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TUNING STRESS CONCENTRATIONS THROUGH
EMBEDDED FUNCTIONALLY GRADED SHELLS

XIAOBAO LI, YIWEI HUA, CHENYI ZHENG AND CHANGWEN MI

In this work, we explore the possibility of tuning stress concentrations in materials by judiciously de-
signing embedded functionally graded shells. Specifically, we choose thick-walled cylinders to illustrate
our central idea. We specifically consider the boundary value problem of a radially varying graded shell
bonded to a thick-walled cylinder. We obtain closed-form solutions and our parametric numerical studies
suggest that a graded soft shell can effectively drive the stress concentration from the inner surface of
the shell to the shell-cylinder interface. For any boundary loading, an optimal inhomogeneity index that
balances the stress concentrations along the inner surface and the interface can be identified. Using the
solution to a completely homogeneous cylinder as a benchmark, the stress concentration factor can be
reduced by more than 40%. The results of this work suggest the significant potential of functionally
graded materials for tailoring the stress concentrations of engineering structures by bonding a properly
designed inhomogeneous layer to the perimeter of geometric defects.

1. Introduction

Stresses may be significantly amplified around regions with geometric discontinuities and abrupt changes
in material properties or load intensities. This phenomenon is known as stress concentrations. It is often
responsible for structural failure, e.g., damage and fracture, and is generally measured by the use of
stress concentration factors (SCFs). Consequently, reducing the stress concentration factor of engineering
elements and structures is of significant interest and importance in practice. In other words, optimization
of stress distribution is desired for those structures with stress concentrations, in particular, for plates and
cylinders containing holes. Since the 1960s, many studies have been continuously devoted to the stress
analysis of plates with holes of various shapes under different loading conditions [Savin 1961; Theocaris
and Petrou 1986; Ukadgaonker and Rao 1999; Rezaeepazhand and Jafari 2010]. More recently, Wu and
Mu [2003] developed a computational method to estimate the SCFs of isotropic and orthotropic plates
as well as cylinders with a circular cutout. Later, Yang et al. [2008; 2010b] investigated the stress and
strain concentrations of a plate containing a circular hole. By the use of the complex variable method,
Batista [2011] calculated the stress concentration around a hole with complex geometry in an infinite
elastic plate. Patel and Sharma [2017] proposed a numerical approach to study the stress field around
polygonal cutouts with complex geometries in an orthotropic media. On the basis of these literature
studies, Nagpal et al. [2012] presented a complete analysis and overview on techniques focusing on the
relief of stress concentrations in materials and structures with cavities.

Keywords: functionally graded material, stress concentration, method of stress function, thick-walled cylinder, elasticity
theory.
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The above studies all focused on homogeneous materials with geometric defects. Functionally graded
material (FGM) is a class of composite materials that possess continuous variation of material prop-
erties along certain spatial dimensions. This distinguishing feature eliminates the sharp discontinuity
in material properties that naturally arise when bridging materials with drastically different properties.
FGMs may thus help regulate the stress distribution and function performance of composite structures.
Due to this, FGMs have received considerable attention in the past two decades and found a number
of applications in aerospace engineering [Marin 2005] and biomedical engineering [Watari et al. 2004],
among others [Kawasaki and Watanabe 2002; Müller et al. 2003; Chen et al. 2012].

Up to the present, numerous studies have reported applications of FGMs in engineering structures,
and in particular, their effect on stress reduction in structures with geometric defects [Jin and Batra 1996;
Chi and Chung 2006a; 2006b; Birman and Byrd 2007; Yang et al. 2015]. Kubair and Bhanu-Chandar
[2008] solved the SCFs due to a circular hole in a functionally graded panel and found that the stress
concentrations can be reduced when the Young’s modulus is allowed to progressively increase away
from the center of the hole. Yang et al. [2010a] also analyzed the stress distribution of a functionally
graded plate with a circular hole and reported significant stress relief as the Young’s modulus is allowed
to radially increase. Later, Mohammadi et al. [2011] revisited the stress concentration problem around
a circular hole in an infinite FGM plate subjected to different loading conditions. More recently, Yang
et al. [2015] further studied the three-dimensional equilibrium problem of a voided transversely isotropic
FGM plate subjected to loading applied on the remote boundary of the plate. Several other studies on the
stress concentration analysis of FGM plates under different conditions include [Kubair 2013; Sburlati
et al. 2014; Gouasmi et al. 2015; Mohammadi et al. 2016]. Jha et al. [2013] supplied a comprehensive
review on various theories of FGM plates and their applications.

