constitutive relations for piezoelectric
materials. Those on the second line are for hole and electron currents including both drift currents under
an electric field and diffusion currents due to concentration gradients. The strain S and the electric field
E are related to the mechanical displacement u and the electric potential ϕ through

Si j =
1
2(ui, j + u j,i ), Ei =−ϕ,i . (3)
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3. One-dimensional equations for the extension of a rod

Consider the piezoelectric semiconductor rod shown in Figure 1. The shape of the cross section A of
the rod may be arbitrary. The rod is assumed to be long and thin, i.e., its length is much larger than the
characteristic dimension of the cross section. It is made from a piezoelectric semiconductor crystal of
class 6 mm. The c-axis of the crystal is along the axis of the rod. The lateral surface of the rod is free.
The electric field in the surrounding free space is neglected.

We are interested in the extensional deformation of the rod which can be described by a set of one-
dimensional equations for the axial displacement u3 and the axial stress T3 = T33. In the one-dimensional
model, (1) reduces to [Zhang et al. 2017a]

∂T3

∂x3
= ρü3,

∂D3

∂x3
= ρe

= q(p− n+ N+D − N−A ),

q ṗ =−
∂ J p

3

∂x3
, qṅ =

∂ J n
3

∂x3
.

(4)

The relevant one-dimensional constitutive relations are [Zhang et al. 2017a]

T3 = c̄33S3− ē33 E3, D3 = ē33S3+ ε̄33 E3,

J p
3 = qpµp

33 E3− q D p
33
∂p
∂x3

, J n
3 = qnµn

33 E3+ q Dn
33
∂n
∂x3

.
(5)

Here, c̄33, ē33, and ε̄33 are the effective one-dimensional elastic, piezoelectric, and dielectric constants.
They are related to the usual three-dimensional material constants s E

pq , εT
i j and di p through

c̄33 = 1/s E
33, ē33 = d33/s E

33, ε̄33 = ε
T
33− d2

33/s
E
33. (6)

The appearance of the effective one-dimensional material constants in (5) is because of the introduction
of the one-dimensional stress relaxation condition that for thin rods we approximately have T1 = T2 = 0.
The mobility and diffusion constants in (5), µp

33, µn
33, D p

33, and Dn
33, satisfy the Einstein relation

µ
p
33

D p
33
=
µn

33

Dn
33
=

q
kB T

, (7)

Figure 1. A piezoelectric semiconductor rod of crystals of class 6 mm.
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where kB is the Boltzmann constant and T the absolute temperature. The relevant strain-displacement
relation and the electric field-potential relation are

S3 =
∂u3

∂x3
, E3 =−

∂ϕ

∂x3
. (8)

4. Static fields in a rod

Consider a rod in equilibrium. From (4)1,

T3 = C1, (9)

where C1 is an integration constant. From (5)1,

S3 =
1

c̄33
(C1+ ē33 E3). (10)

Substituting (10) and (8)2 into (5)2, we obtain

D3 =
ē33

c̄33
C1+

(
ε̄33+

ē2
33

c̄33

)
E3 =

ē33

c̄33
C1− ε33ϕ,3. (11)

From (4)3,4, J p
3 and J n

3 are constants. When the rod is electrically isolated at its two ends without
currents, which we assume to be the case in this paper, these constants are zero. From (5)3,4 and (8)2,

J p
3 =−qpµp

33
∂ϕ

∂x3
− q D p

33
∂p
∂x3
= 0, J n

3 =−qnµn
33
∂ϕ

∂x3
+ q Dn

33
∂n
∂x3
= 0. (12)

With the use of (7), we rewrite (12) as

1
p
∂p
∂x3
=−

q
kB T

∂ϕ

∂x3
,

1
n
∂n
∂x3
=

q
kB T

∂ϕ

∂x3
. (13)

