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MULTIPLE CRACK DAMAGE DETECTION OF STRUCTURES USING
SIMPLIFIED PZT MODEL

NARAYANAN JINESH AND KRISHNAPILLAI SHANKAR

A novel damage identification scheme for multiple cracks in beams is presented based on the one-
dimensional (1-D) piezoelectric patch with beam model. A hybrid element constituted of a 1-D beam
element and a PZT sensor is used with reduced material properties. This model is more convenient and
simpler for crack identification of beams than using a complex 3-D patch model. The hybrid beam ele-
ment and the multiple crack identification procedure is verified experimentally. The crack identification
is carried out as an inverse problem whereby location and depth parameters are identified by minimizing
the deviation between the predicted and measured voltage responses of the patch when subjected to
excitations. In the proposed method, a patch is attached to either end of the fixed beam. The numerical
and experimental results show that there is significant improvement in identification accuracy compared
to other methods.

1. Introduction

Structural health monitoring (SHM) is the process in which the state of structural health is directly
assessed using a nondestructive approach. Damage occurs during service because of the operational
cyclic loading, aging, mechanical vibration, changing ambient conditions, shocks, and chemical attack.
Hence, the early detection of damage, location, and its severity is very important in the current scenario.
Generally, damage identification methods such as acoustic, radiography, magnetic field, and thermal field
methods are used for damage detection. All of these techniques are expensive and require that the zone of
the damage is known a priori and the structural element being inspected is readily accessible. As an alter-
native, vibration-based damage detection methods using the inverse concept deserve further investigation.

A crack in a structural element increases the local flexibility, which is a function of crack depth
and location. Lee and Shin [2002] identified the location and magnitude of local damage of a beam
structure from the dynamic stiffness equation of the beam structure. In that paper, experimentally mea-
sured frequency response function data from the damage structure were required as the input data and
applicability was limited to cases for which exact dynamic stiffness matrices are obtainable. Yang and
Wang [2010] introduced a new damage detection method based on the concept of a natural frequency
vector (NFV) and the natural frequency vector assurance criterion (NFVAC), which was verified by both
simulative and experimental examples. Wang et al. [2001] suggested a two-stage identification algorithm
utilizing changes in natural frequencies and static displacements for identifying structural damage. Liu
et al. [2011] identified the presence of structural damage using multiobjective optimization, keeping
variations in natural frequency and mode shapes as individual objective functions. Viola et al. [2001]
formulated shape functions of a cracked Timoshenko beam element based on the Hamilton principle,
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with crack sections represented as elastic hinges. A nondestructive evaluation procedure for identifying
the magnitude and location of the structure based on experimentally measured frequency and mode shape
was developed. Viola et al. [2002] investigated the effect of cracks in the stiffness matrix which neglect
the crack closure effect by assuming an open crack.

Patil and Maiti [2005] predicted the location and size of multiple cracks on a slender beam based
on experimentally measured frequencies. A strategy to overcome failure in the prediction for cases
where one of the cracks is located near an antinode was presented. Douka et al. [2004] investigated
the effect of two transverse cracks on the mechanical impedance of a double-cracked cantilever beam
both analytically and experimentally. They found significant change of antiresonance frequency due to
the presence of cracks, and this additional information was used along with natural frequency changes
to identify cracks. Ding et al. [2017] identified multiple cracks using the improved artificial bee colony
algorithm (I-ABC) based on an objective function which consists of a limited number of measured natural
frequencies. Sekhar [2008] reviewed multiple crack identification in beam, rotor, and pipe structures. The
aforementioned study summarized the effects, modeling of cracks, and various vibration identification
methods for multiple cracks. Sinha et al. [2002] developed a multicrack model in an Euler–Bernoulli
beam based on a small modification of the local flexibility in the vicinity of the crack. In that paper,
crack models were incorporated into the finite element model of the structure, and crack location and
size were estimated using the model updating from the experimentally measured modal data.

Philips Adewuyi et al. [2009] identified single/multiple damage in beam using the combined measure-
ment of displacement modes from an accelerometer and distributed strain modes with fiber Bragg grating
(FBG) sensors. Nandakumar and Shankar [2014] identified multiple crack parameters in the beam using
the concept of double-crack transfer matrices with the combined measurements of an accelerometer and
a strain gauge. Verhese and Shankar [2014] applied the combined instantaneous power flow balance and
conventional acceleration matching concept for the substructural identification of multiple crack param-
eters of the beam. In the above described method, accelerometers were used as sensors for structural
parameter identification.

The high reliability, sensitivity, and electromechanical coupling property of PZT has gained significant
attention for potential application as sensors for structural health monitoring. Bendary et al. [2010]
formulated a one-dimensional integrated beam element using Hermite cubic and Lagrangian interpo-
lation functions which are carried out for static and dynamic analysis. Zemčík and Sadílek [2007]
developed the one-dimensional hybrid PZT element based on the Euler–Bernoulli beam using the bilinear
Lagrangian interpolation polynomial for electric potential which is carried out for modal analysis. Later,
the same element was used for frequency response analysis and the results were experimentally verified
in [Sadílek and Zemčík 2010]. Sulbhewar and Raveendranath [2015] formulated the one-dimensional
Euler–Bernoulli beam with PZT structure using a coupled field polynomial that is independent of the
material configuration of the piezoelectric beam cross section. A two-stage identification strategy was
proposed by Fukunaga et al. [2002] using a limited number of PZT sensors in the time and frequency
domain. It identified crack depth up to 10% depth, but it strongly depends on reliable modal data of
undamaged structure.

