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A SIMPLE TECHNIQUE FOR ESTIMATION OF
MIXED MODE (I/II) STRESS INTENSITY FACTORS

SOMAN SAJITH, KONDEPUDI S. R. K. MURTHY AND PUTHUVEETTIL S. ROBI

A simple and efficient finite element based technique using the crack face nodal displacements for the
accurate estimation of mode I, mode II and mixed mode I/II stress intensity factors (SIF) is proposed in
this paper. Finite element (FE) method is used to obtain the crack face nodal displacements of various
cracked configurations. Convergence studies are conducted. The estimated SIFs are compared with
the other techniques such as displacement extrapolation, J-integral, and interaction integral techniques,
along with the published results. Results indicate that the proposed technique is found to be simple and
provides accurate SIF even for the relatively coarser meshes. Results also indicate that the accuracy of
the proposed technique is of the order of the path independent integrals in a given mesh. Further, the
proposed technique also evaluates the sign of mode II SIF, KII, which is vital in fatigue crack growth
simulations.

1. Introduction

Stress intensity factor (SIF), K , proposed by Irwin [1957] plays a vital role in the strength and structural
integrity assessment of cracked structures. It is used to describe the crack driving force, the level of
singularity [Paris 2014], and the materials resistance to fracture. Further, it is also useful in fatigue crack
growth studies. To this end, numerous analytical [Sih 1973], experimental [Ravi-Chandar 2008; Swamy
et al. 2008; Kaushik et al. 2008], and numerical methods [Henshell and Shaw 1975; Barsoum 1976;
Banks-Sills and Sherman 1986; Lim et al. 1992; Mukhopadhyay et al. 2000; Murthy and Mukhopadhyay
2001; Qian et al. 2016; Yan et al. 2010] are available for the SIF determination.

Analytical and semianalytical SIF solutions of some simple configurations are available in various
handbooks [Tada et al. 2000; Murakami 1987; Laham 1999]. For complex configurations, numerical
methods such as FE method and boundary element (BE) method are employed. Amongst the available
numerical methods, FE method has been extensively used for accurately estimating SIFs of complex
configurations. Other important areas which demand accurate estimation of the SIFs is FE simulations
of quasistatic crack growths and fatigue crack growth in damage tolerance design philosophy. In these
studies, a large number of finite element analyses of a given cracked configuration are necessary due
to the incremental increase of the crack length. In such cases, it is cost effective if accurate SIFs are
estimated for a given mesh in the simulation process. Moreover, the signs of individual SIFs are also
important in estimating crack growth directions both in quasistatic and fatigue crack growth simulations.

In FE method, quarter point elements (QPEs) [Henshell and Shaw 1975; Barsoum 1976] are employed
at the crack tip for modeling the crack tip inverse square root singularity. In relation to the QPEs and FE
method, a number of SIF estimation techniques have also been developed. A review of some of these
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commonly used techniques are available in works [Banks-Sills and Sherman 1986; Lim et al. 1992;
Mukhopadhyay et al. 2000; Murthy and Mukhopadhyay 2001; Qian et al. 2016].

SIF estimation techniques (usually postprocessing techniques) are broadly classified into stress-based,
displacement-based, and energy-based. The displacement-based techniques include: the limited displace-
ment extrapolation technique by Lim et al. [1992], the displacement correlation technique [Tracey 1977],
the displacement extrapolation techniques (DETs) [Chan et al. 1970; Shih et al. 1976; Rahulkumar et al.
1997; Guinea et al. 2000; ANSYS 2007; Kirthan et al. 2016], the quarter point displacement technique
[Barsoum 1976; Henshell and Shaw 1975; Lim et al. 1992], and the interior collocation technique [Jog-
dand and Murthy 2010]. Some of the stress-based methods are the stress extrapolation [Chan et al.
1970] and the force method [Raju and Newman, Jr. 1977]. Examples of energy-based SIF extraction
methods are the modified crack closure integral [Ramamurthy et al. 1986; Rybicki and Kanninen 1977;
Sethuraman and Maiti 1988], virtual crack closure integral [Rybicki and Kanninen 1977; Shivakumar
et al. 1988], J-integral [Rice 1968], stiffness derivative [Parks 1974], virtual crack extension [Hellen
1975], and interaction integral (I-integral) [Nakamura 1991; Shih et al. 1986].

Amongst the above methods, J-integral, interaction integral, and a kind of DET are integrated in
various commercial software such as ANSYS and ABAQUS. Although the path independent integral
techniques (J-integral and interaction integral) neatly avoid crack tip complications, they only provide
accurate solutions of the SIFs by computing over several paths, which complicates the mesh generation
process. The interior collocation technique [Jogdand and Murthy 2010], although it provides accurate
values of the SIFs, demands a special mesh pattern around the crack tip. As a consequence, these
are difficult to implement into the existing FE codes. On the other hand, techniques such as stiffness
derivative and virtual crack extension require calculation of the structural stiffness matrix twice, which
increases the computational cost. It is evident that the above techniques, apart from being difficult to
incorporate into the existing codes, are also not very appropriate for employment in the crack growth
simulations where large numbers of analysis steps are usually needed.

While the displacement-based techniques are simple and easy to implement into existing FE codes
(they demand no other than quarter point elements), techniques such as displacement correlation [Tracey
1977] and quarter point displacement techniques [Barsoum 1976; Henshell and Shaw 1975; Lim et al.
1992] do not show convergence as the meshes are refined [Murthy and Mukhopadhyay 2001]. Clearly,
use of these techniques is prohibitive especially in crack growth simulations. Coming to the case of
displacement extrapolation methods, a form of displacement extrapolation was first proposed by Chan
et al. [1970], which has the limitation of carrying out regression analysis for best-fit straight line. Sub-
sequently, many variants of displacement extrapolation techniques have been proposed in the past [Shih
et al. 1976; Rahulkumar et al. 1997; Guinea et al. 2000; ANSYS 2007; Kirthan et al. 2016].

The above extrapolation methods have been devised based on two types of formulations. In the first
type of formulations [Rahulkumar et al. 1997; ANSYS 2007], the crack opening displacement (COD) and
crack sliding displacement (CSD) are approximated using the singular solutions and these displacements
are approximated using an assumed profile (containing singular and higher-order displacements) fitted
to the edges of the finite elements attached to crack flanks. In the second type of formulation, the
relative displacement of nodes on one of the two flanks of the crack were expressed in terms of known
analytical expressions containing singular and higher-order terms and obtained the SIFs by correlating
these expressions with the elemental displacement field [Shih et al. 1976; Guinea et al. 2000; Kirthan et al.
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2016]. It has been shown using extensive numerical analyses that the techniques based on the second
type of formulation [Shih et al. 1976; Guinea et al. 2000; Kirthan et al. 2016] do not converge as the
meshes are refined [Murthy and Mukhopadhyay 2001]. Clearly, these existing displacement techniques
are not reliable when estimating SIFs of complex configurations or during fatigue crack propagation
simulations. A technique based on the first type of formulation is implemented in commercial software
ANSYS, and although it estimates accurate values of the SIFs, it has a major limitation of not providing
the signs of the SIFs, which are extremely important in fatigue crack growth simulations.

In view of the importance of accurately estimating SIFs along with their signs and various limitations
of the existing SIF extraction methods (as described above), a new simple and efficient displacement
extrapolation-type technique, which also provides signs of the estimated SIFs, is proposed in the present
investigation. This work takes the advantage of both the types of formulations implemented in the existing
techniques [Shih et al. 1976; Zhu and Smith 1995; Rahulkumar et al. 1997] and formulates the COD
and CSD using a combination of singular and higher-order terms. Due to the presence of higher-order
terms, the technique can be used on coarse meshes to get the accurate values of SIFs. The mixed mode
SIFs are then estimated directly by comparing the analytical expressions of COD and CSD with the
computed values obtained at the nodes of the crack flanks. Further, the proposed technique employs
the more elegant approach of the Generalized Westergaard proposed by Sanford [1979]. It is very easy
to implement into the existing FE codes and provides very accurate SIFs even in the relatively course
meshes. The solutions of the proposed technique converge as the meshes are refined. The efficacy of
the proposed technique is substantiated by solving the SIFs of mode I, mode II, and mixed mode (I/II)
benchmark problems and comparing the results with the values computed using J-integral and interaction
integral and published results.

The organization of the paper is as follows. Section 2 describes the mathematical background and
implementation steps of the proposed technique. Numerical validation of the proposed technique using
benchmark problems is presented in Section 3. Finally, Section 4 presents the summary and conclusions.

2. Theoretical background

In the generalized Westergaard method [Sanford 1979], the modified Airy stress function for opening
mode (φI) and shear mode (φII) are respectively given by

φI = ReZ I(z)+ yImZ I(z)+ yImY I(z), φII =−yReZ II(z)+ ImY II(z)− yReY II(z), (1)

where
d Z i

dz
= Z i ,

d Z i

dz
= Zi , i = I, II. (2)

The complex analytic functions for opening mode (ZI(z), YI(z)) and those for shearing mode (ZII(z),
YII(z)) are defined as

ZI(z)=
∞∑

n=0

An Zn−1/2 and YI(z)=
∞∑

m=0

Bm Zm,

ZII(z)=
∞∑

n=0

Cn Zn−1/2 and YII(z)=
∞∑

m=0

Dmzm .

(3)
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These are series-type functions in terms of the complex variable z = x + iy (z = x cos θ + iy sin θ
in polar coordinates; see Figure 1) containing an infinite number of opening mode and shear mode
(A0, A1, . . . , A∞; B0, BI, . . . , B∞) and shear coefficients (C0,C1, . . . ,C∞; D0, DI, . . . , D∞). These
coefficients are functions of the geometry and boundary conditions of a cracked configuration. Using
Cauchy–Riemann relations and the modified Airy stress function (1), the stress components for mode I
in the absence of body forces can be written as

σxx

σyy

τxy

=


ReZI− yImZ ′I− yImY ′I + 2ReYI

ReZI+ yImZ ′I+ yImY ′I
yReZ ′I− yReY ′I − ImYI

 , (4)

and the stress components for mode II can be written as
σxx

σyy

τxy

=


yReZ ′II+ 2ImZII+ yReY ′II+ IMYII

−yReZ ′II− yReY ′II+ ImYII

ReZII− yImZ ′II− yImY ′II

 . (5)

Integrating the strain components, the displacement components in terms of three parameters (A0, A1,
and B0) for mode I can be shown to be

uI
=

A0

2G
r1/2[(κ − 1) cos 1

2θ + sin θ sin 1
2θ
]

+
A1

2G
r3/2[1

3(κ − 1) cos 3
2θ − sin θ sin 1

2θ
]
+

B0(κ + 1)
4G

r cos θ,

vI
=

A0

2G
r1/2[(κ + 1) sin 1

2θ − sin θ cos 1
2θ
]

+
A1

2G
r3/2[1

3(κ + 1) sin 3
2θ − sin θ cos 1

2θ
]
−

B0v(κ + 1)
4G

r sin θ,

(6)

where uI and vI represent the mode I displacements in x and y directions, respectively (Figure 1) and
κ=3−4ν for plane strain and (3−ν)/(1+ν) for plane stress conditions. In a similar way the displacement
components in terms of three parameters (C0, C1 and D0) for mode II can be obtained as

uII
=

C0

2G
r1/2[(κ + 1) sin 1

2θ + sin θ cos 1
2θ
]

+
C1

2G
r3/2[ 1

3(κ + 1) sin 3
2θ + sin θ cos 1

2θ
]
+

D0(κ + 1)
4G

4 sin θ,

vII
=

C0

2G
r1/2[(1− κ) cos 1

2θ + sin θ sin 1
2θ
]

+
C1

2G
r3/2[ 1

3(1− κ) cos 3
2θ − sin θ sin 1

2θ
]
−

D0(κ + 1)
4G

4 cos θ,

(7)

where uII, vII are mode II displacements (Figure 1). Here, G and v are the shear modulus and Poisson’s
ratio, respectively. Also, A0, A1, B0 and C0, C1, D0 represent coefficients of the Generalized Westergaard
[Sanford 1979] in mode I and mode II, respectively. In the case of mixed mode (I/II) loading, the
displacement components can be obtained using the principle of superposition as

u = uI
+ uII, v = vI

+ vII. (8)
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y, v

x, u

σyy

τxy

σxx

r

θ
crack

Figure 1. Crack tip coordinate system.

Figure 2 shows a typical crack tip mesh pattern with the QPEs deployed at the crack tip. The nodes 1
and 2 represent quarter point nodes on the crack flanks (with node 1 being at θ =+180◦ and node 2 at
θ =−180◦, respectively), and nodes 3 and 4 represent corner nodes of the QPEs attached to the crack
flanks. It is assumed that (7) and (8) are sufficient to represent the displacement components along the
length of the QPEs lying on the crack flanks in any loading. Referring to Figure 2, for θ =±180◦ the v
component of the displacement in mixed mode loading conditions is given as

v180◦ =
A0(κ + 1)

2G
r1/2
−

A1(κ + 1)
6G

r3/2
+

D0(κ + 1)
4G

r,

v−180◦ =−
A0(κ + 1)

2G
r1/2
+

A1(κ + 1)
6G

r3/2
+

D0(κ + 1)
4G

r.
(9)

Similarly the u component of the displacement is given as

u180◦ =
C0(κ + 1)

2G
r1/2
−

C1(κ + 1)
6G

r3/2
−

B0(κ + 1)
4G

r,

u−180◦ =−
C0(κ + 1)

2G
r1/2
+

C1(κ + 1)
6G

r3/2
−

B0(κ + 1)
4G

r.
(10)

Therefore, from (9) and (10), the COD (1v) and CSD (1u) under mixed mode I/II can be written as

1v = v180◦ − u−180◦ =
A0(κ + 1)

G
r1/2
−

A1(κ + 1)
3G

r3/2,

1u = u180◦ − u−180◦ =
C0(κ + 1)

G
r1/2
−

C1(κ + 1)
3G

r3/2.

(11)

In the present investigation the unknown coefficients A0 and C0 are solved using the FE solutions of 1v
and 1u at two different radial locations r1 (or r2) and r3 (or r4) on the crack flank as shown in Figure 2.
Then the mixed mode SIFs KI and KII can be estimated as

KI =
√

2π A0 and KII =
√

2πC0. (12)

It can be noticed from (11) and (12) that actual signs (positive or negative) of the SIFs (which depend
on the orientation of the crack with the loading) can also be furnished by the proposed technique.
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y, v

x, u

quarter point
elements

crack

Figure 2. Crack tip coordinate system and associated displacements.

3. Numerical examples

In order to validate the performance of the proposed technique, numerical evaluation is carried out in this
section using a number of benchmark problems. Finite element analysis of all the examples is carried out
using the commercial software ANSYS. Meshing is done using eight noded isoparametric quadrilateral
(Q8) elements and collapsed Q8 QPEs are employed at the crack tip in a spider web pattern. Plane stress
condition, Young’s modulus E = 1.0, Poisson’s ratio ν = 0.3, and the applied stress σ = 1.0 are assumed
in all the example problems. Units of all examples are consistent. SIFs are also computed using the
DET available in ANSYS, the J-integral and I-integral techniques. In order to study the efficacy of the
proposed technique, these values along with the published solutions are compared with those obtained
using the present technique. The percentage relative error in the estimated SIF is calculated as

% relative error=
∣∣∣computed value−reference value

reference value

∣∣∣× 100, (13)

where computed value refers to the value of SIF estimated using the proposed technique and the reference
value is the available analytical or numerical value.

3.1. Example 1: center-cracked plate subjected to uniform tension. The first example discussed here
is a mode I problem of a center-cracked plate (CCP) under uniform tensile loading (Figure 3a) with
h/b = 3. Three configurations with a/b = 0.2, 0.4 and 0.6 have been considered for the study. Due to
symmetry, only one quarter of the CCP is simulated (shaded area in Figure 3a). Figure 3a also shows
symmetry boundary conditions used in the FE analysis. Figure 4 shows a sequence of finite element
meshes employed for convergence study for the configuration with a/b = 0.4 and with the QPE length
to crack length ratio (L Q/a) of 0.4, 0.2, and 0.1, respectively. The number of elements (NE) and number
of nodes (NN) are also shown in Figure 4. The mesh pattern around the crack tip is shown in Figure 4d.

Table 1 shows the results of the estimated normalized SIF obtained using the proposed approach and
other techniques. The values given in parentheses indicates the percentage relative error based on the
reference solutions given by Isida [1971] in (13).

It can be noticed from Table 1 that the results obtained using the proposed technique converges to the
reference value with the mesh refinement. This is true for all a/b values considered. It is interesting to
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Figure 3. Geometry and boundary conditions for the various crack configurations.

a/b Mesh
KI/σ
√
πa

[Isida 1971] Present DET J-int I-int

Mesh 1 1.0272 (0.21) 1.0272 (0.22) 1.0246 (0.04) 1.0249 (0.01)
0.2 Mesh 2 1.025 1.0263 (0.13) 1.0264 (0.13) 1.0246 (0.04) 1.0246 (0.04)

Mesh 3 1.0258 (0.08) 1.0258 (0.07) 1.0246 (0.04) 1.0246 (0.04)

Mesh 1 1.1120 (0.27) 1.1120 (0.27) 1.1094 (0.03) 1.1097 (0.06)
0.4 Mesh 2 1.109 1.1109 (0.17) 1.1109 (0.17) 1.1094 (0.03) 1.1093 (0.03)

Mesh 3 1.1105 (0.14) 1.1105 (0.14) 1.1094 (0.03) 1.1093 (0.03)

Mesh 1 1.3052 (0.17) 1.3052 (0.17) 1.3033 (0.02) 1.3037 (0.05)
0.6 Mesh 2 1.303 1.3047 (0.13) 1.3046 (0.13) 1.3033 (0.02) 1.3033 (0.02)

Mesh 3 1.3044 (0.11) 1.3045 (0.12) 1.3033 (0.02) 1.3033 (0.02)

Table 1. Comparison of normalized SIFs for CCP (h/b = 3, a/b = 0.2, 0.4, 0.6). Num-
bers in parentheses are the percentage relative error.

notice from the results in Table 1 that in all the meshes, the SIFs are determined with an accuracy that is
comparable with that obtained using J-integral and I-integral. Very accurate SIFs are estimated using the
proposed technique even in the relatively course meshes. The maximum percentage error observed using
coarse meshes (Mesh 1) is 0.27% and using fine meshes (Mesh 3) is 0.14%. It can also be noticed that
the results obtained in this section are in excellent agreement with the reference value and the proposed
technique computes very accurate values of the SIFs.
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Figure 4. Different finite element meshes used for the analysis of CCP. Top: Mesh 1,
Mesh 2, and Mesh 3. Bottom: meshing around the tip.

3.2. Example 2: double edge cracked plate subjected to uniform tension. The second problem con-
sidered is also a mode I problem of double edge cracked plate (DECP) subjected to uniform far-field
tensile stresses as shown in Figure 3b. The geometry parameters used for the FE analysis are h/b = 3,
a/b= 0.2, 0.4, and 0.6. Only one quarter of the plate is modeled as shown (with boundary conditions) in
Figure 3b due to the symmetry of the problem. Meshes that are similar to Figure 4 are employed for the
FE analysis. However, results corresponding to the Mesh 1 and Mesh 3 are presented here. Table 2 shows
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a/b Mesh
KI/σ
√
πa

Reference 1 Reference 2 Present DET J-int I-int

0.2
Mesh 1

1.1180 1.1123
1.1104 (0.68) 1.1105 (0.67) 1.1118 (0.56) 1.1121 (0.53)

Mesh 3 1.1124 (0.50) 1.1124 (0.50) 1.1118 (0.56) 1.1117 (0.56)

0.4
Mesh 1

1.1361 1.1377
1.1309 (0.46) 1.1309 (0.46) 1.1321 (0.35) 1.1325 (0.32)

Mesh 3 1.1329 (0.28) 1.1329 (0.28) 1.1321 (0.35) 1.1321 (0.35)

0.6
Mesh 1

1.2333 1.2446
1.2361 (0.23) 1.2362 (0.23) 1.2360 (0.22) 1.2364 (0.25)

Mesh 3 1.2371 (0.30) 1.2371 (0.30) 1.2360 (0.22) 1.2360 (0.22)

Table 2. Comparison of normalized SIFs for DECP (h/b = 3, a/b = 0.2, 0.4, 0.6).
Reference 1 is [Benthem and Koiter 1973], and reference 2 is [Yan et al. 2010]. Numbers
in parentheses are the percentage relative error.

the comparison of computed mode I normalized SIFs using the proposed approach and other techniques.
The % relative error is shown in parentheses. Solutions of [Benthem and Koiter 1973] are considered as
the reference solution in (13).

It is seen that the results of present displacement based method are in very good agreement with the
results using the other three methods and the published results in all the meshes. Like in the previous
example, the estimated SIF is converged as the meshes are refined and very accurate solutions are deter-
mined even in relatively coarse meshes such as Mesh 1. This is true for all a/b values considered. The
solutions of the proposed technique are comparable to that of path independent integral techniques. The
maximum error using Mesh 1 is 0.68%, and that in Mesh 3 is 0.56%.

3.3. Example 3: edge-cracked plate subjected to pure antisymmetric loading. In this section, a pure
mode II problem of an edge-cracked plate under antisymmetric loading is presented as shown in Figure 3c.
For this problem h/b is set to 1.0 and different configurations with a/b = 0.2, 0.4, and 0.6 have been
analyzed. As no symmetry exists in this problem, the full model is considered in FE analysis. The bottom
edge of the plate is restrained from all degrees of freedom and the top face is loaded with the forces as
shown in Figure 3c. Like in previous examples, the convergence of computed mode II SIF KII using the
proposed technique is observed along three meshes with varying mesh density as shown in Figure 5 and
the corresponding results are presented in Table 3. For the % relative error calculations in normalized
SIF, results of [Treifi et al. 2008] are considered as the reference solution.

It may be observed from the results of Table 3 that similar to the previous example, extremely accurate
values of the mode II SIFs are extracted by the proposed method and are converged as the meshes are
refined. This can be seen in all a/b values employed. The results obtained using Mesh 3 are in very
good agreement with the published results as well as with the other methods. In this example also the
accuracy of the proposed method is similar to the J-integral and I-integral techniques. A maximum error
of 0.56% is noticed in Mesh 1 of a/b = 0.4. However with the fine meshes (Mesh 3), the maximum
error is 0.51%.

3.4. Example 4: slant edge cracked plate subjected to tensile loads. Finally, to demonstrate the efficacy
of the proposed method in mixed mode (I/II) loading conditions, a slant edge cracked plate (SECP)
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Figure 5. Finite element meshes used for analysis of ECP under mode II loading:
Mesh 1 (left), Mesh 2 (middle), and Mesh 3 (right).

a/b Mesh
KII/τ

√
πa

[Treifi et al. 2008] Present DET J-int I-int

Mesh 1 0.6906 (0.49) 0.6906 (0.49) 0.7065 (1.79) 0.7039 (1.43)
0.2 Mesh 2 0.694 0.6887 (0.77) 0.6883 (0.82) 0.6960 (0.29) 0.6960 (0.29)

Mesh 3 0.6905 (0.51) 0.6905 (0.50) 0.6959 (0.27) 0.6959 (0.27)

Mesh 1 1.1718 (0.56) 1.1718 (0.56) 1.1794 (0.03) 1.1798 (0.06)
0.4 Mesh 2 1.179 1.1739 (0.40) 1.1740 (0.38) 1.1794 (0.03) 1.1794 (0.03)

Mesh 3 1.1748 (0.33) 1.1752 (0.29) 1.1794 (0.03) 1.1794 (0.03)

Mesh 1 1.5468 (0.33) 1.5466 (0.34) 1.5503 (0.11) 1.5507 (0.08)
0.6 Mesh 2 1.552 1.5469 (0.32) 1.5471 (0.31) 1.5509 (0.07) 1.5509 (0.07)

Mesh 3 1.5474 (0.29) 1.5473 (0.30) 1.5510 (0.06) 1.5510 (0.06)

Table 3. Normalized mode II stress intensity factors for ECP (h/b= 1, a/b= 0.2, 0.4, 0.6).
Numbers in parentheses are the percentage relative error.

subjected to tension loads (as shown in Figure 3d) is considered here. The geometric parameters for this
problem are h/b= 1.0, h1/h = 1.5, and a/b= 0.3, 0.4, 0.6. Due to lack of symmetry, the whole domain
is modeled using finite elements. The bottom face of the plate is restrained in the x and y directions and
the top face is loaded as shown in Figure 3d. The convergence study has also been carried out using the
three meshes with varying mesh density as shown in Figure 6. Tables 4 and 5 show the results of the
analyses for the normalized KI and KII, respectively.
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Figure 6. Finite element meshes used for the analysis of SECP under tension: Mesh 1
(left), Mesh 2 (middle), and Mesh 3 (right).

a/b Mesh
KI/σ
√
πa

[Chen and Wang 2008] [Wilson 1969] Present DET I-int

Mesh 1 0.8811 (0.21) 0.8811 (0.22) 0.8828 (0.02)
0.3 Mesh 2 0.883 0.883 0.8821 (0.10) 0.8826 (0.05) 0.8826 (0.04)

Mesh 3 0.8830 (0.00) 0.8831 (0.01) 0.8826 (0.04)

Mesh 1 1.0155 (0.15) 1.0155 (0.15) 1.0177 (0.07)
0.4 Mesh 2 1.017 1.011 1.0175 (0.05) 1.0177 (0.07) 1.0176 (0.06)

Mesh 3 1.0178 (0.08) 1.0179 (0.09) 1.0177 (0.07)

Mesh 1 1.4584 (0.04) 1.4584 (0.04) 1.4590 (0.00)
0.6 Mesh 2 1.459 1.437 1.4595 (0.03) 1.4596 (0.04) 1.4590 (0.00)

Mesh 3 1.4596 (0.04) 1.4598 (0.05) 1.4590 (0.00)

Table 4. Normalized mode I stress intensity factors for SECP under tension (h/b = 1,
h1/h = 1.5, a/b = 0.3, 0.4, 0.6). Numbers in parentheses are the percentage relative error.

