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LONGITUDINAL SHEAR BEHAVIOR OF COMPOSITES WITH
UNIDIRECTIONAL PERIODIC NANOFIBERS OF

SOME REGULAR POLYGONAL SHAPES

HAI-BING YANG, CHENG HUANG, CHUAN-BIN YU AND CUN-FA GAO

Based on the Gurtin–Murdoch interface model, a complex variable-based approach is presented to study
the longitudinal shear behavior of composites containing unidirectional periodic nanofibers. For intuitive
demonstration, numerical results of the interfacial stress concentration and the effective (longitudinal)
shear moduli are calculated for composites containing circular and (approximately) regular polygonal
fibers. Graphic illustrations show that the interaction among periodic nanofibers can be neglected in
the prediction of the interfacial stress field when the volume fraction of the fibers is less than 7%. For
reasonably given interface parameters, fiber volume fraction and fiber size, the composite containing
periodic circular fibers can achieve a lowest sensitivity of effective shear moduli to the interface effect
among all the aforementioned fiber shapes. Moreover, we show that if the fibers are much harder than
the surrounding matrix (for example, the shear modulus of the fibers exceeds twice that of the matrix),
the corresponding interface effect can make only negligible contributions to the effective longitudinal
shear moduli of the composites.

1. Introduction

Based on the concept of surface stress associated with the excess free energy of a material surface,
Gurtin, Murdoch and coworkers [Gurtin and Murdoch 1975; 1978; Gurtin et al. 1998] developed a
general continuum-based mechanical model, known as the Gurtin–Murdoch model, for a material sur-
face/interface with residual tension and elasticity. In the past two decades, the Gurtin–Murdoch model
has contributed greatly to the investigations of mechanical behavior of composites containing nanopar-
ticles or nanofibers. For example, in the context of the Gurtin–Murdoch model, the stress state in the
vicinity of spherical nanoparticles and circular/elliptical nanofibers embedded in a foreign matrix was
studied, respectively, in [Sharma et al. 2003; Lim et al. 2006; Tian and Rajapakse 2007; Luo and Wang
2009; Mogilevskaya et al. 2008; Dai et al. 2016d; 2018], while the effective moduli of composites with
spherical nanoparticles and circular nanofibers were examined in [Duan et al. 2005; Chen et al. 2007;
Mogilevskaya et al. 2010; Yvonnet et al. 2008; Dai et al. 2016c; 2016b; 2017], respectively.

Based on the Gurtin–Murdoch model, present work aims to establish an alternative numerical proce-
dure to determine the longitudinal shear properties of composites containing periodic polygon-shaped
nanofibers. The work is motivated by the fact that there are only few available methods besides the finite
element method for the prediction of the elastic behavior of composites containing periodic nanofibers,
and particularly is inspired by the paper [Dai et al. 2016c], involving periodic circular nanofibers. Based
on the methodology in that paper, however, the extension of circular inclusions to noncircular inclusions
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Figure 1. Left: an elastic matrix containing periodic array of nanofibers. Right: a repre-
sentative square unit cell.

(e.g., polygonal inclusions) is difficult. In fact, as in [Dai et al. 2016c], it is relatively easy to extract the
equations with respect to the unknown coefficients since the complex potentials of the circular inclusions
are represented by the Taylor series (which is simple in form), but for polygonal inclusions it is usually
difficult to do the same thing because the corresponding complex potentials can only be described by
general Faber series which has a much more complicated form than the Taylor series. Consequently, it
is still nontrivial to design an effective procedure with efficient numerical implementation to calculate
the stress field for polygonal inclusions.

This paper is organized as follows. The boundary-value problem for composites with periodic polygon-
shaped nanofibers under uniform remote longitudinal shear loadings is formulated in Section 2, and its
series solution is established in Section 3. Several numerical examples are presented in Section 4 for
validating our solution and illustrating the mechanical behavior of the corresponding composites. Finally,
the main remarks constitute Section 5.