Equation (13) can be integrated to produce

p = p0 exp
(
−

q
kB T

ϕ
)
, n = n0 exp

( q
kB T

ϕ
)
, (14)

where p0 and n0 are integration constants. Physically they are the values of p and n at ϕ = 0. The
substitution of (11) and (14) into (4)2 gives the following single equation governing the electric potential:

−ε33ϕ,33 = q
[

p0 exp
(
−

q
kB T

ϕ
)
− n0 exp

( q
kB T

ϕ
)
+N+D (x3)− N−A (x3)

]
. (15)

For small ϕ, we make the following approximation (14):

p ∼= p0

(
1− q

kB T
ϕ
)
, n ∼= n0

(
1+ q

kB T
ϕ
)
, (16)

which can describe small carrier concentration variations. Substituting (16) into (15), we obtain a linear
equation for the potential:

ϕ,33 =−
q
ε33

[
p0− n0− (p0+ n0)

q
kB T

ϕ+ N+D (x3)− N−A (x3)
]
, (17)
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which can be further written as

ϕ,33− κ
2ϕ =−

q
ε33

[
p0− n0+ N+D (x3)− N−A (x3)

]
, (18)

where
κ2
=

q
ε33
(p0+ n0)

q
kB T

. (19)

The general solution to (18) can be written as

ϕ = C2 sinh κ(x3+ L)+C3 sinh κ(x3− L)+
q

κ2ε33
(p0− n0)+ϕ

p(x3), (20)

where C2 and C3 are integration constants, and ϕ p is a particular solution of the nonhomogeneous equa-
tion

ϕ
p
,33− κ

2ϕ p
=−

q
ε33
[N+D (x3)− N−A (x3)]. (21)

Once ϕ is known, p and n can be obtained from (16). With ϕ known, for the mechanical displacement,
from (10), we have

u3,3 =
1

c̄33
(C1− ē33ϕ,3). (22)

Integrating (22), we obtain

u3 =
1

c̄33
(C1x3− ē33ϕ)+C4, (23)

where C4 is an integration constant.
We consider a free rod with the following boundary conditions:

T33(±L)= 0, J p
3 (±L)= 0, J n

3 (±L)= 0, D3(±L)= 0. (24)

When C1 = 0, (24)1 is satisfied. The satisfaction of (24)2,3 is ensured by (12). Only (24)4 remains which,
according to (11), translates into

ϕ,3(±L)= 0. (25)

From (20), it can be seen that (25) determines C2 and C3 formally in terms of p0 and n0. Then (24) is
completely satisfied. We need additional conditions to determine the remaining integration constants C4,
p0, and n0. Since (4), (5), (8), and (24) are invariant under a rigid-body translation of the rod in the x3

direction, to fix the rigid-body displacement so that the displacement is unique, we choose the center of
the rod as a reference for the displacement and impose

u3(0)= 0. (26)

Equation (26) formally determines C4. At this point, (24)–(26) are all satisfied, and C1–C4 are all
formally determined. There are two undetermined constants left, i.e., p0 and n0. Similar to (26), we also
choose the center of the rod as the reference of the electric potential and set

ϕ(0)= 0. (27)
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Equation (27) determines a relationship between p0 and n0. To completely determine p0 and n0, we
specify the total holes in the rod by the global charge neutrality condition∫ L

−L
(p− N−A ) dx3 = 0. (28)

Since (4)2 and (24)4 imply that ∫ L

−L
(p− n+ N+D − N−A ) dx3 = 0, (29)

(28) and (29) further imply that ∫ L

−L
(−n+ N+D ) dx3 = 0. (30)

Therefore (28) is the only independent charge neutrality condition. Equations (27) and (28) determine
p0 and n0.

