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SHAFT-HUB PRESS FIT SUBJECTED TO COUPLES AND RADIAL FORCES:
ANALYTICAL EVALUATION OF THE SHAFT-HUB DETACHMENT LOADING

ENRICO BERTOCCHI, LUCA LANZONI, SARA MANTOVANI, ENRICO RADI AND ANTONIO STROZZI

A shaft-hub press fit subjected to two non-axisymmetric loading conditions is examined and the situation
of incipient detachment between the shaft and the hub is determined. The first condition consists of a
central radial load P applied to the hub, balanced by two lateral forces P /2 applied to the shaft at a
distance d from the hub lateral walls. In the second condition, a central couple C is applied to the hub,
and it is balanced by two lateral opposite loads withstood by the shaft at a distance d from the hub
lateral walls. The shaft-hub contact is modelled in terms of two elastic Timoshenko beams connected by
distributed elastic springs (Winkler foundation), whose constant is analytically evaluated. Based upon
this enhanced beam-like modelling, the loading inducing an undesired shaft-hub incipient detachment
is theoretically determined in terms of the shaft-hub geometry, of the initial shaft-hub interference, and
of the elastic constants. Finite element forecasts are presented to quantify the error of this beam-like
approximate analytical approach.

1. Introduction

Press fit between a hub and a shaft is a widely employed clamping method, but it can lead to problems of
fretting fatigue if the clamping pressure generated by interference is insufficient to prevent slip. A limit
situation in which slip inevitably occurs is when the loading applied to the shaft-hub assembly causes
an appreciable shaft bending that in turn produces incipient detachment between the shaft and the hub.
This incipient detachment situation is an indicator of poor mechanical design, and it may be assumed as
a reference condition against the outcome of fretting.

The title problem bears some similarity with the press fit of the bush into a connecting rod small end
[Marmorini et al. 2012]. The undesired event is bush loosening, since it favours bush rotation, which
would occlude the lubrication hole; the load that produces bush loosening is assumed as a reference
loading, and the admissible force must exhibit a safety factor with respect to the reference load threshold.

The available models of the shaft-hub press fit possess an extensive literature spread over various
decades, which may be classified into three main groups. The first category collects the classical, ax-
isymmetric, plane solution of a shaft-hub interference fit. This solution neglects the possible outcome
of pressure peaks at the contact extremities, and it ignores loadings that produce shaft bending. The
second group addresses the evaluation, for an axisymmetric loading, of the pressure bumps occurring
at the contact extremities. The third set considers both the presence of lateral pressure peaks and of
shaft bending, caused by a non axisymmetric loading. Extended literature review on these three topics
is available in [Strozzi et al. 2011; 2016; Croccolo et al. 2012; Smetana 2001; Radi et al. 2017].
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Figure 1. The two loading conditions (a) and (b) in terms of the forces P and the couple
C, and the meaning of the symbols a, b, d, [, L, r, y, z.

This paper presents both analytical and numerical investigations on the mechanical response of a shaft-
hub press fit subjected to an external, non axisymmetric loading. Two loading conditions of practical
interest are addressed:

(i) A central radial load P is sustained by the hub, and it is equilibrated by two lateral forces P /2
applied to the shaft at a distance d from the hub lateral walls (Figure 1a).

(i1) A central couple C applied to the hub is equilibrated by two lateral loads P = C/[2(I +d)], sustained
by the shaft at a distance d from the hub lateral walls (the hub length being L), and having opposite
directions (Figure 1b).

Figure 1 also clarifies the meaning of the symbols a, b, d, [, L, r, y, z.

This practically oriented paper complements a previous work addressing a press-fit, in which the shaft
was deflected by two equal bending couples applied to the shaft extremities [Strozzi et al. 2016; Radi
et al. 2017]. The above loading together with the two additional loadings illustrated in Figure 1 constitute
three loading conditions considered in the DIN standards discussed in the two papers cited.