In most of the literature available, accelerometer signals are used for structural identification. However,
compared to accelerometers, PZT patches have the advantages of low cost with negligible weight and
wide dynamic range. The most notable feature of PZT patches is their miniaturized appearance and ability
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to be implanted in civil structures for in situ health monitoring of the structure. Moreover, because of
their light weight, PZT patches are not likely to alter the dynamic properties, and their output voltage
is less likely to be contaminated with signal noise. In the present proposed method, an integrated beam
structure with a PZT sensor is incorporated into the finite element model of the structure and is used for
the direct identification of damage at various locations in structure. Damage identification using a one-
dimensional piezobeam hybrid model is not reported in the literature. Hence, it is a novel contribution.
The objective function consists of the mean square of the deviation between measured and estimated
voltage from the PZT patches. Multiple crack identification using the one-dimensional PZT patch model
and the effect of patch length are not reported in the literature. The one-dimensional hybrid element
is especially convenient and simple for modeling beam-type structures as compared to more complex
3-D PZT patch models. The computational complexity is significantly reduced using a one-dimensional
element. The theory is validated with numerical and experimental examples in the sections below.

2. Constitutive equations of PZT

Piezoelectric materials transform mechanical displacement into an electrical field (voltage potential), in
which case the piezoelectric material acts as a sensor (direct effect), and its converse effect acts as an
actuator. The constitutive equations for the transversely isotropic piezoelectric medium which define the
interaction between the stress (σ ), strain (ε), electric displacement (D), and electric field (E) are of the
form [Benjeddou 2000]

σ j = C jkεk − e jm Em, (1)

Dl = el jεk + εlm Em, (2)

where C jk , εlm , and el j ( j, k = 1, . . . , 6 and l,m = 1, . . . , 3) are the elastic, dielectric, and piezoelectric
coupling coefficients, respectively. The transversely poled piezoelectric material is bonded/embedded
in the host structure. The complete coupled three dimensional constitutive equation of a piezoelectric
material with principal material axes (x , y and z) can be written as [Sulbhewar and Raveendranath 2015]
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σz

τyz

τxz

τxy

Dx

Dy

Dz


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
, (3)

where τ and γ are shear stress and shear strain, respectively.

3. One-dimensional beam geometry

The three-dimensional beam with axes is shown in Figure 1. The Euler–Bernoulli beam theory is applied
for a one-dimensional beam with a piezoelectric patch, which neglects the shear effect. The model is
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assumed to be plane stress and width in the y-direction is stress free. Therefore, it is possible to set
σy = σz = τxy = τxz = τyz = γxy = γxz = γyz = 0 while εy 6= 0, εz 6= 0 [Sulbhewar and Raveendranath
2015]. The polarization axis z is aligned with the thickness direction of the beam, thus only Dz is taken
and for electric field Ex = Ey = 0. Applying these conditions, (3) is reduced to the form[

σx

Dz

]
=

[
Ĉ −ê
ê ε̂

] [
εx

Ez

]
, (4)

where Ĉ = Q11 − Q2
12/Q22 and Qi j = Ci j − Ci3C j3/C33 (i, j = 1, 2); ê = ē31 − ē32(Q12/Q22) and

ē3i = e3i − e33(C13/C33) (i = 1, 2); ε̂ = ε̄33+ ē2
32/Q22 and ε̄33 = ε33+ e2

32/C33 [Kapuria and Hagedorn
2007]. Here, Ĉ , ε̂, and ê are the reduced elastic, dielectric, and piezoelectric coupling coefficients
respectively and the calculated values are shown in Table 1. This reduced property is used for further
numerical study of the one-dimensional (1-D) beam with a PZT patch in MATLAB.

X

Z

Y

Figure 1. Three-dimensional beam.

material properties

aluminum E = 71 GPa ν = 0.3 ρ = 2210 kg ·m−3

PZT 5H

C11 = C22 = 126 GPa C12 = 79.5 GPa
C13 = C23 = 84.1 GPa C33 = 117 GPa
C44 = C55 = 23 GPa C66 = 23.25 GPa
e31 = e32 =−6.5 C ·m−2 e33 = 23.3
e15 = e24 = 17 C ·m−2 ε11 = ε22 = 1.503× 10−8 F ·m−1

ε33 = 1.3× 10−8 F ·m−1 ρ = 7500 kg ·m−3

reduced properties Ĉ = 60.013 GPa ê =−16.4921 C ·m−2 ε̂ = 2.5885× 10−8 F ·m−1

Table 1. Material properties of the beam.

le
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hhh

hp

w1 w2
�1 �2

�1

 1

�2

 2
PZT-5H

structure

Figure 2. One-dimensional beam element: PZT and supporting structure sharing com-
mon nodes.
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4. FEM formulation and elemental matrices

The one-dimensional beam formulation has been presented in [Sadílek and Zemčík 2010; Sulbhewar
and Raveendranath 2015], but not used for time domain dynamic response with damping and inverse
problems. The finite element formulation of the structure is briefly explained here. The beam element is
based on the Euler–Bernoulli theory and the element has two nodes. Two independent polynomials are
used for interpolation of mechanical and electrical field variables. First, the Hermite cubic polynomial
is used for the interpolation of mechanical quantities of vertical displacement (w) and rotation (θ) as
shown in Figure 2. The vertical displacement (w) is approximated across the length as

w(x)= a0+ a1x + a2x2
+ a3x3

= [Nw]{we
}, (5)

where Nw is the shape interpolation function of the structural part and structural nodal degree of freedom
per element is arranged as we

= [w1, θ1, w2, θ2]
T . The bending strain is

ε(x, z)=
∂u
∂x
=−z

∂2w

∂x2 = [Bw]{w
e
}, (6)

where [Bw] is the strain-displacement matrix consisting of derivatives of shape functions.
The electric potential is φ(x, z), considered as a function of the thickness and the length of the beam.