2. Problem description

As shown in Figure 1a, an elastic matrix (shear modulus G0) containing a periodic array of unidirectional
(approximately) polygonal nanofibers (shear modulus G1) under uniform remote antiplane shear loadings
σ∞13 and σ∞23 is considered. The influences of the nanofibers are described by the interface effect arising
from the interface energies based on the Gurtin–Murdoch model [1975]. Here, to make the problem
relatively tractable, we simply choose the representative unit cell (RUC), i.e., a square with the side
length denoted by a (Figure 1b). For convenience, we denote the regions occupied by the matrix, the
fiber and the interface between them, as S0, S1, and L , respectively. In particular, the indices (superscripts
or subscripts) 0 and 1 are used to denote the physical quantities belonging to the matrix and fiber in the
RUC, respectively.

According to the Gurtin–Murdoch mode, the elastic fields in the bulk region (S0, S1) still satisfy the
classical governing equations except for the stress discontinuity at the interfaces. In detail, the governing
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equations for the out-of-plane displacement w and the antiplane shear stresses are given by

∂2w(i)

∂x2
1
+
∂2w(i)

∂x2
2
= 0, i = 0, 1, (1)

σ
(i)
13 = Gi

∂w(i)

∂x1
, σ

(i)
23 = Gi

∂w(i)

∂x2
, i = 0, 1, (2)

while the boundary condition on the interface are described as

w(1)−w(0) = 0, σ
(1)
n3 − σ

(0)
n3 = Gs

d2w(1)

ds2 on L , (3)

where σn3 is the shear traction on the interface L with n denoting the direction of outward normal to L
(see Figure 1b), Gs is the interface shear modulus, and ds denotes the arc length of an element of the
curve L along its tangent.

In addition to the boundary condition (3) on L , the periodic boundary condition on the edge ABC D
of the RUC can be expressed as [Xia et al. 2003]

w(0)
( 1

2a, x2
)
−w(0)

(
−

1
2a, x2

)
=11

w(0)
(
x1,

1
2a
)
−w(0)

(
x1,−

1
2a
)
=12

}
∀ |x1|, |x2| ≤

1
2a, (4)

(dw(0)/dx2)|(x1,a/2) = (dw
(0)/dx2)|(x1,−a/2)

(dw(0)/dx1)|(a/2,x2) = (dw
(0)/dx1)|(−a/2,x2)

}
∀ |x1|, |x2| ≤

1
2a, (5)

where 11 and 12 are the constant increments between displacements on the sides DB and C A as well
as AB and C D, respectively (see Figure 1b). Furthermore, these two increments can be determined by
equilibrium equation on the sides AB and DB:∫ B

A
σ
(0)
23

(
x1,

1
2a
)dx1

a
= σ∞23 ,

∫ B

D
σ
(0)
13

( 1
2a, x2

)dx2

a
= σ∞21 . (6)

3. Solution procedure

General solutions to (1) and (2) can be given in terms of two complex potentials fi (z) (i = 0, 1) as
[Muskhelishvili 1975]

w(i) = Im f1(z), i = 0, 1, (7)

σ
(i)
23 + Iσ (i)13 = Gi f ′i (z), i = 0, 1, (8)

with
z = x1+ I x2, (9)

where the symbol I denotes the imaginary unit. In addition, the shear traction σn3 on the interface L can
be written as [Luo and Wang 2009]

σ
(i)
23 = Gi Im[ f ′i (t)e

Iα
], t ∈ L , i = 0, 1, (10)
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where α is the angle between the normal direction n and the positive x1 axis (see Figure 1b). Thus, by
(7) and (10), the condition (3) can be rewritten in the form as

Im f0(t)= Im f1(t),

Re f0(t)− γRe f1(t)− γ R Re[ f ′1(t)e
Iα
] = 0, t ∈ L , (11)

with

γ =
G1

G0
, λ=

Gs

G0 R
. (12)

In particular, the second equation in (11) comes from the integration of the second equation in (3)
with respect to the arc length of L .