It is very interesting to notice from the results of Tables 4 and 5 that like the previous examples, very
accurate values of both the SIFs KI and KII have been estimated by the present technique. The percent
relative error in present results are of the similar order as that of path independent integrals specifically in
the refined meshes. Furthermore, convergence of the extracted SIFs can be noticed from Tables 4 and 5
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a/b Mesh
KII/σ

√
πa

[Chen and Wang 2008] [Wilson 1969] Present DET I-int

Mesh 1 0.4383 (2.17) 0.4381 (2.20) 0.4469 (0.24)
0.3 Mesh 2 0.448 0.450 0.4423 (1.27) 0.4425 (1.24) 0.4466 (0.30)

Mesh 3 0.4441 (0.88) 0.4443 (0.84) 0.4466 (0.31)

Mesh 1 0.4955 (2.28) 0.4955 (2.27) 0.5055 (0.30)
0.4 Mesh 2 0.507 0.505 0.5012 (1.15) 0.5010 (1.19) 0.5051 (0.38)

Mesh 3 0.5021 (0.98) 0.5020 (0.99) 0.5051 (0.38)

Mesh 1 0.6782 (1.00) 0.6782 (0.99) 0.6833 (0.24)
0.6 Mesh 2 0.685 0.674 0.6806 (0.64) 0.6805 (0.66) 0.6831 (0.27)

Mesh 3 0.6807 (0.62) 0.6808 (0.61) 0.6831 (0.27)

Table 5. Normalized mode II stress intensity factors for SECP under tension (h/b = 1,
h1/h = 1.5, a/b = 0.3, 0.4, 0.6). Numbers in parentheses are the percentage relative error.

as the meshes are refined. The results in tables clearly show that the proposed technique is capable of
providing accurate the mixed mode SIFs even in the relatively coarse meshes similar to that of J- and
I-integrals. Solutions of [Chen and Wang 2008] are considered as the reference solutions in (13).

4. Conclusions

A simple and efficient displacement extrapolation technique for estimating mode I, mode II, and mixed
mode (I/II) loading conditions is proposed in the present investigation. The technique uses the crack
face displacement components from finite element analysis to compute the mode I, mode II, and mixed
mode I/II SIFs. The technique is developed based on the Generalized Westergaard approach. The results
of the present investigation clearly show that:

(a) the present technique provides very accurate SIFs even in the relatively coarse meshes,

(b) the estimated SIFs show convergence as the meshes are refined,

(c) the estimated SIFs show very good agreement with the published results and those results computed
using the J-integral and I-integral, and

(d) the accuracy of the SIFs estimated using the proposed technique is of similar order as those obtained
using path-independent integrals.

Apart from the accuracy of SIFs, another important feature of the proposed technique is that it provides
the SIFs with their correct sign, which is vital in fatigue crack growth simulation studies in damage
tolerance design philosophy. Thus the present technique is also extremely useful in fatigue crack growth
simulations. Owing to the simplicity and ease of implementation, the present method can easily be
incorporated into the existing FE codes.
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LONGITUDINAL SHEAR BEHAVIOR OF COMPOSITES WITH
UNIDIRECTIONAL PERIODIC NANOFIBERS OF

SOME REGULAR POLYGONAL SHAPES

HAI-BING YANG, CHENG HUANG, CHUAN-BIN YU AND CUN-FA GAO

Based on the Gurtin–Murdoch interface model, a complex variable-based approach is presented to study
the longitudinal shear behavior of composites containing unidirectional periodic nanofibers. For intuitive
demonstration, numerical results of the interfacial stress concentration and the effective (longitudinal)
shear moduli are calculated for composites containing circular and (approximately) regular polygonal
fibers. Graphic illustrations show that the interaction among periodic nanofibers can be neglected in
the prediction of the interfacial stress field when the volume fraction of the fibers is less than 7%. For
reasonably given interface parameters, fiber volume fraction and fiber size, the composite containing
periodic circular fibers can achieve a lowest sensitivity of effective shear moduli to the interface effect
among all the aforementioned fiber shapes. Moreover, we show that if the fibers are much harder than
the surrounding matrix (for example, the shear modulus of the fibers exceeds twice that of the matrix),
the corresponding interface effect can make only negligible contributions to the effective longitudinal
shear moduli of the composites.

1. Introduction

Based on the concept of surface stress associated with the excess free energy of a material surface,
Gurtin, Murdoch and coworkers [Gurtin and Murdoch 1975; 1978; Gurtin et al. 1998] developed a
general continuum-based mechanical model, known as the Gurtin–Murdoch model, for a material sur-
face/interface with residual tension and elasticity. In the past two decades, the Gurtin–Murdoch model
has contributed greatly to the investigations of mechanical behavior of composites containing nanopar-
ticles or nanofibers. For example, in the context of the Gurtin–Murdoch model, the stress state in the
vicinity of spherical nanoparticles and circular/elliptical nanofibers embedded in a foreign matrix was
studied, respectively, in [Sharma et al. 2003; Lim et al. 2006; Tian and Rajapakse 2007; Luo and Wang
2009; Mogilevskaya et al. 2008; Dai et al. 2016d; 2018], while the effective moduli of composites with
spherical nanoparticles and circular nanofibers were examined in [Duan et al. 2005; Chen et al. 2007;
Mogilevskaya et al. 2010; Yvonnet et al. 2008; Dai et al. 2016c; 2016b; 2017], respectively.

Based on the Gurtin–Murdoch model, present work aims to establish an alternative numerical proce-
dure to determine the longitudinal shear properties of composites containing periodic polygon-shaped
nanofibers. The work is motivated by the fact that there are only few available methods besides the finite
element method for the prediction of the elastic behavior of composites containing periodic nanofibers,
and particularly is inspired by the paper [Dai et al. 2016c], involving periodic circular nanofibers. Based
on the methodology in that paper, however, the extension of circular inclusions to noncircular inclusions

Keywords: Gurtin–Murdoch model, nanofiber, periodic fibers, interface effect, effective modulus.
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Figure 1. Left: an elastic matrix containing periodic array of nanofibers. Right: a repre-
sentative square unit cell.

(e.g., polygonal inclusions) is difficult. In fact, as in [Dai et al. 2016c], it is relatively easy to extract the
equations with respect to the unknown coefficients since the complex potentials of the circular inclusions
are represented by the Taylor series (which is simple in form), but for polygonal inclusions it is usually
difficult to do the same thing because the corresponding complex potentials can only be described by
general Faber series which has a much more complicated form than the Taylor series. Consequently, it
is still nontrivial to design an effective procedure with efficient numerical implementation to calculate
the stress field for polygonal inclusions.

This paper is organized as follows. The boundary-value problem for composites with periodic polygon-
shaped nanofibers under uniform remote longitudinal shear loadings is formulated in Section 2, and its
series solution is established in Section 3. Several numerical examples are presented in Section 4 for
validating our solution and illustrating the mechanical behavior of the corresponding composites. Finally,
the main remarks constitute Section 5.

2. Problem description

As shown in Figure 1a, an elastic matrix (shear modulus G0) containing a periodic array of unidirectional
(approximately) polygonal nanofibers (shear modulus G1) under uniform remote antiplane shear loadings
σ∞13 and σ∞23 is considered. The influences of the nanofibers are described by the interface effect arising
from the interface energies based on the Gurtin–Murdoch model [1975]. Here, to make the problem
relatively tractable, we simply choose the representative unit cell (RUC), i.e., a square with the side
length denoted by a (Figure 1b). For convenience, we denote the regions occupied by the matrix, the
fiber and the interface between them, as S0, S1, and L , respectively. In particular, the indices (superscripts
or subscripts) 0 and 1 are used to denote the physical quantities belonging to the matrix and fiber in the
RUC, respectively.

According to the Gurtin–Murdoch mode, the elastic fields in the bulk region (S0, S1) still satisfy the
classical governing equations except for the stress discontinuity at the interfaces. In detail, the governing
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equations for the out-of-plane displacement w and the antiplane shear stresses are given by

∂2w(i)

∂x2
1
+
∂2w(i)

∂x2
2
= 0, i = 0, 1, (1)

σ
(i)
13 = Gi

∂w(i)

∂x1
, σ

(i)
23 = Gi

∂w(i)

∂x2
, i = 0, 1, (2)

while the boundary condition on the interface are described as

w(1)−w(0) = 0, σ
(1)
n3 − σ

(0)
n3 = Gs

d2w(1)

ds2 on L , (3)

where σn3 is the shear traction on the interface L with n denoting the direction of outward normal to L
(see Figure 1b), Gs is the interface shear modulus, and ds denotes the arc length of an element of the
curve L along its tangent.

In addition to the boundary condition (3) on L , the periodic boundary condition on the edge ABC D
of the RUC can be expressed as [Xia et al. 2003]

w(0)
( 1

2a, x2
)
−w(0)

(
−

1
2a, x2

)
=11

w(0)
(
x1,

1
2a
)
−w(0)

(
x1,−

1
2a
)
=12

}
∀ |x1|, |x2| ≤

1
2a, (4)

(dw(0)/dx2)|(x1,a/2) = (dw
(0)/dx2)|(x1,−a/2)

(dw(0)/dx1)|(a/2,x2) = (dw
(0)/dx1)|(−a/2,x2)

}
∀ |x1|, |x2| ≤

1
2a, (5)

where 11 and 12 are the constant increments between displacements on the sides DB and C A as well
as AB and C D, respectively (see Figure 1b). Furthermore, these two increments can be determined by
equilibrium equation on the sides AB and DB:∫ B

A
σ
(0)
23

(
x1,

1
2a
)dx1

a
= σ∞23 ,

∫ B

D
σ
(0)
13

( 1
2a, x2

)dx2

a
= σ∞21 . (6)

3. Solution procedure

General solutions to (1) and (2) can be given in terms of two complex potentials fi (z) (i = 0, 1) as
[Muskhelishvili 1975]

w(i) = Im f1(z), i = 0, 1, (7)

σ
(i)
23 + Iσ (i)13 = Gi f ′i (z), i = 0, 1, (8)

with
z = x1+ I x2, (9)

where the symbol I denotes the imaginary unit. In addition, the shear traction σn3 on the interface L can
be written as [Luo and Wang 2009]

σ
(i)
23 = Gi Im[ f ′i (t)e

Iα
], t ∈ L , i = 0, 1, (10)
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where α is the angle between the normal direction n and the positive x1 axis (see Figure 1b). Thus, by
(7) and (10), the condition (3) can be rewritten in the form as

Im f0(t)= Im f1(t),

Re f0(t)− γRe f1(t)− γ R Re[ f ′1(t)e
Iα
] = 0, t ∈ L , (11)

with

γ =
G1

G0
, λ=

Gs

G0 R
. (12)

In particular, the second equation in (11) comes from the integration of the second equation in (3)
with respect to the arc length of L .

Using (7), conditions (4) and (5) can be rewritten as

Im f0(zDB)− Im f0(zC A)=11, Im f0(z AB)− Im f0(zC D)=12, (13)

Re f ′0(z
AB)−Re f ′0(z

C D)= 0, Im f ′0(z
DB)− Im f ′0(z

C A)= 0, (14)

where z AB, zC D, zDB, and zC A represent the points of uniform distribution located on the sides AB, C D,
DB, and C A, respectively. Furthermore, the following relations should be satisfied:

z AB
= zC D, zDB

=−zC A. (15)

In addition, by using (8), the condition (6) becomes∫ B

A
Re f ′0(z)

dz
a
=
σ∞23

G0
,∫ B

D
Im f ′0(z)

dz
a
= I

σ∞13

G0
.

(16)

Here, we introduce a conformal mapping which transforms the boundary L in the physical z-plane
into a unit circle in the imaginary ξ -plane, as [Muskhelishvili 1975]

z = ω(ξ)= R
(
ξ +

+∞∑
n=1

tnξ−n
)
, |ξ | ≥ 1, (17)

where R and tn denote the constants determined by the overall size and shape of L . Subsequently, the
complex function f1(z) in S1 can be represented approximately via the following truncated Faber series as

f1(z)=
N∑

j=1

a j P1 j (z), (18)

where P1 j (z) is a Faber polynomial for the region S1 and satisfies

P1 j (z)= ξ j (z)+
∞∑

n=1

β j,nξ
−n(z), (19)
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on L , where

β1,n = tn, β j+1,n = t j+n +β j,n+1+

n∑
i=1

tn−1β j,i −

j∑
i=1

t j−1βi,n, j, n = 1, 2, . . . (20)

In the above formulas (18)–(20), a j ( j = 1, . . . , N ) are the unknown complex coefficients to be deter-
mined and tn (n = 1, 2, . . .) are the constant coefficients of the mapping (17). Similarly, the complex
function f0(z) in S0 can be expressed in terms of the superposition principle as follows [Dai et al. 2016a]:

f0(z)=
N∑

j=1

b jξ
− j
+

M∑
j=1

c j Pj (z), (21)

with

Pj+1(z)= P1(z)Pj (z)−
j−1∑
k=1

mk Pj−k(z)− ( j + 1)m j , ( j = 1, . . . ,M − 1),

P1(z)=
143z
84a

, mk =


−

1
6 k = 3,
1

56 k = 7,
0 k = others,

(22)

where b j ( j = 1, . . . , N ) and c j ( j = 1, . . . ,M) are the unknown complex coefficients to be determined,
while Pj (z) ( j = 1 . . .M) is a Faber polynomials of an (approximate) square region.

Substituting the defined complex potentials (18) and (21) into the corresponding boundary conditions
(Equations (11), (13), (14) and (16)) leads to the solutions of coefficients a j ( j = 1, . . . , N ), b j ( j =
1, . . . , N ), and c j ( j = 1, . . . ,M) via the Fourier expansion method. In detail, a system of linear
equations with respect to the unknown coefficients a j ( j = 1, . . . , N ), b j ( j = 1, . . . , N ) and c j ( j =
1, . . . ,M) can be obtained by equating the corresponding coefficients on the two sides of equations on
the internal interface L . On the external boundary ABC D, a collocation method is used by choosing K
(K ≥ M/2) collocation points equidistantly on each side to deal with the periodic boundary conditions
(13) and (14), then a system of linear equations can be extracted with respect to the unknown coefficients
b j ( j = 1, . . . , N ) and c j ( j = 1, . . . ,M). Using the method in [Dai et al. 2016c], all the unknown
coefficients can be described by the two parameters11 and12. In terms of the two mean stress conditions
(see (16)), the two parameters 11 and 12 can be obtained uniquely, and then the coefficients a j ( j =
1, . . . , N ), b j ( j = 1, . . . , N ), and c j ( j = 1, . . . ,M) are all determined. Once the actual complex
potentials fi (z) (i = 0, 1) are found, the displacement and stress field in the entire RUC are obtained
using (7) and (8).

In addition, referring to the present Cartesian coordinate system, the effective longitudinal shear mod-
uli (denoted by G1313, G1323, G2313, and G2323) of the composite can be defined based on the obtained
stress and displacement as [

G1313 G1323

G2313 G2323

]
·

[
11/a
12/a

]
=

[
σ∞13
σ∞23

]
. (23)
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It is noteworthy that determination of all the effective shear moduli involve considering two indepen-
dent kinds of external loadings (for example, σ∞13 6= 0, σ∞23 = 0 and σ∞13 = 0, σ∞23 6= 0) and calculating
the corresponding parameters 11 and 12, respectively.

4. Numerical examples

In this section, we focus on the examples for circular nanofibers and regular polygonal nanofibers, in
which corresponding mappings (17) are given approximately as [Muskhelishvili 1975]

ω(ξ)= Rξ (circle), (24)

ω(ξ)= R
(
ξ + 1

3ξ
−2) (triangle), (25)

ω(ξ)= R
(
ξ − 1

6ξ
−3) (square1), (26)

ω(ξ)= R
(
ξ + 1

6ξ
−3) (square2), (27)

ω(ξ)= R
(
ξ + 1

10ξ
−4) (pentagon), (28)

ω(ξ)= R
(
ξ + 1

15ξ
−5) (hexagon), (29)

where R characterizes the radius or side length of corresponding fibers. It is worth noting that the
maximum volume fraction of the fibers varies with the fiber shape. In particular, when R is prescribed
within the nanoscale, the normalized interface parameter λ defined in (12) is usually of the order 10−2

to 10−1 [Ruud et al. 1993; Josell et al. 1999].

4.1. Resultant stress fields around interface. Here, we define the resultant shear stresses σ (i) (i = 0, 1)
and σ∞ as follows:

σ (i) =
√
σ
(i)2
13 + σ

(i)2
23 , i = 1, 2, (30)

σ∞ =
√
σ∞2

13 + σ
∞2
23 . (31)

Figures 2 and 3 show the resultant shear stresses around the variously shaped interface between fiber
volume fraction (VF) for σ∞13 = σ

∞

23 , λ= 0.12. It can be seen from Figures 2 and 3 that the results for
periodic fibers converge to those for a single fiber in an infinite plane (see the corresponding results in
[Wang and Schiavone 2014]) as the volume fraction of the fibers decreases, roughly speaking, to 7%. This
suggests that one can use the simpler model of a single fiber in an infinite plane to predict approximately
the stress concentration around periodic fibers when the fiber volume fraction falls below 7%.

4.2. Effective shear moduli. From an extensive collection of our numerical examples for fibers of var-
ious shapes (including those defined in (24)–(29)), it is found from Figures 4 and 5 that the increment
11 is always zero when σ∞23 = 0 while the increment 12 is always zero when σ∞13 = 0. This suggests
that the shear stress σ∞13 does not induce the shear strain in the x2-x3 plane while the shear stress σ∞23
does not induce the shear strain in the x1-x3 plane (here x3 denotes the coordinate axis perpendicular
to the x1-x2 plane). That is to say, the minor effective shear moduli G1323 and G2313 are always zero,
which implies that the effective longitudinal shear properties of the composite with periodic circular or
regular polygonal fibers are almost orthotropic in terms of our present reference coordinate system. All
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[Dai et al. 2016b]

Figure 2. Resultant shear stresses around matrix on the interface between soft fiber and
matrix. In each panel, the lowermost curve or dotted line shows single-fiber data from
[Wang and Schiavone 2014]; remaining curves are reference data from [Dai et al. 2016c].

things considered, the zero values of these coupled shear moduli may be due to the perpendicularity in
the direction of period.

In the remaining examples, one of the purposes is to study the influence of the shear modulus of the
nanofibers on the effective longitudinal shear properties of the composite. To do this, however, requires
that the interface shear modulus Gs not be treated as a fixed parameter when the shear modulus of the
nanofibers changes since the interface shear modulus depends on not only the bulk properties of the
matrix but also those of the nanofibers. Here, we treat the interface as the assembly of the surfaces of the
matrix and nanofibers so that the interface shear modulus Gs is defined as the sum of the surface shear
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[Dai et al. 2016b]

Figure 3. Resultant shear stresses around fiber on the interface between soft fiber and
matrix. See caption on previous page for key.

moduli of the matrix and nanofibers [Tiersten 1969; Zhang et al. 2012]:

Gs = Gs0+Gs1, (32)

where Gs0 and Gs1 are the surface moduli of the matrix and fibers, respectively. In particular, we simply
assume Gs1/Gs0 = G1/G0 since larger bulk moduli often indicate larger surface moduli. Consequently,
the normalized interface parameter λ introduced from (12) is rewritten as

λ=
Gs0(1+ γ )

G0 R
= λ0(1+ γ ), λ0 =

Gs0

G0 R
, (33)
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Figure 4. Minor effective longitudinal shear moduli of the composite with periodic soft fibers.

where λ0 characterizes the normalized surface shear modulus of the matrix and it is taken as 0.1 in all
of the following examples.

Figures 6–13 show the influence of the shape and volume fraction (VF) of the periodic fibers on the
major effective (longitudinal) shear moduli G1313 and G2323 of the corresponding composite for several
distinct interface parameters λ. In particular, G∗1313 and G∗2323 denote the specific major effective shear
moduli of the composite when the interface effect is absent (or equivalently the interface parameter λ= 0).
In Figures 7, 9, 11, and 13, we rearrange the results given respectively in Figures 6, 8, 10, and 12, and
use the ratios G1313/G∗1313 and G2323/G∗2323 to demonstrate directly the contribution of interface effect
to the major effective shear moduli of the composite with varying volume fraction of fibers.
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Figure 5. Minor effective longitudinal shear moduli of the composite with periodic hard fibers.

It is easily seen from Figures 6–13 that for a given fiber volume fraction, the major effective shear
moduli of the composite containing periodic regular n-sided polygonal fibers decrease from the original
increase with increasing n for the nonnegative value of λ when the fibers get harder. For the negative value
of λ, the major effective shear moduli of the composite increase with increasing n. On the other hand, the
contribution of the interface effect to the major effective shear moduli of this kind of composite decreases
always with increasing n. These imply that for a given fiber volume fraction and interface parameter λ, the
major effective shear moduli of the composite containing periodic circular fibers are larger but less sensi-
tive to the interface effect as compared with those of the composites containing periodic regular polygonal
fibers when the fibers are very soft. When the fibers get harder, the major effective shear moduli of the
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Figure 6. Major effective longitudinal shear moduli of the composite containing peri-
odic soft fibers.
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Figure 7. Contribution of interface effect to the major effective longitudinal shear moduli.
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Figure 8. Major effective longitudinal shear moduli of the composite containing peri-
odic soft fibers.
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Figure 9. Contribution of interface effect to the major effective longitudinal shear moduli.
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Figure 10. Major effective longitudinal shear moduli of the composite containing peri-
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composite containing periodic circular fibers are still less sensitive to the interface effect but are smaller
as compared with those of the composites containing periodic regular polygonal fibers. In addition, our
results indicate that one can neglect the interface effect (i.e., treat the interfaces as being perfectly bonded
to the matrix) when the shear modulus of the fibers reaches two (or more) times that of the matrix.

5. Conclusion

Based on the Gurtin–Murdoch model, the longitudinal shear behavior of composites with unidirectional
periodic nanofibers of approximately regular polygonal shapes is investigated using a complex variable-
based numerical procedure. Numerical results are presented for the stress concentration on the interfaces
and the effective (longitudinal) shear moduli of the composite relative to the interface parameter, the
volume fraction of the fibers, and the hardness of the fibers. The main findings are as follows:

(1) The stress field around periodic fibers can be treated as that around a single fiber (of identical shape,
size, and interface parameters) without inducing significant errors when the volume fraction of the
periodic fibers is less than 7%.

(2) For (reasonably) given interface parameters, fiber volume fraction and fiber size, the composite
containing periodic circular fibers has the lowest sensitivity of effective shear moduli to the interface
effect among all the composites containing periodic regular polygonal fibers.

(3) The interface effect is negligible in the determination of the effective shear moduli of the composite
when the shear modulus of the fibers reaches two (or more) times that of the matrix.
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FRACTURE INITIATION IN A TRANSVERSELY ISOTROPIC SOLID:
TRANSIENT THREE DIMENSIONAL ANALYSIS

LOUIS M. BROCK

A transversely isotropic solid is at rest, and contains a semi-infinite, plane crack. The axis of rotational
material symmetry lies in the crack plane. Application of normal point forces to each face of the crack
causes transient 3D growth. The related problem of discontinuities in displacement and traction that exist
on regions that exhibit dynamic similarity is first considered. Analytic results are obtained in integral
transform space. These lead to equations of the Wiener–Hopf type for the fracture problem. Analytic
solutions are again obtained and, upon inversion, subjected to a dynamic energy release rate criterion
that includes kinetic energy. A particular form of rapid growth in time of the forces is found to cause
crack growth rates that indeed vary with position, but not with time. The influence of anisotropy upon
wave speeds and crack edge contour are examined.

1. Introduction

Fracture initiation caused by mixed-mode, point-force loading at the edge of a semi-infinite plane crack
is considered in [Brock 2017a; 2017b]. Analysis in each case is 3D and transient. The crack exists in
an unbounded, isotropic, and isothermal solid in [Brock 2017b], while the solid is thermoelastic and
initially at uniform (absolute) temperature in [Brock 2017a]. The dynamic energy release rate criterion
[Freund 1972; 1990] is imposed, but with kinetic energy taken into account [Gdoutos 2005]. In [Brock
2017b] it is found that a particular time history for the loading can generate a crack edge contour that
is dynamically similar; i.e., its shape is time-invariant. The same result is found in [Brock 2017a] for
the fracture initiation phase. In both studies, inclusion of kinetic energy enhances the (constant) rate at
which the crack expands into the material. In both studies the expanding contour is semicircular only
when shearing forces are absent.

This study concerns the effect of anisotropy on the fracture process. The solid is isothermal, so that
the time history considered in [Brock 2017a; 2017b] again predicts a dynamically similar crack contour.
However, the solution results will be considered in the context of a (perhaps brief) fracture initiation
phase. Moreover, to emphasize the effects of transverse isotropy, only normal point force loading is
considered. In this regard, when the axis of material rotational symmetry is perpendicular to a plane:

(1) Plane strain problems are governed by the two elastic constants associated with the plane, i.e., are
effectively isotropic [Scott and Miklowitz 1967].

(2) Some results for 3D problems are independent of direction in the plane [Brock 2013].

Keywords: transverse isotropy, transient, fracture initiation, kinetic energy, crack contour.
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Here therefore the material rotational symmetry axis lies in the crack plane. Moreover, the initial crack
edge is not aligned with a principal axis in the plane. The solution process follows closely that employed
for [Brock 2017a; 2017b]. Process steps are clearly identified, but resulting formulas are generally
confined to those unique to the problem considered here.