Hence, let Langrangian bilinear function be estimated for the interpolation as

φ(x, z)= a4+ a5x + a6z+ a7xz = [8φ]{φe
}. (7)

Here, φ and ψ are the lower and upper electrical potentials of PZT surface. The electrical nodal degrees
of freedom per element can be ordered as {φe

} = [φ1, ψ1, φ2, ψ2]
T. The electric field E(x, z) can be

written as
E(x, z)= [Bφ]{φe

}, (8)

where [Bφ] is the electrical field potential matrix consisting of derivatives of shape functions.
Here, a homogeneous electrical boundary condition is imposed on the bottom surface of PZT patch

to eliminate rigid body modes, i.e., the lower surface is grounded with φ = 0 V, while the upper surface
is left open. The dynamic potential energy density G for the piezoelectric medium can be written as [Xu
and ShengPeng 2013]

G = 1
2ε

T cε− 1
2 ET εE − εT eE . (9)

The elemental matrices are calculated by applying the variational principle to potential, kinetic energy,
and external forces (mechanical and electrical loading). This must be satisfied for any arbitrary variation
of the displacements and electrical potentials and thus the equations of motion of elemental matrices
with damping can be represented as[

[Me
ww] [0]
[0] [0]

]{
{ẅe
}

{φ̈e
}

}
+

[
[Ce
ww] [0]
[0] [0]

]{
{ẇe
}

{φ̇e
}

}
+

[
[K e

ww] [K
e
wφ]

[K e
wφ]

T
[K e

φφ]

]{
{we
}

{φe
}

}
=

{
{Fe
}

{Qe
}

}
. (10)

The damping matrix [Ce
ww] is defined as a proportional damping, i.e., [Ce

ww]=α[M
e
ww]+β[K

e
ww] and α, β

are Rayleigh’s damping coefficients. Equation (10) is the elemental equilibrium in the discretized form,
where [Me

ww] is the mass matrix, and [K e
ww], [K

e
wφ], and [K e

wφ] are the stiffness matrices corresponding
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Figure 3. Beam element with two cracks.

to the mechanical coupling, electromechanical coupling, and electrical degrees of freedom, respectively.
{Fe
} and {Qe

} are the mechanical and electrical charge load vectors, respectively. The size of the element
matrices are [4× 4] and are given by

[Me
ww] =

∫
V
[Nw]Tρ[Nw] dV, [K e

ww] =

∫
V
[Bw]T Ĉ[Bw] dV,

[K e
wφ] =

∫
V
[Bw]T ê[Bφ] dV, [K e

φφ] =

∫
V
[Bφ]T ε̂[Bφ] dV .

(11)

In order to solve this, the global matrix equation (10) can be expanded and written as

[Mww]{ẅ}+ [Cww]{ẇ}+ [Kww]{w}+ [Kwφ]{φ} = {F},

[Kwφ]
T
{w}+ [Kφφ]{φ} = {Q}.

(12)

The second part of (12) is simplified as

{φ} = [Kφφ]
−1
{Q}− [Kφφ]

−1
[Kwφ]

T
{w}. (13)

The above equation is substituted in the first part of (12) and is written as

[Mww]{ẅ}+ [Cww]{ẇ}+ [Kww]
∗
{w} = {F}∗, (14)

where
[Kww]

∗
= [Kww] − [Kwφ][Kφφ][Kwφ]

T ,

{F}∗ = {F}− [Kwφ][Kφφ]
−1
{Q}. (15)

For the sensor problem, displacement histories are obtained by solving (14), and by substituting into
(13), the voltage vector across the sensor patch is obtained.

5. FEM formulation of beam element with multiple cracks

5.1. Double crack per beam element model. The finite element formulation of the double crack per
element model is explained here and it is identified as two cracks per beam element. This has hitherto
not been incorporated in a one-dimensional PZT patch model, and also its application in an inverse
problem of crack identification is novel. The crack per beam element and corresponding finite element
model are shown in Figures 3 and 4 respectively. Let le be the length of the element, l1 and l2 are the
locations of the crack from its left end, a1 and a2 respectively are the crack depths measured from the
top of the beam.
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Figure 4. Equivalent model of cracked beam element.

