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GEOMETRICAL NONLINEAR DYNAMIC ANALYSIS OF TENSEGRITY
SYSTEMS VIA THE COROTATIONAL FORMULATION

XIAODONG FENG

An efficient finite element formulation is presented for geometrical nonlinear dynamic analysis of tenseg-
rity systems based on the corotational formulation. In this method, large displacement of a space rod
element is decomposed into a rigid body motion in the global coordinate system and a pure small de-
formation in the local coordinate system. A new form of tangent stiffness matrix, including both static
and dynamic stages, is derived based on the proposed approach. The Newmark constant acceleration
method in conjunction with modified Newton–Raphson method is employed to solve the nonlinear dy-
namic equation of motion. A five-module quadruplex tensegrity beam is given as the numerical example
to illustrate the validity and efficiency of the proposed algorithm for geometrical nonlinear dynamic
analysis of tensegrity structures.

1. Introduction

Research into active structures has been at the forefront of aerospace, biological, civil and mechanical
engineering for recent years [Domer and Smith 2005; Ziegler 2005; Korkmaz 2011; Luo et al. 2008;
Paul et al. 2006; Rovira and Tur 2009]. Advances in theory and practice of active structural control
have changed the general perception of structures. Upon integration of active components, structures
become dynamic objects capable of interacting with their environments. Increasingly, the ability to adapt
to performance demands and environmental conditions has become key design criteria for a range of
structural and mechanical systems. Among many structural topologies, the tensegrity might be the most
promising actively controlled structures for its large motion amplitude and high strength-to-mass ratio
[Adam and Smith 2008; Masic and Skelton 2006; Raja and Narayanan 2007; Sultan and Skelton 2003;
Wroldsen et al. 2009; Skelton et al. 2014]. A fundamental aspect of tensegrities is the stress unilateral
property of the compression: cables and struts must be under tension and compression, respectively.
That is to say, the cables will be slacking when compressive loads are applied, which makes tensegrity
systems flexible and easily controllable using small amounts of energy [Tibert and Pellegrino 2003; Juan
and Tur 2008]. Another main requirement for a structure to be categorized as a tensegrity structure is
that its initial pre-stressed configuration must be in stable equilibrium in absence of external forces, and
which to a high degree decides the response properties, e.g. the stiffness to external loading. The design
of a tensegrity structure thereby has to include these aspects in addition to the definition of a special
geometry.

A complete analysis of the tensegrity structures comprises two parts. The first one is the evaluation of
pre-stressed configurations, known as form-finding, which has been and is currently object of extensive
research [Tibert and Pellegrino 2003]. The second part is the investigation of behavior under external
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loads. In the literature, the form-finding step has been widely studied by different approaches [Barnes
1999; Xu and Luo 2010; Chen et al. 2012; Tran and Lee 2010; Koohestani and Guest 2013; Lee and
Lee 2014; Feng and Guo 2015; Zhang et al. 2014]. On the other hand, however, the structure analysis
step for nonlinear behavior, especially in the regime of large displacement, is still a difficult issue for
structural engineers since tensegrities are in general both kinematically and statically indeterminate. Nev-
ertheless, as is known to all, the total Lagrangian (TL) approach and update Lagrangian (UL) approach
have been used widely for large-displacement analysis. Kebiche et al. [1999] performed a geometrical,
nonlinear, elastic analysis for a basic quadruplex module (four-strut tensegrity prism) subjected to axial,
flexural and torsional loads and a multi-cell beam under traction based on TL approach. Kebiche and
Kahla [2000] developed nonlinear elasto-plastic investigations of a five quadruplex module tensegrity
system based on an UL formulation. Murakami [2001] analyzed static and dynamic characteristics of
tensegrity structure using both Eulerian and Lagrangian formulations of large-displacement kinematics
and kinetics. The modal analysis performed by Murakmi indicated that the tensegrity had low natural
frequency modes like thin members and it can be regarded as a typically flexible structure which usually
has a complicated nonlinear behavior. Recently, Tran and Lee [2011] performed geometric and material
analysis of tensegrity structures based on both total and updated Lagrangian formulations, and the updated
Lagrangian formulation was recommended for large deflection analysis. Oliveto and Sivaselvan [2011]
studied dynamic properties of tensegrity structures using a complementarity framework in the small
displacement regime.