The main aim of this paper is to determine the intensity of the bending loading that locally annihilates
the initial contact pressure due to the shaft-hub press fit alone, and it begins the detachment between the
shaft and the hub. As already noted, the occurrence of a shaft-hub separation constitutes an indicator of
poor mechanical design, since it promotes undesired phenomena of wear and fretting fatigue [Ciavarella
et al. 1998]. Such observations justify this return to the analysis of situations of incipient detachment.

A rigorous three-dimensional analytical modelling of the detachment condition being prohibitively
complex, the modelling of the shaft-hub contact is approximated in terms of two elastic Timoshenko
beams connected by distributed elastic springs (Winkler model), see [Radi et al. 2017]; the classical
Lamé solution is employed to simulate the press-fit stresses in the absence of external loading. The
analytical evaluation of the intensity of the loading that locally begins the detachment between the shaft
and the hub is achieved by separately evaluating the frictionless contact pressure due to the press-fit
alone, and the contact pressure imputable to the shaft bending alone. The corresponding solutions are
briefly considered in the following sections; further details can be found in [Radi et al. 2017].

The authors are aware of the availability of alternative approaches for describing the incipient detach-
ment between two bodies; see, e.g., [Deseri and Owen 2003; 2010]. However, the two-beam model
already employed in [Radi et al. 2017] was found to be suitable for our purposes.
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The analytical prediction of the detachment loading when the shaft is loaded by couples at its extrem-
ities, presented in [Radi et al. 2017], indicates that the unavoidably approximate beam-like modelling
favoured in this paper to describe this contact detachment problem supplies an indicative value rather than
an accurate threshold of the critical loading. It is therefore expected that for the two loading conditions
illustrated in Figure 1 the analytical solution be approximate, although still technically significant. Var-
ious three-dimensional finite element (FE) forecasts are included in this paper, that provide an accurate
prediction of the detachment loading, albeit only for a selection of press-fit geometries, and they permit
the evaluation of the error incurred in the approximate analytical approach.

The FE forecasts of [Strozzi et al. 2016] indicate that, if the hub bore edges are rounded, the couple
that produces the shaft-hub detachment is higher than its counterpart valid for sharp hub bore edges. In
practical situations, this increase may be of, say, 20 per cent. A thorough modelling of the shaft-hub
detachment problem should therefore incorporate the hub bore fillet radius effect. However, since the
main aim of this paper is to determine an indicative value of the detachment loading rather than its
accurate threshold, the effect of the hub bore rounded edges is not explored in this paper, and reference
is made to a sharp bore edge both in the analytical and in the FE studies.

In [Radi et al. 2017] the press fits subjected to bending have been classified into two main categories.
The first group collects problems in which the shaft laterally protrudes from both the hub sides, and the
shaft projecting portions are subjected to bending, as in the two couplings of Figure 1. Bearing mounting
often belongs to this category. The second group embraces situations where the shaft protrudes from
only one side of the hub, whereas the remaining shaft extremity is aligned with one of the two hub
lateral faces; in this case, the external loading is applied to the shaft protrusion and to the hub. The
crankpin press-fitting into a crankweb in a composite crankshaft [Smetana 2001; Strozzi and Vaccari
2003] belongs to this second group. This paper addresses the first category by examining in detail two
detachment problems whose geometries and loadings are illustrated in Figure 1, and it is organized as
follows. Section 2 considers the contact pressure due to press fit alone, whereas Section 3 addresses the
contact pressure caused by the shaft bending alone; Section 4 analytically evaluates the Winkler constant;
Section 5 imposes the incipient detachment condition; Section 6 reports fundamental solutions in the FE
study; Section 7 compares analytical and FE forecasts.

2. Press-fit contact pressure

The shaft-hub contact pressure due to the press-fit alone is axisymmetric, and it stays reasonably constant
in its central part, whereas it exhibits localized pressure bumps at the shaft-hub contact extremities,
where the hub bore edges are rounded. Overall, the pressure profile is camel backed [Strozzi et al. 2011;
Croccolo et al. 2012]. The analytical value of the elastic flattish central contact pressure ppr (the index pf
denotes “press fit”) is correctly forecast by the Lamé plane modelling, e.g. [Strozzi et al. 2011]:

ppr =5 (I —a?), 6]