The finite element model of two cracks per beam element contains three segments connected by two
massless hinges of flexibility c1 and c2, respectively, as shown in Figure 4. Three different polynomials
are assumed for the field variables of this element since it has three different segments:

v1(x)= b1+ b2x + b3x2
+ b4x3

θ1(x)= v′1(x)= b2+ 2b3x + 3b4x2

}
0≤ x ≤ l1;

v2(x)= b5+ b6x + b7x2
+ b8x3

θ2(x)= v′2(x)= b6+ 2b7x + 3b8x2

}
l1≤ x ≤ l2;

v3(x)= b9+ b10x + b11x2
+ b12x3

θ3(x)= v′3(x)= b10+ 2b11x + 3b12x2

}
l2≤ x ≤ le;

(16)

where b1–b12 are the polynomial constants. The following are the nodal values and conditions applied
to the cracked beam element:

v1(0)= Y1, θ1(0)=21, v3(le)= Y2, θ3(le)=22,

v1(l1)= v2(l1), v′′1 (l1)= v
′′

2 (l1), v′′′1 (l1)= v
′′′

2 (l1),

v2(l2)= v3(l2), v′′2 (l2)= v
′′

3 (l2), v′′′2 (l2)= v
′′′

3 (l2),

v′′2 (l1)=
1

K c1
(θ2(l1)− θ1(l1)), v′′3 (l2)=

1
K c2

(θ3(l2)− θ2(l2)).

The flexibility coefficients Kc1 = E I c1 and Kc2 = E I c2 at crack locations. E I is the flexural stiffness
and c is the torsional flexibility of the crack; Y1, 21, Y2, and 22 are the displacement and rotation at
the nodes 1 and 2 respectively. The flexibility coefficient at the crack location can be also expressed as
[Viola et al. 2001]

Kc1,c2 = h f (ξ)/2, (17)

where f (ξ) is a correction function which takes into account the body and crack geometry and depends
on the dimensionless crack ratio ξ1,2 = a1,2/h which can be represented as follows [Viola et al. 2001]:

f (ξ)= ξ 2(12− 19.5ξ + 70.1ξ 2
− 97.6ξ 3

+ 142ξ 4
− 138ξ 5

+ 128ξ 6
− 132ξ 7

+ 379ξ 8
− 417ξ 9

+ 131ξ 10
+ 313ξ 12

− 357ξ 13
+ 102ξ 14), 0≤ ξ < 0.5;

f (ξ)=
1.32

(1− ξ 2)
− 1.78, 0.5≤ ξ ≤ 1. (18)
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The shape function matrix [N (x)] of size 6× 4 relates the nodal DOF with the field variables as follows:

v1(x)
θ1(x)
v2(x)
θ2(x)
v3(x)
θ3(x)


=



N11(x) N12(x) N13(x) N14(x)
N21(x) N22(x) N23(x) N24(x)
N31(x) N32(x) N33(x) N34(x)
N41(x) N42(x) N43(x) N44(x)
N51(x) N52(x) N53(x) N54(x)
N61(x) N62(x) N63(x) N64(x)




Y1

21

Y2

22

 . (19)

From the finite element procedure, the stiffness and mass matrices of the cracked element can be obtained
as

[ke
cr ] = E I

(∫ l1

0
BT

1 B1 dx +
∫ l2

l1

BT
2 B2 dx +

∫ le

l2

BT
3 B3 dx

)
, (20)

[me
cr ] = ρA

(∫ l1

0
N1(x)T N1(x) dx +

∫ l2

l1

N3(x)T N3(x) dx +
∫ le

l2

N5(x)T N5(x) dx
)
. (21)

where B1= d2
[N1(x)]/dx2, B2= d2

[N3(x)]/dx2, and B3= d2
[N5(x)]/dx2. Here, N1(x), N2(x), N3(x),

N4(x), N5(x), and N6(x) are the respective rows of the shape function matrix N (x). Since the effect of
rotation of the beam element is very small when compared with translation of beam, it may be neglected.
This can be extended to any number of cracks per element. When either K c1 or K c2 is zero, the element
becomes a single crack per element model as in previous literature [Krawczuk et al. 2000; Viola et al.
2001]. The single crack per element with one-dimensional PZT patch in structural identification (SI) has
not yet been reported. When the values of K c1= K c2= 0, the structure is considered as an intact element.

6. Particle swarm optimization (PSO) algorithm

A heuristic optimization technique referred to as particle swarm optimization PSO is used here which
mimics the social behavior of swarms. It was first proposed by James and Eberhart [Kennedy and
Eberhart 1995]. Heuristic methods are preferred over calculus-based methods due to their robustness
and ability to attain the global optima. It imitates the social behavior of a swarm of birds. Each bird
tends to follow the general swarm direction in search of the target (food), but it has a component of its
own intelligence and memory (i.e., local search) which influences its action. Each bird is visualized as a
“particle” which approaches the target (i.e., the global optima) with a “velocity”. The number of particles
(i.e., population) and their initial random positions are specified. As the particles progress to the global
optima through many generations, their current position is updated using two parameters: Gbest, which
represent the historically best coordinate of all the particles in the population, and Pbest,i , the historically
best coordinate of the i-th particle. The equations giving the velocity v and position x for the i-th particle
in the k+ 1 generation are given by

vi (k+ 1)= ϕ(k)vi (k)+α1[γ1i (Pbest,i − xi (k))] +α2[γ2i [(Gbest− xi (k))], (22)

xi (k+ 1)= xi (k)+ vi (k+ 1), (23)

where i is the particle index, k the discrete time index, v the velocity of the i-th particle, and x the position
of the i-th particle in the present solution. Here, γ1 and γ2 represent two random numbers between zero
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and one, ϕ is an inertia term uniformly decreasing from 0.9 to 0.4 with passing generations, and α1 and
α2 are two acceleration constants set to two [Perez and Behdinan 2007]. Several studies have pointed out
the superiority of the PSO algorithm over the more conventional heuristic algorithms such as the genetic
algorithm (GA) for inverse problem applications [Mohan et al. 2014; Mouser and Dunn 2005].