Lately, an alternative and more attractive approach, known as the corotational (CR) method, was
proposed to investigate nonlinear behavior of tensegrity structures. Several researchers have proved that
the CR formulation is computational more convenient and efficient for large-displacement and small-
strain problems [Crisfield and Moita 1996; Felippa and Haugen 2005; Zhang et al. 2013; Zhang et al.
2015]. Relative literatures also demonstrated that the CR formulation offers exceptional benefits for an
element which has more rigid body modes than deformational modes in a static analysis [Faroughi and
Lee 2014; Feng and Guo 2017; Faroughi et al. 2017]. Because space rod element have five rigid body
modes (three translations and two rotations) and only one deformational mode, i.e. the axial compression
or extension, the CR formulation seems more attractive for the investigation of dynamic behavior of
tensegrity systems. Although dynamic analysis of structural components (e.g. beam and membrane) have
been performed successfully by the CR method [Le et al. 2011; Le et al. 2012; Eriksson and Faroughi
2013; Faroughi and Eriksson 2017], to our knowledge, dynamic analysis of tensegrity structures via the
CR approach was rarely seen.

The main objective of this paper is to develop a 3D corotational model for geometrical nonlinear
dynamic analysis of tensegrity structures. The CR formulation, which decomposes a large displacement
into a rigid body motion and a pure small deformation, is adapted to achieve the internal force vector,
the static tangent stiffness matrix, the inertial force vector, the mass matrix and the dynamic tangent
stiffness matrix. By means of the CR approach, the space rod element is utilized to model the geometrical
nonlinear dynamic behavior of tensegrity structures in local coordinates. The advantage of the proposed
method is that behaviors of rod elements can be described utilizing engineering strain and stress which
are calculated directly by the small-deformation elastic theory, although geometrical nonlinearity must
be taken into account. The rod element has deformation only along its longitudinal direction (small
strain), this makes the orientation of the 2nd and 3rd axes arbitrary and therefore torsion and bending
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have been ignored in this paper. In the process of analyzing tensegrities at any equilibrium configuration
with and without loads, the slackening constraints of cable elements have been taken into account. It is
assumed that the form-finding procedure has been completed and the self-stress coefficients are known
in advance [Feng and Guo 2015; Feng 2017].

The organization of this paper is as follows: Section 2 presents the derivations of the internal force
vector, the static tangent stiffness matrix, the inertial force vector, the mass matrix and the dynamic
tangent stiffness matrix. In Section 3, the Newmark constant acceleration method in conjunction with
modified Newton–Raphson method are employed to solve the nonlinear dynamic equation of motion.
A numerical example is performed to illustrate the validity and convergence of the proposed approach,
which is presented in Section 4. Finally, some conclusions are summarized.

2. Global corotational formulation

In establishing the stress-strain relation to account for yielding behavior of an axially-loaded rod, the
following assumptions are adopted for tensegrity structures:

• Members are connected by pin joints.

• Struts are elements that carry axial tensile or compressive forces.

• Cables are elements that carry only axial tensile forces.

• The materials are considered to be linear and elastic.

• The tensegrity structures are subjected to external load only at nodes.

• Both local and global buckling of strut element are not considered.

• There are no dissipative forces acting on the system.

2.1. Derivation of the internal force vector. Figure 1 displays a rod finite element with two end nodes
(i, j). As can be seen, there are two coordinate systems. The first one is the global coordinate system
XY Z and the other is the local coordinate system xl, yl, zl that is fixed on and moves with the element.
The initial configuration “i j” goes to the current configuration “i ′′ j ′′”, via a large-rotation and small-
strain motion. The motion can thus be divided into two steps. The first step is a rigid body motion and
translation from the configuration “i j” to “i ′ j ′” in the global coordinate system XY Z ; the second one is
a small-strain deformation from the configuration “i ′ j ′” to “i ′′ j ′′” in the local coordinate system xl yl zl .
Therefore, the transformation relation between local and global coordinate systems needs to be found.

The element nodal coordinates at initial time and time t in the global coordinate system XY Z are
denoted by (0xi ,

0 yi ,
0zi ), (0x j ,

0 y j ,
0z j ), (t xi ,

t yi ,
t zi ), (t x j ,

t y j ,
t z j ), respectively.

Thus, the global displacement vector is given by

d =
[
ui vi wi u j v j w j

]T

=
[

t xi−
0xi

t yi−
0 yi

t zi−
0zi

t x j−
0x j

t y j−
0 y j

t z j−
0z j
]T
, (1)

and the local displacement along the rod element is

1l = t l − 0l, (2)
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Figure 1. Illustration of the corotational method of a space rod element.

where 0l and t l are the lengths of the rod element at initial time and time t , respectively, given by

0l =
√
(0x j −

0xi )2+ (0 y j −
0 yi )2+ (0z j −

0zi )2 , (3)

t l =
√
(0x j −

0xi + u j − ui )2+ (0 y j −
0 yi + v j − vi )2+ (0z j −

0zi +w j −wi )2 . (4)

Let c1, c2 and c3 be the cosine angles of the xl-axis with respect to the global coordinate system XY Z :

c1 = cosα = (0x j −
0xi + u j − ui )/

t l

c2 = cosβ = (0 y j −
0 yi + v j − vi )/

t l

c3 = cos γ = (0z j −
0zi +w j −wi )/

t l.