where a denotes the nominal value of both the shaft radius (the shaft is assumed to be solid) and of the
hub inner radius, @« = a/b, and b represents the hub outer radius, Figure 1. In addition, § denotes the
radial interference, and E is the Young’s modulus of the material of both the above components.
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No simple expression is available that quantifies the lateral pressure bumps [Strozzi et al. 2011; Croc-
colo et al. 2012]. Since the shaft detaches from the hub starting from their contact extremities, at a first
sight the detachment loading is expected to be appreciably influenced by such pressure bumps, whose
presence cannot therefore be ignored. However, since the pressure bumps are extremely localized, when
the loading produces an axial extent of the shaft-hub detachment higher than that of the pressure bump,
the pressure bumps disappear, and the contact pressure smoothly decays from its flattish central value to
zero [Strozzi et al. 2016]. It may therefore be concluded that, when computing the loading that initiates
the shaft-hub separation, it is acceptable to refer to the flattish central contact pressure of formula (1)
and to neglect the lateral pressure bumps; see [Strozzi et al. 2016] for additional details.

3. Contact pressure due to the shaft bending

This section addresses the analytical evaluation of the frictionless contact pressure bilaterally exerted
between the shaft and the hub in the presence of a perfect fit, i.e., in the absence of interference or
clearance, as a result of the external loading alone, see Figure 1. The shaft-hub contact is assumed as
bilateral, since this paper addresses and incipient detachment condition rather than a partially detached
contact. Following [Radi et al. 2017], the shaft and the hub are described in terms of two Timoshenko
beams according to a shear-deformable modelling, endowed with a Winker foundation to account for the
deformations of the shaft and hub cross sections due to the in-plane stresses. The analytical approach
follows the same lines as those detailed in [Radi et al. 2017] for the shaft loading constituted by two
couples, to which the interested reader is referred; attention is paid in Sections 3.1 and 3.2 to the boundary
conditions to be applied to the two beams for the two loadings detailed in Figure 1, whereas only a
perfunctory description of the analytical solution of the two contact problems of Figure 1 is reported in
this paper.
The governing equation of this beam contact problem is the fourth order ODE [Radi et al. 2017]:

d*®  4e)? d2c1>+4)\4
dz* 12 dz? 14

d=0, ()

where the non-dimensional constants A and ¢ have been introduced together with the auxiliary constant y:
KI* /1 1 KI?
M=ot mr) Ve (S En): 3)
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In (2), @ denotes the relative rotation between two cross sections of the two beams describing the
shaft and the hub, respectively, at the same axial coordinate z, Figure 1, and / is the hub half length. In
addition, K is the Winkler constant, E is the Young’s modulus, G is the shear modulus, Ag and A are
the areas of the cross sections of the two beams, Iy and I; are their moments of inertia, and x and x;
are their shear factors, see [Radi et al. 2017], respectively. A discussion on the evaluation of the Winkler
constant K is postponed to Section 4.
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The general solution of the ODE (2) in terms of & is:
P(z) = [01 sin()m/l —¢ %) +c cos()m/l —¢ %)] cosh()m/ 1+¢ %)
+ |:C3 sin(k«/l —¢ %) +ca cos()»\/l —¢ %)] sinh(k«/l +¢ %),

where ¢; (i = 1,2, 3,4) are non-dimensional constants to be determined by imposing the boundary
conditions at z =0, [.

The contact force g between the two beams is obtained by repeatedly differentiating ® according to
formula (6) [Strozzi et al. 2016]. Since it has been ascertained that, for the cases examined, the shaft-hub
separation always initiates from the hub extremities defined by z =/ [Radi et al. 2017], and not at the
hub centre, it is important to evaluate therein the value of the contact force g. Finally, the corresponding

&)

maximum contact pressure pmax has been estimated in formula (6) by assuming a cosinusoidal distribu-
tion of the contact pressure in the circumferential direction; see [Radi et al. 2017] for additional details:

* o (l)_Kl4d3CI>(l) _ KI* o)
Hrdp TV T pa T 0 P T e T ag

The boundary conditions for the two loadings of Figures Figure 1a and 1b are separately treated in
Sections 3.1 and 3.2.

q9=K (6)

3.1. Boundary conditions for the loading constituted by a central force and by two lateral equilibrating
Jorces. In this Section the loading condition is examined in which a central radial force P applied to
the hub is equilibrated by two lateral forces P /2 applied to the shaft at a distance d from the hub lateral
walls, Figure 1a. The aim of this Section is to formulate the corresponding boundary conditions for the
beam modelling.