7. Crack identification using one-dimensional PZT patch

In the proposed method, a patch is attached to either end of the beam member whose crack parameters
have to be identified. The time-domain-based approach is used and the voltage history of the patch is
used as the main response quantity in the identification of structural stiffness and crack parameters. A few
experimentally measured voltage potential responses φm are measured from PZT patches. The estimated
voltage potential φe is obtained from the mathematical model using (13). For exact identification, φe

has to match with the experimentally measured responses φm . In this method, experimental responses
are simulated from a known numerical model and polluted with Gaussian noise of zero mean and a
certain standard deviation. Using the particle swarm optimization (PSO) algorithm, the following fitness
(objective) function is minimized, which is the sum of squares of deviations between the measured and
estimated voltage. The fitness or objective function is

f =

∑M
i=1

∑L
j=1|φ

m(i, j)−φe(i, j)|2

M L
. (24)

The superscripts m and e denote measured and estimated responses for fitness evaluation, M is the
number of measurement sensors used, and L is the number of time steps. Ideally, it must be minimized
to zero, but usually it approaches a value close to zero. The minimization of the fitness function gives
the identified crack depth and location variables.

8. Numerical examples and results

Here, three different types of numerical studies are carried out for validating the proposed identification
method. A fixed-fixed beam with two cracks (assuming a single crack per element), the same beam with
four cracks, and substructures (SS) of the frame structure with nine members and four cracks (assuming
two cracks per element). A patch is attached to either end of the beam member. The structural parameters,
such as mass and stiffness of the undamaged structure, are assumed to be known. Experimental measured
responses are numerically simulated from a fully defined model in MATLAB using Newmark’s constant
acceleration scheme. The structure is excited by an impulse or harmonic force and the corresponding
voltage responses are measured at the PZT patches. The crack parameters such as location and depth
are estimated using the inverse formulation with a single objective approach. In order to simulate the
effect of noise in experiments, a Gaussian random noise level of 5% (standard deviation) and zero mean
is added to all the measured signals. The noise is added with simulated responses in such a way that

Noise= g×RMSsignal× N L (25)

where g is the standard Gaussian variable, RMSsignal is the root mean square (RMS) value of the numer-
ically simulated signal, and NL is noise level.
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Figure 5. Finite element model of two single cracks per beam element with PZT patch.

In this numerical study, three different PZT patch lengths are investigated, and they are PZT : 5%,
PZT : 10%, and PZT : 20%. They respectively represent the length of the patch expressed as percentage
of beam length. The width of PZT is the same as the host structure and a constant thickness of 1 mm is
used for this study.

8.1. Example 1: fixed-fixed beam with multiple cracks using single crack per element. The crack
detection by the proposed method is applied on the fixed-fixed beam structure to determine the magnitude
(crack depth) and locations of two cracks simultaneously. The same cracked steel beam was studied in
[Verhese and Shankar 2014; Viola et al. 2001]: it is 520 mm long, 50 mm wide, and 8 mm thick with a
Young’s modulus (E) of 206 GPa and density of 7850 kg/m3. The two open edge cracks are assumed to
be located at 19.5 mm and 221 mm from the left end of beam, respectively, and it is also assumed that
the cracks in different elements do not interact with each other. The absolute normalized crack location
measured from the left end of the beam are λC1(l1/L)= 0.0375 and λC2(l2/L)= 0.425. Crack depths of
0.4 mm and 4 mm are considered and the corresponding normalized crack depths are ξC1(a/h)= 0.05
and ξC2(a/h)= 0.5 respectively. The beam is divided into five Euler finite elements as shown in Figure 5
and cracks lie in the first and third elements. It may be noted that the first crack is located under the PZT
patch.

In this study, as in the first case, two PZT patches with size PZT : 5%, i.e., (26× 50× 1 mm3 PZT)
is bonded on either end of the structure as shown in Figure 5. The first and second natural frequency
of the modes of vibration of the cracked structure are 151.29 Hz and 430.97 Hz respectively. Rayleigh
damping with a modal damping ratio of 3% is used for the first two modes of vibration. The beam
is subjected to a harmonic excitation of F(t)= 2.5 sin(2π130t)N in the vertical (upward) direction at
node 4. The displacement, velocity, and acceleration time history data are calculated for each nodal point
using Newmark’s method with a constant time step of 0.001 s. Using the displacement response history,
voltage responses are measured through two PZT patches. Figure 6 shows the undamaged and damaged
responses available at the measurement PZT patch sensor A for multiple crack locations. The shift in
damaged response for multiple cracks is greater than a single crack. The numerically calculated voltages
are polluted by artificially adding Gaussian white noise with zero mean and a standard deviation of 5%
to simulate experimental errors.