(5)

Taking the variation of (2) gives
δ1l = δt l = tδd, (6)

where
t =

[
−c1 −c2 −c3 c1 c2 c3

]
. (7)

For cable elements, the local nodal internal force vector can be given by

ql
= σ A = EεA, (8)

where A is the cross-sectional area and σ is the stress of cables or struts. Engineering strain at time t
can be calculated by

ε =1l/ 0l + ε0, (9)



DYNAMIC ANALYSIS OF TENSEGRITY SYSTEMS VIA COROTATIONAL FORMULATION 267

in which ε0 is the initial strain determined by pre-stressed or self-stress state.
Introducing (9) into (8), the local internal force vector can be rewritten as

ql
=

E A
0l
1l + E Aε0. (10)

Based on the principle of virtual work, i.e. the internal virtual work is equal in both the local and
global coordinate systems, the relationship between the global nodal internal force vector qg and local
nodal internal force vector ql is obtained from (12) as

δdT qg
= (δ1l)T ql

= (tδd)T ⇒ qg
= tT ql . (11)

2.2. Derivation of the static tangent stiffness matrix. According to the static equilibrium relationship,
the global tangent stiffness matrix K T is acquired from

δqg
= K T δd = K E δd+ K G δd, (12)

where K E and K G denote the material and geometrical tangent stiffness matrices in the global coordinate
system, respectively [Guest 2006].

Taking the variation of (11) gives

δqg
= tT δql

+ δ tT ql . (13)

Taking the variation of the local force vector ql from (9), the first term in (13) can be obtained:

δql
=

E A
0l
δ1l =

E A
0l

tδd. (14)

In order to achieve the second term in (13), the variation of t from (7) is computed, results in

δ tT
=

1
t l



1−c2
1 −c1c2 −c1c3 c2

1−1 c1c2 c1c3

−c1c2 1−c2
2 −c2c3 c1c2 c2

2−1 c2c3

−c1c3 −c2c3 1−c2
3 c1c3 c2c3 c2

3−1
c2

1−1 c1c2 c1c3 1−c2
1 −c1c2 −c1c3

c1c2 c2
2−1 c2c3 −c1c2 1−c2

2 −c2c3

c1c3 c2c3 c2
3−1 −c1c3 −c2c3 1−c2

3


δd =

1
t l
[RRT

−(Rr)(Rr)T ]δd, (15)

where matrix R and the vector r are as follows [Faroughi et al. 2015]:

R =

–1 0 0 1 0 0
0 –1 0 0 1 0
0 0 –1 0 0 1

T

, r =


c1

c2

c3

 . (16)

Introducing (10) into (13), the comparison between (14)–(15) and (12)–(13) gives the global tangent
stiffness matrix as follows:

K T =
E A
0l

tT t +
E A
0l 1l + E Aε0

t l
[RRT

− (Rr)(Rr)T ]. (17)
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Figure 2. Illustration of the kinetic energy of a space rod element.

2.3. Derivation of the inertial force vector and the mass matrix. Using the notation shown in Figure 2,
the global position can be written as

O S = (xi + ui )e1+ (yi + vi )e2+ (zi +wi )e3+
t l
0l
(cosα · e1+ cosβ · e2+ cos γ · e3), (18)

where e1, e2 and e3 are the three unit coordinate vectors of the corresponding coordinate axes.
Therefore the global velocity components u̇, v̇ and ẇ can be achieved from differentiating (18):

u̇ = u̇i +
x
0l
(u̇ j − u̇i ), v̇ = v̇i +

x
0l
(v̇ j − v̇i ), ẇ = ẇi +

x
0l
(ẇ j − ẇi ). (19)

The kinetic energy of a space rod element E (not to be confused with the same symbol used for the
modulus of elasticity) can be obtained as

E =
1
2
ρ

∫
A
(
(u̇)2+ (v̇)2+ (ẇ)2

)
dl, (20)

where ρ represents the density of the rod element.
Transforming (20) into the vector form, gives