It is convenient to refer to the statically equivalent loading detailed in Figure 2, in which the two
forces P /2 applied to the shaft at a distance d from the hub lateral walls, Figure 1a, are substituted
by two forces P /2 applied to the shaft section aligned with the hub lateral walls, and by two couples
C = Pd/2 applied to the shaft. Figure 2 also clarifies the origin of the z coordinate.

The four unknown constants c; of the general solution expressed by (5) are evaluated by imposing four
boundary conditions, expressing that a) at the shaft-hub contact midpoint, i.e., for z = 0, the unknown
function ® vanishes, whereas the shear force assumes the value P /2, consistent with the presence of
the central force P applied to the hub, and that b) at the shaft-hub contact extremity, i.e. for z = [, the

P/Z‘ |L ‘P/Q
e

Figure 2. The boundary conditions to be applied to the beam for the loading of Figure 1a.
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Figure 3. The boundary conditions to be applied to the beam and to the hub for the
loading of Figure 1b.

bending moment M; and the shear force 7; (indices O and 1 denote the hub and the shaft, respectively)
equal the applied moment C = Pd/2 and the force P, within the respect of the sign conventions of
Figure 4 of [Radi et al. 2017]:

d*® P do C Pd  d*® P

P0)=0, —O0HN=-o—\, —()=—-—=——, H=——.
© 2=y =0T en T wEn a2 V7 2

The expressions of the four unknown constants ¢; are too long to be reported here.

(N

3.2. Boundary conditions for the loading constituted by a central couple and by two lateral equilibrat-
ing forces of opposite directions. In this section the loading condition is examined in which a central
couple applied to the hub is balanced by two lateral, opposite forces P = C/[2(I + d)] exerted on the
shaft at a distance d from the hub lateral walls, Figure 1b. The aim of this Section is to formulate the
corresponding boundary conditions for the beam modelling.

It is advantageous to refer to the statically equivalent loading detailed in Figure 3, in which the two
forces P applied to the shaft at a distance d from the hub lateral walls are substituted by two forces P
exerted on the shaft section aligned with the hub lateral walls, and by two couples Q = Pd withstood
by the shaft.

The four unknown constants c; of (5) are evaluated by imposing four boundary conditions, expressing
that a) at the shaft-hub contact midpoint, i.e., for z = 0, the loading is skew-symmetric, and, therefore,
the bending moment assumes the value reported in (8), whereas the contact force ¢ is null, thus implying
that d3/dz® = 0 according to (6); b) the shear force and the bending moment at the shaft-hub contact
extremity, i.e. for z =/, assume the values reported in (8), within the respect of the sign conventions of
Figure 4 of [Radi et al. 2017]:

Cd d*o C

C Ao 0 =
RU+DIEL’ dz2°°  RU+DIEL’

do (O+) _
dz " 2EIl,  dZ3

dd
0) =0, d_z(l) = - (®)

4. Evaluation of the Winkler constant

It has been observed in [Radi et al. 2017] that the introduction of a Winkler model in the analytical
description of the contact interaction between the shaft and the hub is physically advantageous, since it
avoids the outcome of stress singularities at the contact extremities.
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In [Radi et al. 2017] various models proposed for evaluating the Winkler constant have been compared,
and it has been shown that its numerical value noticeably varies according to the approach employed. In
particular, in formula (12) of [Lundberg 1958] the deformability of the shaft-hub cross section has been
estimated by adopting a plane model formed by a hollow disk surrounded by a ring, and by adopting a
simplified loading. A closed form expression has been obtained for the Winkler constant K :

K 7a(l+v) a;i \? a\? a2 (a\*1!