5. Uniform and linear doping

For some basic understanding of the effect of a nonuniform doping, we begin with the simple case of
uniform and linear doping. Let

N−A (x3)= b1x3+ c1, N+D (x3)= b2x3+ c2. (31)

Hence,
N+D (x3)− N−A (x3)= bx3+ c, b = b2− b1, c = c2− c1. (32)

In this case a particular solution of (21) is simply

ϕ p
=

q
ε33κ2 (bx3+ c). (33)

Therefore, the effects of a uniform or linear doping on the electric potential and p as well as n according
to (16) are also uniform and linear. We also notice that in this case (27) and (28) take the following forms:

(p0− n0)+ c = 0, (34)

p0 =
3c1n0

6n0− 3c2
. (35)

In the special case of a linear doping only with c1 = c2 = 0, i.e., without the uniform doping term, we
have p0 = n0 = 0.

6. Piecewise linear doping and PN junction

PN junctions are the fundamental building blocks of many piezoelectric semiconductor devices [Lee et al.
2012; 2014; Chung et al. 2012]. The understanding of PN junctions in these materials and the prediction
of the electromechanical fields near a PN junction are fundamentally important to the development of
piezoelectric semiconductor devices. PN junctions between two piezoelectric semiconductor half spaces
and between a circular cylinder and its surrounding material were analyzed in [Luo et al. ≥ 2018a;
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Figure 2. Piecewise linear doping.

≥ 2018b], respectively. In this section we show that PN junctions in a piezoelectric semiconductor rod
can be produced by nonuniform doping. Consider the case when the left half of the rod is mainly p-
doped and the right half mainly n-doped. Between the two halves there is a finite transition zone of
width 2w in which the doping varies linearly as shown in Figure 2. Because of diffusion of the holes
and electrons related to the doping, a PN junction may form in and near the transition zone. The PN
junctions studied in [Luo et al. ≥ 2018a; ≥ 2018b] do not have a finite transition zone and effectively
correspond to the special case of w = 0 in Figure 2, which is an ideal case simplified for theoretical
analysis. In real applications usually there is a transition zone with a nonzero w.

Quantitatively, the doping profile in Figure 2 is described by

N−A =


a1 −L < x3 <−w,

a1+
a2−a1

2w
(x3+w) |x2|<w,

a2 w < x3 < L ,

(36)

and

N+D =


b1 −L < x3 <−w,

b1+
b2−b1

2w
(x3+w) |x2|<w,

b2 w < x3 < L .

(37)

Then,

N+D − N−A =


d1, −L < x3 <−w,

d3+ d4x3, |x3|<w,

d2, w < x3 < L ,
(38)

where

d1 = b1− a1, d2 = b2− a2, d3 =
b1− a1

2
+

b2− a2

2
, d4 =

b2− b1

2w
−

a2− a1

2w
. (39)

PN junctions are local. It is sufficient to consider the special and relatively simple case when L =∞. In
this case, from (21), (20), (16), and (23), we have, for x3 <−w,

ϕ p
=

q
ε33κ2 d1, ϕ = C1 exp κ(x3+w)+

q
κ2ε33

(p0− n0)+ϕ
p(x3),

p ∼= p0

(
1− q

kB T
ϕ
)
, n ∼= n0

(
1+ q

kB T
ϕ
)
, u3 =−

ē33

c̄33
ϕ+C2,

D3 =−ε33ϕ,3, T3 = 0, J p
3 = 0, J n

3 = 0,

(40)
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and, similarly for w < x3,

ϕ p
=

q
ε33κ2 d2, ϕ = C3 exp κ(w− x3)+

q
κ2ε33

(p0− n0)+ϕ
p(x3),

p ∼= p0

(
1−

q
kB T

ϕ
)
, n ∼= n0

(
1+

q
kB T

ϕ
)
, u3 =−

ē33

c̄33
ϕ+C4,

D3 =−ε33ϕ,3, T3 = 0, J p
3 = 0, J n

3 = 0.