In addition to plates, stress concentrations in another important engineering structure, i.e., graded
cylinders, under various loading conditions have also been studied [Pan and Roy 2006; Chen and Lin
2010; Batra and Nie 2010; Nie and Batra 2010; Nie et al. 2011; Sadeghi et al. 2012; Ghannad et al. 2013;
Chen 2015]. Horgan and Chan [1999] solved the stress field in a pressure vessel with radially graded
Young’s modulus. By comparing with a completely homogeneous vessel, they showed the significant
difference in stress distribution. Tutuncu [2007] further investigated the stress distribution in cylindrical
vessels with exponentially varying modulus along radial axis. Oral and Anlas [2005] derived a closed-
form stress solution for an orthotropic cylindrical pressure vessel with inhomogeneous material properties.
By treating either the elastic stiffness or Poisson’s ratio as a constant, but not both, Dryden and Batra
[2013] studied the axisymmetric plane strain problem of a graded cylinder under hydrostatic loading.
They also successfully designed an equivalent homogeneous vessel with the same stress concentration
level as that of a graded one. Xin et al. [2014] further considered the possible effects of Poisson’s ratio
on stresses and displacements and presented a theoretical formulation for graded thick-walled cylinders.

Although many studies have been devoted to reducing stress concentrations in pressure vessels, most
of them focus on geometric defects embedded in infinite domains under hydrostatic boundary loads.
Nonetheless, it has been shown that graded materials work best as a coating or a transitional layer bridg-
ing two components with drastically different material properties. When employed this way, an FGM
component is able to significantly improve the mechanical behavior of the original structure, including
the conventionally undesired stress concentrations [Kashtalyan and Menshykova 2007; Sburlati 2012;
Sburlati et al. 2013; Chu et al. 2015].
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By the use of a thin FGM ring, Sburlati [2013] explored the possibility to relieve the stress concentra-
tion around the circular hole in a homogeneous plate under far-field uniaxial tension. They demonstrated
that the SCF around the hole perimeter can be significantly reduced by a proper choice of the grading
parameter of the annular ring. Shortly thereafter, they extended their model to take into account both a
perfect bonding and a pure sliding condition at the ring/plate interface [Sburlati et al. 2014]. Analytical
solutions due to four types of simple far-field loads are presented. Yang and Gao [2016] also confirmed
that by using a properly graded thin shell around an elliptic hole in an infinite plate, the SCFs may be
effectively reduced.

Motivated by these studies, the primary goal of the present study is to propose a solution to mitigating
stress concentrations in a thick-walled cylinder subjected to an arbitrary boundary load. We believe
that it is a promising way to improve the stress distribution in thick-walled cylinders by introducing an
inhomogeneous annular shell, treated as a thin coating perfectly bonded to the inner surface of a circular
cylinder. The Young’s modulus of the inhomogeneous shell is allowed to vary along its radial dimension
by following a power-law function, whereas the Poisson’s ratio of the shell is kept as a constant without
any gradation. The problem is formulated with the method of Airy stress function. For the case of
inhomogeneous material properties, the conventional biharmonic equation that must be satisfied by the
stress function of a homogeneous medium becomes a general fourth-order differential equation of Euler-
type. Successful tackling of this differential equation renders us an analytical solution to the stresses and
displacements of the proposed problem.

The remainder of this paper is organized as follows. Section 2 presents the Airy stress function formula-
tion of the proposed problem and its analytical solutions due to both an all-around traction and an arbitrary
biaxial load. In Section 3, extensive parametric studies are performed to illustrate the effects of the
inhomogeneity index of the embedded shell and the traction ratio along perpendicular directions on the
stress distribution and stress concentrations. Whenever possible, the benchmark solution to a completely
homogeneous cylinder is computed and used as a comparison basis. Finally, in Section 4, a few conclud-
ing remarks that were informed from both the analytical solutions and numerical studies are drawn.

2. Formulation and method of solution

As shown in Figure 1, the problem under consideration is composed of a thick-walled cylinder reinforced
by a perfectly bonded thin shell, both of finite thickness. The Young’s modulus of the cylinder is assumed
to be homogeneous while that of the inner shell is treated as a radially graded quantity, i.e.,

E (i) = E (o)
( r

r0

)m
, (1)

where m represents the inhomogeneity index of the grade shell and therefore should be a real number.
The superscripts (i) and (o) are used to denote the quantities that belong to the inner shell and the
outer cylinder, respectively. The inhomogeneity index serves as a governing parameter for tuning the
relative stiffness between the shell and the cylinder. The power law function (1) was specialized so that
the material properties at the shell-cylinder interface (r = r0) remain continuous. Since the effect of
Poisson’s ratio (ν) has proven to be very marginal when compared to that of the elastic modulus, see for
example [Sburlati et al. 2014, Table 3], it seems reasonable to fix it as an equal constant in both domains.
The combination deforms under the application of a uniform boundary loading: σx = p and σy = q at the
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Figure 1. Geometry and loading configuration of the problem.

outer boundary of the cylinder. Such a loading condition is general in the sense that an arbitrary uniform
boundary traction can always be converted into this form, with a proper rotation of coordinates.