2. Problem statement

Consider an unbounded, transversely isotropic solid with principal axes defined by fixed Cartesian basis
x0 = x0(x0

k ), k = (1, 2, 3). A closed crack AC(x0
3 , ξ

0
1 < 0) with boundary C(ξ 0

1 , x0
3) = 0 is at rest for

time t ≤ 0, where [
ξ 0

1

ξ 0
2

]
=

[
cos θ sin θ
− sin θ cos θ

][
x0

1

x0
2

]
(|θ |< π/2). (1)

It is noted that the axis of material rotational symmetry is parallel to the x0
2 -axis. For t > 0 compressive

point forces appear on both crack faces at (x0
1 = 0−, x0

2 = 0, x0
3 = 0±). Brittle fracture is instantaneous,

and the crack extends outward from x0 = 0 in the positive ξ 0
1 -direction. The crack now occupies region

AC + δA and boundary C includes a concave bulge:√
(x0

1)
2
+ (x0

2)
2
= l(θ, ψ, t), l(θ, ψ, t)= V (θ, ψ)t, (2a)

0< V < VR, ψ = tan−1 ξ
0
2

ξ 0
1

(|ψ |< π/2). (2b)

Introduction of an orientation angle ψ with respect to coordinates (ξ 0
1 , ξ

0
2 ) proves useful in the derivation

of solutions. Equation (2) implies a dynamically similar process, and requires that (speed parameter) V
is subsonic and below the Rayleigh value VR . Displacement u(uk) and traction T (σik) are field variables.
If body forces are neglected [Payton 1983; Jones 1999],

∇ · T − ρD2u = 0, (3a)σ11

σ22

σ33

=
C11 C12 C13

C12 C22 C12

C13 C12 C33

∂1u1

∂2u2

∂3u3

 , (3b)

σ2k = C44(∂2uk + ∂ku2), k = (1, 3), σ31 = C55(∂3u1+ ∂1u3). (3c)

Components (uk, σik) are functions of (x0, t), ∂k f = ∂ f/∂xk and (∇,∇2, 1) respectively are gradient
and Laplacian operators and identity tensor. Here (D f, ḟ ) signify time differentiation in basis x0 and
(Cik, ρ) are the elastic constants and mass density, and C13 = C11− 2C55. Here reference quantities are
shear modulus and shear wave speed:

µ= C44, V4 =
√

C44/ρ. (4a)

These quantities give dimensionless parameters

c =
V
V4
, d1 =

C11

C44
, d2 =

C22

C44
, d5 =

C55

C44
, d12 =

C12

C44
, d13 =

C13

C44
= d1− 2d5. (4b)
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For x0
3 = 0±, (x0

1 , x0
2) ∈ AC + δA (t > 0),

σ31 = σ32 = 0, σ33 =−Pδ(x0
1)δ(x

0
2). (5a)

For x0
3 = 0, (x0

1 , x0
2) /∈ AC + δA (t > 0),

[uk] = 0. (5b)

In (5) force P is a positive constant, δ( f ) denotes Dirac function, and [ f ] = f (+) − f (−), where
f (±) = f (ξ 0

1 , ξ
0
2 , 0±, t). In addition [uk] must vanish continuously on C , but σ3k may exhibit (integrable)

singular behavior on C . For t ≤ 0, (u, T )≡ 0, and for finite t > 0, (u, T ) must be bounded as |x0| →∞.

3. Discontinuity problem

A common practice for solving crack problems is to represent the relative motion of crack faces as
unknown discontinuities in displacement; see, e.g., [Barber 1992]. To implement that procedure, the
related problem of discontinuities in (uk, σ3k) is now considered: The unbounded solid is again at rest
when for time t > 0 the discontinuities are imposed in the same region AC + δA of the x0

1 x0
2 -plane. In

place of (5) we have for x0
3 = 0, (x0

1 , x0
2) ∈ AC + δA (t > 0)

[uk] =1k, [σ3k] =6k . (6a)

For x0
3 = 0, (x0

1 , x0
2) /∈ AC + δA (t > 0),

[uk] = [σ3k] = 0. (6b)

Here (1k, 6k) are continuous functions of (x0
1 , x0

2 , t). They vanish on C and for t ≤ 0 are bounded in
AC + δA for

√

(x0
1)

2
+ (x0

2)
2
→ 0. Therefore, as in the crack problem, (u, T ) ≡ 0 for t ≤ 0, and are

bounded as |x| →∞ for finite t > 0.

4. Transform solution

An effective procedure (see, e.g., [Brock and Achenbach 1973]) for 2D transient study of semi-infinite
crack extension at constant speed employs:

(1) Coordinates that translate with the crack edge.

(2) Unilateral temporal and bilateral spatial integral transform [Sneddon 1972].

In view of (1) a translating basis x is defined for |ψ |< π/2 as

ξ1 = ξ
0
1 − [c(θ, ψ) cosψ]s, ξ2 = ξ

0
2 − [c(θ, ψ) sinψ]s, x3 = x0

3 , (7a)

s = V4t, c(θ, ψ)=
V (θ, ψ)

V4
, (7b)

D f = ḟ = V4
[
∂ − c(ψ)(∂1 f cosψ + ∂2 f sinψ)

]
, (7c)

∂ =
∂ f
∂s
, ∂k f =

∂ f
∂x0

k

, k = (1, 2). (7d)
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The temporal Laplace transform operation is

L( f )= f̂ =
∫

f (s) exp(−ps) ds. (8)

Integration is over positive real s and Re(p) > 0. A double spatial integral transform and inversion,
respectively, can be defined [Sneddon 1972] by

f̃ (p, q1, q2)=

∫∫
f̂ (p, x1, x2) exp[−p(q1x1+ q2x2)] dx1 dx2, (9a)

f̂ (p, x1, x2)=
( p

2π i

)2
∫∫

f̃ (p, q1, q2) exp[p(q1x1+ q2x2)] dq1 dq2. (9b)

In light of (1) and (7a),

x1 = x0
1 − [c(θ, ψ) cosχ ]s, x2 = x0

2 − [c(θ, ψ) cosχ ]s, χ = θ +ψ. (9c)

Integration in (9a) is over (x1, x2); integration in (9b) is along the imaginary (q1, q2)-axes. It is noted
that (x, s) have dimensions of length, p has dimensions of inverse length, and (q1, q2) are dimensionless.
Because (1) involves a speed that varies with direction, application of (8) and (9a) to (3), (4), and (6)
is complicated. Despite use of (θ, ψ) the discontinuity problem is not axially symmetric. However,
3D studies of sliding and rolling contact [Brock 2012] and crack growth [Brock 2017a; 2017b] suggest
transformations

Im(q1)= Im(q) cosχ, Im(q2)= Im(q) cosχ, (10a)

x1 = ξ cosχ, x2 = ξ sinχ, ξ =
√

x2
1 + x2

2 =
√
ξ 2

1 + ξ
2
2 . (10b)

Here Re(q)= 0+, |Im(q)|, |ξ |<∞, |ψ |< π/2, and parameters (ξ, χ) and (q, χ) resemble quasipolar
coordinates, i.e.,

dx1 dx2 = |ξ | dξ dχ, dq1 dq2 = |q| dq dχ. (10c)

In particular the portion of crack contour C that bounds newly created crack surface δA can be defined
as (ξ = 0, |ψ |< π/2). The uncoupling effect of (10) leads to the combination

f̃ (p, q1, q2)→ f̄ (p, q, χ), (11a)

f̂ (p, ξ, χ)=−
p2

2π

∫
|q|
q

f̄ (p, q, χ) exp(pqξ) dq. (11b)

Integration is along the positive (Re(q)= 0+) side of the Im(q)-axis.
In view of (8)–(11) and (11a), Equations (3), (4), and (6) give a corresponding set in transform space

by making formal substitutions

∇ → (pq cosχ, pq sinχ, ∂3), D→
p

V4
β, ∇2

→ ∂2
3 + p2q2, (12a)

β = 1− cq. (12b)
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Set elements that correspond to (3a) are homogeneous, ordinary differential equations in x3, with char-
acteristic functions p A5(q) and p A±(q):

A5(q)=
1
√

d5

√
β2
− q2c2

5, c5 =
√

d5 cos2χ + sin2χ, (13)

A±(q)=
√
−1/(4d1) (�+±�−)

2
− q2 cos2χ, (14a)

�± =
√
(
√

d1C2±
√

C0)
2
−m2q2 sin2χ, (14b)

C0 = q2 sin2χ −β2, C2 = d2q2 sin2χ −β2, m = 1+ d12. (14c)

It is noted that (14a) and (14b) yield the convenient result

d1(A2
−
− A2

+
)=�+�−. (14d)

The branch point parameter c5 for A5 is a dimensionless shear wave speed. Similarly A± respectively
are associated with dimensionless wave speeds c±:

c± = 1
2(C±±C−), (15a)

C± =
√

1+ d1 cos2χ + d2 sin2χ ± 2
√

d1 cos4χ + d2 sin4χ +0 sin2χ cos2χ, (15b)

0 = 1+ d1d2−m2. (15c)

It is noted that

A+A− =
1
√

d1

√
β2
− q2c2

+

√
β2
− q2c2

−
. (15d)

In [Payton 1983] parameter combinations (m, 0) are used to characterize transversely isotropic materials;
the characterization scheme is summarized in Appendix A. Results in what follows are often general.
However, some key expressions and associated calculations will be illustrated in terms of the Category 1
material. In light of (13)–(15), the corresponding equations give displacement transform ū= ū5+ ū++ ū−
where components are (ū5)1

(ū5)2

(ū5)3

=
 (±)A5

0
q cosχ

U (±)
5 exp(−p A5|x3|), (16a)

(ū±)1(ū±)2
(ū±)3

=
(∓)m2q sinχ cosχ

(±)Q±
mq A± sinχ

U (±)
± exp(−p A±|x3|), (16b)

Q± = C0−
1
4(�+±�−)

2, Q+Q− = C0m2q2 sin2χ. (16c)

Function (U (±)
± ,U (±)

5 ) depends on (p, q, χ), and (±) signifies x3> 0 (+), x3< 0 (−). In view of (13) and
(15) solution behavior is governed by the body wave speeds (V4, V5= c5V4, V±= c±V4), where V−< V+.
Bounded behavior for ûk as |x3| →∞ requires, in light of (16), that Re(A±) > 0 and Re(A5) > 0 in the



176 LOUIS M. BROCK

q-plane with, respectively, branch cuts

Im(q)= 0, −1
c±−c

< Re(q) < 1
c±+c

, (17a)

Im(q)= 0, −1
c5−c

< Re(q) < 1
c5+c

. (17b)

It is noted that (17) is valid only so long as c < (1, c5), i.e., V (θ, ψ) < (V4, V5).
Expressions for (U (±)

± ,U (±)
5 ) in terms of (1k, 6k) are obtained by combining (16) with the transforms

of (3b), (3c), and (6a). Details are found in Appendix B.

5. Application to fracture problem: equations for solution

Equation (16) represents the transform solution for the fracture problem if transforms of (5) are satisfied.
Equation (5) does not involve 6k so 6k can be dropped. Use of (7)–(12) and (B.3)–(B.5) and the
transform of (3b), (3c), and (5) give three equations:

σ̄C
31 =

µp
2A5

(S111+ S1212), σ̄C
32 =

µp
2A5

(s1211+ S212), (18a)

σ̄C
33−

P
pβ
=
µp
2

A5S313. (18b)

Expressions for (σ̄C
31, σ̄

C
32) in (18a) can be combined to give, in addition,

q2 sinψ cosψσ̄C
31− Q5σ̄

C
32 = µp(T111+ T212). (18c)

Here, σC
3k is the traction generated ahead of crack (ξ > 0, c+s − ξ − cs > 0). Therefore, σ̄C

3k exists for
Re(q) > −1/(c+ − c). The second term in (18b) is transform of the Dirac function term in (5a), and
therefore exists for Re(q) < 1/c. Function 1k occurs for ξ < 0 in a region generated behind wave front
c+s+ ξ + cs > 0, so that 1k exists for Re(q) < 1/(c++ c). Coefficients Q5 and (S1, S12, S2, S3, T1, T2)

are defined in (B.1d) and Appendix C respectively.

6. Wiener–Hopf equation

The two equations in (18a) involve four unknowns (σ̄C
31, σ̄

C
32,11,12). In light of Appendix C and remarks

above, it is noted that pairs (σ̄C
31, σ̄

C
32) and (11,12) have overlapping regions of analyticity in the complex

q-plane, but coefficients (S1, S12, S2) do not. Nevertheless the two equations are homogeneous, which
implies that

σC
3k =1k = 0, k = (1, 2). (19)

Nonhomogeneous (18b) involves only two unknowns (σ̄C
33,13) with overlapping regions of analyticity.

We therefore examine coefficients (A5, S3) defined by (13) and (C.2) respectively. It is noted that

S3 ≈ q2 R(c) (|q| →∞), (20a)

S3(q±R )= 0, q±R =
±1

cR±c
. (20b)
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For a Category 1 material such that cR < c5 < c−, R(c) is defined by

R(c)=
1

sin2χ − c2

[
4d2

5 cos2χ +
q2

5

ω+ω−a5

(
q−
a+
−

q+
a−

)]
+

sin2χ

ω+ω−a5

[ 1
a+
(q+− 2mq5)−

1
a−
(q+− 2mq5)

]
, (21a)

a5(c)=
1
√

d5

√
c2

5− c2, a±(c)=
√

cos2χ − D2
∓
/d1, D± = 1

2(ω+±ω−), (21b)

q5(c)= d5 cos2χ + c2
5− c2, q±(c)= sin2χ − c2

+ D2
∓
, (21c)

ω±(c)=
√
(1+ d1)c2−0 sin2χ ± 2

√
d1(d2 sin2χ − c2)(sin2χ − c2). (21d)

In (18b), cR = cR(θ, ψ) is the positive-real root of R(c), where 0 < cR < c5, |ψ | < π/2, i.e., VR =

VR(θ, ψ)= cR(θ, ψ)V4 is the Rayleigh speed, and (S3, R) are Rayleigh functions for transverse isotropy.
Subcritical crack extension therefore requires that 0 < V < V ∗ = c∗V4 (0 < c < c∗), where c∗ =
min(1, c5, cR). It is also noted that R ≤ 0 (0 < c < cR), and in view of (20) and (21), one can define
function

G3 =
−S3(c2

R − c2)

R(c)[1+ q(cR − c)][1− q(cR + c)]
, G3→ 1(|q| →∞). (22)

It has no roots and is analytic in the q-plane with branch cuts

Im(q)= 0, −1
c5−c

< Re(q) < −1
c+−c

,

Im(q)= 0, 1
c++c

< Re(q) < 1
c5+c

.

Function G3 can therefore be written as product G+3 G−3 , where G±3 respectively are analytic in overlap-
ping half-planes Re(q) >−1/(c+−c) and Re(q) < 1/(c++c). These functions are given in Appendix D.
In (16b) one can write A5 = A+5 A−5 , where

A+5 =
1

d1/4
5

√
1+ q(c5− c), A−5 =

1

d1/4
5

√
1− q(c5+ c). (23)

Equation (23) indicates that A±5 respectively are analytic in overlapping half-planes Re(q) >−1/(c5− c)
and Re(q) < 1/(c5+ c). In view of Appendix D, Equation (23) and the region of analyticity noted for
(σ̄C

33,13) and the second term in (18b), Equation (18b) itself can be put in the form of a Wiener–Hopf
equation [Morse and Feshbach 1953]:

σ̄C
33

µp
1

A+5 G+3

cR − c
1+ q(cR − c)

−
P

µp2β

[
1

A+5 G+3

cR − c
1+ q(cR − c)

−
d1/4

5
√

c

g+3
√

c5

(
1− c

cR

)]
=−

13

2
R(c)A−5 G−3

cR + c
[1− q(cR + c)] +

P
µp2β

d1/4
5
√

c

g+3
√

c5

(
1− c

cR

)
, (24a)

g+3 = G+3
(1

c

)
. (24b)



178 LOUIS M. BROCK

The left-hand and right-hand sides of (24a) are analytic in respectively the overlapping half-planes
Re(q) >−1/(c+− c) and Re(q) < 1/(c++ c) so that each side is an analytic continuation of the same
entire function. In connection with (6) 13 must vanish continuously on C for x → 0. Equation (11a)
therefore requires that pq1k , and also the right-hand side of (24a), vanish for |q| → ∞. The entire
function itself must then in light of Liouville’s theorem [Morse and Feshbach 1953] vanish, and (24a)
leads to

13 =
2d1/4

5

µp2βg+3 R(c)

√
c
c5

(
1− c

cR

) 1
A−5 G−3

cR + c
1− q(cR + c)

, (25a)

σ̄C
33 =

P
pβ
−

P
pβ

d1/4
5

g+3 cR

√
c
c5

G+3 A+5 [1+ q(cR − c)]. (25b)

Examination of the fracture problem solution requires knowledge of (σ̄C
33, 1̇3) for x→ 0− and x→ 0+,

respectively. In view of (7)–(9),

ḟ = V4

(
∂ − c ∂

∂ξ

)
f. (26)

Expressions for transforms (σ̄C
33, pβ13) that are valid for |q| →∞ suffice in this regard:

pβ13 ≈
2P
µp

√
d5c

g+3 R(c)
√

c5
√

c5+ c

(
1− c

cR

) 1
√
−q

, (27a)

σ̄C
33 ≈

P
p

1
g+3
√

c

√
1−

c
c5

(
1− c

c5

) 1
√

q
. (27b)

7. Transform inversions valid on crack plane near C

For 1/
√
−q and 1/

√
q , respectively, inverse operation (10b) yields

−
p2

π
√
−ξ

∫
+

du
√

u
exp(−pu) (ξ < 0), (28a)

−
p2

π
√
ξ

∫
+

du
√

u
exp(−pu) (ξ > 0). (28b)

The “+” signifies integration over the entire positive real u-axis. In view of (28), Equation (27) involves
p exp(−pu), and its inverse is recognized as ∂δ(s− u) [Abramowitz and Stegun 1972]. The point force
represents a step-function in time, so for generality we now consider the more general case

P = P(V4t), P(0)= 0. (29)

Clarity of solution is enhanced if points in the crack plane are located with respect to fixed point x0.
Therefore the inverses of (27) are, by convolution, written as functions of (ξ0, χ, s), where ξ0 = ξ + cs,
and for (s > 0, ξ0→ cs+, |ψ |< π/2):

1̇3 ≈
−2V4

µπ
√

cs− ξ0

√
d5c

g+3 R(c)
√

c5
√

c5+ c

(
1− c

cR

)
∂

∫ s

0

du
√

s− u
d P
du
, (30a)
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σC
33 ≈

1
π
√

c
√
ξ0− cs

1
g+3

√
1− c

c5

(
1− c

cR

)
∂

∫ s

0

du
√

s− u
d P
du
. (30b)

8. Transform inversions valid near C

Expressions for u̇k near C for (x0
3 , x3) 6= 0 are also required. In view of (7c) and (26), L(u̇k) = βpūk

and ūk can be generated from (15) and Appendix B by setting (6k,11,12) = 0 and using (25a). For
x3 6= 0 a more explicit version of inversion formula (10) is useful:

f̃ (p, q1, q2, x3)→ f9(p, q, χ) exp(−pA|x3|), A= (A±, A5), (31a)

f̂ (p, ξ, χ, x3)=−
p2

2π

∫
|q|
q

f9(p, q, χ) exp[p(qξ −A|x3|)] dq. (31b)

Result (28) follows from use of Cauchy theory to change the integration path in (10b) to the Re(q)-axis.
For (31b) the path is changed to a contour q(A) in the complex q-plane along which the exponential term
assumes the form exp(−pu), where u is real and positive. Because inversions valid near C are sufficient,
local coordinates (r, ψ, φ), centered on the portion of C that borders δA, are introduced, where

r =
√
ξ 2
+ x2

3 , φ = tan−1 x3

ξ
(|φ|< π). (32)

In (31b) q(A±) and q(A5) for r ≈ 0 have, respectively, asymptotic forms

−
u

r S±
, S± = cosφ∓ ia± sinφ, (33a)

−
u

r S5
, S5 = cosφ∓ ia5 sinφ. (33b)

It is noted that (25a), which depends on 1/
√
−q, is associated in Appendix B with operator (±). In the

case of contour q(A5) therefore, (28a) and (28b), respectively, are replaced by

(∓)
p
π

A(−)
5
√

2r

∫
+

du
√

u
exp(−pu), −

p
π

A(+)
5
√

2r

∫
+

du
√

u
exp(−pu). (34a)

In the case of contour q(A±), replacements are

(∓)
p
π

A(−)
±
√

2r

∫
+

du
√

u
exp(−pu), −

p
π

A(+)
±
√

2r

∫
+

du
√

u
exp(−pu). (34b)

In (34), (A(±)5 , A(±)± ) are factors of the real (+) and imaginary (−) parts of (
√

S5,
√

S±):

A(±)5 =
√

1(±) cosφ/B5, B5 =
√

1−m5 sin2φ, (35a)

A(±)± =
√

1(±) cosφ/B±, B± =
√

1−m± sin2φ, (35b)

m5 = sin2χ −
1
d5
(sin2χ − c2), m± = sin2χ +

D2
∓

d1
. (35c)
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Use of (32)–(35) gives for (r→ 0, |ψ |< π/2, |φ|< π)

u̇1 ≈−
K3M1

µ
√

2r
cosχ, u̇2 ≈

K3

µ
√

2r

M2

sinχ
, u̇3 ≈ (±)

K3M3

µ
√

2r
. (36)

In (36) coefficient Mk is

M1 =
d5a5A(+)

5

sin2χ − c2
+

1
2ω+ω−

(
N−

A(+)
+

a+
−N+

A(+)
−

a−

)
, (37a)

M2 =
1

2mω+ω−

(
q+N−
sinχ

A(+)
+

a+
−

q−N+
sinχ

A(+)
−

a−

)
, (37b)

M3 =
d5A(−)

5 cos2χ

sin2χ − c2
+

1
2ω+ω−

(N−A(−)
+ −N+A(−)

− ). (37c)

In (37) (K3,N±) are defined by

K3 =
2V4

πg+3 R(c)
√

c5+ c

√
d5/c5

(
1− c

cR

)
∂

∫ s

0

du
√

s− u
d P
du
, (38a)

N± = m sin2χ −
q5q±

sin2χ − c2
. (38b)

9. Criterion: dynamic energy release rate

A standard criterion for brittle fracture (see, e.g., [Freund 1972]) equates the rate at which surface energy
is released to the rate of work associated with traction and relative displacements in the fracture zone F.
If kinetic energy is included [Gdoutos 2005] the equation for this problem takes the form

D
∫∫

∂A
eF dx0

1 dx0
2 =

∫∫
F
σC

331̇3 dx0
1 dx0

2 + D
∫∫∫

123

1
2ρu̇k u̇k dx0

1 dx0
2 dx0

3 . (39)

Here eF is the surface energy per unit area, and is generally assumed to be constant [de Boer et al. 1988;
Skriver and Rosengaard 1992]. Fracture zone F is a strip of infinitesimal thickness in the x0

1 x0
2 -plane

that straddles the portion of C that borders δA. Subscript 123 signifies integration over the solid. Use
of transport theory [Malvern 1969] and translating basis x expressed in terms of (ξ, ψ, x3 = 0) gives for
the first term in (39)

V4eF s
∫
9

c
√

c2
+ (c′)2, f ′ =

d f
dψ

. (40)

Here 9 signifies integration over |ψ |< π/2. Use of x for the integration over F gives∫
9

d9
∫ cs+

cs−
|x0|σ

C
331̇3 dx0. (41a)

In light of (30) it can be shown [Freund 1972] that the integrand of (41a) features Dirac function δ(ξ0−cs).
Moreover, linear behavior in s displayed in (40) places a restriction on ∂s P; see, e.g., [Achenbach and
Brock 1973]. That is, V must in general vary with time. One case, however, for which time-invariance
is valid is

∂P = pC
√

s (pC > 0). (41b)
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Equation (30) and (41a) then give

−πp2
C

s
π

∫
9

V dψ
√

c5− c
c5+ c

K 2
C R(c), KC =

−
√

d5

c5g+3 R(c)

(
1− c

cR

)
. (41c)

Equation (36) is singular near C . The last integration in (39) can then be, via transport theory [Malvern
1969], taken over the surface of a tube of radius rC → 0 that encloses the portion of C that borders δA.
Integration can be performed in terms of coordinates (29) and expressions (32), (37), (38), and (41b).
The last term in (39) becomes

−s
P2

C

µ

∫
9

V dψ
√

c2+ (c′)2
c5K 2

C

c5+ c

∫
8

E8 cosφ dφ, (42a)

E8 =M2
1 cos2χ +

M2
2

sin2χ
+M2

3. (42b)

Here 8 signifies integration over range |φ|< π . Equation (40), (41c), and (42) all involve integration
with respect to ψ , so that (39) gives for |ψ |< π/2√

c2+ (c′)2+π
p2

C K 2
C

µeF

√
c5− c
c5+ c

R(c)−
p2

C K 2
C

4µeF c5

d5c
c5+ c

√
c2+ (c′)2

∫
8

E8 cosφ dφ = 0. (43)

10. Differential equation: observations

Here (43) is a nonlinear differential equation for c. As viewed in coordinates aligned with the initial
rectilinear crack edge c = c(θ, ψ) = c(χ). Equation (37) and (42b) show that the integrand of (43)
involves quadratics in (A(+)± , A(+)5 ) and quadratics in (A(−)± , A(−)5 ). Use of (35) and (37) shows that∫

8

[
(A(+)
± )2+ (A(−)

± )2
]

cosφ dφ = 0,
∫
8

[
(A(+)

5 )2+ (A(−)5 )2
]

cosφ dφ = 0, (44a)∫
8

[A(+)
+ A(+)

− +A(−)
+ A(−)

− ] cosφ dφ = 0,
∫
8

[A(+)
± A(+)

5 +A(−)
± A(−)

5 ] cosφ dφ = 0. (44b)

Use of (42b) and (44) in (43) gives ∫
8

E8 cosφ dφ = π
4

E(c), (45a)

E(c)= T+

(
N−

a+ω+ω−

)2[ 1

m2 sin2χ
(sin2χ − c2

+ D2
−
)2+

D2
−

d1

]
+T−

(
N+

a−ω+ω−

)2[ 1

m2 sin2χ
(sin2χ − c2

+ D2
+
)2+

D2
+

d1

]
− 2T−

+

N+N−
ω2
+ω

2
−

[ √
d1(1− c2)

√

c2
+
− c2

√
c2
−− c2

− 1
]
+ 4T5

d5 cos4χ

sin2χ − c2

+
2d5 cos2χ

ω+ω−(sin2χ − c2)

[
T+5 N−

(
a5

a+
− 1

)
−T−5 N+

(
a5

a−
− 1

)]
. (45b)
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Equation (45b) involves terms

T± =
1
π

∫
8

dφ
cos2φ

√

1−m± sin2φ
, T5 =

1
π

∫
8

dφ
cos2φ

√

1−m5 sin2φ
, (46a)

T−
+
=

1
π

∫
8

dφ cosφ

√
1+

cosφ
√

1−m+ sin2φ

√
1+

cosφ
√

1−m− sin2φ
, (46b)

T±5 =
1
π

∫
8

dφ cosφ

√
1+

cosφ
√

1−m± sin2φ

√
1+

cosφ
√

1−m5 sin2φ
. (46c)

Equation (46a) gives complete elliptic integrals of the first (F) and second (E) kind when 0<(m±,m5)<1,
for example,

T5 = 4
[

F(
√

m5)+
1

m5
(E(
√

m5)− F(
√

m5))
]
.