The mass and intact stiffness E I of the structure are assumed to be known a priori. The proposed
algorithm identifies multiple cracks assuming that each element contains a single crack. The normalized
crack location in element 1 with respect to left end of the element is λe1 = 0.75 and the same in element 3
is λe3 = 0.25. Here, crack magnitude and location are set as the unknown variables for each element and



MULTIPLE CRACK DAMAGE DETECTION OF STRUCTURES USING SIMPLIFIED PZT MODEL 235

vo
lt

ag
e 

in
 V

time in s
0.020

4

2

0

− 2

− 4
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

undamaged damaged

Figure 6. Harmonic response at measurement (PZT A) with multiple crack locations.

crack crack crack depth ξ (identified) crack location λ (identified)

patch depth ξ location λ noise-free 5% noise noise-free 5% noise
length (exact) (exact) (% error) (% error) (% error) (% error)

PZT: 5% 0.05 (C1) 0.0375 0.0478 (4.4) 0.0535 (7) 0.0382 (−1.87) 0.0385 (−2.67)
0.5 (C2) 0.425 0.4967 (0.66) 0.5062 (−1.24) 0.4245 (−0.12) 0.4298 (−1.13)

PZT: 10% 0.05 (C1) 0.0375 0.0519 (−3.8) 0.0469 (6.2) 0.0369 (1.6) 0.0383 (−2.13)
0.5 (C2) 0.425 0.5031 (−0.62) 0.4951 (1.18) 0.4255 (0.12) 0.4208 (0.99)

PZT: 20% 0.05 (C1) 0.0375 0.0483 (3.4) 0.0529 (−5.8) −0.0380 (1.33) 0.0368 (1.87)
0.5 (C2) 0.425 0.4978 (0.44) 0.5055 (−1.1) 0.4253 (−0.07) 0.4292 (0.96)

Table 2. Crack damage magnitude and location with voltage matching. All values are normalized.

hence there are ten unknown variables in this problem. Thus the optimization variables to be identified
are the normalized crack depth ξ and normalized location λe = l1/ le in five elements. The experimentally
measured voltage response of PZT patches is required for the fitness evaluation. The mean square error
(MSE) between measured and predicted voltage response at PZT patches are minimized by particle
swarm optimization. The lower and upper bounds for PSO optimization for identifying crack magnitude
are set at zero and one. Similarly the lower and upper bounds to identify normalized crack locations
are set as zero and le, respectively. Here, PSO parameters are set to 100 particles (swarm size) and 500
generations. Similar numerical studies are carried out with larger patch lengths, such as PZT: 10%, i.e.,
(52× 50× 1 mm3 PZT) and PZT: 20%, i.e., (104× 50× 1 mm3 PZT). The crack depth and location
are estimated using different sets of iterations and the mean identified crack parameters are presented in
Table 2.

The smallest crack depth ξ = 0.05 located under the PZT patch is identified with an absolute error of
7%, 6.2%, and 5.8%, respectively for PZT: 5%, PZT: 10%, and PZT: 20% with noisy condition. From
Table 2, it can be seen that crack location identification is better than crack depth estimation. Here, the
smallest patch length (PZT: 5%) identified the crack location with an absolute error of 2.67% under the
noisy condition. The element-wise details of crack depth identification using different patch lengths are
shown in Figure 7 for the noise-free and noisy cases. Figure 8 shows the comparison of convergence
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Figure 7. Normalized damage magnitude of multiple cracks. Left: noise-free case.
Right: 5% noise case.
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Figure 8. Convergence plot for ξ = 0.05. Left: noise-free case. Right: 5% noise case.

studies of different PZT patch lengths. Here, the objective function of PZT: 20% has minimized better
than smaller patch lengths and is most accurate in identification. However, it is not required to use such
a large patch length. As compared to PZT: 5%, the percentage decrease of error by PZT: 20% is only
8–15%. Thus for practical and economical aspects, PZT: 5% is sufficient for estimating crack parameters.

Now, the proposed method is compared with similar existing published results. Viola et al. [2002]
identified the crack depth ξ = 0.5 and location λ= 0.76 based on the modal approach using experimentally
measured results. The identified crack parameters are 0.486 and 0.756 and the percentage of the absolute
error is 2.8% and 0.53% respectively for crack depth and location. It may be noted that here only a single
crack is identified. The very same multicrack problem of similar crack depth ξ = 0.5 was solved by
Verhese and Shankar [2014] using a combined transient power flow and acceleration matching technique
with a substructure approach. There, normalized crack depth and location of the same crack depth were
identified with absolute errors of 3.26%, 4.04%, and 1.59%, 2.98% respectively for the noise-free and
5% noisy cases. The proposed method using PZT : 5% estimated the crack depth and location of a similar
crack with errors of 0.66%, 1.24%, and 0.117%, 1.13%, respectively for the noise-free and noisy cases.
Here, mean computational time is only about 140 s whereas in the other study it was 3000 s.
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Figure 9. Finite element model of two double cracks per beam element with PZT patch.
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Figure 10. Impulse response at measurement (PZT A) with multiple double crack locations.

8.2. Example 2: fixed-fixed beam with two double crack per element. The same beam in Section 8.1
is considered for the crack identification with a double crack per beam element. Here, four open edge
cracks of depths 0.4 mm, 4 mm, 0.8 mm, and 2 mm are assumed to be located at a distances of 221 mm,
260 mm, 377 mm, and 416 mm respectively from the fixed end. In this study, the beam is divided into
five elements; two open edge cracks C1, C2 are placed in element 3, and C3, C4 are placed in element 4,
as shown in Figure 9. It is assumed that cracks are not interacting with each other. The normalized crack
depths (ξ = a/h) are ξC1 = 0.05, ξC2 = 0.5, ξC3 = 0.1, and ξC4 = 0.25 and the corresponding absolute
crack locations are λC1 = 0.425, λC2 = 0.5, λC3 = 0.725, and λC4 = 0.8.