Using (7), conditions (4) and (5) can be rewritten as

Im f0(zDB)− Im f0(zC A)=11, Im f0(z AB)− Im f0(zC D)=12, (13)

Re f ′0(z
AB)−Re f ′0(z

C D)= 0, Im f ′0(z
DB)− Im f ′0(z

C A)= 0, (14)

where z AB, zC D, zDB, and zC A represent the points of uniform distribution located on the sides AB, C D,
DB, and C A, respectively. Furthermore, the following relations should be satisfied:

z AB
= zC D, zDB

=−zC A. (15)

In addition, by using (8), the condition (6) becomes∫ B

A
Re f ′0(z)

dz
a
=
σ∞23

G0
,∫ B

D
Im f ′0(z)

dz
a
= I

σ∞13

G0
.

(16)

Here, we introduce a conformal mapping which transforms the boundary L in the physical z-plane
into a unit circle in the imaginary ξ -plane, as [Muskhelishvili 1975]

z = ω(ξ)= R
(
ξ +

+∞∑
n=1

tnξ−n
)
, |ξ | ≥ 1, (17)

where R and tn denote the constants determined by the overall size and shape of L . Subsequently, the
complex function f1(z) in S1 can be represented approximately via the following truncated Faber series as

f1(z)=
N∑

j=1

a j P1 j (z), (18)

where P1 j (z) is a Faber polynomial for the region S1 and satisfies

P1 j (z)= ξ j (z)+
∞∑

n=1

β j,nξ
−n(z), (19)



LONGITUDINAL BEHAVIOR OF COMPOSITES WITH PERIODIC NANOFIBERS OF POLYGONAL SHAPES 159

on L , where

β1,n = tn, β j+1,n = t j+n +β j,n+1+

n∑
i=1

tn−1β j,i −

j∑
i=1

t j−1βi,n, j, n = 1, 2, . . . (20)

In the above formulas (18)–(20), a j ( j = 1, . . . , N ) are the unknown complex coefficients to be deter-
mined and tn (n = 1, 2, . . .) are the constant coefficients of the mapping (17). Similarly, the complex
function f0(z) in S0 can be expressed in terms of the superposition principle as follows [Dai et al. 2016a]:

f0(z)=
N∑

j=1

b jξ
− j
+

M∑
j=1

c j Pj (z), (21)

with

Pj+1(z)= P1(z)Pj (z)−
j−1∑
k=1

mk Pj−k(z)− ( j + 1)m j , ( j = 1, . . . ,M − 1),

P1(z)=
143z
84a

, mk =


−

1
6 k = 3,
1

56 k = 7,
0 k = others,

(22)

where b j ( j = 1, . . . , N ) and c j ( j = 1, . . . ,M) are the unknown complex coefficients to be determined,
while Pj (z) ( j = 1 . . .M) is a Faber polynomials of an (approximate) square region.

Substituting the defined complex potentials (18) and (21) into the corresponding boundary conditions
(Equations (11), (13), (14) and (16)) leads to the solutions of coefficients a j ( j = 1, . . . , N ), b j ( j =
1, . . . , N ), and c j ( j = 1, . . . ,M) via the Fourier expansion method. In detail, a system of linear
equations with respect to the unknown coefficients a j ( j = 1, . . . , N ), b j ( j = 1, . . . , N ) and c j ( j =
1, . . . ,M) can be obtained by equating the corresponding coefficients on the two sides of equations on
the internal interface L . On the external boundary ABC D, a collocation method is used by choosing K
(K ≥ M/2) collocation points equidistantly on each side to deal with the periodic boundary conditions
(13) and (14), then a system of linear equations can be extracted with respect to the unknown coefficients
b j ( j = 1, . . . , N ) and c j ( j = 1, . . . ,M). Using the method in [Dai et al. 2016c], all the unknown
coefficients can be described by the two parameters11 and12. In terms of the two mean stress conditions
(see (16)), the two parameters 11 and 12 can be obtained uniquely, and then the coefficients a j ( j =
1, . . . , N ), b j ( j = 1, . . . , N ), and c j ( j = 1, . . . ,M) are all determined. Once the actual complex
potentials fi (z) (i = 0, 1) are found, the displacement and stress field in the entire RUC are obtained
using (7) and (8).