Equation (43) is somewhat complicated and opaque. Insight concerning c(θ, ψ), based partly on analyt-
ical expressions, is possible by considering values of parameter V (θ, ψ) that are not negligible, but well
below critical, i.e., c/c∗ ≤ 0.3. Thus (43) is replaced with√

c2+ (c′)2
(

1+
πp2

C

4µeF

d5

c5

cE(0)
4R2(0)

)
+

πp2
C

µeF R(0)

√
d5

c5
≈ 0. (47)

Parameter c in (R,E) has been dropped and, in particular,

N± = m sin2χ − (1− d2
∓
)(c2

5+ d5 cos2χ), (48a)

a± =
√

cos2χ + d2
∓
/d1 sin2χ, a5 =

c5
√

d5
, q5 = c2

5+ d5 cos2χ, (48b)

d± = 1
2

(√
0+ 2

√
d1d2±

√
0− 2

√
d1d2

)
, d =

√
02− 4d1d2, (48c)

m± = (1− d2
∓
/d1) sin2χ, m5 = (1− 1/d5) sin2χ. (48d)

Equation (48c) indicates that attention henceforth focuses on Category 1 materials. However, the addi-
tional restriction that was placed on (21a) can be dropped.

11. Study of differential equation approximation

Equation (47) is also a nonlinear differential equation, but explicit in (c, c′). Terms R(0), E(0), and (48)
are explicit functions of (cos2χ, sin2χ), so that an analytic solution may be difficult, but after [Brock
2017a; 2017b] an approximate solution is feasible:

c(θ, ψ)= c(χ)≈
N∑
0

bk cos2kχ (0< |ψ |< π/2). (49)

Only the case θ = 0 is treated in [Brock 2017a; 2017b] and expressions for coefficients which corre-
spond to bk are obtained by direct substitution into the nonlinear differential equation, with coefficients
expanded in powers of cos2ψ . The first three terms (b0, b1, b2) are found to give results that are gener-
ally accurate to within three significant figures. Here dependence of R(0), E(0), and (48) on parameter
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χ = θ+ψ is more complicated. Therefore N+1 equations for bk are obtained by substitution of (49) into
(47) for N+1 values of χ . We here choose for illustration N = 2, 0<θ <π/2 and values χ(0, π/2, π/4).
The corresponding values for (R(0),E(0)) are obtained from (21a) and (45b) as (R0,E0), (R2,E2), and
(R4,E4), respectively, and are found in Appendix E. If kinetic energy is neglected by dropping the E−
terms the three simultaneous equations give

b0 = q2, (50a)

b1 =−3q2− q0+ 2
√

q2
4 − (q0− q2)

2, (50b)

b2 = 2
[
q0+ q2− 2

√
q2

4 − (q0− q2)
2], (50c)

q0 =
πp2

C

µeF |R0|
, q2 =

πp2
C

µeF

√
d5

|R2|
, q4 =

πp2
C

µeF

√
2d5

|R4|
√

1+ d5
. (50d)

Inclusion of kinetic energy gives for b0

b0 =
1

2Q2
(1−

√
1− 4q2 Q2). (51a)

Expressions for (b1, b2) are obtained in light of (51a) from the simultaneous solution of a linear and a
fourth-order algebraic equation:

b1+ b2 = q12 =
1

2Q0
(1−

√
1− 4q0 Q0)− b0, (51b)

[(q0
12)

2
+ q2

12]

( 1
Q4
− q0

12

)2
=

(
q4

Q4

)2

, q0
12 = b0+

1
4(b1+ q12). (51c)

In (51a)–(51c), Equation (50d) holds and

Q0 =
πp2

C

µeF

√
d5|E0|

4R2
0

, Q2 =
πp2

C

µeF

d5|E2|

4R2
2
, Q4 =

πp2
C

µeF

√
2d5

√
1+ d5

|E4|

4R2
4
. (51d)

12. Sample calculations: wave speeds

Consider a Category 1 material, similar to beryl, with properties [Payton 1983; de Boer et al. 1988;
Skriver and Rosengaard 1992]:

C44 = µ= 6.894 GPa, eF = 2.0 J/m2, V4 = 1569 m/s,

d1 = 4.11, d2 = 3.62, d5 = 2.0, m = 2.017, 0 = 11.81.

Equation (13) and (15a), respectively, define dimensionless body wave speeds (c5, c±), and dimension-
less Rayleigh speed cR is a root of R(c), defined in (21). They, and dimensionless crack speed parameter c,
arise in the solution as viewed from the frame aligned with the original rectilinear crack edge. That is,
they are functions of χ . For the Category 1 material chosen here, values of these dimensionless speeds are
listed in Table 1 for various χ , (given for clarity in degrees ◦). Experience, e.g., [Brock 2013], indicates
that factorizations of R(c) may or may not arise for transverse isotropy. Thus the actual root-exhibiting
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functions for given ψ are distinct in form. When χ = 0 and χ = π/2 respectively, for example,

4d5

√
d5− c2

√
d1− c2

−
√

d1/d5(2d5− c2)2 = 0, c = cR = 1.245,

[d1(d2− c2)− (m− 1)2]
√

1− c2−
√

d1c2
√

d2− c2 = 0, c = cR = 0.954.

In addition to anisotropic behavior exhibited in Table 1, location of speed parameter c∗ shows that
critical speed is not necessarily the Rayleigh wave value. In contrast to isotropic materials [Achenbach
1973], transonic crack extension rates may define the onset of critical behavior. This feature is noted in
3D analyses of other problems in transversely isotropic materials, e.g., sliding contact in the dynamic
steady state [Brock 2013].

13. Sample calculations: crack extension rate parameters

For illustration in terms of the Category 1 material properties listed above, we consider a loading pa-
rameter pC = 3(104)N/m3/2 that is consistent with small values of speed parameter V. For this value
and the Category 1 material featured in Table 1, (49) and (50) give the approximation valid when kinetic
energy is neglected:

c ≈ 0.12454− 0.03404 cos2(θ +ψ)+ 0.00937 cos4(θ +ψ). (52a)

Here (0< θ < π/2, ψ < π/2). For the kinetic energy case, (49) and (51) give

c ≈ 0.1249− 0.0217 cos2(θ +ψ)− 0.0032 cos4(θ +ψ). (52b)

In (52), 0 < θ < π/2, ψ < π/2 and it is noted that successive term coefficients decrease by orders of
magnitude. Calculations based on (52a) and (52b) are displayed in Table 2 and Table 3, respectively.

As in Table 1 anisotropic behavior is prominent. In particular the newly created crack surface δA is
a semioval that is symmetric only when the original rectilinear crack edge coincides with the (principal)
x0

2 -direction. In the isotropic limit [Brock 2017b] δA is semicircular. Table 2 and Table 3 data also show
that neglect of kinetic energy leads to an under-prediction of crack extension rate. The effect is however
not large. Indeed, a more pronounced kinetic energy effect arises for crack extension in an isotropic,
thermoelastic material [Brock 2017a].

χ = θ +ψ c5 c+ c− cR

0◦
√

2 2.027 1.0∗ 1.245
15◦ 1.39 1.998 1.042 1.226
30◦ 1.323 1.925 1.133 1.172
45◦ 1.225 1.857 1.19 1.099
60◦ 1.118 1.851 1.147 1.027
75◦ 1.034 1.886 1.048 0.974∗

90◦ 1.0 1.903 1.0 0.954∗

Table 1. Body (c5, c±) and Rayleigh (cR) wave speed parameters (∗ signifies critical
value c∗).
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ψ c : (θ = 0◦) c : (θ = 30◦) c : (θ = 45◦) c : (θ = 60◦)

−90◦ 0.1245 0.1166 0.1099 0.1043
−75◦ 0.1223 0.1099 0.1043 0.1009
−60◦ 0.1166 0.1043 0.1009 0.0999
−45◦ 0.1099 0.1009 0.0999 0.1009
−30◦ 0.1043 0.0999 0.1009 0.1043
−15◦ 0.1009 0.1009 0.1043 0.1099

0◦ 0.0999 0.1043 0.1099 0.1166
15◦ 0.1009 0.1099 0.1166 0.1223
30◦ 0.1043 0.1166 0.1223 0.1245
45◦ 0.1099 0.1223 0.1245 0.1223
60◦ 0.1166 0.1245 0.1223 0.1166
75◦ 0.1223 0.1223 0.1166 0.1099
90◦ 0.1245 0.1166 0.1099 0.1043

Table 2. Dimensionless speed c for pC = 3(104)N/m3/2 (kinetic energy neglected).

ψ c : (θ = 0◦) c : (θ = 30◦) c : (θ = 45◦) c : (θ = 60◦)

−90◦ 0.1249 0.1193 0.1132 0.1068
−75◦ 0.1233 0.1132 0.1068 0.1018
−60◦ 0.1193 0.1068 0.1018 0.0999
−45◦ 0.1132 0.1018 0.0999 0.1018
−30◦ 0.1068 0.0999 0.1018 0.1068
−15◦ 0.1018 0.1018 0.1068 0.1132

0◦ 0.0999 0.1068 0.1132 0.1193
15◦ 0.1018 0.1132 0.1193 0.1233
30◦ 0.1068 0.1193 0.1233 0.1249
45◦ 0.1132 0.1233 0.1249 0.1233
60◦ 0.1193 0.1249 0.1233 0.1193
75◦ 0.1233 0.1233 0.1193 0.1132
90◦ 0.12488 0.1193 0.1132 0.1068

Table 3. Dimensionless speed c for pC = 3(104)N/m3/2 (kinetic energy included).

14. Some observations

This paper complements [Brock 2017a; 2017b] by considering 3D transient fracture at the edge of an
initially undisturbed, closed semi-infinite slit in a transversely isotropic solid. Loading, however, is by
point-force compression at the slit edges, whereas mixed-mode point-force loading at the edges and
isotropic solids are treated in [Brock 2017a; 2017b]. Pure compression generates a semicircular crack
edge in the isotropic solids, and shear loading distorts the profile. One goal of this paper is to illustrate
the effects of anisotropy itself on crack profile. To this end, therefore, the case of the material rotational



186 LOUIS M. BROCK

symmetry axis is parallel to the crack plane, and the initially rectilinear crack edge does not align with
a principal axis in that plane.

As in [Brock 2017a; 2017b] kinetic energy is included in imposition of the dynamic energy release
rate criterion, and effects of inclusion on solution response is examined. Moreover, the same type of
point-force time dependence is treated that guarantees dynamic similarity, i.e., the crack edge profile
might not be circular, but is not time-dependent. The effect of anisotropy is seen to indeed be clear: pure
compression loading creates a semioval crack profile. The under-prediction of crack edge extension rates
caused by neglect of kinetic energy is also seen, although it is not as pronounced as that noted in [Brock
2017a; 2017b].

The rapid growth in time of the dynamic similarity-inducing point force may not be realistic. For
example the selection for pC and the Category 1 material used here produce in light of (41b) point-force
function

P = 1.243(109)(t/s)3/2 N.

Here t is time after initiation given in seconds (s), indicating that P rapidly achieves large values. Nev-
ertheless, if P represents the short-time behavior of the point forces, the present analysis and those in
[Brock 2017a; 2017a] can be valid for the study of transient fracture initiation. The short-time limitation
is in fact imposed during the development of results in [Brock 2017a].

This paper is not a definitive study of the canonical problem of the semi-infinite slit in an unbounded,
transversely isotropic material with point-force loading. In particular, absence of shear loading restricted
the fracture process to the crack-opening mode. Moreover, some key expressions and associated calcu-
lations are based on a particular type of transversely isotropic material [Payton 1983]. Nevertheless, the
paper is offered as a starting point and check for more ambitious efforts.

Appendix A

Category 1: 2
√

d1d2 ≤ 0 ≤ 1+ d1d2 (1< d1 < d2),

d1+ d2 ≤ 0 ≤ 1+ d1d2 (1< d2 < d1),

2d1 ≤ 0 ≤ 1+ d2
1 (1< d2 = d1),

Category 2: 1+ d1 < 0 < d1+ d2 (02
− 4d1d2 < 0),

Category 3: 0 < 1+ d1 (02
− 4d1d2 < 0).

Appendix B

Transform of (6a) gives six equations that uncouple into two sets. In Set 1,

P5−mq2 sinχ cosχ(P++P−)=11, (B.1a)

Q+P++ Q−P− =12, (B.1b)

−2d5q cosχP5+ q sinχ
[
(m Q5− Q+)P++ (m Q5− Q−)P−

]
=63/(µp), (B.1c)

P5 = A5(U
(+)
5 +U (−)

5 ), P± =U (+)
± +U (−)

± , Q5 = C0+ 2d5q2 cos2ψ. (B.1d)
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Set 2 is defined by

q cosχM5+mq sinχ(M++M−)=13, (B.2a)

Q5M5+ 2d5mq2 sinχ cosχ(M++M−)=61/(µp), (B.2b)

q2 sinχ cosχM5+ (mq2 sin2χ − Q+)M++ (mq2 sin2χ − Q−)M− =62/(µp), (B.2c)

M5 =U (+)
5 −U (−)

5 , M± = A±(U
(+)
± −U (−)

± ). (B.2d)

Solution of (B.1a)–(B.1c) gives

P5 =
1

C0

(
q cosχ

63

µp
+ Q511+ q2 sinχ cosχ12

)
, (B.3a)

P+ =
Q−

mC0�+�−q sinχ

(
63

µp
+ 2d5q cosχ11+ q sinχ12

)
−

12

�+�−
, (B.3b)

P− =
−Q+

mC0�−�+q sinχ

(
63

µp
+ 2d5q cosχ11+ q sinχ12

)
+

12

�−�+
. (B.3c)

The results for (B.2a)–(B.2c) are

M5 =
1

C0

(
61

µp
− 2d5q cosχ13

)
, (B.4a)

M+ =
Q−

mC0�+�−q sinχ

(
Q513− q cosχ

61

µp

)
+

1
�+�−

(
62

µp
− q cosχ13

)
, (B.4b)

M− =
−Q+

mC0�−�+q sinχ

(
Q513− q cosχ

61

µp

)
+

1
�−�+

(
62

µp
− q cosχ13

)
. (B.4c)

In light of (B.1d) and (B.2d),

U (±)
5 =

1
2

( P5

A5
(±)M5

)
, U (±)

± =
1
2

(
P±(±)

M±
A±

)
. (B.5)

Appendix C

S1 =
Q2

5

C0
+

4d2
5 A5

C0�+�−
(Q−A+− Q+A−)q2 sinχ cosχ, (C.1a)

S12 =
1

C0

[
Q5+

2d5 A5

�+�−
q2 sinχ cosχ(Q−A+− Q+A−)

]
+

2md5

�+�−
(A−− A+)q2 sinψ cosχ, (C.1b)

S2 =
1

C0

[
cos2χ +

2A5

�+�−
(Q−A+− Q+A−)

]
q2 sin2χ

+
2A5

�+�−
[A−(2mq2 sin2 χ − Q−)− A+(2mq2 sin2 χ − Q+)], (C.1c)
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S3 =
1

C0

[
4d2

5 q2 cos2χ +
Q2

5

�+�−A5

(
Q−
A+
−

Q+
A−

)]
+

q2 sin2χ

�+�−A5

[ 1
A−
(2m Q5− Q−)−

1
A+
(2m Q5− Q+)

]
, (C.2)

T1 =
d5

�+�−
[A−(Q+−m Q5)− A+(Q−−m Q5)]q2 sinχ cosχ, (C.3a)

T2 =
Q5

�+�−
[A−(Q−−mq2 sin2χ)− A+(Q+−mq2 sin2χ)]

+
1

�+�−
[A−(Q+−mC)− A+(Q−−mC)]q2 sin2χ. (C.3b)

Appendix D

For a Category 1 material with cR < c5 < c−,

G+3 = exp
[
−

1
π

∫
du

u− c
83

1+ q(u− c)

]
, (D.1a)

G−3 = exp
[

1
π

∫
du

u+ c
83

1− q(u+ c)

]
. (D.1b)

Integration is over the range c5 < u < c+, where

c5 < u < c− :83 = tan−1 a− p+− a+ p−
4d2

5ω+ω−a+a−α5 cos2χ
, (D.2a)

c− < u < c+ :83 = tan−1 p+
a+

α−

p−− 4d2
5ω+ω−α−α5 cos2χ

, (D.2b)

p± = q2
5 q∓+ (q±− 2mq5) sin2χ(sin2χ − u2), (D.3a)

α− =
√
− cos2χ − D2

+
/d1, α5 =

1
√

d5

√
u2c2

5. (D.3b)

Here (a5, q5, a±, q±, D+, ω±) are functions of u (see (21)).

Appendix E

χ = 0 : m± = m5 = 0, (E.1a)

R0 =−2d5

(
1−

d5

d1

)
, E0 =−2

(
1+

d5

d1

)(
1−

d5

8d1

)
, (E.1b)

χ = π/2 : m± = 1−
d∓
d1
, m5 = 1− 1

d5
, N± = m− 1+ d2

∓
, (E.2a)

R2 =−

√
d5

d2

2m− 2+0√
0+ 2

√
d1d2

, (E.2b)
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E2 =
T+N2

−

πd2d2
−

(1− d2
−
)

[
1+

d1

m2 (1− d2
−
)

]
+

T−N2
+

πd2d2
+

(1− d2
+
)

[
1+

d1

m2 (1− d2
+
)

]
−

2T−+
πd2 N+N−(

√
d1/d2− 1), (E.2c)

χ = π/4 : m± =
1
2

(
1−

d2
∓

d1

)
, m5 =

1
2

(
1− 1

d5

)
, (E.3a)

N± = 1
2 [m− (1+ 2d5)(1− d2

∓
)], a0

±
=

1
√

2

√
1+ d2

∓
/d1, (E.3b)

R4 = 4d2
5 −

√
d5

a0
−d
√

2
√

1+ d5
[(1− d2

−
)(1+ 2d5)

2
+ 1− d2

+
− 2m(1+ 2d5)]

+

√
d5

a0
+d
√

2
√

1+ d5
[(1− d2

+
)(1+ 2d5)

2
+ 1− d2

−
− 2m(1+ 2d5)], (E.3c)

E4 =
2T+N2

−

π(a0
+d)2d1

(1−d2
−
)

[
1+

d1

m2 (1−d2
−
)

]
+

2T−N2
+

π(a0
−d)2d1

(1−d2
+
)

[
1+

d1

m2 (1−d2
+
)

]
−

4T−+
πd2 N+N−

( √
d1

c+c−
−1
)
+

2T5

π
d5+

4
√

d5

πd

[
T−5 N+

(
c5

a0
−

−

√
d5

)
−T+5 N−

(
c5

a0
+

−

√
d5

)]
. (E.3d)
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ESHELBY INCLUSION OF ARBITRARY SHAPE IN ISOTROPIC ELASTIC
MATERIALS WITH A PARABOLIC BOUNDARY

XU WANG, LIANG CHEN AND PETER SCHIAVONE

We employ analytic continuation and conformal mapping techniques to derive analytic solutions for
Eshelby’s problem of an elastic inclusion of arbitrary shape in an isotropic elastic plane with parabolic
boundary. The region of the physical (z-) plane lying below the parabola is mapped (conformally) onto
the lower half of the image (ξ -) plane. The corresponding boundary value problem is then analyzed
in the ξ -plane. A second conformal mapping, which maps the exterior of the region occupied by the
(simply-connected) inclusion in the ξ -plane onto the exterior of the unit circle, is then used to construct
an auxiliary function of ξ which, when used together with analytic continuation, allows us to extend our
analysis to an inclusion of arbitrary shape.

1. Introduction

Eshelby’s classic problem concerning a subdomain (inclusion) undergoing uniform stress-free eigen-
strains continues to inspire researchers working in several areas of materials science (see, for example,
[Zhou et al. 2013] for a recent review). The two-dimensional Eshelby’s problem of an inclusion of ar-
bitrary shape located in the vicinity of a straight boundary has been well-studied and is now considered
to be solved [Ru 1999; Ru 2000; Ru 2003; Wang 2004; Wang and Schiavone 2015; Wang and Zhou
2014]. In contrast, there are relatively few studies pertaining to the corresponding problem of an Eshelby
inclusion of arbitrary shape lying near an open curvilinear boundary. The importance of this class of
problem can be illustrated, for example, by considering the case when the inclusion lies in an elastic
plane with parabolic boundary. In this case, the parabola represents the blunt crack tip of a crack present
in some fractured material and the inclusion perhaps a transformation strain spot of arbitrary shape. In
this way, the corresponding model can be used to study the shielding or anti-shielding effect of the
transformation strain spot on a nearby crack.

In this paper, we do, in fact, consider the Eshelby’s problem of an inclusion of arbitrary shape in an
isotropic elastic plane with parabolic boundary. Our approach differs from that used by [Ru 1999] for
the analogous problem involving a straight boundary (as mentioned above) in that instead of analyzing
the corresponding boundary value problem in the physical plane, our analysis is confined to the image
plane. Specifically, the region below the parabola is first mapped onto the lower half-plane in the image
(ξ -) plane in which the boundary value problem is then analyzed. A conformal mapping function which
maps the exterior of the region occupied by the (simply-connected) inclusion in the ξ -plane onto the
exterior of the unit circle [Savin 1961; England 1971] is then used to construct an auxiliary function
D(ξ) with which the problem can be solved using analytic continuation.

Keywords: Eshelby inclusion, parabolic boundary, conformal mapping, analytic continuation, auxiliary function.
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The paper is structured as follows. Muskhelishvili’s complex variable formulations for two-dimensional
isotropic elasticity are given in Section 2. Analytic solutions to the corresponding problems involving in-
plane and anti-plane shear eigenstrains are derived in Section 3. Several specific examples are presented
in Section 4 to illustrate the method. Finally, conclusions are drawn in Section 5.

2. Complex variable formulations

For plane deformations of an isotropic elastic material, the stresses (σ11, σ22, σ12), displacements (u1, u2)

and stress functions (φ1, φ2) can be expressed in terms of two analytic functions ϕ(z) and ψ(z) of the
complex variable z = x1+ ix2 as follows [Muskhelishvili 1953; Ting 1996]:

σ11+ σ22 = 2
(
ϕ′(z)+ϕ′(z)

)
, σ22− σ11+ 2iσ12 = 2

(
z̄ϕ′′(z)+ψ ′(z)

)
, (1)

2µ(u1+ iu2)= κϕ(z)− zϕ′(z)−ψ(z), φ1+ iφ2 = i
(
ϕ(z)+ zϕ′(z)+ψ(z)

)
, (2)

where κ = 3−4ν for plane strain, κ = (3−ν)/(1+ν) for plane stress and µ, ν(0≤ ν ≤ 1/2) are the shear
modulus and Poisson’s ratio, respectively. In addition, the stresses are related to the stress functions
through

σ11 =−φ1,2, σ12 = φ1,1,

σ21 =−φ2,2, σ22 = φ2,1.
(3)

Under the assumption of anti-plane shear deformations of an isotropic elastic material, the two shear
stress components (σ31, σ32), the out-of-plane displacement u3 and the stress function φ3 can be expressed
in terms of a single analytic function f (z) of the complex variable z = x1+ ix2 as

σ32+ iσ31 = µ f ′(z), φ3+ iµu3 = µ f (z), (4)

where the two stress components can be expressed in terms of the stress function φ3 as

σ32 = φ3,1, σ31 =−φ3,2. (5)

3. An inclusion in a region with parabolic boundary

As shown in Figure 1, we consider an isotropic elastic material that occupies the region:

x2 ≤ ax2
1 , a ≥ 0, (6)

the traction-free boundary of which is a parabola described by

x2 = ax2
1 . (7)

The parabola reduces to a semi-infinite crack when a→∞ and a straight boundary when a = 0. The
isotropic plane with parabolic boundary contains an internal subdomain undergoing uniform in-plane
and anti-plane stress-free eigenstrains (ε∗11, ε

∗

22, ε
∗

12) and (ε∗31, ε
∗

32). Let S2 and S1 denote, respectively,
the subdomain (the Eshelby inclusion) and its exterior while 0 denotes the perfectly bonded interface
separating S2 and S1. In what follows, the subscripts 1 and 2 refer to S1 and S2, respectively.
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x2

traction-free surface

S1

S2 x1

0(ε∗11, ε
∗

22, ε
∗

12, ε
∗

31, ε
∗

32)

Figure 1. An Eshelby inclusion of arbitrary shape in an isotropic elastic plane with a
parabolic boundary.

We introduce the following conformal mapping function [Ting et al. 2001]:

z = ω(ξ)= ξ + iaξ 2, ξ = ω−1(z)=

√
1+ 4iaz − 1

2ia
, Im ξ ≤ 0. (8)

With reference to Figure 2, the parabola itself is mapped onto the real axis in the ξ -plane and the
region below the parabola onto the lower half ξ -plane. The inclusion z ∈ S2 is mapped onto ξ ∈�2, the
matrix z ∈ S1 onto ξ ∈ �1 and the interface z ∈ 0 is mapped onto ξ ∈ L . The elliptical shape of L in
Figure 2 is chosen simply for illustrative purposes; in fact L may be of arbitrary shape. For convenience
and without loss of generality, we write

ϕ j (ξ)= ϕ j (ω(ξ)), ψ j (ξ)= ψ j (ω(ξ)), f j (ξ)= f j (ω(ξ)), j = 1, 2.

In what follows, we derive analytic solutions in the case of both in-plane and anti-plane eigenstrains.