E =
1
2

u̇T Mu̇, (21)

where M is the global mass matrix of the rod element, which can be determined by

M = T T ml T , (22)

where T and ml are the rotational matrix and the local mass matrix of the rod element, given by

T =
[

c1 c2 c3 0 0 0
0 0 0 c1 c2 c3

]
, ml

=
ρAl

6

[
2 1
1 1

]
.
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The inertial force vector q E can be computed from the (21) by employing the Lagrangian equation of
motion, as

q E
=

d
dt

[
∂E
∂ u̇

]
−

[
∂E
∂u

]
. (23)

By substituting (21) into (23), the first term in (23) can be computed as

d
dt

[
∂E
∂ u̇

]
= Mü+ ˙Mu̇ . (24)

Equation (22) indicates that the mass matrix M is a function of c1, c2 and c3, which are functions of
time, thus

˙M =
∂M
∂c1

ċ1+
∂M
∂c2

ċ2+
∂M
∂c3

ċ3, (25)

where c1, c2 and c3 are calculated as

ċ1 =
dc1

dt
=

dc1

du
du
dt
=

tT
1
t l

u̇, ċ2 =
dc2

dt
=

dc2

du
du
dt
=

tT
2
t l

u̇, ċ3 =
dc3

dt
=

dc3

du
du
dt
=

tT
3
t l

u̇, (26)

and
t1 =

[
c2

1−1 c1c2 c1c3 1−c2
1 −c1c2 −c1c3

]T
,

t2 =
[
c1c2 c1

2−1 c2c3 −c1c2 1−c2
2 −c2c3

]T
,

t3 =
[
c1c3 c2c3 c2

3−1 −c1c3 −c2c3 1−c2
3

]T
.

(27)

The partial derivates in (25) are calculated as

∂M
∂c1
= Mc1 =

∂T T

∂c1
ml T + T T ml ∂T

∂c1
= RT

1 ml T + T T ml R1,

∂M
∂c2
= Mc2 =

∂T T

∂c2
ml T + T T ml ∂T

∂c2
= RT

2 ml T + T T ml R2,

∂M
∂c3
= Mc3 =

∂T T

∂c3
ml T + T T ml ∂T

∂c3
= RT

3 ml T + T T ml R3,

(28)

where

R1 =
∂T
∂c1
=

[
1 −c1/c2 −c1/c3 0 0 0
0 0 0 1 −c1/c2 −c1/c3

]
,

R2 =
∂T
∂c2
=

[
−c2/c1 1 −c2/c3 0 0 0

0 0 0 −c2/c1 1 −c2/c3

]
,

R3 =
∂T
∂c3
=

[
−c3/c1 −c3/c2 1 0 0 0

0 0 0 −c3/c1 −c3/c2 1

]
.

(29)

By substituting (21) into (23), the second term in (23) can be computed as[
∂E
∂u

]
=
∂E
∂c1

∂c1

∂u
+
∂E
∂c2

∂c2

∂u
+
∂E
∂c3

∂c3

∂u

=

(
1
2

u̇T ∂M
∂c1

u̇
)

t1
t l
+

(
1
2

u̇T ∂M
∂c2

u̇
)

t2
t l
+

(
1
2

u̇T ∂M
∂c3

u̇
)

t3
t l
. (30)
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Hence, the expression of the inertial force vector can be obtained by substituting (24) and (30) into (23):

q E
= Mü+ ˙Mu̇−

(
1
2

u̇T ∂M
∂c1

u̇
)

t1
t l
−

(
1
2

u̇T ∂M
∂c2

u̇
)

t2
t l
−

(
1
2

u̇T ∂M
∂c3

u̇
)

t3
t l
. (31)

2.4. Derivation of the dynamic tangent stiffness matrix. The dynamic tangent stiffness matrix K D,t

can be written as

K D,t =
∂qg

∂u

∣∣∣
t
+
∂q E

∂u

∣∣∣
t
. (32)

Differentiating the global nodal internal force vector qg and the inertial force vector q E with respect to
displacement, velocity and acceleration, the static tangent stiffness matrix, mass matrix and gyroscopic
matrix are given as

K T =
∂qg

∂u
, M =

∂q E

∂ ü
, C =

∂q E

∂ u̇
=
˙M + H − HT , (33)

where

H =
∂M
∂c1

(
u̇

tT
1
t l

)
+
∂M
∂c2

(
u̇

tT
2
t l

)
+
∂M
∂c3

(
u̇

tT
3
t l

)
. (34)

To get ∂q E/∂u, the derivative of each term of (31) with respect to the displacement is calculated as