(41)

Equation (40) and (41) show that κ describes the exponentially decaying rate of the fields from the edges
of the transition zone. Inside the transition zone where |x3|<w, we have

ϕ p
=

q
ε33κ2 (d3+d4x3), ϕ = C5 sinh κ(x3+w)+C6 sinh κ(x3−w)+

q
κ2ε33

(p0−n0)+ϕ
p(x3),

p ∼= p0

(
1− q

kB T
ϕ
)
, n ∼= n0

(
1+ q

kB T
ϕ
)
, u3 =−

ē33

c̄33
ϕ+C7,

D3 =−ε33ϕ,3, T3 = 0, J p
3 = 0, J n

3 = 0.

(42)

The boundary and continuity conditions are (24) when L =∞, and

T33(±w
−)= T33(±w

+), J p
3 (±w

−)= J p
3 (±w

+),

J n
3 (±w

−)= J n
3 (±w

+), D3(±w
−)= D3(±w

+),
(43)

as well as
u3(±w

−)= u3(±w
+), ϕ(±w−)= ϕ(±w+),

p(±w−)= p(±w+), n(±w−)= n(±w+).
(44)

Equation (24) when L =∞ and (43)1–3 are already satisfied. Equation (44)2 implies (44)3,4. From (43)4

and (44)1,2, we have six conditions left. With (26)–(28) where L = ∞, there are nine equations for
C1–C7, p0, and n0. They are solved on a computer.

As a numerical example, consider a ZnO rod whose material constants can be founded in [Auld 1973]:

ε33 = 12.64ε0 = 1.119× 10−10 F/m, c33 = 21.09× 1010 N/m2, e33 = 1.32 C/m2, (45)

where the dielectric constant of free space is ε0 = 8.8537× 10−12 F/m. At room temperature, we have
[Pierret 1996]

µn
33

Dn
33
=
µ

p
33

D p
33
=

q
kB T
= 38.46 V−1. (46)

We consider the following case with some symmetry or antisymmetry:

a1 = b2 = 1.0× 1021 m−3, a2 = b1 = 0.8a1, w = 0.1µm. (47)

In this case, it is found that

p0 = n0 = 0.9× 1021 m−3
=

1
2(a1+ a2)=

1
2(b1+ b2). (48)

From (19),
1
κ
= 1.005× 10−7 ∼= 0.1µm, (49)
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which is a characteristic length of the exponentially varying fields. Numerical results show that in this
case,

q
kB T

ϕ ∼= 0.1154. (50)

Hence the linear approximation in (16) is valid.
Figure 3 shows the contour plots of various electromechanical fields inside and near the transition zone.

The diameter d of the rod in the figure is symbolic only and is immaterial for a one-dimensional model.
Figures 3a and 3b are the concentrations of holes and electrons which were initially determined by the
piecewise linear functions in Figure 2 but are now smooth because of diffusion. They are monotonically
changing along the rod, more rapidly in the transition zone. Figure 3c shows essentially the net or total
charge which localizes within and near the transition zone, and has a sign change there (the formation of
a PN junction). Figure 3d shows the local electric field produced by the charges in the PN junction (the
so-called built-in field), which is negative (pointing to the left) as expected from the signs of the charges
in 3c. Figure 3e is the electric potential (the so-called built-in potential) corresponding to the electric field
in Figure 3d. The potential in Figure 3e rises from left to right monotonically. It changes rapidly within
the transition zone and is essentially constant far away from there. Since x3 = 0 is chosen as a reference
where potential is zero, the potential is negative on the left and positive on the right. The material is
piezoelectric. Therefore, the electric field in Figure 3d causes mechanical fields. The displacement field
is shown in Figure 3f, which is qualitatively similar to the electric potential. The strain field is shown in
Figure 3g, which is localized within and near the transition zone.