Im ξ

Re ξ
�1

�2

L

Figure 2. The problem in the ξ -plane.
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3.1. In-plane eigenstrains (ε∗11, ε
∗
22, ε

∗
12). In this case, the boundary value problem in the ξ -plane takes

the following form:

κϕ1(ξ)−
ω(ξ)

ω′(ξ)
ϕ′1(ξ)−ψ1(ξ)= κϕ2(ξ)−

ω(ξ)

ω′(ξ)
ϕ′2(ξ)−ψ2(ξ)+ 2µ[δ1ω(ξ)+ (δ2+ iδ3)ω(ξ)],

ϕ1(ξ)+
ω(ξ)

ω′(ξ)
ϕ′1(ξ)+ψ1(ξ)= ϕ2(ξ)+

ω(ξ)

ω′(ξ)
ϕ′2(ξ)+ψ2(ξ), ξ ∈ L;

(9a)

ϕ1(ξ)+
ω(ξ)

ω′(ξ)
ϕ′1(ξ)+ψ1(ξ)= 0, Im ξ = 0−; (9b)

ϕ1(ξ)∼= O(1), ψ1(ξ)∼= O(1), |ξ | →∞, (9c)

where the real numbers δ1, δ2 and δ3 are related to the in-plane eigenstrains through

δ1 =
ε∗11+ ε

∗

22

2
, δ2 =

ε∗11− ε
∗

22

2
, δ3 = ε

∗

12. (10)

After straightforward algebraic manipulations, the two interface conditions in (9a) can be expressed
equivalently as

ϕ1(ξ)= ϕ2(ξ)+
2µ
κ + 1

[δ1ω(ξ)+ (δ2+ iδ3)ω(ξ)],

ψ1(ξ)+
ω(ξ)

ω′(ξ)
[ϕ′1(ξ)−ϕ

′

2(ξ)] = ψ2(ξ)−
2µ
κ + 1

[δ1ω(ξ)+ (δ2− iδ3)ω(ξ)], ξ ∈ L .
(11)

If z ∈ S2 is simply connected, ξ ∈�2 is also simply connected. Thus, there exists a conformal mapping
ξ = w(η) that maps the exterior of �2 in the ξ -plane onto the exterior of the unit circle in the η-plane
[Savin 1961; England 1971]. As a result, an auxiliary function D(ξ) can be constructed as follows:

ω(ξ)= ξ̄ − iaξ̄ 2
= w̄

( 1
w−1(ξ)

)
− ia

[
w̄
( 1
w−1(ξ)

)]2
= D(ξ), ξ ∈ L . (12)

In addition, the auxiliary function D(ξ) is analytic in the exterior of �2 except at the point at infinity,
where it has a pole of finite degree, namely

D(ξ)= P(ξ)+ O(ξ−1), |ξ | →∞, (13)

where P(ξ) is a polynomial of order 2N in ξ if ξ = w(η) is a polynomial of order N in 1/η.
Using (12), Equation (11) can be rewritten as

ϕ1(ξ)−
2µ
κ + 1

(
δ1ω(ξ)+ (δ2+ iδ3)D(ξ)

)
= ϕ2(ξ),

ψ1(ξ)+
2µ
κ + 1

[
2δ1 D(ξ)+ (δ2+ iδ3)

D(ξ)D′(ξ)
ω′(ξ)

+ (δ2− iδ3)ω(ξ)
]
= ψ2(ξ), ξ ∈ L .

(14)

The asymptotic behavior of D(ξ)D′(ξ)/ω′(ξ) at infinity is given by

D(ξ)D′(ξ)
ω′(ξ)

= Q(ξ)+ O(ξ−1), |ξ | →∞, (15)



ARBITRARY ESHELBY INCLUSION IN ISOTROPIC ELASTIC MATERIALS WITH A PARABOLIC BOUNDARY 195

where Q(ξ) is a polynomial of order 2N (2N − 1) in ξ if ξ = w(η) is a polynomial of order N in 1/η.
In view of (13) and (15), Equation (14) can be recast into the form

ϕ1(ξ)−
2µ
κ + 1

(δ2+ iδ3)
(
D(ξ)− P(ξ)

)
= ϕ2(ξ)+

2µ
κ + 1

(
δ1ω(ξ)+ (δ2+ iδ3)P(ξ)

)
,

ψ1(ξ)+
2µ
κ + 1

[
2δ1
(
D(ξ)− P(ξ)

)
+ (δ2+ iδ3)

(
D(ξ)D′(ξ)
ω′(ξ)

− Q(ξ)
)]

= ψ2(ξ)−
2µ
κ + 1

(
(δ2− iδ3)ω(ξ)+ 2δ1 P(ξ)+ (δ2+ iδ3)Q(ξ)

)
, ξ ∈ L . (16)

We now define two auxiliary functions 8(ξ) and 9(ξ) by

8(ξ)=


ϕ1(ξ)−

2µ
κ+1

(δ2+ iδ3)
(
D(ξ)− P(ξ)

)
, ξ ∈�1,

ϕ2(ξ)+
2µ
κ+1

(δ1ω(ξ)+ (δ2+ iδ3)P(ξ)
)
, ξ ∈�2,

9(ξ)=


ψ1(ξ)+

2µ
κ+1

[
2δ1

(
D(ξ)− P(ξ)

)
+ (δ2+ iδ3)

(
D(ξ)D′(ξ)
ω′(ξ)

− Q(ξ)
)]
, ξ ∈�1,

ψ2(ξ)−
2µ
κ+1

(
(δ2− iδ3)ω(ξ)+ 2δ1 P(ξ)+ (δ2+ iδ3)Q(ξ)

)
, ξ ∈�2.

(17)

It is seen from the above definition and (16) that 8(ξ) and 9(ξ) are continuous across L and then
analytic in the lower half ξ -plane including the point at infinity. Now the traction-free condition in (9b)
can be given in terms of 8(ξ) and 9(ξ) as follows:

8−(ξ)+
2µ
κ+1

(δ2−iδ3)
ω(ξ)

ω̄′(ξ)

(
D′(ξ)−P ′(ξ)

)
−

2µ
κ+1

[
2δ1
(
D(ξ)−P(ξ)

)
+(δ2−iδ3)

(
D(ξ)D′(ξ)
ω̄′(ξ)

−Q(ξ)
)]

+
3µ
κ+1

(δ3+ iδ2)
(
D′[i(2a)−1] − P ′[i(2a)−1]

)
2a(1− 2iaξ)

+
2µ
κ+1

(δ2− iδ3)D[i(2a)−1]D′[i(2a)−1]

1− 2iaξ

=−9+(ξ)−
ω(ξ)

ω̄′(ξ)
8′+(ξ)−

2µ
κ+1

(δ2+ iδ3)
(
D(ξ)− P(ξ)

)
+

3µ
κ+1

(δ3+ iδ2)
[
D′[i(2a)−1] − P ′[i(2a)−1]

]
2a(1− 2iaξ)

+
2µ
κ+1

(δ2− iδ3)D[i(2a)−1]D′[i(2a)−1]

1− 2iaξ
,

Im ξ = 0. (18)

The left and right sides of (18) are analytic in the lower and upper half-planes, respectively, including
the point at infinity. By applying Liouville’s theorem, we conclude that the left and right sides of (18)
are identically zero. We thus arrive at the following expressions for 8(ξ) and 9(ξ):
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8(ξ)=−
2µ
κ+1

(δ2−iδ3)
ω(ξ)

ω̄′(ξ)

(
D′(ξ)−P ′(ξ)

)
+

2µ
κ+1

[
2δ1
(
D(ξ)−P(ξ)

)
+(δ2−iδ3)

(
D(ξ)D′(ξ)
ω̄′(ξ)

−Q(ξ)
)]

−
3µ
κ+1

(δ3+ iδ2)
(
D′[i(2a)−1] − P ′[i(2a)−1]

)
2a(1− 2iaξ)

−
2µ
κ+1

(δ2− iδ3)D[i(2a)−1]D′[i(2a)−1]

1− 2iaξ
,

9(ξ)+
ω̄(ξ)

ω′(ξ)
8′(ξ)=−

2µ
κ+1

(δ2− iδ3)
(
D(ξ)−P(ξ)

)
+

3µ
κ+1

(δ3− iδ2)
(
D′[i(2a)−1

] − P ′[i(2a)−1
]
)

2a(1+ 2iaξ)
+

2µ
κ+1

(δ2+ iδ3)D[i(2a)−1
]D′[i(2a)−1

]

1+ 2iaξ
,

Im ξ ≤ 0. (19)

It is not difficult to verify that 8(ξ) is regular at ξ =−i/2a. It follows from (17) and (19) that
κ+1
2µ

ϕ1(ξ)= (δ2+ iδ3)
(
D(ξ)− P(ξ)

)
− (δ2− iδ3)

ω(ξ)

ω̄′(ξ)

(
D′(ξ)−P ′(ξ)

)
+ 2δ1

(
D(ξ)−P(ξ)

)
+ (δ2− iδ3)

(
D(ξ)D′(ξ)
ω̄′(ξ)

− Q(ξ)
)

−
3(δ3+ iδ2)

(
D′[i(2a)−1] − P ′[i(2a)−1]

)
4a(1− 2iaξ)

−
(δ2− iδ3)D[i(2a)−1]D′[i(2a)−1]

1− 2iaξ
,

κ+1
2µ

ψ1(ξ)=−
κ+1
2µ

ω̄(ξ)ϕ′1(ξ)

ω′(ξ)
− 2δ1

(
D(ξ)− P(ξ)

)
− (δ2+ iδ3)

(
D(ξ)D′(ξ)
ω′(ξ)

− Q(ξ)
)

+ (δ2+ iδ3)
ω̄(ξ)

ω′(ξ)

(
D′(ξ)−P ′(ξ)

)
− (δ2− iδ3)

(
D(ξ)− P(ξ)

)
+

3(δ3− iδ2)
(
D′[i(2a)−1

] − P ′[i(2a)−1
]
)

4a(1+ 2iaξ)
+
(δ2+ iδ3)D[i(2a)−1

]D′[i(2a)−1
]

1+ 2iaξ
,

ξ ∈�1; (20)

κ+1
2µ

ϕ2(ξ)=−δ1ω(ξ)− (δ2+ iδ3)P(ξ)− (δ2− iδ3)
ω(ξ)

ω̄′(ξ)

(
D′(ξ)−P ′(ξ)

)
+ 2δ1

(
D(ξ)−P(ξ)

)
+ (δ2− iδ3)

(
D(ξ)D′(ξ)
ω̄′(ξ)

− Q(ξ)
)

−
3(δ3+ iδ2)

(
D′[i(2a)−1] − P ′[i(2a)−1]

)
4a(1− 2iaξ)

−
(δ2− iδ3)D[i(2a)−1]D′[i(2a)−1]

1− 2iaξ
,

κ+1
2µ

ψ2(ξ)=−
κ+1
2µ

ω̄(ξ)ϕ′2(ξ)

ω′(ξ)
+ (δ2− iδ3)ω(ξ)+ 2δ1 P(ξ)+ (δ2+ iδ3)Q(ξ)

− δ1ω̄(ξ)− (δ2+ iδ3)
ω̄(ξ)P ′(ξ)
ω′(ξ)

− (δ2− iδ3)
(
D(ξ)−P(ξ)

)
+

3(δ3− iδ2)
(
D′[i(2a)−1

] − P ′[i(2a)−1
]
)

4a(1+ 2iaξ)
+
(δ2+ iδ3)D[i(2a)−1

]D′[i(2a)−1
]

1+ 2iaξ
,

ξ ∈�2; (21)
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For a thermal inclusion (ε∗11 = ε
∗

22, ε∗12 = 0 or δ2 = δ3 = 0; see [Ru 1999]), Equations (20) and (21)
simplify to

κ + 1
2µ

ϕ1(ξ)= 2δ1
(
D(ξ)−P(ξ)

)
,

κ + 1
2µ

ψ1(ξ)=−2δ1
(
D(ξ)− P(ξ)

)
− 2δ1

ω̄(ξ)

ω′(ξ)

(
D′(ξ)−P ′(ξ)

)
, ξ ∈�1; (22)

κ + 1
2µ

ϕ2(ξ)=−δ1ω(ξ)+ 2δ1
(
D(ξ)−P(ξ)

)
,

κ + 1
2µ

ψ2(ξ)= 2δ1 P(ξ)− 2δ1
ω̄(ξ)

ω′(ξ)

(
D′(ξ)−P ′(ξ)

)
, ξ ∈�1. (23)

When a = 0 (straight boundary), the results in (20)–(23) recover those by [Ru 1999] for a half-plane.

3.2. Anti-plane eigenstrains (ε∗31, ε
∗
32). In this case, the boundary value problem in the ξ -plane takes

the following form:

f1(ξ)+ f1(ξ)= f2(ξ)+ f2(ξ),

f1(ξ)− f1(ξ)= f2(ξ)− f2(ξ)+ 2(ε∗32+ iε∗31)ω(ξ)− 2(ε∗32− iε∗31)ω(ξ), ξ ∈ L;
(24a)

f1(ξ)+ f1(ξ)= 0, Im ξ = 0−; (24b)

f1(ξ)∼= O(1), |ξ | →∞. (24c)

The two interface conditions in (24a) can be rewritten as

f1(ξ)+ (ε
∗

32− iε∗31)
(
D(ξ)− P(ξ)

)
= f2(ξ)+ (ε

∗

32+ iε∗31)ω(ξ)− (ε
∗

32− iε∗31)P(ξ), ξ ∈ L , (25)

where D(ξ) and P(ξ) have been defined in (12) and (13).
We now introduce the auxiliary function h(ξ) defined by

h(ξ)=

{
f1(ξ)+ (ε

∗

32− iε∗31)
(
D(ξ)− P(ξ)

)
, ξ ∈�1;

f2(ξ)+ (ε
∗

32+ iε∗31)ω(ξ)− (ε
∗

32− iε∗31)P(ξ), ξ ∈�2.
(26)

It is seen from the above definition and (25) that h(ξ) is continuous across L and then analytic in the
lower half ξ -plane including the point at infinity. The traction-free condition in (24b) can be expressed
in terms of h(ξ) as follows:

h−(ξ)− (ε∗32+ iε∗31)
(
D(ξ)−P(ξ)

)
=−h̄+(ξ)+ (ε∗32− iε∗31)

(
D(ξ)− P(ξ)

)
, Im ξ = 0. (27)

The left and right sides of (27) are again analytic in the lower and upper half-planes, respectively,
including the point at infinity. As above, by applying Liouville’s theorem, the left and right sides of (27)
should be identically zero. Thus, we arrive at the following expression for h(ξ):

h(ξ)= (ε∗32+ iε∗31)[D(ξ)−P(ξ)], Im ξ ≤ 0. (28)
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It then follows from (26) and (28) that

f1(ξ)= (ε
∗

32+ iε∗31)[D(ξ)−P(ξ)] − (ε∗32− iε∗31)[D(ξ)− P(ξ)], ξ ∈�1;

f2(ξ)= (ε
∗

32+ iε∗31)[D(ξ)−P(ξ)] − (ε∗32+ iε∗31)ω(ξ)+ (ε
∗

32− iε∗31)P(ξ), ξ ∈�2;
(29)

It is clear that when the subdomain undergoes only anti-plane eigenstrains, the expressions for the two
analytic functions f1(ξ) and f2(ξ) are relatively simple.

4. Examples

In this section, several examples will be presented to demonstrate the general solutions obtained in the
previous section.

4.1. ξ ∈ L is a circle. When ξ ∈ L is a circle described by

|ξ − ξ0| = R, ξ ∈ L , (30)

the explicit expressions for D(ξ), D(ξ)D′(ξ)/ω′(ξ), P(ξ) and Q(ξ) are given by

D(ξ)=
R2(1− 2iaξ̄0)

ξ − ξ0
−

ia R4

(ξ − ξ0)2
+ ξ̄0− iaξ̄ 2

0 ,

D(ξ)D′(ξ)
ω′(ξ)

=
1

1+ 2iaξ

[
−

R2(ξ̄0− iaξ̄ 2
0 )(1− 2iaξ̄0)

(ξ − ξ0)2
+

R2(−1+ 6iaξ̄0+ 6a2ξ̄ 2
0 )

(ξ − ξ0)3

+
3ia R6(1− 2iaξ̄0)

(ξ − ξ0)4
+

2a2 R8

(ξ − ξ0)5

]
,

P(ξ)= ξ̄0− iaξ̄ 2
0 , Q(ξ)= 0.

(31)

By substituting the above expressions into (20), (21) and (29), we arrive at the six analytic functions
ϕ j (ξ), ψ j (ξ), f j (ξ), j = 1, 2. We emphasize that although ξ ∈ L is a circle, z ∈ 0 is of irregular
shape. For a thermal inclusion, the hoop stress along the parabola and the average mean stress within
the inclusion are given explicitly by

σt t =−
16µδ1

κ + 1
Re
{

1
1+ 2iax1

[
R2(1+ 2iaξ0)

(x1− ξ̄0)2
+

2ia R4

(x1− ξ̄0)3

]}
on x2 = ax2

1 , (32)

〈σ11+ σ22〉 =
4µδ1

κ + 1

[
R2

(Im ξ0)2
+

a R4

(Im ξ0)3

1− 2a Im ξ0

|1+ 2iaξ0|2
− 2

]
, (33)

where 〈 · 〉 denotes the average. Although the thermal inclusion is of irregular shape, an analytical ex-
pression for the average mean stress inside the inclusion can be derived in view of the fact that ξ ∈�2

is circular. In the following numerical studies of (32) and (33) (Figures 3–6), it is assumed that δ1 > 0.
Figures 3 and 4 illustrate the hoop stress distributions along the parabola for different values of aξ0

with a R = 1. In Figure 3, the center of the circle ξ ∈ L lies on the negative imaginary axis (i.e.,
Re ξ0 = 0); whilst in Figure 4, the circle ξ ∈ L is just touching the real axis (i.e., Im ξ0 = −R). It is
observed from Figure 3 that: (i) the hoop stress is an even function of x1, which is intuitively consistent;
(ii) the magnitude of the hoop stress reduces as the center of the circle ξ ∈ L moves further away from
the real axis in the ξ -plane; (iii) the hoop stress is tensile (σt t > 0) when a|x1| is sufficiently small, but
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Figure 3. The hoop stress distributions along the parabola for aξ0 taking the values −i,
−5i, −10i, −30i, with a R = 1 and Re ξ0 = 0.
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Figure 4. The hoop stress distributions along the parabola for aξ0 taking the values −i,
1− i, 2− i, and 3− i, with a R = 1 and Im ξ0 =−R.

compressive (σt t < 0) when a|x1| becomes sufficiently large; (iv) the maximum value of the hoop stress:

max{σt t } =
16µδ1

κ + 1
(a R)2[|aξ0| + 2|aξ0|

2
− 2(a R)2]

|aξ0|3
> 0, (34)

occurs at x1 = 0 for a fixed value of aξ0. It is observed from Figure 4 that: (i) when the center of the
circle is not on the imaginary axis, the hoop stress is no longer an even function of x1; (ii) the maximum
value of the hoop stress max = {σt t } = 16µδ1/(κ + 1) occurs at x1 = Re ξ0 for a fixed value of aξ0;
(iii) the magnitude of the compressive hoop stress is considerable when a Re ξ0 = 1∼ 2.

Figure 5 plots the average mean stress within the inclusion as a function of a Im ξ0 and a R with
Re ξ0 = 0 (the center of the circle ξ ∈ L lies on the negative imaginary axis). It is seen from Figure 5 that:
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Figure 5. The average mean stress within the inclusion as a function of a Im ξ0 and a R
with Re ξ0 = 0.
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Figure 6. The average mean stress within the inclusion as a function of a Re ξ0 and a R
with Im ξ0 =−R.

(i) 〈σ11+ σ22〉 is an increasing function of both a Im ξ0 and a R; (ii) 〈σ11+ σ22〉 is always negative and
reaches its maximum when ξ0 =−iR; (iii) as a Im ξ0→−∞ or a R→ 0, 〈σ11+ σ22〉 ∼= −8µδ1/(κ + 1),
which is simply the value of a circular thermal inclusion in a homogeneous plane [Ru 1999]. Figure 6
plots the average mean stress within the inclusion as a function of a Re ξ0 and a R with Im ξ0 =−R (the
inclusion just touches the parabola). It is seen from Figure 6 that: (i) 〈σ11+σ22〉 is an increasing function
of a Re ξ0 and a decreasing function of a R; (ii) 〈σ11+ σ22〉 is always negative, and

min{〈σ11+ σ22〉} = −
4µδ1

κ + 1
1+ 3a R
1+ 2a R

≥−
6µδ1

κ + 1
, (35)

occurs at Re ξ0 = 0; (iii) 〈σ11+ σ22〉 ∼= −4µδ1/(κ + 1) as a Re ξ0→∞ or a R→ 0.
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4.2. A thermal inclusion with ξ ∈ L describing an ellipse. We consider a thermal inclusion. In addition,
ξ ∈ L is an ellipse described by

ξ = w(η)= R
(
η+

m
η

)
+ ξ0, R > 0, 0< |m|< 1, |η| = 1, (36)

in which m and ξ0 are complex numbers.
In this case, D(ξ), P(ξ) and D(ξ)− P(ξ) are determined to be

D(ξ)= (m̄−m−1)[1− 2iaξ̄0− ia(m̄+m−1)(ξ − ξ0)]

[
ξ − ξ0

2
+

(
(ξ − ξ0)

2

4
−m R2

)1/2 ]
+ ξ̄0+ ia

[
R2m−1(1− |m|2)2− ξ̄ 2

0
]
+m−1(ξ − ξ0)

[
1− 2iaξ̄0− iam−1(ξ − ξ0)],

P(ξ)=−iam̄2ξ 2
+ m̄[1− 2ia(ξ̄0− m̄ξ0)]ξ + ξ̄0− m̄ξ0+ ia

[
2R2m̄(|m|2− 1)− (ξ̄0− m̄ξ0)

2],
D(ξ)− P(ξ)= (m̄−m−1)[1− 2iaξ̄0− ia(m̄+m−1)(ξ − ξ0)]

[(
(ξ − ξ0)

2

4
−m R2

)1/2

−
ξ − ξ0

2

]
− iam R2(m̄2

−m−2). (37)

By substituting the above into (22) and (23), we arrive at the two pairs of analytic functions ϕ j (ξ),
ψ j (ξ), j = 1, 2. We emphasize that although ξ ∈ L is an ellipse (see Figure 2), z ∈ 0 is non-elliptical
(see Figure 1). The explicit expressions for the hoop stress along the parabola and the mean stress within
the thermal inclusion are finally found to be

σt t =
8µδ1

κ + 1
Re
{
(m− m̄−1)(1+ 2iaξ0)

1+ 2iax1

[
x1− ξ̄0√

(x1− ξ̄0)2− 4m̄ R2
− 1

]}
−

32µδ1a R2

κ + 1
Im
{

m̄(m2
− m̄−2)

1+ 2iax1

[
1√

(x1− ξ̄0)2− 4m̄ R2
−

2

x1− ξ̄0+
√
(x1− ξ̄0)2− 4m̄ R2

]}
,

on x2 = ax2
1 , (38)

σ11+ σ22 =−
8µδ1

κ + 1
+

8µδ1

κ + 1
Re
{
(m− m̄−1)(1+ 2iaξ0)

1+ 2iaξ

[
ξ − ξ̄0√

(ξ − ξ̄0)2− 4m̄ R2
− 1

]}
−

32µδ1a R2

κ + 1
Im
{

m̄(m2
− m̄−2)

1+ 2iaξ

[
1√

(ξ − ξ̄0)2− 4m̄ R2
−

2

ξ − ξ̄0+
√
(ξ − ξ̄0)2− 4m̄ R2

]}
,

ξ ∈�2. (39)

5. Conclusions

A novel procedure is presented to derive analytic solutions for the Eshelby’s problem of an inclusion
of arbitrary shape in an isotropic plane with parabolic boundary. First, a conformal mapping function,
which maps the region with the parabolic boundary in the physical plane onto the lower half of the image
ξ -plane, is introduced in (8). In the ξ -plane, an auxiliary function D(ξ) is then constructed via (12). The
technique of analytic continuation is further applied with this auxiliary function to derive the analytic
functions ϕ j (ξ), ψ j (ξ), f j (ξ), j = 1, 2. In contrast to the method used by [Ru 1999] in the analysis of
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the corresponding “straight boundary problems”, our analysis remains in the ξ -plane where the parabola
is conveniently mapped onto the real axis.
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BURMISTER’S PROBLEM EXTENDED TO A MICROSTRUCTURED LAYER

THANASIS ZISIS

The problem of calculating the displacement and stress field in a layered elastic system loaded on its
surface by a certain pressure distribution often arises in engineering analysis and design, in a number
of scientific areas ranging from mechanical engineering to soil mechanics and materials science. The
solution of such a problem is very important and was first introduced by Biot (1935) but later it was
Burmister who presented a complete solution for the stresses and displacements in a general two layer
elastic system in which the lower layer is not necessarily rigid (Burmister 1943; Burmister et al. 1944).
His results found great application in the field of civil engineering but nowadays can be extended to
the technology of barrier, multilayered and/or functionally coatings. Furthermore, due to the ease of
manufacturing and assembly, coatings with micro- or even nano-thickness are pursued by manufacturers
as hybrid materials for multifunctional devices but as manufacturing scales reduce progressively, the
material microstructure itself can play an important role and size effects can be dominant upon the
macroscopic mechanical response of the layer/coating. In this study we focus on the loading of a
microstructural layer by a normal point load and we present the corresponding Green’s functions by
extending the solutions suggested by Burmister et al. in order to introduce into the generated displace-
ment and stress fields the effect of the microstructural characteristics of the layer. In order to incorporate
the layer material microstructural characteristics we use an effective generalized continuum theory, that
is the couple-stress elasticity, in which the material microstructure is introduced constitutively through
a length scale. The presented results suggest deviation from those suggested by Burmister et al. in the
context of classical elasticity for a layer of finite thickness as well as from those suggested by Gourgiotis
and Zisis (2016) in the context of couple stress elasticity for a half-plane.

1. Introduction

Contact situations occur in a multitude of engineering applications ranging from mechanical and civil en-
gineering to materials science. Many structures are founded in reinforced concrete footings or pads buried
at relatively shallow depths beneath the ground surface and large scale contacts take place between the
footings and the deformable ground. On the other hand, small scale contacts appear in nano-indentation
tests in the area of mechanical engineering and/or material science. In an ideal contact situation between
two bodies, either within the context of civil engineering where the footing essentially acts as an indentor
that lies upon a deformable body (i.e. the ground) or within the spirit of an indentation experiment where
the flat surface of the underlying material is mounted perpendicular to the tip of the indentor, the indentor
touches the surface of the material and penetration is performed. The details of such penetration may be
interpreted in terms of the stress distribution below the indentor and subsequently the stress distribution
within the bodies in contact, the surface displacements, the contact site, etc. Such analysis is crucial

Keywords: micromechanics, couple-stress elasticity, Green’s functions, microstructured layers, coatings.
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for design purposes in geotechnical and footing engineering, or in the case of material characterization
through indentation tests.