K E,1 =
∂Mü
∂u
=
∂M
∂c1

(
ü

tT
1
t l

)
+
∂M
∂c2

(
ü

tT
2
t l

)
+
∂M
∂c3

(
ü

tT
3
t l

)
= Mc1 ü

tT
1
t l
+Mc2 ü

tT
2
t l
+Mc3 ü

tT
3
t l
, (35)

K E,2 =
∂ ˙Mu̇
∂u
=

(
tT
1
t l

u̇
)(

∂Mc1

∂c1

(
u̇

tT
1
t l

)
+
∂Mc1

∂c2

(
u̇

tT
2
t l

)
+
∂Mc1

∂c3

(
u̇

tT
3
t l

))
+

(
tT
2
t l

u̇
)(

∂Mc2

∂c1

(
u̇

tT
1
t l

)
+
∂Mc2

∂c2

(
u̇

tT
2
t l

)
+
∂Mc2

∂c3

(
u̇

tT
3
t l

))
+

(
tT
3
t l

u̇
)(

∂Mc3

∂c1

(
u̇

tT
1
t l

)
+
∂Mc3

∂c2

(
u̇

tT
2
t l

)
+
∂Mc3

∂c3

(
u̇

tT
3
t l

))
+Mc1 u̇u̇T ∂(t

T
1/

t l)
∂u

+Mc2 u̇u̇T ∂(t
T
2/

t l)
∂u

+Mc3 u̇u̇T ∂(t
T
3/

t l)
∂u

, (36)

K E,3 =

(
u̇T ∂Mc1

∂c1
u̇
)

t1 tT
1

t l2 +

(
u̇T ∂Mc1

∂c2
u̇
)

t1 tT
2

t l2 +

(
u̇T ∂Mc1

∂c3
u̇
)

t1 tT
3

t l2

+

(
u̇T ∂Mc2

∂c1
u̇
)

t2 tT
1

t l2 +

(
u̇T ∂Mc2

∂c2
u̇
)

t2 tT
2

t l2 +

(
u̇T ∂Mc3

∂c3
u̇
)

t2 tT
3

t l2

+

(
u̇T ∂Mc3

∂c1
u̇
)

t3 tT
1

t l2 +

(
u̇T ∂Mc3

∂c2
u̇
)

t3 tT
2

t l2 +

(
u̇T ∂Mc3

∂c3
u̇
)

t3 tT
3

t l2

+

(
u̇T ∂Mc1

∂c1
u̇
)
∂(tT

1/
t l)

∂u
+

(
u̇T ∂Mc2

∂c1
u̇
)
∂(tT

2/
t l)

∂u
+

(
u̇T ∂Mc3

∂c1
u̇
)
∂(tT

3/
t l)

∂u
. (37)
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The second derivatives of the mass matrix with respect to c1, c2 and c3 in (35)–(37) are

∂Mc1

∂c j
=
∂RT

i

∂c j
ml T + RT

i ml ∂T
∂c j
+
∂T T

∂c j
ml Ri + T T ml ∂Ri

∂c j
for i, j = 1, 2, 3 (38)

and
∂(tT

1/
t l)

∂u
=
(∂ ti/∂u) t l − ti (∂ t l/∂u)

t l2 =
(∂ ti/∂u) t l − ti t

t l2 for i, j = 1, 2, 3, (39)

where ti and t are determined by (27) and (7). Taking into account that c2
1+ c2

2+ c2
3 = 1 and that each

∂ ti/∂u (i = 1, 2, 3) is a 6× 6 matrix, the partials ∂Ri/∂c j and ∂ ti/∂u can be given as

∂R1

∂c1
=

[
0 (c2

3−1)/c3
2 (c2

2−1)/c3
3 0 0 0

0 0 0 0 (c2
3−1)/c3

2 (c2
2−1)/c3

3

]
, (40)

∂R2

∂c1
=

[
(c2

3−1)/c3
1 0 (c2

2−1)/c3
3 0 0 0

0 0 0 (1−c2
3)/c1c2

2 0 c1(c2
3−c2

2)/c2c3

]
, (41)

∂R3

∂c1
=

[
(1−c2

2)/c3c2
1 c1(c2

2−c2
3)/c3c3

2 0 0 0 0
0 0 0 (1−c2

2)/c3c2
1 c1(c2

2−c2
3)/c3c3

2 0

]
, (42)

∂R2

∂c2
=

[
(c2

3−1)/c3
2 0 (c2

2−1)/c3
3 0 0 0

0 0 0 (c2
3−1)/c3

2 0 (c2
2−1)/c3

3

]
, (43)