In addition, referring to the present Cartesian coordinate system, the effective longitudinal shear mod-
uli (denoted by G1313, G1323, G2313, and G2323) of the composite can be defined based on the obtained
stress and displacement as [

G1313 G1323

G2313 G2323

]
·

[
11/a
12/a

]
=

[
σ∞13
σ∞23

]
. (23)
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It is noteworthy that determination of all the effective shear moduli involve considering two indepen-
dent kinds of external loadings (for example, σ∞13 6= 0, σ∞23 = 0 and σ∞13 = 0, σ∞23 6= 0) and calculating
the corresponding parameters 11 and 12, respectively.

4. Numerical examples

In this section, we focus on the examples for circular nanofibers and regular polygonal nanofibers, in
which corresponding mappings (17) are given approximately as [Muskhelishvili 1975]

ω(ξ)= Rξ (circle), (24)

ω(ξ)= R
(
ξ + 1

3ξ
−2) (triangle), (25)

ω(ξ)= R
(
ξ − 1

6ξ
−3) (square1), (26)

ω(ξ)= R
(
ξ + 1

6ξ
−3) (square2), (27)

ω(ξ)= R
(
ξ + 1

10ξ
−4) (pentagon), (28)

ω(ξ)= R
(
ξ + 1

15ξ
−5) (hexagon), (29)

where R characterizes the radius or side length of corresponding fibers. It is worth noting that the
maximum volume fraction of the fibers varies with the fiber shape. In particular, when R is prescribed
within the nanoscale, the normalized interface parameter λ defined in (12) is usually of the order 10−2

to 10−1 [Ruud et al. 1993; Josell et al. 1999].

4.1. Resultant stress fields around interface. Here, we define the resultant shear stresses σ (i) (i = 0, 1)
and σ∞ as follows:

σ (i) =
√
σ
(i)2
13 + σ

(i)2
23 , i = 1, 2, (30)

σ∞ =
√
σ∞2

13 + σ
∞2
23 . (31)

Figures 2 and 3 show the resultant shear stresses around the variously shaped interface between fiber
volume fraction (VF) for σ∞13 = σ

∞

23 , λ= 0.12. It can be seen from Figures 2 and 3 that the results for
periodic fibers converge to those for a single fiber in an infinite plane (see the corresponding results in
[Wang and Schiavone 2014]) as the volume fraction of the fibers decreases, roughly speaking, to 7%. This
suggests that one can use the simpler model of a single fiber in an infinite plane to predict approximately
the stress concentration around periodic fibers when the fiber volume fraction falls below 7%.

4.2. Effective shear moduli. From an extensive collection of our numerical examples for fibers of var-
ious shapes (including those defined in (24)–(29)), it is found from Figures 4 and 5 that the increment
11 is always zero when σ∞23 = 0 while the increment 12 is always zero when σ∞13 = 0. This suggests
that the shear stress σ∞13 does not induce the shear strain in the x2-x3 plane while the shear stress σ∞23
does not induce the shear strain in the x1-x3 plane (here x3 denotes the coordinate axis perpendicular
to the x1-x2 plane). That is to say, the minor effective shear moduli G1323 and G2313 are always zero,
which implies that the effective longitudinal shear properties of the composite with periodic circular or
regular polygonal fibers are almost orthotropic in terms of our present reference coordinate system. All
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[Dai et al. 2016b]

Figure 2. Resultant shear stresses around matrix on the interface between soft fiber and
matrix. In each panel, the lowermost curve or dotted line shows single-fiber data from
[Wang and Schiavone 2014]; remaining curves are reference data from [Dai et al. 2016c].

things considered, the zero values of these coupled shear moduli may be due to the perpendicularity in
the direction of period.