Coatings with thickness ranging from micro- to nanometers are currently manufactured as materials
for multifunctional devices. Such applications of coatings range from insulators to thermal and corrosion
barrier systems. The mechanical properties of such coatings and the observed failure mechanisms are
of great interest for design purposes and a very efficient technique in order to extract such mechanical
characteristics is the micro- and nano-indentation experiment. Furthermore, material systems that com-
prise of several layers are usually found in the field of soil mechanics and from structural considerations
the problem of calculating the stress and displacement fields within the material system as well as at the
layer interface is of great importance.

It is well known that under loading conditions, size effects can be dominant especially when the
characteristic lengths of the problems are comparable to the characteristic material length scale which
is associated to the materials inherent microstructure. In fact, the macroscopical behavior of most mi-
crostructured materials with nonhomogeneous microstructure, like ceramics, composites, cellular ma-
terials, foams, masonry, bone tissues, glassy and semicrystalline polymers, is strongly influenced by
the microstructural characteristic lengths, especially in the presence of large stress (or strain) gradients
[Maranganti and Sharma 2007].

The generalized continuum theories smear-out the material microstructure and enrich the classical
continuum with additional material characteristic length scales extending, thus, the range of applica-
bility of the “continuum” concept in an effort to bridge the gap between classical continuum theories
and atomic-lattice theories. This approach is very effective since it can be incorporated efficiently into
large computations but of course lacks the detailed description of a discrete representation and treats
the microstructural length in an average sense [Muki and Sternberg 1965; Poole et al. 1996; Begley and
Hutchinson 1998; Nix and Gao 1998; Shu and Fleck 1998; Wei and Hutchinson 2003; Zisis et al. 2014;
Zisis 2017; Gourgiotis et al. 2018].

The physical relevance of the material length scale as introduced through generalized continuum the-
ories has been the subject of numerous theoretical and experimental studies. Chen et al. [1998], for
example, developed a continuum model for cellular materials and concluded that the continuum descrip-
tion of these materials obeys a gradient elasticity theory of the couple-stress type. In the latter study,
the intrinsic material length was identified with the cell size. Tekoglu and Onck [2008] compared the
analytical results of various gradient type generalized continuum theories with the computational results
of discrete models through a range of basic boundary value problems based on Voronoi representations
of cellular microstructures. The analysis they performed, strictly within the elastic regime, assessed the
capabilities of generalized continuum theories in capturing size effects in cellular solids and connected
the cell size with the microstructural length-scale. Two recent studies [Bigoni and Drugan 2007; Bacca
et al. 2013] provide an account of the determination of the couple-stress moduli via homogenization of
heterogeneous materials. Finally, Shodja et al. [2013], using ab initio DFT calculations, evaluated the
characteristic material lengths of the gradient elasticity theory for several fcc and bcc metal crystals.

One effective generalized continuum theory has proved to be that of couple-stress elasticity, also
known as Cosserat theory with constrained rotations [Mindlin and Tiersten 1962; Toupin 1964]. In
the context of couple-stress elasticity, the strain-energy density and the resulting constitutive relations
involve, besides the usual infinitesimal strains, certain strain gradients known as the rotation gradients.
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The generalized stress-strain relations for the isotropic case include, in addition to the conventional pair of
elastic constants, two new elastic constants, one of which is expressible in terms of a material parameter `
that has dimension of [length]. The presence of this length parameter, in turn, implies that the modified
theory encompasses the analytical possibility of size effects, which are absent in the classical theory.

The simplest case of a layered system is that of an elastic layer bonded on a rigid base. For a multitude
of layered systems, ranging from materials science to soil mechanics, the bonding condition sufficiently
describes the interface characteristics. This problem, in the context of classical elasticity, has received
attention from several investigators. Marguerre [1931] obtained a solution for the stresses in the layer
under plane strain conditions, while Biot [1935] examined both the case of plain stain and axial symmetry
with restriction to the calculation of the normal stresses. Biot’s work was extended by Pickett [1938],
who presented the complete stress and displacement fields under both plane strain and axisymmetric
conditions.

A general solution in terms of a two-layer elastic system in which the lower layer is not necessarily
rigid was given in [Burmister 1943; Burmister et al. 1944; Burmister 1945a; 1945b]. In [Burmister 1956]
this was extended to a complete mathematical solution regarding the stress and displacement fields in a
layer bonded on a rigid substrate loaded by a point load. This now classical problem, bearing Burmister’s
name, finds applications in mechanical and civil engineering as well as materials science. A number of
works have followed since, that either extended the classical Burmister’s problem to different geometries
and different loading conditions but all in the context of classical elasticity [Schiffman 1957; Davis and
Taylor 1961; Davis and Poulos 1963; Poulos 1967].

Our purpose is to study the macroscopic response of a bonded layer with microstructural characteris-
tics. For this reason in the present work, we extend the classical work of Burmister and we examine the
mechanics under which the presence of a rigid substrate, the finite thickness of the deformable layer as
well as the material microstructural characteristics, influence the displacement and stress fields.

The problem under investigation is solved in the frame of couple stress theory and it is anticipated
that our results will be essentially intermediate to those of [Burmister 1956] for the case of a layer in the
context of classical elasticity and those of [Gourgiotis and Zisis 2016] for the half-plane in the frame of
couple-stress theory.

2. Basic equations of couple-stress elasticity in plane-strain

In this section, we summarize the main features of the linearized couple-stress theory of homogeneous
and isotropic elastic solids [Mindlin and Tiersten 1962; Koiter 1964a; Koiter 1964b]. An exposition of
the theory under plane-strain conditions was given in [Muki and Sternberg 1965], and more recently by
[Gourgiotis and Piccolroaz 2014] in the elastodynamic case including micro-inertial effects.

For a body that occupies a domain in the (x, y)-plane under conditions of plane-strain, the equations
of equilibrium in the absence of body forces and body moments reduce to

∂σxx

∂x
+
∂σyx

∂y
= 0,

∂σxy

∂x
+
∂σyy

∂y
= 0, σxy − σyx +

∂mxz

∂x
+
∂m yz

∂y
= 0, (1)

where (σxx , σxy , σyx , σyy) and (mxz,m yz) are the nonvanishing components of the (asymmetric) stress
and couple-stress tensors, respectively. The complete solution of (1) admits the following representation
in terms of two sufficiently smooth stress functions 8≡8(x, y) and 9 ≡9(x, y) [Mindlin 1963]:
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σxx =
∂28

∂y2 −
∂29

∂x ∂y
, σyy =

∂28

∂x2 +
∂29

∂x ∂y
,

σxy =−
∂28

∂x ∂y
−
∂29

∂y2 , σyx =−
∂28

∂x ∂y
+
∂29

∂x2 ,

(2)

and

mxz =
∂9

∂x
, m yz =

∂9

∂y
. (3)

Accordingly, the displacement field assumes the following general form:

ux ≡ ux(x, y), u y ≡ u y(x, y), uz ≡ 0. (4)

The governing kinematic relations in the framework of the geometrically linear theory then become:

εxx =
∂ux

∂x
, εyy =

∂u y

∂y
, εxy = εyx =

1
2

(∂u y

∂x
+
∂ux

∂y

)
, (5)

ωz =
1
2

(∂u y

∂x
−
∂ux

∂y

)
, κxz =

∂ωz

∂x
, κyz =

∂ωz

∂y
, (6)

where ε is the usual strain tensor, ωz is the rotation, and (κxz, κyz) are the nonvanishing components of the
curvature tensor (i.e. the gradient of rotation) expressed in dimensions of [length]−1. For a homogeneous
and isotropic couple-stress material the constitutive equations furnish:

εxx = (2µ)−1
[σxx − ν(σxx + σyy)], εyy = (2µ)−1

[σyy − ν(σxx + σyy)],

εxy = (4µ)−1(σxy + σyx),
(7)

and
κxz = (4µ`2)−1mxz, κyz = (4µ`2)−1m yz, (8)

where µ, ν, and ` stand for the shear modulus, Poisson’s ratio, and characteristic material length of
couple-stress theory, respectively [Mindlin and Tiersten 1962].

Further, substitution of (2) and (3) into (7) and (8) results in the compatibility equations for the
Mindlin’s stress functions:

∂

∂x
(9 − `2

∇
29)=−2(1− ν)`2

∇
2
(∂8
∂y

)
, (9)

∂

∂y
(9 − `2

∇
29)= 2(1− ν)`2

∇
2
(∂8
∂x

)
, (10)

from which, in turn, we obtain the following uncoupled partial differential equations:

∇
48= 0, (11)

∇
29 − `2

∇
49 = 0. (12)

Note that as the quantities `, ∂9/∂x , and ∂9/∂y tend to zero, the above representation passes over into
the classical Airy’s representation.
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3. Concentrated load at the surface of a bonded layer with microstructure

The definition of a Green’s function can be used mathematically to derive solutions to point load problems,
either within the elastic body or on its surface. A multitude of Green’s functions within the context
of classical elasticity are available in the literature for different surface geometries (see e.g., [Green
and Zerna 1968]). In a 2D setting, the problem of determining the stress and displacement fields in
an isotropic half-plane subjected to a concentrated line load on its surface is the celebrated Flamant–
Boussinesq problem. The Flamant–Boussinesq solution of classical elasticity is discussed among others,
e.g., by [Love 1952; Fung 1965; Timoshenko and Goodier 1970], and enjoys important applications
mainly in Contact Mechanics and Tribology, since it can be used as a building block for the formulation
of complicated contact problems (see e.g. [Johnson 1985; Hills and Nowell 1994; Barber 2010]).

In the context of generalized continuum theories, concentrated load problems have been extensively
studied suggesting solutions that significantly depart from the predictions of classical elasticity (see
for example the works of [Georgiadis and Anagnostou 2008; Gourgiotis and Zisis 2016; Zisis 2017;
Gourgiotis et al. 2018]. Regarding the couple-stress theory, [Muki and Sternberg 1965] were the first
to derive the asymptotic fields for the stress field in the Flamant–Boussinesq problem while recently
full field solutions were presented by [Gourgiotis and Zisis 2016]. Here, we provide a solution for the
concentrated load problem at the surface of a microstructured layer in the context of couple stress theory
of elasticity which can accordingly be used as the pertinent Green’s function for the formulation of the
plane contact problems.

Consider a body occupying the half-plane (−∞< x <∞, 0≤ y ≤ h) under plane strain conditions
subjected to a normal line load P on its surface (see Figure 1). The point of application of the concentrated
load is taken as the origin (x = y = 0) of a Cartesian rectangular coordinate system. The intensities of
the concentrated loads are expressed in dimensions of [force][length]−1.

Accordingly, the boundary conditions along the surface y = 0 become:

σyy(x, 0)=−Pδ(x), −∞< x <∞, (13)

σyx(x, 0)= 0, −∞< x <∞, (14)

m yz(x, 0)= 0, −∞< x <∞, (15)
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� � x

x

x

x

rigid substrate

Figure 1. Normal load acting on the surface of an elastic layer of thickness h bonded
onto the rigid substrate. This is Burmister’s problem (1953) extended to a microstruc-
tured layer in the context of couple-stress elasticity.
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where δ(x) is the Dirac delta function. The solution procedure for the case of a tangential load acting on
the surface of a half-plane is directly analogous to what will be presented in what follows and is omitted
for sake of brevity.

Regarding the boundary conditions at the interface between the microstructured layer and the rigid
substrate, we can define two different sets of boundary conditions as follows:

(1) The first set suggests vanishing displacements and rotations as:

ux(x, h)= 0, −∞< x <∞, (16)

u y(x, h)= 0, −∞< x <∞, (17)

ωz(x, h)= 0, −∞< x <∞, (18)

(2) The second set suggests vanishing displacements and couple stresses m yz as:

ux(x, h)= 0, −∞< x <∞, (19)

u y(x, h)= 0, −∞< x <∞, (20)

m yz(x, h)= 0, −∞< x <∞, (21)

Note that the first set of boundary conditions corresponds to an over-constrained version of the classical
elasticity solution while the second set of boundary conditions allows for a direct comparison of the
current solution with the classical elasticity results.

The problem is attacked with the aid of the Fourier transform on the basis of the stress function
formulation summarized earlier. The direct Fourier transform and its inverse are defined by

f̂ (ξ)=
∫
∞

−∞

f (x)eiξ x dx, f (x)=
1

2π

∫
∞

−∞

f̂ (ξ)e−iξ x dξ. (22)

The transformation of (11) and (12) through (22) yields the following ODEs for the transformed stress
functions:

d48̂

dy4 − 2ξ 2 d28̂

dy4 + ξ
48̂= 0, (23)

`2 d49̂

dy4 − (1+ 2`2ξ 2)
d29̂

dy2 + ξ
2(1+ `2ξ 2)9̂ = 0. (24)

The transformed stresses and couple-stresses become

σ̂xx =
d28̂

dy2 + iξ
d9̂
dy
, σ̂yy =−ξ

28̂− iξ
d9̂
dy
,

σ̂yx = iξ
d8̂
dy
− ξ 29̂, σ̂xy = iξ

d8̂
dy
−

d29̂

dy2 , (25)

m̂xz =−iξ9̂, m̂ yz =
d9̂
dy
, (26)

whereas the displacements become
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ûx =
1

2µξ

(
i(1− ν)

d28̂

dy2 − ξ
d9̂
dy
+ iνξ 28̂

)
,

û y =
1

2µξ 2

(
(1− ν)

d38̂

dy3 − (2− ν)ξ
2 d8̂

dy
− iξ 39̂

)
. (27)

The governing equations (23) and (24) have the following general solution:

8̂(ξ, y)= [C1(ξ)+ yC2(ξ)]e−|ξ |y + [C3(ξ)+ yC4(ξ)]e|ξ |y, (28)

9̂(ξ, y)= B1(ξ)e−|ξ |y + B2(ξ)e−γ y
+ B3(ξ)eξ y

+ B4(ξ)eγ y, (29)

where γ ≡ γ (ξ)= (1/`2
+ ξ 2)1/2.

Enforcing the boundary conditions (13)–(15) for the layer surface and (16)–(18) or (19)–(21) for the
base of the layer, and the compatibility equations (9) and (10), we obtain a system of eight equations
(written in matrix form in Appendix) which are solved for the unknown functions Bi (ξ) and Ci (ξ) with
i = 1, . . . , 4. Auxiliary conditions are obtained through the compatibility equations as:

B1(ξ)=−4i`2(1− ν)ξC2(ξ), (30)

B3(ξ)=−4i`2(1− ν)ξC4(ξ). (31)

Upon substitution of the functions Bi (ξ), Ci (ξ) into (27)–(29), and utilizing the fact that ûx(x, ξ),
ω̂z(x, ξ) and û y(x, ξ) are odd, odd and even functions of ξ , respectively, the components of the trans-
formed displacement and rotation field become:

ux(x, y)=
−i
π

∫
∞

0
ûx(ξ, y) sin(ξ x) dξ, (32)

u y(x, y)=
1
π

∫
∞

0
û y(ξ, y) cos(ξ x) dξ, (33)

ωz(x, y)=
−i
π

∫
∞

0
ω̂z(ξ, y) sin(ξ x) dξ, (34)

while under similar considerations, the stresses and couple stresses read:

σxx(x, y)=
1
π

∫
∞

0
σ̂xx(ξ, y) cos(ξ x) dξ, (35)

σyy(x, y)=
1
π

∫
∞

0
σ̂yy(ξ, y) cos(ξ x) dξ, (36)

σxy(x, y)=
−i
π

∫
∞

0
σ̂xy(ξ, y) sin(ξ x) dξ, (37)

σyx(x, y)=
−i
π

∫
∞

0
σ̂yx(ξ, y) sin(ξ x) dξ, (38)

mxz(x, y)=
1
π

∫
∞

0
m̂xz(ξ, y) cos(ξ x) dξ, (39)

m yz(x, y)=
−i
π

∫
∞

0
m̂ yz(ξ, y) sin(ξ x) dξ. (40)
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In fact for the same problem, in terms of loading conditions and in the context of couple stress theory,
the half-plane solution for the displacement and rotation field reads thus [Gourgiotis and Zisis 2016]:

ux(x, y)=
P

2µπ

∫
∞

0

4`2(1− ν)ξ 2γ e−γ y
+ (γ (yξ − 1+ 2ν)− 4`2(1− ν)ξ 3)e−ξ y

ξ(γ − 4(1− ν)`2ξ 2(ξ − γ ))
sin(ξ x) dξ, (41)

u y(x, y)=
P

2µπ

∫
∞

0

4`2(1− ν)ξ 3e−γ y
+
(
γ (yξ + 2(1− ν))− 4`2(1− ν)ξ 3

)
e−ξ y

ξ(γ − 4(1− ν)`2ξ 2(ξ − γ ))
cos(ξ x) dξ, (42)

ωz(x, y)=
P

2µπ

∫
∞

0

e−y(γ+ξ)(1− ν)
(
eyξ`2ξ(γ − ξ)(γ + ξ)− eyγ γ

)
γ − 4`2γ (−1+ ν)ξ 2+ 4`2(−1+ ν)ξ 3 sin(ξ x) dξ, (43)

while the stresses and couple-stresses follow as:

σxx(x, y)=
P
π

∫
∞

0

e−y(γ+ξ)
(
eyγ (γ − yγ ξ + 4`2(1− ν)ξ 3)− 4eyξ`2γ (1− ν)ξ 2

)
4`2(1− ν)ξ 3− γ (1+ 4`2(1− ν)ξ 2)

cos(ξ x) dξ, (44)

σyy(x, y)=
P
π

∫
∞

0

e−y(γ+ξ)
(
4eyξ`2γ (1− ν)ξ 2

+ eyγ (γ + yγ ξ − 4`2(1− ν)ξ 3)
)

4`2(1− ν)ξ 3− γ (1+ 4`2(1− ν)ξ 2)
cos(ξ x) dξ, (45)

σxy(x, y)=
P
π

∫
∞

0

e−y(γ+ξ)ξ
(
4eyξ`2γ 2(1− ν)+ eyγ (yγ − 4`2(1− ν)ξ 2)

)
4`2(1− ν)ξ 3− γ (1+ 4`2(1− ν)ξ 2)

sin(ξ x) dξ, (46)

σyx(x, y)=
P
π

∫
∞

0

e−y(γ+ξ)
(
4eyξ`2(1− ν)ξ 2

+ eyγ (yγ − 4`2(1− ν)ξ 2)
)

4`2(1− ν)ξ 3− γ (1+ 4`2(1− ν)ξ 2)
sin(ξ x) dξ, (47)

mxz(x, y)=
P
π

∫
∞

0

4e−y(γ+ξ)(1− ν)(eyξξ − eyγ γ )`2ξ

γ (1+ 4`2(1− ν)ξ 2)− 4`2(1− ν)ξ 3 cos(ξ x) dξ, (48)

m yz(x, y)=
P
π

∫
∞

0

4e−y(γ+ξ)(1− ν)(eyγ
− eyξ )γ `2ξ

γ (1+ 4`2(1− ν)ξ 2)− 4`2(1− ν)ξ 3 sin(ξ x) dξ. (49)

In classical elasticity, for a layer of finite thickness h loaded on its surface by a normal load, the
corresponding to (32) and (33) for y = 0 are given as:

uclass-layer
x (x, 0)=

P
2µπ

∫
∞

0

(
3−2ν(5−4ν)+2h2ξ 2

−(3−2(5−4ν)ν) cosh(2hξ)
)

ξ
(
5− 4ν(3− 2ν)+ 2h2ξ 2+ (3− 4ν) cosh(2hξ)

) sin(ξ x) dξ, (50)

uclass-layer
y (x, 0)=

P
µπ

∫
∞

0

(1− ν)
(
(3− 4ν) sinh(2hξ)

)
ξ
(
5− 4ν(3− 2ν)+ 2h2ξ 2+ (3− 4ν) cosh(2hξ)

) sin(ξ x) dξ, (51)

ωclass-layer
z (x, 0)=

P
µπ

∫
∞

0

(1− ν)
(
2hξ − (3− 4ν) sinh(2hξ)

)
µ
(
5− 4ν)(3− 2ν)+ 2h2ξ 2+ (3− 4ν) cosh(2hξ)

) sin(ξ x) dξ, (52)

while the stress field at the interface (y = h) reads:

σ class-layer
yy (x, h)=

P
π

∫
∞

0

−4(1− ν)
(
2(1− ν) cosh(hξ)+ hξ sinh(hξ)

)
5− 4ν(3− 2ν)+ 2h2ξ 2+ (3− 4ν) cosh(2hξ)

cos(ξ x) dξ, (53)

σ class-layer
yx (x, h)=

P
π

∫
∞

0

4(1− ν)
(
hξ cosh(hξ)− (1− 2ν) sinh(hξ)

)
5− 4ν(3− 2ν)+ 2h2ξ 2+ (3− 4ν) cosh(2hξ)

sin(ξ x) dξ. (54)
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The preceding equations for the half-plane reduce to the following set:

uclass
x (x, 0)=−

P(1− 2ν)
4µ

sgn(x), (55)

uclass
y (x, 0)=

−P(1− ν)
πµ

log(x), (56)

ωclass
z (x, 0)=

P(1− ν)
πµx

, (57)

σ class
yy (x, y)=−

2Py3

π(x2+ y2)2
, (58)

σ class
yx (x, y)=−

2Pxy2

π(x2+ y2)2
. (59)

The asymptotic behavior of the tangential and normal displacements in the context of couple-stress
elasticity for a half-plane was examined near the point of the application of the concentrated load by
[Gourgiotis and Zisis 2016] by employing theorems of the Abel–Tauber type and examining the behavior
of the transformed solutions for the displacements as ξ →∞. It was shown that

uasympt
x (x, y)=

P
2µπ(3− 2ν)

[
− (1− 2ν)

xy
r2 + tan−1

( x
y

)]
, (60)

uasympt
y (x, y)=−

P
2µπ(3− 2ν)

[
(1− 2ν)

y2

r2 + 2(1− ν) log(r)
]
, (61)

with r = (x2
+ y2)1/2.

As a final comment we note that examination of the transformed normal displacements for the case of
the layer and regardless of the theory employed, suggests that u y(x, 0)→ 0 as x→ 0. In mark difference,
for the case of the half-plane, the integrand in (33) behaves as û y(ξ, y)= O(ξ−1) for ξ → 0, and, thus,
u y(x, y) exhibits a logarithmic behavior as x→∞. It can be furthermore shown that regardless again
of the theory employed, the strains remain singular and behave as εi j = O(x−1) for x→ 0. However, in
marked contrast to the classical elasticity theory, in the couple stress theory, the rotation is bounded at the
point of application of the load. It is noted that in the classical theory the rotation is singular, exhibiting
O(x−1) singular behavior as x→ 0, see (57).

4. Results and discussion

Results regarding the behavior of the surface (y = 0) in terms of displacement and rotation of a layer
loaded by a normal load in the frame of classical as well as in couple-stress elasticity are presented in
Figures 2–5. Furthermore, full-field results are presented in terms of contours in Figures 6–8. Normal-
ization of the problem suggests that the distance from the point of the application of the load should
be normalized with the thickness of the layer (x/h), the normal and tangential displacements should be
normalized as µux/P , µu y/P respectively and the rotations should be normalized as µhωz/P .

We begin the discussion from the case of the layer in the context of classical elasticity. In Figure 2
we present the displacements and rotation of the layer’s surface (y = 0) for two different values of the
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Figure 2. Behavior of the surface of a layer of thickness h under the action of a normal
point load in the frame of classical elasticity. Tangential displacement µux/P (left),
normal displacement µu y/P (middle) and rotation angle µhωz/P (right) are presented
as functions of the normalized distance x/h from the point of the application of the load
P for two different Poisson’s ratios: ν = 0 (red) and ν = 0.49 (blue).

21

(b)

(a)

(c)

(d)

Figure 3. Behavior of the surface of a layer of thickness h under the action of a normal
point load in the frame of couple stress elasticity. The normalized tangential displace-
ments µux/P are plotted versus the normalized distance x/h from the point of the
application of the load P for two Poisson’s ratios (top, ν = 0; bottom, ν = 0.49) and two
different boundary conditions at the interface: either ωz(x, h)= 0 (left) or m yz(x, h)= 0
(right). The classical elasticity solution for the layer of thickness h is superimposed.
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Figure 4. Behavior of the surface of a layer of thickness h under the action of a normal
point load in the frame of couple stress elasticity. The normalized normal displacements
µu y/P are plotted versus the normalized distance x/h from the point of the application
of the load P for two Poisson’s ratios (top, ν = 0; bottom, ν = 0.49) and two different
boundary conditions at the interface: either ωz(x, h)= 0 (left) or m yz(x, h)= 0 (right).
The classical elasticity solution for the layer of thickness h is superimposed.

Poisson’s ratio. The normalization proposed suggests that in the case of classical elasticity the curves are
unique for a fixed value of Poisson’s ratio. The discontinuous tangential displacement and the singular
behavior of the normal displacement at the point of the application of the load are the same as in the
case of the half-plane (h→∞) but as we move further from the point of the application of the load the
normal displacements decay and can be seen that essentially for x/h ≥ 5 they vanish for both values
of Poisson’s ratio. It is further noted that for almost incompressible material the surface laterally to the
point of the application of the load is piling-up (Figure 2, middle) while the rotation, being unbounded
at the point of application of the load, increases for decreasing Poisson’s ratio.

Next, we move to the case of the surface of the layer in the frame of couple-stress elasticity (Figures
3–8). Here we present the normal and tangential displacements as well as the rotation for selected values
of Poisson’s ratio. The results are shown for two different boundary conditions at the layer/rigid substrate
interface. We conclude that the effect of the two different sets of boundary conditions at the bottom of
the layer is of minor importance upon the displacements and the rotation at the surface. As expected as
the layer thickness increases the effect decays.
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Figure 5. Behavior of the surface of a layer of thickness h under the action of a normal
point load in the frame of couple stress elasticity. The normalized rotation µhωz/P is
presented as a function of the normalized distance x/h from the point of the application
of the load P for two Poisson’s ratios (top, ν = 0; bottom, ν = 0.49) and two different
boundary conditions at the interface: either ωz(x, h)= 0 (left) or m yz(x, h)= 0 (right).
The classical elasticity solution for the layer of thickness h is superimposed.