∂R1

∂c2
=

[
0 (1−c2

3)/c1c2
2 c2(c2

3−c2
1)/c1c3

3 0 0 0
0 0 0 0 (1−c2

3)/c1c2
2 c2(c2

3−c2
1)/c1c3

3

]
, (44)

∂R3

∂c2
=

[
c2(c2

1−c2
3)/c1c3

3 (1−c2
1)/c3c3

2 0 0 0 0
0 0 0 c2(c2

1−c2
3)/c1c3

3 (1−c2
1)/c3c3

2 0

]
, (45)

∂R3

∂c3
=

[
(c2

2−1)/c3
1 (c2

1−1)/c3
2 0 0 0 0

0 0 0 (c2
2−1)/c3

1 (c2
1−1)/c3

2 0

]
, (46)

∂R1

∂c3
=

[
0 c3(c2

2−c2
1)/c1c3

2 (1−c2
2)/c1c2

3 0 0 0
0 0 0 0 c3(c2

2−c2
1)/c1c3

2 (1−c2
2)/c1c2

3

]
, (47)

∂R2

∂c3
=

[
c3(c2

1−c2
2)/c1c3

2 0 (1−c2
1)/c2c2

3 0 0 0
0 0 0 c3(c2

1−c2
2)/c1c3

2 0 (1−c2
1)/c2c2

3

]
, (48)

∂ t1
∂u
=

[
2c1

tT
1
t l

c2
tT
1
t l
+c1

tT
2
t l

c3
tT
1
t l
+c1

tT
3
t l
−2c1

tT
1
t l
−

(
c2

tT
1
t l
+c1

tT
2
t l

)
−

(
c3

tT
1
t l
+c1

tT
3
t l

)]T

, (49)

∂ t2
∂u
=

[
c2

tT
1
t l
+c1

tT
2
t l

2c2
tT
2
t l

c3
tT
2
t l
+c2

tT
3
t l
−

(
c2

tT
1
t l
+c1

tT
2
t l

)
−2c2

tT
2
t l
−

(
c3

tT
2
t l
+c2

tT
3
t l

)]T

, (50)

∂ t3
∂u
=

[
c3

tT
1
t l
+c1

tT
3
t l

c3
tT
2
t l
+c2

tT
3
t l

2c3
tT
3
t l
−

(
c3

tT
1
t l
+c1

tT
3
t l

)
−

(
c3

tT
2
t l
+c2

tT
3
t l

)
−2c3

tT
3
t l

]T

. (51)
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Hence, the expression of ∂q E/∂u is achieved by integrating (31) and (35)–(37):

∂q E

∂u
= K E = K E,1+ K E,2+ K E,3 . (52)

Substituting (17), (33) and (35)–(37) into (32), the dynamic tangent stiffness matrix can be obtained
as

K D = K T + K E +
4
1t2 M +

2
1t

C, (53)

where 1t denotes the time step.
Once the aforementioned vectors and matrices are acquired, the classical finite element method is

utilized to assemble the global structural dynamic tangent stiffness matrix and mass matrix as

K D =
∑

L K D LT , (54)

M =
∑

L M LT , (55)

where L is the element connectivity matrix, derived from structural topology and sums extend over all
elements.

3. Nonlinear analysis process

The equation of dynamic equilibrium of tensegrity structures can be written as follows:

q E(u, u̇, ü)= qext
− qg(u), (56)

where q E , qext and qg represent the inertial, external and internal force vectors respectively. Note that if
the seismic case is simulated, the external force qext should be replaced by qext

−Müg, where üg is the
accelerationc vector of ground motion.

Discretization of (56) at time t gives

qi,t = q E
t (u, u̇, ü)+ qg

t (u). (57)

Hence

ht = qi,t − qext
t = 0, (58)

where ht is the equivalent dynamic out of balance forces.
Introducing the predictor-corrector method [Kim and Yong 2001], equation (56) can be solved by

using a Taylor series; thus the term qi,t+1t can be written as

qi,t+1t = qi,t
∂qi,t+1t

∂u

∣∣∣
t
(ut+1t − ut)= qi,t + KD,t1u. (59)

Substituting (59) into (57), the expected incremental predictor step can be computed as

1u = K−1
D,t(q

ext
t+1t − qext

t ). (60)
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By using the Newmark-average acceleration method, the updated displacement, velocity and acceler-
ation are calculated:

ut+1t = ut +1u, (61)

u̇t+1t = u̇t +1u
(

3
4

üt +

(
1

21t2 (ut+1t − ut)−
1

21t
u̇t

))
, (62)

üt+1t =
2
1t2 (ut+1t − ut)−

2
1t

u̇t . (63)