26 = oy L (@) 1+ G =G G ] ©)
where aj, a, and b are the inner, intermediate, and outer radii, respectively. For v = 0.3, for a solid shaft
(ai = 0), and for the reference configuration b = 2a, K/(2G) =7.29.

The radial compliance of a solid circular cross section surrounded by a ring is analytically examined
in [Strozzi et al. 2016]. Following the approach of [Castillo and Barber 1997], the differences between
the shear stresses acting on the two plane cross sections of a thin shaft slice are replaced by body forces.
The exact distribution of the shear stresses t,, and ty, due to a shear force is analytically available both
for a solid disk and a ring, [Love 1944, p. 335]. The analytical expression of the Winkler constant has
been evaluated in [Radi et al. 2017] with an energy approach based on the Clapeyron theorem. Within
this model, for the above reference geometry @« = a/b = 1/2 and for v = 0.3 and adopting plane strain,
the normalized Winkler constant K /(2G) is 1.90.

An alternative model for evaluating the Winkler constant assumes that the body forces representative
of the shear stresses be uniformly distributed according to a gravitational field within both the solid disk
and the ring, see Figure 2a of [Castillo and Barber 1997]. In this case, the analytical solution provides
K/(2G) =3.68 foro =a/b =1/2 and for v = 0.3 in plane strain.

In the present work we propose an alternative procedure for evaluating the Winkler constant, based
on the virtual work theorem. We assume indeed a uniform distribution of shear stress, whose resultants
are a unit shear force in the shaft and an opposite unit shear force in the hub, as the virtual stress field
working for the actual distribution of shear strain provided in [Radi et al. 2017] as 1,/ G and 15,/ G and
due to the opposite shear forces Q acting on shaft and hub. The latter work is then compared to that
carried out by the unit shear forces acting on shaft and hub for the actual relative displacement between
shaft and hub, namely Q/K. In this case, the analytical expression of K /(2G) becomes:

% _ %(1 C ot (1), (10)

where
D={(1-a®)[15—33v 200>+ 641> +a* (34 —46v— 720>+ 80v°) +a* (35— 77v — 41> +4817)]
—12(1+aH)[3—v—4*+22*3—v—2v")]Ina}. (11)

With this model, for « =a/b =1/2 and for v = 0.3, K/(2G) = 2.6933 under plane strain conditions.
The Winkler constant derived from the application of the principle of virtual work does not need to be
strictly positive. In fact, for v = —0.9 the normalized Winkler constant exhibits an unphysical singular
behavior. However, the press-fit problem examined in this paper deals with classical elastic materials
whose Poisson’s ratio is positive and, therefore, this anomaly has not been examined further.
Figure 4 reports the normalized Winkler constant K /(2G) versus a = a /b for the three above models,
i.e., for the body forces according to the exact shear stress distribution, referred to as “Love”, for the
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Figure 4. Three normalized Winkler constants K /(2G) in terms of « = a/b, for v =0.3,
in plane strain.

shear stresses distributed according to a gravitational loading, named “Barber”, and for the proposed
combination of the two above stress distributions, denoted “mixed”. Plane strain is assumed, and v = 0.3.
The corresponding values are reasonably comparable; the foundation of (9) supplies considerably higher
values and, therefore, it has not been included in Figure 4. Note that the limit of K /(2G) for o =0, 1
vanishes, according to its physical meaning.

In [Radi et al. 2017] it has been noted that, in the region where the shaft-hub separation begins, the
shaft protrudes from the hub, so that the cross section of the shaft projecting part, being no longer directly
compressed by the contact pressure, but being only deflected by the bending moment, remains reasonably
undeformed with respect to its counterpart directly compressed by the hub. The above observation
suggests that the Winkler constant may be more realistically evaluated by considering only the in-plane
deformability of the hub cross section, whereas the deformability of the shaft cross section is neglected.
This assumption produces an increase of the Winkler constant, albeit moderate. For « =a/b =1/2 and
for v = 0.3 under plane strain conditions, the normalized Winkler constant increases to 2.31 for the “Love”
model, to 4.81 for the “Barber” model, and to 3.39 for the “mixed” model. The above assumption for the
evaluation of the Winkler constant has been adopted in this paper in the compilation of the detachment
diagrams; see Figures 6 and 7.