In the case of couple-stress elasticity the displacement components and the rotation at the surface
depend upon both the Poisson’s ratio and the normalized length h/`. For fixed layer thickness h and
increasing ` or increasing Poisson’s ratio the layer becomes stiffer. In fact it can be seen that both ` and
ν play an important role in the qualitative characteristics of the behavior of the layer’s surface. Note that
in all the cases the classical elasticity layer solution is added. In general all the significant variations are
observed in a region that extends about x/h ≈ 2 laterally to the point of the application of the load and
the gradient effects become important for decreasing h/`— a stiffer layer can be obtained by reducing
the thickness h or increasing the microstructural length `. Furthermore, for increasing ` and decreasing
ν the deformation field is rather confined to a region near the point of application of the load and the
effect of the boundary conditions becomes significant as ` increases compared to the layer thickness.

Moving further from the point of the application of the load the effect of the rotation gradients gradually
diminishes and the results regarding all the measured quantities converge to those of classical elasticity.
In fact for increasing h/` ratio the region of significance of the effect of the rotation gradients, in terms
of x/h, decreases. It is concluded that for h ≥ 50` the displacements and the rotation have essentially
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Figure 6. Contour fields of the normalized displacements µux/P for different ratios
h/` and Poisson’s ratios ν = 0 and ν = 0.49 in the frame of couple stress elasticity for
ωz(x, h)= 0 and m yz(x, h)= 0 at the interface. For increasing ` and decreasing ν the
deformation field is confined to the region near the point of the application of the load.

converged to those obtained by classical elasticity excluding of course the singular behavior of the rotation
observed in classical elasticity.

Next we examine the stress, couple stress and rotation fields at y = h (that is the interface between
the layer and the rigid substrate). The two different boundary conditions discussed previously are again
considered and when m yz = 0 we present the variation of the conjugate ωz along the interface. The results
are shown for selected values of Poisson’s ratio (ν = 0 and ν = 0.49). For ν = 0 and ωz(x, h)= 0 the
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Figure 7. Contour fields of the normalized displacements µu y/P for different ratios
h/` and Poisson’s ratios ν = 0 and ν = 0.49 in the frame of couple stress elasticity for
ωz(x, h)= 0 and m yz(x, h)= 0 at the interface.

normal stresses decrease for decreasing h/`, everywhere along the interface are compressive and their
peak values are bounded by the corresponding normal stresses obtained from classical elasticity. The
shear stresses σyx are found decreased (at the region −1≤ x/h ≤ 1) compared to those that correspond
to classical elasticity and at fixed x/h change sign for decreasing h/`. Furthermore, m yz decreases for
increasing h/`. For increasing Poisson’s ratio all the stresses and couple-stresses increase and become
higher than those obtained by classical elasticity theory. Furthermore, for decreasing h/` and increasing
Poisson’s ratio the normal stresses become tensile at 1 ≤ x/h ≤ 2 from the point of the application of
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Figure 8. Contour fields of the normalized rotation µhωz/P for different ratios h/`
and Poisson’s ratios ν = 0 and ν = 0.49 in the frame of couple stress elasticity for
ωz(x, h)= 0 and m yz(x, h)= 0 at the interface. The white region indicates µhωz/P <
−0.3.

the load. Finally, this region of tensile stresses vanishes for m yz(x, h) = 0 instead of ωz(x, h) = 0 at
ν = 0.49.

We further note that bounded rotations have been found in both static as well as dynamic problems for
concentrated loads in the context of the anisotropic couple-stress elasticity (see [Gourgiotis and Bigoni
2016; 2017] while similar results, in terms of rotations, have been observed in problems involving cracks
within the same theory [Gourgiotis 2017; Mishuris et al. 2012; Morini et al. 2013; 2014; Piccolroaz et al.
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Figure 9. Normalized stress (σyy, σyx), couple stress (m yz) or rotation (ωz) distributions
along the interface between the layer and the rigid substrate (y= h) in the frame of couple
stress elasticity. Results are presented for the two different boundary conditions at the
interface, ωz(x, h)= 0 (top) and m yz(x, h)= 0 (bottom). The effect of Poisson’s ratio
is also shown for ν = 0 and ν = 0.49. The classical elasticity results are superimposed.
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Figure 10. Contours of normalized equivalent stress σeqh/P for different ratios h/`. Re-
sults are presented for the two different boundary conditions at the interface, ωz(x, h)= 0
(left) and m yz(x, h) = 0 (right). The effect of Poisson’s ratio is also shown for ν = 0
and ν = 0.49.

2012; Radi 2008]. It should be further underlined that in contrast to concentrated load problems in
the frame of the antiplane couple stress formulation, which predict bounded displacements as well as
bounded strains at the point of the application of the load, here, in the plane strain formulation, both
normal displacements as well as strains are in fact unbounded [Gourgiotis and Bigoni 2016; 2017; Zisis
2017]. Bounded strains have been found in Mode III cracks in the context of couple stress elasticity
[Mishuris et al. 2012; Morini et al. 2013; 2014; Piccolroaz et al. 2012; Radi 2008].

It is also instructive to examine the equivalent stress in order identify the severest stress state and
accordingly the potential regions with respect to the point of the application of the load, that plasticity may
emanate. In the context of couple stress theory the shape of the equivalent stress contours depends upon
the microstructural characteristics of the material. For the case of couple stress elasticity and according
to J2-flow theory, following [de Borst 1993] and [Shu and Fleck 1998], we introduce a general form of
the normalized equivalent stress as:

σeq =

√
3
(

1
2

(
s2

xx + s2
yy + s2

zz
)
+

1
4σ

2
xy +

1
2σxyσyx +

1
4σ

2
yx +

1
2`

2
(
m2

xz +m2
yz
))
, (62)

where si j = σi j −
1
3δi jσκκ is the deviatoric stress.

When the equivalent stress reaches the material yield stress, yielding will commence — although the
plastic enclave will be surrounded by elastic material — and at loads modestly above the elastic limit
might be approximated in shape by one of the contours in Figure 10 depending upon the microstructural
characteristic length ` and the Poisson’s ratio ν assuming fixed layer thickness h. It is observed that
for decreasing ` the maximum equivalent stress increases and the region of maximum equivalent stress
expands vertically while it rather shrinks horizontally. For `→ 0 (h/`→∞, the classical elasticity
solution), the maximum of the equivalent stress is shifted inside the layer and the potential yielding
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region increases substantially almost reaching the interface between the layer and the rigid substrate.
The effect of the boundary conditions at the interface upon the equivalent stress is also shown. As a final
comment we note that classical elasticity suggest that at the surface of the layer or the half-plane the
equivalent stress vanish. It can be seen from Figure 10 that this is not true for the case of couple stress
elasticity due to the fact that as y→ 0, σxx , σxy and mxz need not necessarily vanish. It is concluded
that in order to avoid extensive plastic regions within the layer the ratio h/` should be kept as low as
possible, and the Poisson’s ratio should be increased.

5. Conclusions

In the present work we examined the behavior of a microstructured layer bonded on a rigid substrate,
under the action of a point load on its surface. This is essentially an extended version of the classical
Burmister’s problem in the context of a generalized theory of elasticity.

We have shown that both displacements (tangential and normal) present the same asymptotic character-
istics near the point of the application of the load for both classical as well couple stress elasticity and this
is in fact true for the case of the half-plane as well as the case of the layer of finite thickness. Nevertheless,
both the quantitative and qualitative characteristics of the displacements are strongly affected by the ratio
h/` and this is for the first time shown. Furthermore, the rotation at the point of the application of the
load is bounded in the frame of couple stress elasticity while it is singular in the frame of classical
elasticity. Furthermore, as h/` varies, the rotation field is strongly affected. It is furthermore shown,
that when h/`≥ 50 the classical elasticity solution adequately predicts the behavior of the layer and the
microstrucral effects are of minor importance.

The results are important for the construction and the solution of more complicated contact prob-
lems towards the understanding of experimental details involved in the indentation technique for the
mechanical characterization of coatings and thin films. Furthermore, the present results shed light to
contact problems that take place in structural engineering given that structures are founded in reinforced
concrete footings or pads buried at relatively shallow depths beneath the ground surface and large scale
contacts take place between the footings and the deformable ground.

As a final comment, we note that the present approach and results are applicable to systems in which
the substrate is much stiffer than the layer. Such systems can be found, among other areas, in aerospace
applications. For example during the high temperature erosion of thermal barrier coatings experimental
findings suggest that the observed deformation of the substrate is confined compared to the columnar
ceramic layer (zirconia 8% yttria stabilized) — see for example [Chen et al. 2003; Fleck and Zisis 2010;
Zisis and Fleck 2010] as well as the references therein. On the other hand, there are systems that the
substrate is less stiff than the layer. Such systems are among others, titanium nitride and diamond like
carbon thin films deposited on aluminium substrates that are used in magnetic hard disk industry. In this
case it is of great interest to present the corresponding solutions, in the context of couple stress elasticity,
incorporating in addition to the deformable layer a deformable substrate. It is expected that, apart from
ratio of the classical material properties, the ratio of the characteristic lengths will be important to the
system response and cases where the layer is stiffer that the substrate can be evaluated. This is within
our scope for a future work.
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Appendix

System of eight linear equations for the solution of Bi (ξ) and Ci (ξ) with i = 1, . . . , 4. Depending upon
the boundary conditions at the bottom of the layer we have (for ξ ≥ 0):

(1) Vanishing displacements and rotations at the bottom of the layer:

−ξ 2
−ξ 2

−ξ 2
−ξ 2

−iξ 2 iξ iξ 2 iξ
−ξ −γ ξ γ 0 0 0 0
iξ 2 iξγ −iξ 2

−iξγ −ξ 2 0 −ξ 2 0
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2µ
e−hγ γ

2µ −
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(2) Vanishing displacements and couple stresses at the bottom of the layer:
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ehξ (1−2ν−hξ)
2µ
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C1(ξ)
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=



0
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0
0
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where γ ≡ γ (ξ)= (1/`2

+ ξ 2)1/2.
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MULTIPLE CRACK DAMAGE DETECTION OF STRUCTURES USING
SIMPLIFIED PZT MODEL

NARAYANAN JINESH AND KRISHNAPILLAI SHANKAR

A novel damage identification scheme for multiple cracks in beams is presented based on the one-
dimensional (1-D) piezoelectric patch with beam model. A hybrid element constituted of a 1-D beam
element and a PZT sensor is used with reduced material properties. This model is more convenient and
simpler for crack identification of beams than using a complex 3-D patch model. The hybrid beam ele-
ment and the multiple crack identification procedure is verified experimentally. The crack identification
is carried out as an inverse problem whereby location and depth parameters are identified by minimizing
the deviation between the predicted and measured voltage responses of the patch when subjected to
excitations. In the proposed method, a patch is attached to either end of the fixed beam. The numerical
and experimental results show that there is significant improvement in identification accuracy compared
to other methods.

1. Introduction

Structural health monitoring (SHM) is the process in which the state of structural health is directly
assessed using a nondestructive approach. Damage occurs during service because of the operational
cyclic loading, aging, mechanical vibration, changing ambient conditions, shocks, and chemical attack.
Hence, the early detection of damage, location, and its severity is very important in the current scenario.
Generally, damage identification methods such as acoustic, radiography, magnetic field, and thermal field
methods are used for damage detection. All of these techniques are expensive and require that the zone of
the damage is known a priori and the structural element being inspected is readily accessible. As an alter-
native, vibration-based damage detection methods using the inverse concept deserve further investigation.

A crack in a structural element increases the local flexibility, which is a function of crack depth
and location. Lee and Shin [2002] identified the location and magnitude of local damage of a beam
structure from the dynamic stiffness equation of the beam structure. In that paper, experimentally mea-
sured frequency response function data from the damage structure were required as the input data and
applicability was limited to cases for which exact dynamic stiffness matrices are obtainable. Yang and
Wang [2010] introduced a new damage detection method based on the concept of a natural frequency
vector (NFV) and the natural frequency vector assurance criterion (NFVAC), which was verified by both
simulative and experimental examples. Wang et al. [2001] suggested a two-stage identification algorithm
utilizing changes in natural frequencies and static displacements for identifying structural damage. Liu
et al. [2011] identified the presence of structural damage using multiobjective optimization, keeping
variations in natural frequency and mode shapes as individual objective functions. Viola et al. [2001]
formulated shape functions of a cracked Timoshenko beam element based on the Hamilton principle,

Keywords: crack identification, voltage matching, PZT patches, inverse problem.
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with crack sections represented as elastic hinges. A nondestructive evaluation procedure for identifying
the magnitude and location of the structure based on experimentally measured frequency and mode shape
was developed. Viola et al. [2002] investigated the effect of cracks in the stiffness matrix which neglect
the crack closure effect by assuming an open crack.

Patil and Maiti [2005] predicted the location and size of multiple cracks on a slender beam based
on experimentally measured frequencies. A strategy to overcome failure in the prediction for cases
where one of the cracks is located near an antinode was presented. Douka et al. [2004] investigated
the effect of two transverse cracks on the mechanical impedance of a double-cracked cantilever beam
both analytically and experimentally. They found significant change of antiresonance frequency due to
the presence of cracks, and this additional information was used along with natural frequency changes
to identify cracks. Ding et al. [2017] identified multiple cracks using the improved artificial bee colony
algorithm (I-ABC) based on an objective function which consists of a limited number of measured natural
frequencies. Sekhar [2008] reviewed multiple crack identification in beam, rotor, and pipe structures. The
aforementioned study summarized the effects, modeling of cracks, and various vibration identification
methods for multiple cracks. Sinha et al. [2002] developed a multicrack model in an Euler–Bernoulli
beam based on a small modification of the local flexibility in the vicinity of the crack. In that paper,
crack models were incorporated into the finite element model of the structure, and crack location and
size were estimated using the model updating from the experimentally measured modal data.

Philips Adewuyi et al. [2009] identified single/multiple damage in beam using the combined measure-
ment of displacement modes from an accelerometer and distributed strain modes with fiber Bragg grating
(FBG) sensors. Nandakumar and Shankar [2014] identified multiple crack parameters in the beam using
the concept of double-crack transfer matrices with the combined measurements of an accelerometer and
a strain gauge. Verhese and Shankar [2014] applied the combined instantaneous power flow balance and
conventional acceleration matching concept for the substructural identification of multiple crack param-
eters of the beam. In the above described method, accelerometers were used as sensors for structural
parameter identification.

The high reliability, sensitivity, and electromechanical coupling property of PZT has gained significant
attention for potential application as sensors for structural health monitoring. Bendary et al. [2010]
formulated a one-dimensional integrated beam element using Hermite cubic and Lagrangian interpo-
lation functions which are carried out for static and dynamic analysis. Zemčík and Sadílek [2007]
developed the one-dimensional hybrid PZT element based on the Euler–Bernoulli beam using the bilinear
Lagrangian interpolation polynomial for electric potential which is carried out for modal analysis. Later,
the same element was used for frequency response analysis and the results were experimentally verified
in [Sadílek and Zemčík 2010]. Sulbhewar and Raveendranath [2015] formulated the one-dimensional
Euler–Bernoulli beam with PZT structure using a coupled field polynomial that is independent of the
material configuration of the piezoelectric beam cross section. A two-stage identification strategy was
proposed by Fukunaga et al. [2002] using a limited number of PZT sensors in the time and frequency
domain. It identified crack depth up to 10% depth, but it strongly depends on reliable modal data of
undamaged structure.

In most of the literature available, accelerometer signals are used for structural identification. However,
compared to accelerometers, PZT patches have the advantages of low cost with negligible weight and
wide dynamic range. The most notable feature of PZT patches is their miniaturized appearance and ability
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to be implanted in civil structures for in situ health monitoring of the structure. Moreover, because of
their light weight, PZT patches are not likely to alter the dynamic properties, and their output voltage
is less likely to be contaminated with signal noise. In the present proposed method, an integrated beam
structure with a PZT sensor is incorporated into the finite element model of the structure and is used for
the direct identification of damage at various locations in structure. Damage identification using a one-
dimensional piezobeam hybrid model is not reported in the literature. Hence, it is a novel contribution.
The objective function consists of the mean square of the deviation between measured and estimated
voltage from the PZT patches. Multiple crack identification using the one-dimensional PZT patch model
and the effect of patch length are not reported in the literature. The one-dimensional hybrid element
is especially convenient and simple for modeling beam-type structures as compared to more complex
3-D PZT patch models. The computational complexity is significantly reduced using a one-dimensional
element. The theory is validated with numerical and experimental examples in the sections below.

2. Constitutive equations of PZT

Piezoelectric materials transform mechanical displacement into an electrical field (voltage potential), in
which case the piezoelectric material acts as a sensor (direct effect), and its converse effect acts as an
actuator. The constitutive equations for the transversely isotropic piezoelectric medium which define the
interaction between the stress (σ ), strain (ε), electric displacement (D), and electric field (E) are of the
form [Benjeddou 2000]

σ j = C jkεk − e jm Em, (1)

Dl = el jεk + εlm Em, (2)

where C jk , εlm , and el j ( j, k = 1, . . . , 6 and l,m = 1, . . . , 3) are the elastic, dielectric, and piezoelectric
coupling coefficients, respectively. The transversely poled piezoelectric material is bonded/embedded
in the host structure. The complete coupled three dimensional constitutive equation of a piezoelectric
material with principal material axes (x , y and z) can be written as [Sulbhewar and Raveendranath 2015]

σx

σy

σz

τyz

τxz

τxy

Dx

Dy

Dz


=



C11 C12 C13 0 0 0 0 0 −e31

C12 C22 C23 0 0 0 0 0 −e32

C13 C23 C33 0 0 0 0 0 −e33

0 0 0 C44 0 0 0 −e24 0
0 0 0 0 C55 0 −e15 0 0
0 0 0 0 0 C66 0 0 0
0 0 0 0 e15 0 ε11 0 e32

0 0 0 e24 0 0 0 ε22 0
e31 e32 e33 0 0 0 0 0 ε33





εx

εy

εz

γyz

γxz

γxy

Ex

Ey

Ez


, (3)

where τ and γ are shear stress and shear strain, respectively.

3. One-dimensional beam geometry

The three-dimensional beam with axes is shown in Figure 1. The Euler–Bernoulli beam theory is applied
for a one-dimensional beam with a piezoelectric patch, which neglects the shear effect. The model is
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assumed to be plane stress and width in the y-direction is stress free. Therefore, it is possible to set
σy = σz = τxy = τxz = τyz = γxy = γxz = γyz = 0 while εy 6= 0, εz 6= 0 [Sulbhewar and Raveendranath
2015]. The polarization axis z is aligned with the thickness direction of the beam, thus only Dz is taken
and for electric field Ex = Ey = 0. Applying these conditions, (3) is reduced to the form[

σx

Dz

]
=

[
Ĉ −ê
ê ε̂

] [
εx

Ez

]
, (4)

where Ĉ = Q11 − Q2
12/Q22 and Qi j = Ci j − Ci3C j3/C33 (i, j = 1, 2); ê = ē31 − ē32(Q12/Q22) and

ē3i = e3i − e33(C13/C33) (i = 1, 2); ε̂ = ε̄33+ ē2
32/Q22 and ε̄33 = ε33+ e2

32/C33 [Kapuria and Hagedorn
2007]. Here, Ĉ , ε̂, and ê are the reduced elastic, dielectric, and piezoelectric coupling coefficients
respectively and the calculated values are shown in Table 1. This reduced property is used for further
numerical study of the one-dimensional (1-D) beam with a PZT patch in MATLAB.

X

Z

Y

Figure 1. Three-dimensional beam.

material properties

aluminum E = 71 GPa ν = 0.3 ρ = 2210 kg ·m−3

PZT 5H

C11 = C22 = 126 GPa C12 = 79.5 GPa
C13 = C23 = 84.1 GPa C33 = 117 GPa
C44 = C55 = 23 GPa C66 = 23.25 GPa
e31 = e32 =−6.5 C ·m−2 e33 = 23.3
e15 = e24 = 17 C ·m−2 ε11 = ε22 = 1.503× 10−8 F ·m−1

ε33 = 1.3× 10−8 F ·m−1 ρ = 7500 kg ·m−3

reduced properties Ĉ = 60.013 GPa ê =−16.4921 C ·m−2 ε̂ = 2.5885× 10−8 F ·m−1

Table 1. Material properties of the beam.

le
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hhh
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w1 w2
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structure

Figure 2. One-dimensional beam element: PZT and supporting structure sharing com-
mon nodes.
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4. FEM formulation and elemental matrices

The one-dimensional beam formulation has been presented in [Sadílek and Zemčík 2010; Sulbhewar
and Raveendranath 2015], but not used for time domain dynamic response with damping and inverse
problems. The finite element formulation of the structure is briefly explained here. The beam element is
based on the Euler–Bernoulli theory and the element has two nodes. Two independent polynomials are
used for interpolation of mechanical and electrical field variables. First, the Hermite cubic polynomial
is used for the interpolation of mechanical quantities of vertical displacement (w) and rotation (θ) as
shown in Figure 2. The vertical displacement (w) is approximated across the length as

w(x)= a0+ a1x + a2x2
+ a3x3

= [Nw]{we
}, (5)

where Nw is the shape interpolation function of the structural part and structural nodal degree of freedom
per element is arranged as we

= [w1, θ1, w2, θ2]
T . The bending strain is

ε(x, z)=
∂u
∂x
=−z

∂2w

∂x2 = [Bw]{w
e
}, (6)

where [Bw] is the strain-displacement matrix consisting of derivatives of shape functions.
The electric potential is φ(x, z), considered as a function of the thickness and the length of the beam.

Hence, let Langrangian bilinear function be estimated for the interpolation as

φ(x, z)= a4+ a5x + a6z+ a7xz = [8φ]{φe
}. (7)

Here, φ and ψ are the lower and upper electrical potentials of PZT surface. The electrical nodal degrees
of freedom per element can be ordered as {φe

} = [φ1, ψ1, φ2, ψ2]
T. The electric field E(x, z) can be

written as
E(x, z)= [Bφ]{φe

}, (8)

where [Bφ] is the electrical field potential matrix consisting of derivatives of shape functions.
Here, a homogeneous electrical boundary condition is imposed on the bottom surface of PZT patch

to eliminate rigid body modes, i.e., the lower surface is grounded with φ = 0 V, while the upper surface
is left open. The dynamic potential energy density G for the piezoelectric medium can be written as [Xu
and ShengPeng 2013]

G = 1
2ε

T cε− 1
2 ET εE − εT eE . (9)

The elemental matrices are calculated by applying the variational principle to potential, kinetic energy,
and external forces (mechanical and electrical loading). This must be satisfied for any arbitrary variation
of the displacements and electrical potentials and thus the equations of motion of elemental matrices
with damping can be represented as[

[Me
ww] [0]
[0] [0]

]{
{ẅe
}

{φ̈e
}

}
+

[
[Ce
ww] [0]
[0] [0]

]{
{ẇe
}

{φ̇e
}

}
+

[
[K e

ww] [K
e
wφ]

[K e
wφ]

T
[K e

φφ]

]{
{we
}

{φe
}

}
=

{
{Fe
}

{Qe
}

}
. (10)

The damping matrix [Ce
ww] is defined as a proportional damping, i.e., [Ce

ww]=α[M
e
ww]+β[K

e
ww] and α, β

are Rayleigh’s damping coefficients. Equation (10) is the elemental equilibrium in the discretized form,
where [Me

ww] is the mass matrix, and [K e
ww], [K

e
wφ], and [K e

wφ] are the stiffness matrices corresponding
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Figure 3. Beam element with two cracks.

to the mechanical coupling, electromechanical coupling, and electrical degrees of freedom, respectively.
{Fe
} and {Qe

} are the mechanical and electrical charge load vectors, respectively. The size of the element
matrices are [4× 4] and are given by

[Me
ww] =

∫
V
[Nw]Tρ[Nw] dV, [K e

ww] =

∫
V
[Bw]T Ĉ[Bw] dV,

[K e
wφ] =

∫
V
[Bw]T ê[Bφ] dV, [K e

φφ] =

∫
V
[Bφ]T ε̂[Bφ] dV .

(11)

In order to solve this, the global matrix equation (10) can be expanded and written as

[Mww]{ẅ}+ [Cww]{ẇ}+ [Kww]{w}+ [Kwφ]{φ} = {F},

[Kwφ]
T
{w}+ [Kφφ]{φ} = {Q}.

(12)

The second part of (12) is simplified as

{φ} = [Kφφ]
−1
{Q}− [Kφφ]

−1
[Kwφ]

T
{w}. (13)

The above equation is substituted in the first part of (12) and is written as

[Mww]{ẅ}+ [Cww]{ẇ}+ [Kww]
∗
{w} = {F}∗, (14)

where
[Kww]

∗
= [Kww] − [Kwφ][Kφφ][Kwφ]

T ,

{F}∗ = {F}− [Kwφ][Kφφ]
−1
{Q}. (15)

For the sensor problem, displacement histories are obtained by solving (14), and by substituting into
(13), the voltage vector across the sensor patch is obtained.

5. FEM formulation of beam element with multiple cracks

5.1. Double crack per beam element model. The finite element formulation of the double crack per
element model is explained here and it is identified as two cracks per beam element. This has hitherto
not been incorporated in a one-dimensional PZT patch model, and also its application in an inverse
problem of crack identification is novel. The crack per beam element and corresponding finite element
model are shown in Figures 3 and 4 respectively. Let le be the length of the element, l1 and l2 are the
locations of the crack from its left end, a1 and a2 respectively are the crack depths measured from the
top of the beam.
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Figure 4. Equivalent model of cracked beam element.