In this study, PZT: 5% and PZT: 10% are used for the crack parameter estimation. As in the first case,
two PZT patches of size PZT: 5% are bonded on either side of the structure as shown in Figure 9. Here,
the normalized crack locations in the element 3 with respect to left end of the element are λe31 = 0.25
and λe32 = 0.5, and the same in the element 4 are λe41 = 0.25 and λe42 = 0.5. (Here, λe31 represents
crack 1 in element 3, i.e., C1.)

The fundamental natural frequency of the cracked structure is 150.87 Hz. Rayleigh damping with the
modal damping ratio of 3% is used for the first two modes of vibration. The beam is excited by providing
an impulse force of 5 N at node 4 over a time of 0.01 s in a time step of 0.001 s and a voltage response is
measured through PZT patches. Figure 10 shows the comparison between the damaged and undamaged
response of the beam at the PZT patch A and the change in dynamic response is greater than a single
crack.
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Figure 11. Identified crack parameters of fixed-fixed beam with PZT: 5%.

Here, for crack parameter estimation, it is assumed that each finite element of the model contains two
cracks at different positions. Crack magnitude and location are unknown variables and thus each element
contains four unknown variables. Hence, a total of twenty variables are searched between the value of
zero to one by PSO. The MSE between the measured and predicted voltage responses is minimized
by PSO with a swarm size of 100 and with 500 iterations. The identified parameters with PZT: 5% is
shown in Figure 11 and the percentage of absolute error of identified parameters of each crack is shown
in Figure 12. The smallest crack of depth (ξ = 0.05) is identified with an absolute error of 4.89% for
noise-free measurement and 9.05% with 5% noise level measurement. The normalized location of the
same crack is identified with an error of 1.76% without noise and 3.36% with 5% noise in measurements.

The numerical study was carried out for PZT: 10% with similar crack depth and location for the same
beam. Figure 13 shows the comparison of convergence of fitness (objective) functions for PZT: 5% and
PZT: 10% for four cracks (noise-free and noisy case), respectively. The better minimization of PZT: 10%
when compared with PZT: 5% is seen from the plot. Hence, the error of both magnitude and location is
reduced. The identified parameters are shown in Figure 14 and absolute errors in those parameters are
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Figure 12. Absolute error in identified parameters in fixed-fixed beam with PZT: 5%.
Left: depth. Right: location.
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Figure 13. Convergence plot for multiple cracks with two double-cracks per beam ele-
ment. Left: noise-free case. Right: 5% noise case.

shown in Figure 15. In this case, the smallest crack depth (ξ = 0.05) is identified with an absolute error
of 4.03% with noise-free measurement and 8.75% with 5% noise level measurement. The error in its
location is 1.5% without noise and 3.21% with 5% noise. Here, due to an increase in sensitivity, it can
be observed that there is an improvement in identification of smaller crack depth and location. It is also
seen that both patch lengths identified the location more accurately than crack depth.

8.3. Example 3: substructure (SS) of frame with double crack per beam element. In this example,
a steel frame structure consisting of nine members is fixed at two supports, as shown in Figure 16 as
per [Nandakumar and Shankar 2014]. The density of the frame material is 7850 kg/m3 and its Young’s
modulus (E) is 200 GPa. Each member has a flexural rigidity (E I ) of 43.2 N ·m2, and a cross-section
of 12× 6 mm. Four open edge cracks of depth 0.3 mm, 1.5 mm, 3 mm, and 2 mm are considered at a
distances of 200 mm, 275 mm, 725 mm, and 800 mm respectively from the left end of member 4, as shown
in Figure 16. The fundamental natural frequency of the cracked structure is 11.9 Hz. The normalized
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Figure 14. Identified crack parameters of fixed-fixed beam with PZT: 10%.
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Figure 15. Absolute error in identified parameters in fixed-fixed beam with PZT: 10%.
Left: depth. Right: location.

crack depths for the above cracks are ξc1 = 0.05, ξc2 = 0.25, ξc3 = 0.5, and ξc4 = 0.33 and their absolute
normalized locations from the left end of member 4 are λc1= 0.2, λc2= 0.275, λc3= 0.725, and λc4= 0.8.
It is proposed to detect the cracks locally in the SS (member 4) of the frame using PZT : 5%, which is
shown inside the dotted box in Figure 16, left.
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Figure 16. Frame structure. Left: global structure. Right: substructure of member four
with six nodes.
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Figure 17. Convergence plot for multiple cracks with two double-cracks per beam ele-
ment. Left: noise-free case. Right: 5% noise case.

The damping effect in the structure is modeled using Rayleigh’s damping model, with a damping
ratio of 3%. The structure is excited by an impulse response of 10 N over a time of 0.01 s, with a
time step of 0.001 s, at the midpoint of member 6. Frame member 4 is divided into five elements as
shown in Figure 16, right; the first two cracks lie on the element 2 and the remaining two cracks lie on
the element 4. The normalized locations from the left end of the respective elements are λe2.1 = 0.5,
λe2.2 = 0.75, λe4.1 = 0.25, and λe4.2 = 0.5 (λe2.1 means that crack 1 is in the element 2). The crack
parameters are searched by PSO with swarm size 100 and 500 generations, as explained in the previous
example. The identified parameters of absolute error are shown in Figure 18. The crack with smallest
depth (ξ = 0.05) is identified with an absolute error of 5.3% without noise and 12.97% with 5% noise in
measurement. The location of this crack is identified with an absolute error of 2.52% and 4.05% without
and with 5% noise in measurement, respectively. The total time taken for the convergence is 215 s.