In order that the equivalent dynamic out of balance forces can be approached to zero at each time
step, the updated Newton–Raphson method should be utilized. Therefore, the improvement terms can
be calculated as

δut+1t =−K−1
D,t+1t ht+1t , (64)

δu̇t+1t =
1

21t
δut+1t , (65)

δüt+1t =
2
1t2 δut+1t . (66)

This procedure is then repeated until the value of nodal displacements and the equivalent dynamic out
of balance forces fall below the threshold given as

κ =max
(
‖1u‖2
‖ut+1t‖2

,
‖qext
− qg
‖2

‖qext‖2

)
< Tol= 10−6. (67)

Since slackening is a natural property of cables, the slackening of cable elements is taken into account
in the following manner: the actual length of each cable is calculated and compared to its rest length
within each iteration. If the rest length is longer than the actual length, the cable is assumed to be slack.
Accordingly, its stiffness is not considered in the global structural system, and its axial force is set to
zero.

4. Illustrative example

A five-module tensegrity beam (Figure 3; modules numbered M1 to M5) analyzed in [Kahla and Kebiche
2000] and [Tran and Lee 2011] is used to illustrate the proposed method. Eight infinitesimal mechanisms
and nine independent self-stress modes are determined based on the rank deficiency equilibrium matrix
for the tensegrity beam. In order to eliminate all the infinitesimal mechanisms, this tensegrity beam
should be in the feasible self-stress mode which is a linear combination of the above nine independent self-
stress modes [Tran and Lee 2010]. The initial self-stress coefficients of the structure can be determined
by the mature form-finding methods [Tibert and Pellegrino 2003; Feng and Guo 2015]. Table 1 gives
the initial self-stress values and material properties of the five-module quadruplex tensegrity beam.

Before observing the dynamic properties of the tensegrity beam under different seismic excitations, the
modal analysis is performed as to give an intuitionistic knowledge of the natural vibration characteristics
of this structure. Table 2 gives the first eight natural frequencies of the tensegrity beam modal. It is
apparent that the structural natural frequencies are gradually increasing. Isometric views of the first



274 XIAODONG FENG

Figure 3. Geometry of a five-module quadruplex tensegrity beam: top view and per-
spective view.

Element Category Stress/KN for module # Cross Modulus
1 2 3 4 5 section/cm2 /GPa

1 3.889 3.753 3.723 3.679 3.719
2 Lower 6.870 6.517 6.552 6.559 6.963 0.280 40
3 cables 3.700 7.253 6.875 6.913 6.913
4 7.253 6.875 6.913 6.913 3.705

5 5.173 4.639 4.681 6.875 5.180
6 Upper 5.158 5.040 5.053 5.040 5.180 0.280 40
7 cables 5.129 4.639 4.681 4.639 5.180
8 5.250 5.084 5.095 5.084 5.180

9 5.262 5.084 5.095 5.084 5.180
10 Bracing 4.950 4.459 4.488 4.671 5.180 0.280 40
11 cables 5.158 4.639 4.681 4.639 5.180
12 5.233 5.158 5.312 5.296 5.477

13 –9.063 –8.472 –8.514 –8.472 –9.041
14 Struts

–9.063 –8.472 –8.514 –8.472 –8.971 3.250 200
15 –9.063 –8.780 –8.776 –8.780 –8.971
16 –8.934 –8.034 –8.108 –8.034 –8.971

Table 1. Initial self-stress values and material properties of the five-module quadruplex
tensegrity beam.
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Mode 1 2 3 4 5 6 7 8 9 10

Frequency (Hz) 2.7 5.8 12.0 14.8 18.1 21.1 28.9 36.5 45.9 62.5

Table 2. Natural frequencies of the quadruplex unit modal (first eight modes).

four mode shapes are displayed in Figure 4, indicating that the lower order mode shapes are almost
symmetrical or anti-symmetrical, while the higher order modes that involve synchronous and asynchro-
nous deformation of adjacent modules can not be identified clearly. This might be explained by the
asymmetry of the structure, i.e. the basic module and the placements of the boundary supports are not
perfectly symmetrical.

�

�

�

�

Figure 4. Mode shapes of the first four natural frequencies. Top: Mode 1 (twisting) and
Mode 2 (bending). Bottom: Mode 3 (bending) and Mode 4 (higher-order).