5. Incipient detachment condition

The condition of shaft-hub incipient detachment requires that the contact pressure pjr due to the press
fit alone and expressed by (1) equals the opposite of the maximum contact pressure ppax caused by the
shaft bending alone, and expressed by (6):

KI* d?®()
4 }’i)»4 d Z3 ’
Equation (12) allows the evaluation of the analytical value of the loading that initiates the shaft-hub

detachment. For the loading of Figure 1a, Equation (12) supplies the critical value of the force P, whereas
for the loading of Figure 1b it provides the critical value of the couple C.

pif:pmaxiz(l_a ) = (12)
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6. Finite element study

The approximate beam-like modelling developed in this paper supplies an indicative, although still
technically significant, value of the incipient detachment loading. To quantify the error incurred by
the beam-like approach, various three-dimensional finite element (FE) forecasts have been presented in
Section 7, that supply an accurate prediction of the detachment loading, albeit only for a selection of
press-fit geometries.

The commercial FE program MSC Marc 2013 has been employed in this study. The 3D mesh is
formed by about 23000 biquadratic quadrilateral elements adopting a Fourier formulation. The element
size grades smoothly from 0.016 times the shaft radius a at the indenting edge, to 0.1 times in the zones
far from the stress singularity. For all the test cases, a refined mesh with halved element sides was
employed to assess the numerical convergence. The relative error of the coefficient H defining the radial
stress singular term, see below, was found to be 0.14 per cent. A similar mesh is displayed in Figure 3
of [Strozzi et al. 2016].

The FE solutions for the two problems described in Figure 1 express the normalized detachment
loading for the following three normalized geometries, namely a) the ratio a/b between the hub inner
and outer radii; b) the ratio a/L between the shaft radius and the hub axial length; c) the ratio d/a of
the distance of the lateral loadings from the hub lateral faces, to the shaft radius.

To limit the computational effort, fundamental FE loadcases have been identified in Figure 5, whose
superposition provides the detachment loading for a general d/a value, although for prescribed values of
a/b and a/L. Figure 5(a) addresses the frictionless stress field due to the interference alone, whereas the
remaining Figs consider various loadings for a shaft-hub perfect fit, bilateral, frictionless contact pressure.
For the loading of Figure 1(a), the three suitable fundamental loadcases are presented in Figures 5(a),
5(b), 5(c), whereas for the loading of Figure 1(b), the three fundamental loadcases are those of Figures
5(a), 5(d), 5(e).

For instance, suitable combinations of the loadings of Figures 5(b) and 5(c) allow various distances d
of the lateral forces P from the hub sides to be modelled for a perfect fit. Consequently, for a pre-
scribed d, the relative weights of the solutions of Figures 5(b) and 5(c) may be determined. The weight
of the solution of Figure 5(a), supplying the shaft-hub press-fit stresses, may be evaluated by numerically
imposing, similar to the analytical condition of Section 5, the incipient detachment condition through
the vanishing of the contact pressure where detachment begins. In other words, the correct combination
of the previous fundamental solutions must annihilate the radial stress at the sharp edge at the hub bore
side.

Unfortunately, it is difficult to robustly implement the above procedure in a FE analysis. In fact, for a
general loading, the sharp edge produces a theoretically unbounded contact pressure. To circumvent this
numerical difficulty, an incipient detachment condition has been adopted that is based on the non-singular
displacement field, see Appendix 4 of [Strozzi et al. 2015]. In more detail, according to the dominant
term of the Williams asymptotic expansion, the stress tensor singularly behaves as H x f;;(¢) x §70-226,
whereas the displacement vector non singularly behaves as H x g;(¢) x s'7022° where (s, ¢) is a local
polar coordinate system along the meridional plane of Figure 1, whose origin falls at the sharp edge of
the hub bore. The expressions of the f;;, and g; functions are known, and they are independent of the
loading. In [Yosibash and Szab6 1995] it is shown that the singularity strength is the same for a plane
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and for an axisymmetric domain, see also [Huang and Leissa 2007]. The incipient detachment condition
requires that o, vanishes at the sharp edge, which in turn demands that H too be null.