9. Experimental verification: fixed-fixed beam with PZT patches

A fixed-fixed beam made of acrylic material with dimensions 452 mm× 25 mm× 12 mm is used for the
experimental study. Here two PZT patch of dimensions 25 mm× 25 mm× 1 mm each are bonded at the
fixed ends of the structure as shown in Figure 19. The modulus of elasticity (E) was estimated to be
3.9 GPa from a simple bending test and the density was measured to be 1190 kg/m3. The actual flexural
rigidity (E I ) of the beam is 14.04 N ·m2. The damping ratio (ζ ) was calculated from a simple free
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Figure 18. Absolute error in identified parameters in SS of frame with PZT: 5%. Left:
depth. Right: location.

Figure 19. Experimental set up of fixed-fixed intact beam with PZT patch.

vibration decay test using logarithmic decrement and was estimated as 8%. The natural frequencies for
the first two modes of the structure were calculated from the frequency domain as 110 Hz and 306 Hz.

The beam is excited by a sinusoidal force of 2.2 sin(2π × 68.3t)N at the middle of the structure by
a LDS permanent magnet 20 N modal shaker with a maximum displacement of 5 mm with an operating
frequency range of 5 Hz–13 kHz. The applied force is measured by using a KISTLER force transducer
and is acquired with a sampling frequency of 1000 Hz using a DEWE 43 DAQ system. The dynamic
voltage response is measured through two piezoelectric patches and it is sampled at a rate of 1000 Hz. The
comparison of experimental and simulated voltage response (time and frequency domain) of the given
intact beam is shown in Figure 20. One can find that difference in measured and calculated response is
very small, which shows the one-dimensional (1-D) hybrid model is accurate.

Next, two open edge cracks of depths 6 mm and 1.5 mm are introduced on the same beam at a distances
of 92 mm and 393.5 mm from the fixed end. The width of cut is 0.4 mm and close-up views of the cracks
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Figure 21. Cracks in the fixed-fixed beam.

are shown in Figure 21. The nondimensional crack depth of each crack is ξ1 = 0.5 and ξ2 = 0.125, and
their absolute location from the fixed end are λ1 = 0.2 and λ2 = 0.87, respectively. The beam is divided
into five elements as in the previous numerical study, and here, the crack lies in the second and fourth
elements, respectively. The nondimensional element-wise crack locations measured from the left node
of the element are λe2 = 0.5 and λe4 = 0.75, respectively. The cracked structure is excited by a harmonic
force of 2.8 sin(2π × 60.7t)N at a distance of 292 mm from the left fixed end. The voltage responses
are measured through the PZT patches and it is sampled at a rate of 1000 Hz. From the acquired data, a
portion of time histories of 5 s is considered for parameter identification. The parameters are searched
between the feasible search range of zero and one by PSO (swarm size: 200, generations: 500) using
the proposed voltage matching technique. Damage parameters are identified from six different trials of
reading and mean values are presented in Table 3. The smallest crack depth (ξ = 0.125) is identified
with an absolute error of 12.56% in magnitude and 2.2% in its location. Similar to the numerical study,
here identifying the crack location is more accurate than depth estimation.
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exact absolute identified crack identified crack
exact crack depth ξ crack location λ depth (% error) location (% error)

0.5 0.2 0.5262 (−5.24) 0.1961 (1.95)
0.125 0.87 0.1093 (12.56) 0.8509 (2.2)

Table 3. Experimental identification (crack depth and location) of a multiple crack.

Now, the proposed method is compared with other similar experimental results in literature. Ding et al.
[2017] estimated the crack parameters of two cracks (crack depth ratio ξ = 0.1) with crack locations
(λ1 = 0.2, λ2 = 0.45) of a fixed-fixed beam using an improved artificial bee colony algorithm based on
experimental frequency measurement data from [Khiem and Toan 2014]. There, the maximum identified
crack depth and location error are 24% and 4% respectively. The proposed method has identified multiple
cracks with a maximum absolute error of 12.56% and 2.2% respectively for crack and location.

10. Conclusions

This study presents a multiple crack detection scheme in beam structures by minimizing measured and
predicted voltage responses of PZT patches. Unlike conventional accelerometer sensors, PZT patches
have low cost and negligible weight, and a wide band width with the ability of dynamic measurement
of distributed nature. A one-dimensional (1-D) hybrid beam element with a PZT sensor bonded to the
beam represented by reduced material properties is used. Hitherto, the one-dimensional (1-D) patch with
beam model was not used for structural identification, thereby unfolding a new model which is simple
and convenient. The effect of different PZT lengths is investigated with numerical examples and the
convergence of the fitness function of the cases are studied. Numerical examples show that the smallest
patch length PZT: 5% (5% of the length of the beam) under study is sufficient enough for effective and
accurate crack parameter identification. The proposed method estimated the crack depth error in the
range of 0.66% to 12% and the location error in the range of 0.11% to 4% (noise-free and noisy case).
The validation of the proposed method has also been carried out using experiments. The accuracy of the
proposed method using the one-dimensional hybrid element model is found to be comparable or superior
to some of the existing methods reviewed here.
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