To compare the dynamic responses of the tensegrity beam under different seismic excitations, the El
Centro and the Taft earthquake data (Figure 5) is employed. The sampling time and time step size are
taken as 20 s and 0.02 s, respectively. Figure 6 plots the time history response curves of typical nodal
displacements of the tensegrity beam under El Centro seismic wave and Taft seismic wave. Table 3
gives the comparison of the maximum displacements of the specified nodes excited by these two dif-
ferent seismic waves. The numerical results from Figure 6 and Table 3 indicate that the maximum
nodal displacements are less differentiating at some level considering two seismic waves, i.e. the nodal
displacement distributions are approximately the same. Additionally, the possible maximum structural
deflections (node 15) are 0.0209 m (El Centro) and 0.0217 m (Taft) which are less than 1/200 of the
beam span. It indicates that the structure will not be damaged due to excessive deformation, and also
proves that the tensegrity beam is sufficiently good for lightweight large-span structural applications.

Figure 7 plots the internal forces over time of typical cable elements excited by two different seismic
waves, correspondingly, the results of the internal forces over time of typical struts elements are plotted in
Figure 8. Obviously, the results from Figures 7–8 show that the changes of internal force in typical cable
elements and strut elements are within 350 N and 800 N, respectively. In other words, the maximum
variation amplitudes of cables and struts are with 8% and 9%, respectively. This indicates that all these
typical cable elements and strut elements remain in tension and compression at all times, respectively.
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Figure 5. Seismic wave with peak value of 250 Gal. Top: El Centro; bottom: Taft.
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Figure 6. Displacements over time of typical nodes excited by different seismic waves.
Left column: El Centro; right column: Taft.
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Figure 7. Internal forces over time of typical cable elements excited by different seismic
waves. Left column: El Centro; right column: Taft.

That is to say, none of the components of this tensegrity beam with the properties given in Table 1 will
be laid off due to the tension in struts or slackening of cables. The whole system works in the elastic
range, and the structure has good seismic performance.

Table 3 gives the comparison of the maximum stresses of the specified elements excited by two seismic
waves. As can be seen, the maximum elemental stresses (including cables and struts) are very close to
each other for the two different seismic waves, demonstrating the phenomenon that the stress distributions
of cables or struts are almost the same for the structure excited by these two seismic waves.

Finally, Table 4 gives the comparison of the convergence and efficiency of three different methods, and
highlights that the CR formulation presented here is much faster than previous nonlinear formulations
based on the total Lagrangian or updated Lagrangian solutions.

Node 11 14 15 17

El Centro 0.0070 m 0.0143 m 0.0209 m 0.0149 m
Taft 0.0073 m 0.0139 m 0.0217 m 0.0157 m

Table 3. Comparison of the maximum displacements of the specified nodes under two
different seismic waves.
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Figure 8. Internal forces over time of typical strut elements excited by different seismic
waves. Left column: El Centro; right column: Taft.

Taft seismic wave El Centro seismic wave
Comparison TL UL CR TL UL CR
Convergence yes yes yes yes yes yes
Total number of iterations 2352 1986 534 2332 1896 521
CPU times 55.29 42.38 19.68 54.89 42.02 19.23

Table 4. Efficiency comparison of formulations for a five-quadruplex module tensegrity beam.

5. Conclusion

We have presented a new three-dimension corotational algorithm to investigate the nonlinear dynamic
properties of tensegrity structures. A new dynamic tangent stiffness matrix of a space rod element is
derived based on the corotational approach which decomposes a large displacement into a large rigid
body motion and a small strain, thus the behavior of elements can be described directly in the local
coordinate system utilizing an engineering strain. It is very convenient for implementation of a standard
finite element procedure. The validity and efficiency of the proposed method are illustrated by numerical
examples. Dynamic responses of tensegrities, including a classical tensegrity quadruplex unit and a
five-module quadruplex module tensegrity beam are investigated using the proposed formulation. The
outcomes of the proposed study also confirm that the CR approach is more efficient and practical than the
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TL and UL formulations of the elements in the structure that have more rigid body modes of translation
and rotation than they have deformation modes.

It should be noted that, however, the proposed formulation is not valid for large-strain deformation.
Nevertheless, combining with other approaches or technics [Shekastehband et al. 2012; Shekastehband
and Abedi 2013], the proposed method could be extended to predict collapse of a tensegrity due to
fracture of cables or buckling of bars, i.e. once the axial stress-axial strain behaviors of struts and cables
are evaluated by the proposed method, a nonlinear dynamic collapse analysis can then be performed to
find the load-deflection responses of the tensegrity system. Additionally, dynamic elasto-plastic behavior
and vibration control of tensegrity structures, especially active tensegrities, e.g., deployable tensegrities
and clustered tensegrities, need to be further investigated. These are some directions for future work.
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