It is numerically convenient to compute H by sampling the FE radial displacement component moving
along the hub lateral face, rather than the radial stress component moving along the contact interface.
A best fitting procedure is then employed to extract the multiplying coefficient H of u, = H x g;(0) x
§1-0226

The coefficient H has been evaluated for all the loadcases of Figure 5. Returning to the above example,
the relative weights of the two loadcases of Figure 5(b) and 5(c) may be determined by imposing the value
of the distance d, Figure 1(a). Such weights depend on the external loading, on the coupling geometry,
and on the Poisson ratio. The weight of the loadcase of Figure 5(a) depends on the initial interference, on
the coupling geometry, on the Poisson ratio, and linearly on the Young’s Modulus; it may be determined
by imposing that the superposition of the three above loadcases produces a null coefficient H. It is
concluded that this numerical procedure determines the relationship between the initial interference and
the external loading, for a prescribed press-fit geometry and for given elastic constants.

7. Comparison between analytical and FE forecasts

As noted in the Introduction, the unavoidably approximate beam-like modelling of the two contact prob-
lems (a) and (b) of Figure 1 supplies the order of magnitude of the critical loading rather than an accurate
forecast of its threshold. For this reason, various FE forecasts have been enclosed in this paper, that supply
accurate predictions of the detachment loading, although only for selected press fit geometries, and they
permit the error incurred by the simplified analytical approach to be quantified. The comparison between
analytical and FE forecasts for the two press-fit loadings detailed in Figures 1(a) and 1(b) is separately
presented in the following two Sections 7.1 and 7.2. As discussed in the Introduction, reference is made
for simplicity to hub bore sharp edges, and the effect of a fillet radius is not explored.



SHAFT-HUB PRESS FIT SUBJECTED TO COUPLES AND RADIAL FORCES 293

0.50 L 0.50 L
045 P/2 P/2 045 P/2 P/2
' Z W Z
0.40 NG A 0.40 NS
c o c c
0.35 | b | 035 s
,\1\?\ [N | ‘ |

Pa¥/(IEL,)
Pa¥/(IEl,)

0.20 d/a=4

ﬁN

:#—<
0.15 d/a=6]

#:

0.20

0.30 Jas 0.30
0.25 d/0=3 0.25 ? Ad/c;z

d/a=3
#: ]

0.15

d/a=6

Tnn

B

0.10 0.10 = A
) j. R I a— . d/a=10

d/a=1 T —— Lﬁ
0.05 0.05 A

‘ a/L=1/3 FE theor. a/L=1/8 FE theor.
0.00 - —o- 0.00 -0- -
025 o350 035 g4 045 ooy 055 oq 085 .0 075 025 539 035 g40 045 o5 055 gg 085 o0 075
a/b a/b

Figure 6. The value of the normalized detachment force Pa®/(I EI,) versus a/b for
a/L =1/3 (left) and a/L = 1/8 (right), in the situation of incipient shaft-hub detachment,
for v=0.3.

7.1. Comparison between analytical and FE forecasts for the loading of Figure 1(a). For the non
axisymmetric press-fit loading constituted by three radial forces, Figure 1(a), a suitable expression of
the normalized force describing the detachment initiation derives from the analytical solution (5) of the
ODE (2) within the respect of the boundary conditions (7). The analytical solution suggests that a proper
normalized detachment force is Pa’/(IEI,), where P represents the central load, a denotes the shaft
radius, [ is the diametric interference, E is the Young’s modulus, and [ is the shaft moment of inertia.
The detachment initiation force Pa®/(I EI}) depends upon the three aspect ratios a/b = «, d/a, a/L.
The ranges explored with FE in Figure 6 for the three aspect ratios are 2 < d/a <10, 0.3 <« < 0.7,
1/8 <a/L < 1/3. To limit the computational effort, only the two extreme values 1/3 and 1/8 of the
variable a/L have been considered. The corresponding analytical and FE forecasts are presented in
Figure 6, in which the abscissa variable is a/b = «, the family of curves refers to five a/d values, and
the ordinate variable is the normalized detachment force Pa’/(IEI).