In the remaining examples, one of the purposes is to study the influence of the shear modulus of the
nanofibers on the effective longitudinal shear properties of the composite. To do this, however, requires
that the interface shear modulus Gs not be treated as a fixed parameter when the shear modulus of the
nanofibers changes since the interface shear modulus depends on not only the bulk properties of the
matrix but also those of the nanofibers. Here, we treat the interface as the assembly of the surfaces of the
matrix and nanofibers so that the interface shear modulus Gs is defined as the sum of the surface shear
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[Dai et al. 2016b]

Figure 3. Resultant shear stresses around fiber on the interface between soft fiber and
matrix. See caption on previous page for key.

moduli of the matrix and nanofibers [Tiersten 1969; Zhang et al. 2012]:

Gs = Gs0+Gs1, (32)

where Gs0 and Gs1 are the surface moduli of the matrix and fibers, respectively. In particular, we simply
assume Gs1/Gs0 = G1/G0 since larger bulk moduli often indicate larger surface moduli. Consequently,
the normalized interface parameter λ introduced from (12) is rewritten as

λ=
Gs0(1+ γ )

G0 R
= λ0(1+ γ ), λ0 =

Gs0

G0 R
, (33)
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Figure 4. Minor effective longitudinal shear moduli of the composite with periodic soft fibers.

where λ0 characterizes the normalized surface shear modulus of the matrix and it is taken as 0.1 in all
of the following examples.

Figures 6–13 show the influence of the shape and volume fraction (VF) of the periodic fibers on the
major effective (longitudinal) shear moduli G1313 and G2323 of the corresponding composite for several
distinct interface parameters λ. In particular, G∗1313 and G∗2323 denote the specific major effective shear
moduli of the composite when the interface effect is absent (or equivalently the interface parameter λ= 0).
In Figures 7, 9, 11, and 13, we rearrange the results given respectively in Figures 6, 8, 10, and 12, and
use the ratios G1313/G∗1313 and G2323/G∗2323 to demonstrate directly the contribution of interface effect
to the major effective shear moduli of the composite with varying volume fraction of fibers.
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Figure 5. Minor effective longitudinal shear moduli of the composite with periodic hard fibers.

It is easily seen from Figures 6–13 that for a given fiber volume fraction, the major effective shear
moduli of the composite containing periodic regular n-sided polygonal fibers decrease from the original
increase with increasing n for the nonnegative value of λ when the fibers get harder. For the negative value
of λ, the major effective shear moduli of the composite increase with increasing n. On the other hand, the
contribution of the interface effect to the major effective shear moduli of this kind of composite decreases
always with increasing n. These imply that for a given fiber volume fraction and interface parameter λ, the
major effective shear moduli of the composite containing periodic circular fibers are larger but less sensi-
tive to the interface effect as compared with those of the composites containing periodic regular polygonal
fibers when the fibers are very soft. When the fibers get harder, the major effective shear moduli of the
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Figure 9. Contribution of interface effect to the major effective longitudinal shear moduli.
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Figure 11. Contribution of interface effect to the major effective longitudinal shear moduli.
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composite containing periodic circular fibers are still less sensitive to the interface effect but are smaller
as compared with those of the composites containing periodic regular polygonal fibers. In addition, our
results indicate that one can neglect the interface effect (i.e., treat the interfaces as being perfectly bonded
to the matrix) when the shear modulus of the fibers reaches two (or more) times that of the matrix.

5. Conclusion

Based on the Gurtin–Murdoch model, the longitudinal shear behavior of composites with unidirectional
periodic nanofibers of approximately regular polygonal shapes is investigated using a complex variable-
based numerical procedure. Numerical results are presented for the stress concentration on the interfaces
and the effective (longitudinal) shear moduli of the composite relative to the interface parameter, the
volume fraction of the fibers, and the hardness of the fibers. The main findings are as follows:

(1) The stress field around periodic fibers can be treated as that around a single fiber (of identical shape,
size, and interface parameters) without inducing significant errors when the volume fraction of the
periodic fibers is less than 7%.

(2) For (reasonably) given interface parameters, fiber volume fraction and fiber size, the composite
containing periodic circular fibers has the lowest sensitivity of effective shear moduli to the interface
effect among all the composites containing periodic regular polygonal fibers.

(3) The interface effect is negligible in the determination of the effective shear moduli of the composite
when the shear modulus of the fibers reaches two (or more) times that of the matrix.
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