The finite element model of two cracks per beam element contains three segments connected by two
massless hinges of flexibility c1 and c2, respectively, as shown in Figure 4. Three different polynomials
are assumed for the field variables of this element since it has three different segments:

v1(x)= b1+ b2x + b3x2
+ b4x3

θ1(x)= v′1(x)= b2+ 2b3x + 3b4x2

}
0≤ x ≤ l1;

v2(x)= b5+ b6x + b7x2
+ b8x3

θ2(x)= v′2(x)= b6+ 2b7x + 3b8x2

}
l1≤ x ≤ l2;

v3(x)= b9+ b10x + b11x2
+ b12x3

θ3(x)= v′3(x)= b10+ 2b11x + 3b12x2

}
l2≤ x ≤ le;

(16)

where b1–b12 are the polynomial constants. The following are the nodal values and conditions applied
to the cracked beam element:

v1(0)= Y1, θ1(0)=21, v3(le)= Y2, θ3(le)=22,

v1(l1)= v2(l1), v′′1 (l1)= v
′′

2 (l1), v′′′1 (l1)= v
′′′

2 (l1),

v2(l2)= v3(l2), v′′2 (l2)= v
′′

3 (l2), v′′′2 (l2)= v
′′′

3 (l2),

v′′2 (l1)=
1

K c1
(θ2(l1)− θ1(l1)), v′′3 (l2)=

1
K c2

(θ3(l2)− θ2(l2)).

The flexibility coefficients Kc1 = E I c1 and Kc2 = E I c2 at crack locations. E I is the flexural stiffness
and c is the torsional flexibility of the crack; Y1, 21, Y2, and 22 are the displacement and rotation at
the nodes 1 and 2 respectively. The flexibility coefficient at the crack location can be also expressed as
[Viola et al. 2001]

Kc1,c2 = h f (ξ)/2, (17)

where f (ξ) is a correction function which takes into account the body and crack geometry and depends
on the dimensionless crack ratio ξ1,2 = a1,2/h which can be represented as follows [Viola et al. 2001]:

f (ξ)= ξ 2(12− 19.5ξ + 70.1ξ 2
− 97.6ξ 3

+ 142ξ 4
− 138ξ 5

+ 128ξ 6
− 132ξ 7

+ 379ξ 8
− 417ξ 9

+ 131ξ 10
+ 313ξ 12

− 357ξ 13
+ 102ξ 14), 0≤ ξ < 0.5;

f (ξ)=
1.32

(1− ξ 2)
− 1.78, 0.5≤ ξ ≤ 1. (18)
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The shape function matrix [N (x)] of size 6× 4 relates the nodal DOF with the field variables as follows:

v1(x)
θ1(x)
v2(x)
θ2(x)
v3(x)
θ3(x)


=



N11(x) N12(x) N13(x) N14(x)
N21(x) N22(x) N23(x) N24(x)
N31(x) N32(x) N33(x) N34(x)
N41(x) N42(x) N43(x) N44(x)
N51(x) N52(x) N53(x) N54(x)
N61(x) N62(x) N63(x) N64(x)




Y1

21

Y2

22

 . (19)

From the finite element procedure, the stiffness and mass matrices of the cracked element can be obtained
as

[ke
cr ] = E I

(∫ l1

0
BT

1 B1 dx +
∫ l2

l1

BT
2 B2 dx +

∫ le

l2

BT
3 B3 dx

)
, (20)

[me
cr ] = ρA

(∫ l1

0
N1(x)T N1(x) dx +

∫ l2

l1

N3(x)T N3(x) dx +
∫ le

l2

N5(x)T N5(x) dx
)
. (21)

where B1= d2
[N1(x)]/dx2, B2= d2

[N3(x)]/dx2, and B3= d2
[N5(x)]/dx2. Here, N1(x), N2(x), N3(x),

N4(x), N5(x), and N6(x) are the respective rows of the shape function matrix N (x). Since the effect of
rotation of the beam element is very small when compared with translation of beam, it may be neglected.
This can be extended to any number of cracks per element. When either K c1 or K c2 is zero, the element
becomes a single crack per element model as in previous literature [Krawczuk et al. 2000; Viola et al.
2001]. The single crack per element with one-dimensional PZT patch in structural identification (SI) has
not yet been reported. When the values of K c1= K c2= 0, the structure is considered as an intact element.

6. Particle swarm optimization (PSO) algorithm

A heuristic optimization technique referred to as particle swarm optimization PSO is used here which
mimics the social behavior of swarms. It was first proposed by James and Eberhart [Kennedy and
Eberhart 1995]. Heuristic methods are preferred over calculus-based methods due to their robustness
and ability to attain the global optima. It imitates the social behavior of a swarm of birds. Each bird
tends to follow the general swarm direction in search of the target (food), but it has a component of its
own intelligence and memory (i.e., local search) which influences its action. Each bird is visualized as a
“particle” which approaches the target (i.e., the global optima) with a “velocity”. The number of particles
(i.e., population) and their initial random positions are specified. As the particles progress to the global
optima through many generations, their current position is updated using two parameters: Gbest, which
represent the historically best coordinate of all the particles in the population, and Pbest,i , the historically
best coordinate of the i-th particle. The equations giving the velocity v and position x for the i-th particle
in the k+ 1 generation are given by

vi (k+ 1)= ϕ(k)vi (k)+α1[γ1i (Pbest,i − xi (k))] +α2[γ2i [(Gbest− xi (k))], (22)

xi (k+ 1)= xi (k)+ vi (k+ 1), (23)

where i is the particle index, k the discrete time index, v the velocity of the i-th particle, and x the position
of the i-th particle in the present solution. Here, γ1 and γ2 represent two random numbers between zero
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and one, ϕ is an inertia term uniformly decreasing from 0.9 to 0.4 with passing generations, and α1 and
α2 are two acceleration constants set to two [Perez and Behdinan 2007]. Several studies have pointed out
the superiority of the PSO algorithm over the more conventional heuristic algorithms such as the genetic
algorithm (GA) for inverse problem applications [Mohan et al. 2014; Mouser and Dunn 2005].

7. Crack identification using one-dimensional PZT patch

In the proposed method, a patch is attached to either end of the beam member whose crack parameters
have to be identified. The time-domain-based approach is used and the voltage history of the patch is
used as the main response quantity in the identification of structural stiffness and crack parameters. A few
experimentally measured voltage potential responses φm are measured from PZT patches. The estimated
voltage potential φe is obtained from the mathematical model using (13). For exact identification, φe

has to match with the experimentally measured responses φm . In this method, experimental responses
are simulated from a known numerical model and polluted with Gaussian noise of zero mean and a
certain standard deviation. Using the particle swarm optimization (PSO) algorithm, the following fitness
(objective) function is minimized, which is the sum of squares of deviations between the measured and
estimated voltage. The fitness or objective function is

f =

∑M
i=1

∑L
j=1|φ

m(i, j)−φe(i, j)|2

M L
. (24)

The superscripts m and e denote measured and estimated responses for fitness evaluation, M is the
number of measurement sensors used, and L is the number of time steps. Ideally, it must be minimized
to zero, but usually it approaches a value close to zero. The minimization of the fitness function gives
the identified crack depth and location variables.

8. Numerical examples and results

Here, three different types of numerical studies are carried out for validating the proposed identification
method. A fixed-fixed beam with two cracks (assuming a single crack per element), the same beam with
four cracks, and substructures (SS) of the frame structure with nine members and four cracks (assuming
two cracks per element). A patch is attached to either end of the beam member. The structural parameters,
such as mass and stiffness of the undamaged structure, are assumed to be known. Experimental measured
responses are numerically simulated from a fully defined model in MATLAB using Newmark’s constant
acceleration scheme. The structure is excited by an impulse or harmonic force and the corresponding
voltage responses are measured at the PZT patches. The crack parameters such as location and depth
are estimated using the inverse formulation with a single objective approach. In order to simulate the
effect of noise in experiments, a Gaussian random noise level of 5% (standard deviation) and zero mean
is added to all the measured signals. The noise is added with simulated responses in such a way that

Noise= g×RMSsignal× N L (25)

where g is the standard Gaussian variable, RMSsignal is the root mean square (RMS) value of the numer-
ically simulated signal, and NL is noise level.
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Figure 5. Finite element model of two single cracks per beam element with PZT patch.

In this numerical study, three different PZT patch lengths are investigated, and they are PZT : 5%,
PZT : 10%, and PZT : 20%. They respectively represent the length of the patch expressed as percentage
of beam length. The width of PZT is the same as the host structure and a constant thickness of 1 mm is
used for this study.

8.1. Example 1: fixed-fixed beam with multiple cracks using single crack per element. The crack
detection by the proposed method is applied on the fixed-fixed beam structure to determine the magnitude
(crack depth) and locations of two cracks simultaneously. The same cracked steel beam was studied in
[Verhese and Shankar 2014; Viola et al. 2001]: it is 520 mm long, 50 mm wide, and 8 mm thick with a
Young’s modulus (E) of 206 GPa and density of 7850 kg/m3. The two open edge cracks are assumed to
be located at 19.5 mm and 221 mm from the left end of beam, respectively, and it is also assumed that
the cracks in different elements do not interact with each other. The absolute normalized crack location
measured from the left end of the beam are λC1(l1/L)= 0.0375 and λC2(l2/L)= 0.425. Crack depths of
0.4 mm and 4 mm are considered and the corresponding normalized crack depths are ξC1(a/h)= 0.05
and ξC2(a/h)= 0.5 respectively. The beam is divided into five Euler finite elements as shown in Figure 5
and cracks lie in the first and third elements. It may be noted that the first crack is located under the PZT
patch.

In this study, as in the first case, two PZT patches with size PZT : 5%, i.e., (26× 50× 1 mm3 PZT)
is bonded on either end of the structure as shown in Figure 5. The first and second natural frequency
of the modes of vibration of the cracked structure are 151.29 Hz and 430.97 Hz respectively. Rayleigh
damping with a modal damping ratio of 3% is used for the first two modes of vibration. The beam
is subjected to a harmonic excitation of F(t)= 2.5 sin(2π130t)N in the vertical (upward) direction at
node 4. The displacement, velocity, and acceleration time history data are calculated for each nodal point
using Newmark’s method with a constant time step of 0.001 s. Using the displacement response history,
voltage responses are measured through two PZT patches. Figure 6 shows the undamaged and damaged
responses available at the measurement PZT patch sensor A for multiple crack locations. The shift in
damaged response for multiple cracks is greater than a single crack. The numerically calculated voltages
are polluted by artificially adding Gaussian white noise with zero mean and a standard deviation of 5%
to simulate experimental errors.

The mass and intact stiffness E I of the structure are assumed to be known a priori. The proposed
algorithm identifies multiple cracks assuming that each element contains a single crack. The normalized
crack location in element 1 with respect to left end of the element is λe1 = 0.75 and the same in element 3
is λe3 = 0.25. Here, crack magnitude and location are set as the unknown variables for each element and
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Figure 6. Harmonic response at measurement (PZT A) with multiple crack locations.

crack crack crack depth ξ (identified) crack location λ (identified)

patch depth ξ location λ noise-free 5% noise noise-free 5% noise
length (exact) (exact) (% error) (% error) (% error) (% error)

PZT: 5% 0.05 (C1) 0.0375 0.0478 (4.4) 0.0535 (7) 0.0382 (−1.87) 0.0385 (−2.67)
0.5 (C2) 0.425 0.4967 (0.66) 0.5062 (−1.24) 0.4245 (−0.12) 0.4298 (−1.13)

PZT: 10% 0.05 (C1) 0.0375 0.0519 (−3.8) 0.0469 (6.2) 0.0369 (1.6) 0.0383 (−2.13)
0.5 (C2) 0.425 0.5031 (−0.62) 0.4951 (1.18) 0.4255 (0.12) 0.4208 (0.99)

PZT: 20% 0.05 (C1) 0.0375 0.0483 (3.4) 0.0529 (−5.8) −0.0380 (1.33) 0.0368 (1.87)
0.5 (C2) 0.425 0.4978 (0.44) 0.5055 (−1.1) 0.4253 (−0.07) 0.4292 (0.96)

Table 2. Crack damage magnitude and location with voltage matching. All values are normalized.

hence there are ten unknown variables in this problem. Thus the optimization variables to be identified
are the normalized crack depth ξ and normalized location λe = l1/ le in five elements. The experimentally
measured voltage response of PZT patches is required for the fitness evaluation. The mean square error
(MSE) between measured and predicted voltage response at PZT patches are minimized by particle
swarm optimization. The lower and upper bounds for PSO optimization for identifying crack magnitude
are set at zero and one. Similarly the lower and upper bounds to identify normalized crack locations
are set as zero and le, respectively. Here, PSO parameters are set to 100 particles (swarm size) and 500
generations. Similar numerical studies are carried out with larger patch lengths, such as PZT: 10%, i.e.,
(52× 50× 1 mm3 PZT) and PZT: 20%, i.e., (104× 50× 1 mm3 PZT). The crack depth and location
are estimated using different sets of iterations and the mean identified crack parameters are presented in
Table 2.

The smallest crack depth ξ = 0.05 located under the PZT patch is identified with an absolute error of
7%, 6.2%, and 5.8%, respectively for PZT: 5%, PZT: 10%, and PZT: 20% with noisy condition. From
Table 2, it can be seen that crack location identification is better than crack depth estimation. Here, the
smallest patch length (PZT: 5%) identified the crack location with an absolute error of 2.67% under the
noisy condition. The element-wise details of crack depth identification using different patch lengths are
shown in Figure 7 for the noise-free and noisy cases. Figure 8 shows the comparison of convergence
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Figure 7. Normalized damage magnitude of multiple cracks. Left: noise-free case.
Right: 5% noise case.
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Figure 8. Convergence plot for ξ = 0.05. Left: noise-free case. Right: 5% noise case.

studies of different PZT patch lengths. Here, the objective function of PZT: 20% has minimized better
than smaller patch lengths and is most accurate in identification. However, it is not required to use such
a large patch length. As compared to PZT: 5%, the percentage decrease of error by PZT: 20% is only
8–15%. Thus for practical and economical aspects, PZT: 5% is sufficient for estimating crack parameters.

Now, the proposed method is compared with similar existing published results. Viola et al. [2002]
identified the crack depth ξ = 0.5 and location λ= 0.76 based on the modal approach using experimentally
measured results. The identified crack parameters are 0.486 and 0.756 and the percentage of the absolute
error is 2.8% and 0.53% respectively for crack depth and location. It may be noted that here only a single
crack is identified. The very same multicrack problem of similar crack depth ξ = 0.5 was solved by
Verhese and Shankar [2014] using a combined transient power flow and acceleration matching technique
with a substructure approach. There, normalized crack depth and location of the same crack depth were
identified with absolute errors of 3.26%, 4.04%, and 1.59%, 2.98% respectively for the noise-free and
5% noisy cases. The proposed method using PZT : 5% estimated the crack depth and location of a similar
crack with errors of 0.66%, 1.24%, and 0.117%, 1.13%, respectively for the noise-free and noisy cases.
Here, mean computational time is only about 140 s whereas in the other study it was 3000 s.



MULTIPLE CRACK DAMAGE DETECTION OF STRUCTURES USING SIMPLIFIED PZT MODEL 237

A B

1 2 3 4 5 6

L D 520 mm

50 mm

8 mm
F.t/

l4 D 416 mm
l3 D 377 mm

l2 D 260 mm
l1 D 221 mm

C1 C2 C3 C4

Figure 9. Finite element model of two double cracks per beam element with PZT patch.
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Figure 10. Impulse response at measurement (PZT A) with multiple double crack locations.

8.2. Example 2: fixed-fixed beam with two double crack per element. The same beam in Section 8.1
is considered for the crack identification with a double crack per beam element. Here, four open edge
cracks of depths 0.4 mm, 4 mm, 0.8 mm, and 2 mm are assumed to be located at a distances of 221 mm,
260 mm, 377 mm, and 416 mm respectively from the fixed end. In this study, the beam is divided into
five elements; two open edge cracks C1, C2 are placed in element 3, and C3, C4 are placed in element 4,
as shown in Figure 9. It is assumed that cracks are not interacting with each other. The normalized crack
depths (ξ = a/h) are ξC1 = 0.05, ξC2 = 0.5, ξC3 = 0.1, and ξC4 = 0.25 and the corresponding absolute
crack locations are λC1 = 0.425, λC2 = 0.5, λC3 = 0.725, and λC4 = 0.8.

In this study, PZT: 5% and PZT: 10% are used for the crack parameter estimation. As in the first case,
two PZT patches of size PZT: 5% are bonded on either side of the structure as shown in Figure 9. Here,
the normalized crack locations in the element 3 with respect to left end of the element are λe31 = 0.25
and λe32 = 0.5, and the same in the element 4 are λe41 = 0.25 and λe42 = 0.5. (Here, λe31 represents
crack 1 in element 3, i.e., C1.)

The fundamental natural frequency of the cracked structure is 150.87 Hz. Rayleigh damping with the
modal damping ratio of 3% is used for the first two modes of vibration. The beam is excited by providing
an impulse force of 5 N at node 4 over a time of 0.01 s in a time step of 0.001 s and a voltage response is
measured through PZT patches. Figure 10 shows the comparison between the damaged and undamaged
response of the beam at the PZT patch A and the change in dynamic response is greater than a single
crack.
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Figure 11. Identified crack parameters of fixed-fixed beam with PZT: 5%.

Here, for crack parameter estimation, it is assumed that each finite element of the model contains two
cracks at different positions. Crack magnitude and location are unknown variables and thus each element
contains four unknown variables. Hence, a total of twenty variables are searched between the value of
zero to one by PSO. The MSE between the measured and predicted voltage responses is minimized
by PSO with a swarm size of 100 and with 500 iterations. The identified parameters with PZT: 5% is
shown in Figure 11 and the percentage of absolute error of identified parameters of each crack is shown
in Figure 12. The smallest crack of depth (ξ = 0.05) is identified with an absolute error of 4.89% for
noise-free measurement and 9.05% with 5% noise level measurement. The normalized location of the
same crack is identified with an error of 1.76% without noise and 3.36% with 5% noise in measurements.

The numerical study was carried out for PZT: 10% with similar crack depth and location for the same
beam. Figure 13 shows the comparison of convergence of fitness (objective) functions for PZT: 5% and
PZT: 10% for four cracks (noise-free and noisy case), respectively. The better minimization of PZT: 10%
when compared with PZT: 5% is seen from the plot. Hence, the error of both magnitude and location is
reduced. The identified parameters are shown in Figure 14 and absolute errors in those parameters are
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Figure 12. Absolute error in identified parameters in fixed-fixed beam with PZT: 5%.
Left: depth. Right: location.
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Figure 13. Convergence plot for multiple cracks with two double-cracks per beam ele-
ment. Left: noise-free case. Right: 5% noise case.

shown in Figure 15. In this case, the smallest crack depth (ξ = 0.05) is identified with an absolute error
of 4.03% with noise-free measurement and 8.75% with 5% noise level measurement. The error in its
location is 1.5% without noise and 3.21% with 5% noise. Here, due to an increase in sensitivity, it can
be observed that there is an improvement in identification of smaller crack depth and location. It is also
seen that both patch lengths identified the location more accurately than crack depth.

8.3. Example 3: substructure (SS) of frame with double crack per beam element. In this example,
a steel frame structure consisting of nine members is fixed at two supports, as shown in Figure 16 as
per [Nandakumar and Shankar 2014]. The density of the frame material is 7850 kg/m3 and its Young’s
modulus (E) is 200 GPa. Each member has a flexural rigidity (E I ) of 43.2 N ·m2, and a cross-section
of 12× 6 mm. Four open edge cracks of depth 0.3 mm, 1.5 mm, 3 mm, and 2 mm are considered at a
distances of 200 mm, 275 mm, 725 mm, and 800 mm respectively from the left end of member 4, as shown
in Figure 16. The fundamental natural frequency of the cracked structure is 11.9 Hz. The normalized



240 NARAYANAN JINESH AND KRISHNAPILLAI SHANKAR

identified crack depth (noise-free) identified crack depth (noise-free)

identified crack depth (5% noise) identified crack location (5% noise)

Figure 14. Identified crack parameters of fixed-fixed beam with PZT: 10%.
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Figure 15. Absolute error in identified parameters in fixed-fixed beam with PZT: 10%.
Left: depth. Right: location.

crack depths for the above cracks are ξc1 = 0.05, ξc2 = 0.25, ξc3 = 0.5, and ξc4 = 0.33 and their absolute
normalized locations from the left end of member 4 are λc1= 0.2, λc2= 0.275, λc3= 0.725, and λc4= 0.8.
It is proposed to detect the cracks locally in the SS (member 4) of the frame using PZT : 5%, which is
shown inside the dotted box in Figure 16, left.
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with six nodes.
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Figure 17. Convergence plot for multiple cracks with two double-cracks per beam ele-
ment. Left: noise-free case. Right: 5% noise case.

The damping effect in the structure is modeled using Rayleigh’s damping model, with a damping
ratio of 3%. The structure is excited by an impulse response of 10 N over a time of 0.01 s, with a
time step of 0.001 s, at the midpoint of member 6. Frame member 4 is divided into five elements as
shown in Figure 16, right; the first two cracks lie on the element 2 and the remaining two cracks lie on
the element 4. The normalized locations from the left end of the respective elements are λe2.1 = 0.5,
λe2.2 = 0.75, λe4.1 = 0.25, and λe4.2 = 0.5 (λe2.1 means that crack 1 is in the element 2). The crack
parameters are searched by PSO with swarm size 100 and 500 generations, as explained in the previous
example. The identified parameters of absolute error are shown in Figure 18. The crack with smallest
depth (ξ = 0.05) is identified with an absolute error of 5.3% without noise and 12.97% with 5% noise in
measurement. The location of this crack is identified with an absolute error of 2.52% and 4.05% without
and with 5% noise in measurement, respectively. The total time taken for the convergence is 215 s.

9. Experimental verification: fixed-fixed beam with PZT patches

A fixed-fixed beam made of acrylic material with dimensions 452 mm× 25 mm× 12 mm is used for the
experimental study. Here two PZT patch of dimensions 25 mm× 25 mm× 1 mm each are bonded at the
fixed ends of the structure as shown in Figure 19. The modulus of elasticity (E) was estimated to be
3.9 GPa from a simple bending test and the density was measured to be 1190 kg/m3. The actual flexural
rigidity (E I ) of the beam is 14.04 N ·m2. The damping ratio (ζ ) was calculated from a simple free
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Figure 18. Absolute error in identified parameters in SS of frame with PZT: 5%. Left:
depth. Right: location.

Figure 19. Experimental set up of fixed-fixed intact beam with PZT patch.

vibration decay test using logarithmic decrement and was estimated as 8%. The natural frequencies for
the first two modes of the structure were calculated from the frequency domain as 110 Hz and 306 Hz.

The beam is excited by a sinusoidal force of 2.2 sin(2π × 68.3t)N at the middle of the structure by
a LDS permanent magnet 20 N modal shaker with a maximum displacement of 5 mm with an operating
frequency range of 5 Hz–13 kHz. The applied force is measured by using a KISTLER force transducer
and is acquired with a sampling frequency of 1000 Hz using a DEWE 43 DAQ system. The dynamic
voltage response is measured through two piezoelectric patches and it is sampled at a rate of 1000 Hz. The
comparison of experimental and simulated voltage response (time and frequency domain) of the given
intact beam is shown in Figure 20. One can find that difference in measured and calculated response is
very small, which shows the one-dimensional (1-D) hybrid model is accurate.

Next, two open edge cracks of depths 6 mm and 1.5 mm are introduced on the same beam at a distances
of 92 mm and 393.5 mm from the fixed end. The width of cut is 0.4 mm and close-up views of the cracks
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Figure 21. Cracks in the fixed-fixed beam.

are shown in Figure 21. The nondimensional crack depth of each crack is ξ1 = 0.5 and ξ2 = 0.125, and
their absolute location from the fixed end are λ1 = 0.2 and λ2 = 0.87, respectively. The beam is divided
into five elements as in the previous numerical study, and here, the crack lies in the second and fourth
elements, respectively. The nondimensional element-wise crack locations measured from the left node
of the element are λe2 = 0.5 and λe4 = 0.75, respectively. The cracked structure is excited by a harmonic
force of 2.8 sin(2π × 60.7t)N at a distance of 292 mm from the left fixed end. The voltage responses
are measured through the PZT patches and it is sampled at a rate of 1000 Hz. From the acquired data, a
portion of time histories of 5 s is considered for parameter identification. The parameters are searched
between the feasible search range of zero and one by PSO (swarm size: 200, generations: 500) using
the proposed voltage matching technique. Damage parameters are identified from six different trials of
reading and mean values are presented in Table 3. The smallest crack depth (ξ = 0.125) is identified
with an absolute error of 12.56% in magnitude and 2.2% in its location. Similar to the numerical study,
here identifying the crack location is more accurate than depth estimation.
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exact absolute identified crack identified crack
exact crack depth ξ crack location λ depth (% error) location (% error)

0.5 0.2 0.5262 (−5.24) 0.1961 (1.95)
0.125 0.87 0.1093 (12.56) 0.8509 (2.2)

Table 3. Experimental identification (crack depth and location) of a multiple crack.

Now, the proposed method is compared with other similar experimental results in literature. Ding et al.
[2017] estimated the crack parameters of two cracks (crack depth ratio ξ = 0.1) with crack locations
(λ1 = 0.2, λ2 = 0.45) of a fixed-fixed beam using an improved artificial bee colony algorithm based on
experimental frequency measurement data from [Khiem and Toan 2014]. There, the maximum identified
crack depth and location error are 24% and 4% respectively. The proposed method has identified multiple
cracks with a maximum absolute error of 12.56% and 2.2% respectively for crack and location.

10. Conclusions

This study presents a multiple crack detection scheme in beam structures by minimizing measured and
predicted voltage responses of PZT patches. Unlike conventional accelerometer sensors, PZT patches
have low cost and negligible weight, and a wide band width with the ability of dynamic measurement
of distributed nature. A one-dimensional (1-D) hybrid beam element with a PZT sensor bonded to the
beam represented by reduced material properties is used. Hitherto, the one-dimensional (1-D) patch with
beam model was not used for structural identification, thereby unfolding a new model which is simple
and convenient. The effect of different PZT lengths is investigated with numerical examples and the
convergence of the fitness function of the cases are studied. Numerical examples show that the smallest
patch length PZT: 5% (5% of the length of the beam) under study is sufficient enough for effective and
accurate crack parameter identification. The proposed method estimated the crack depth error in the
range of 0.66% to 12% and the location error in the range of 0.11% to 4% (noise-free and noisy case).
The validation of the proposed method has also been carried out using experiments. The accuracy of the
proposed method using the one-dimensional hybrid element model is found to be comparable or superior
to some of the existing methods reviewed here.
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