The agreement between analytical and FE forecasts is on the whole acceptable, especially for a/L =
1/8, a coupling, this, whose geometry is better identifiable in terms of a beam.

In the following, the FE normalized detachment force Pa®/(I E1,) of Figure 4 referring to a/L = 1/8
and to d/a = 10 is compared to the FE normalized detachment couple Ca?/(I EI;) of Figure 5 of
[Strozzi et al. 2016], also referring to a/L = 1/8. In fact, according Figure 4, the shaft extremity is
loaded by a force P /2 acting at a distance d from the shaft section aligned with the hub lateral walls.
For high values of d/a, the deforming effect of the bending couple Pd/2 acting on the shaft section
aligned with the hub lateral walls is deemed to prevail over that of the shear force P /2. Consequently,
Caz/(IEll) = Pda2/2/(IE11) = 5Pa3/(IE11). In conclusion, the normalized couple of Figure 5 of
[Strozzi et al. 2016] evaluated for a/L = 1/8, is expected to be about five times the normalized force
of Figure 6, right, computed for a/L = 1/8 and for d/a = 10. For a/b = 0.5, the above ratio extracted
from the FE forecasts of the two above diagrams is about 6, thus confirming the validity of the FE study.
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Figure 7. The value of the normalized detachment couple Ca?/(I EI}) versus a/b for
a/L =1/3 (left) and a/L = 1/8 (right), in the situation of incipient shaft-hub detachment,
for v=0.3.

7.2. Comparison between analytical and FE forecasts for the loading of Figure 1(b). In the case of
the loading of Figure 1(b), constituted by the couple C and by two equilibrating radial forces, a suitable
normalized parameter that describes the press-fit incipient detachment is Ca?/(I E1;). The detachment
initiation couple Ca?/(I EI;) depends upon the three aspect ratios a/b = «, d/a, a/L. The ranges
explored with FE for the three aspect ratios in Figure 7 coincide with those adopted for Figure 6. The
agreement between analytical and FE forecasts is on the whole acceptable.

For a/L = 1/3, both the analytical and the FE curves referring to d/a = 2, 3, 4, 6, 10 are very similar.
To avoid confusion in the diagram of Figure 5, only the analytical curves referring to the extremal d/a
values 2 and 10 have been drawn. This essential independence of the normalized detachment couple of
the parameter d /a suggests the rule of thumb according to which detachment occurs when Ca?/(IEI) ~
0.4+0.7for2 <d/a <10and 0.3 <a/b <0.7. A similar situation in which curves referring to various
geometries are essentially superimposed occurs in Figure 5 of [Strozzi et al. 2016].

The reasonably favourable comparisons between analytical and FE predictions indicate that additional
situations of incipient detachment may confidently be examined on the basis of the analytical predictions
alone, without the need for a FE assessment. For instance, situations mentioned in the Introduction may
analytically be examined in which, in a composite crankshaft, the shaft protrudes from only one side of
the hub, whereas the remaining shaft extremity is aligned with one of the two hub lateral faces [Strozzi
and Vaccari 2003].

8. Conclusions

A shaft-hub press fit subjected to two non-axisymmetric loading conditions has been examined, and the
loading producing a situation of incipient detachment between the shaft and the hub has been determined.
The first loading condition consists in a central radial load P sustained by the hub, equilibrated by
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two lateral forces P/2 applied to the shaft at a distance d from the hub lateral walls. In the second
loading condition a central couple C applied to the hub is equilibrated by two lateral loads withstood
by the shaft at a distance d from the hub lateral walls, and exhibiting opposite directions. The shaft-
hub contact has been modelled in terms of two elastic Timoshenko beams [Lanzoni and Radi 2016]
connected by distributed elastic springs, whose constant has been analytically evaluated. Based upon
this beam-like modelling, the loading inducing an undesired shaft-hub incipient detachment has been
theoretically determined in term of the shaft-hub geometry, of the initial shaft-hub interference, and of
the elastic constants. The analytical predictions of the incipient detachment loading have been compared
to selected finite element forecasts, and the agreement has been found to be technically acceptable.
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