Figure 4 shows the effects of 2w, i.e., the width of the transition zone, on various electromechanical
fields. As 2w decreases, the transition zone is narrower and all fields change more rapidly there. The
total charge in Figure 4c becomes more concentrated. The intensities of the total charge in Figure 4c, the
electric field in Figure 4d, and the strain field in Figure 4g all increase. Therefore, in the cases studied in
[Luo et al. ≥ 2018a; ≥ 2018b] where the width of the transition zone 2w = 0, the intensity or strength of
the fields at the PN junction represents that of an ideal or limit case significantly larger than what happens
when 2w is finite. At far fields away from the transition zone, the concentrations of holes in Figure 4a,
electrons in Figure 4b, electric potential in Figure 4e, and displacement in Figure 4f are insensitive to w.

In Figure 5, w = 0.1µm is fixed. The difference of N+D and N−A is varied by choosing different values
of λ according to

a0 = 1021 m−3, a1 = b2 = a0+ λa0, a2 = b1 = 0.8a0− λa0. (51)

It can be verified from (36) and (37) that under (51) the sum of N+D and N−A is fixed. As λ increases,
the gradients of the carrier concentrations increase as seen from Figures 5a and 5b. As a consequence,
overall the fields change more rapidly or become stronger inside and near the transition zone, which is
as expected.

In Figure 6, w = 0.1µm is fixed. The sum of N+D and N−A is varied by choosing different values of λ
according to

a0 = 1021 m−3, a1 = b2 = a0+ λa0, a2 = b1 = 0.8a0+ λa0. (52)

It can be verified from (38) that under (52) the difference of N+D and N−A is fixed. As λ increases, a1,
a2, b1, and b2 all increase. From (48), p0 and n0 increase and hence there are more holes and electrons.
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Figure 3. Fields inside and near the transition zone: (a) p(x3) for holes; (b) n(x3) for
electrons; (c) ρe/q for the total charge (PN junction); (d) E3(x3) for the electric field; (e)
ϕ(x3) for the electric potential; (f) u3(x3) for the displacement; (g) S3(x3) for the strain.

This can be seen in Figures 6a and 6b. It can be shown that the coefficients of various fields, C1, C3, C5,
and C6, are inversely proportional to κ3. This contributes to the reduction of fields in Figure 6c–d as λ,
and hence p0+ n0 as well as κ , increase.

For a qualitative comparison, the results of the PN junction charge and electric field distributions in
[Pierret 1996] are shown in Figures 7, left, and 7, right, respectively. Comparing Figures 3c, 4c, 5c
and 6c with Figure 7, left, we can see that the piecewise constant charge distribution in Figure 7, left,
can be viewed as averages of the gradually changing charge distributions obtained in the present paper,
which are more realistic. In obtaining the results in Figure 7, the charge distribution is assumed known
so that only the charge equation of electrostatics is needed to calculate the electric field. However, in
the present paper coupled equations need to be solved to obtain all fields simultaneously. There is a
more fundamental difference between the results obtained in the present paper and that in Figure 7, left.
In the assumed charge distribution in Figure 7, left, the impurity N−A left by holes alone is responsible
for the net charge to the left of the junction and hence the name “depletion region”. However, our more
sophisticated and coupled-field analysis shows that in fact both the N−A left by the holes and the electrons
diffused from the right part of the junction together contribute to the net charge to the left of the junction.
The situation to the right of the junction is similar. Comparing Figures 3d, 4d, 5d and 6d with Figure 7,
right, we see that the axial electric field obtained in the present paper is smoothly changing and hence
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Figure 4. Effects of 2w, the width of the transition zone: (a) p(x3) for holes; (b) n(x3)

for electrons; (c) ρe/q for the total charge (PN junction); (d) E3(x3) for the electric field;
(e) ϕ(x3) for the electric potential; (f) u3(x3) for the displacement; (g) S3(x3) for the strain.
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Figure 5. Effects of doping concentration difference: (a) p(x3) for holes; (b) n(x3) for
electrons; (c) ρe/q for the total charge (PN junction); (d) E3(x3) for the electric field; (e)
ϕ(x3) for the electric potential; (f) u3(x3) for the displacement; (g) S3(x3) for the strain.
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Figure 6. Effects of doping concentration difference: (a) p(x3) for holes; (b) n(x3) for
electrons; (c) ρe/q for the total charge (PN junction); (d) E3(x3) for the electric field; (e)
ϕ(x3) for the electric potential; (f) u3(x3) for the displacement; (g) S3(x3) for the strain.
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Figure 7. Fields in a PN junction with assumed charge distribution. Left: charge distri-
bution. Right: electric field.

is more realistic. The potential fields obtained in the present paper are qualitatively similar to those in
[Pierret 1996], which are not presented here.

7. Sinusoidal doping

In this section we consider the effect of a periodically varying doping described by

N−A (x3)= a1+ b1 sin λx3, N+D (x3)= a2+ b2 sin λx3. (53)

Hence,

N+D (x3)− N−A (x3)= a+ b sin λx3, a = a2− a1, b = b2− b1. (54)

In this case, for the particular solution of (21) we have

ϕ p
=

q
ε33

[
a
κ2 +

b
κ2+ λ2 sin λx3

]
. (55)

From (27) and (28), the two equations for determining p0 and n0 take the following form:

p0− n0+ a = 0, p0 =
n0a1

2n0− a2
. (56)

In the special case when a2 = a1, (54) implies that a = 0. Then, from (56), we obtain p0 = n0 = a1. For
a numerical example, we consider the case when a1 = 1021 m−3, b1 = 0.2a1, b2 = −b1, and λ = 0.2κ .
Then 2π/λ∼= 3µm, which can be viewed as some wavelength of the doping. We choose 2L = 30µm
which is about ten times the doping wavelength 2π/λ. The electromechanical fields in this case are
shown in Figure 8. They are essentially periodic except at x3 =±L where there are some end effects. It
can be seen that under a periodic doping, p and n in Figure 8a vary similarly but are out of phase. The
total charge ρe in Figure 8b oscillates and has some concentration near the ends. The concentration of
carriers near the ends of a rod was also observed in [Zhang et al. 2016a; 2017a]. The periodic doping
produces essentially the same periodic electric field in Figure 8c, potential in Figure 8d, displacement in
Figure 8e, and strain in Figure 8f. Effectively a periodic doping produces a series of PN junctions. The
fields in Figure 8 can be explored for possible applications. For example, if an acoustic wave propagates
in the rod with the presence of the periodic strain field in Figure 8f, does the strain field acts as an initial
or biasing field and does it affect the waves like a phononic crystal?
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Figure 8. Effects of sinusoidal doping: (a) p(x3) and n(x3); (b) ρe/q for the total
charge; (c) E3(x3) for the electric field; (d) ϕ(x3) for the electric potential; (e) u3(x3)

for the displacement; (f) S3(x3) for the strain.

8. Conclusions

For low values of the electric potential, the governing equations of an isolated piezoelectric semicon-
ductor rod can be linearized and reduced to a single equation for the potential which is valid for small
carrier concentration variations. Solutions of the equation show that a uniform or linear doping makes
a uniform or linear contribution to the electric potential and carrier concentrations. PN junctions can be
realized through nonuniform doping. Near the transition zone between a p-doped region and an n-doped
region, there are local charges producing a local electric field and thus forming a PN junction. In the
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so-called depletion regions near a PN junction, in fact both impurities and mobile charges contribute to
the net charges. The intensity or strength of the charge and field distributions at the junction is sensitive
to the width of the transition zone of the piecewise linear doping. When its width becomes narrower, the
electric field in the PN junction becomes stronger. The electric field in the junction also becomes stronger
when the doping difference increases. A sinusoidal doping produces periodic distributions of charges
and an electric field which can be explored for device applications. Since the material is piezoelectric,
there exist mechanical fields associated with the electric fields.
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