Due to the axial symmetry of the structure, polar coordinates become a natural choice to formulate
and solve the problem. In the absence of body forces, the two-dimensional equations of equilibrium are
thus given by

∂σr

∂r
+

1
r
∂σrθ

∂θ
+
σr − σθ

r
= 0,

∂σrθ

∂r
+

1
r
∂σθ

∂θ
+

2
r
σrθ = 0, (2)

where σr , σθ , and σrθ are the normal and shear stress components, respectively. The strain-displacement
relations read

εr =
∂ur

∂r
, εθ =

1
r

(
ur +

∂uθ
∂θ

)
, εrθ =

1
2

(
1
r
∂ur

∂θ
−

uθ
r
+
∂uθ
∂r

)
. (3)

The present problem is more reasonable to be modeled as a plane strain one. Nonetheless, it is well
known that plane strain formulation generally results in more complicated mathematical expressions
when compared to those of plane stress formulation. For simplicity, we have chosen to first formulate
the present problem in terms of the plane stress constitutive law:

εr =
1

E(r)
(σr − νσθ ), εθ =

1
E(r)

(σθ − νσr ), εrθ =
2(1+ν)

E(r)
σrθ . (4)

Later in the numerical analysis and discussion (Section 3), the plane strain version of these equations are
obtained by the change of material properties: E→ E/(1− ν2) and ν→ ν/(1− ν).

For problems formulated in terms of stresses, it is well known that in addition to the above equations,
the strain compatibility condition must also be satisfied:

∂2εθ

∂r2 +
1
r2

∂2εr

∂θ2 +
2
r
∂εθ

∂r
−

1
r
∂εr

∂r
=

1
r
∂2εrθ

∂r∂θ
+

1
r2

∂εrθ

∂θ
. (5)

Since the present problem is formulated within the framework of the linearized theory of elasticity, the
biaxial boundary tractions shown in Figure 1 can safely be superposed from the two uniaxial tractions
along individual coordinate axes. As a result, it would be sufficient to develop a solution due to the
traction load σx = p. The solution due to σy = q can readily be obtained by making the replacements
p→ q and θ→ θ + 1

2π .
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With the help of the transformation matrix between the regular Cartesian and polar coordinates, it is
easy to find the polar components for the uniaxial traction σx = p:

σr =
1
2 p(1+ cos 2θ), σrθ =−

1
2 p sin 2θ. (6)

The boundary conditions (6) can further be decomposed into an axial symmetric component,

σr =
1
2 p, (7a)

σrθ = 0, (7b)

and an antisymmetric component,

σr =
1
2 p cos 2θ, σrθ =−

1
2 p sin 2θ. (8)

Irrespective of the traction conditions applied at the outer boundary of the cylinder, the inner surface of
the embedded shell is always free of tractions:

σr (ra, θ)= 0, (9a)

σrθ (ra, θ)= 0. (9b)

The perfect bonding condition between the two material components requires that both the displacements
and the stress tractions must be continuous across the shell-cylinder interface:

[σr (r0, θ)] = 0, (10a)

[σrθ (r0, θ)] = 0, (10b)

[ur (r0, θ)] = 0, (10c)

[uθ (r0, θ)] = 0, (10d)

where the square brackets denote the jumps of displacements and stress tractions.
To solve the problem we use the Airy stress function in the general form ϕ = ϕ(r, θ), with the polar

stress components written as

σr =
1
r
∂ϕ(r, θ)
∂r

+
1
r2

∂2ϕ(r, θ)
∂θ2 , σθ =

∂2ϕ(r, θ)
∂r2 , σrθ =

1
r2

∂ϕ(r, θ)
∂θ

−
1
r
∂2ϕ(r, θ)
∂r∂θ

. (11)

In the remainder of this section, we aim to develop analytical solutions to both the symmetric (7) and
the antisymmetric (8) boundary conditions.

2.1. Axial symmetric solution. When the structure shown in Figure 1 is subjected to an all-around trac-
tion of magnitude 1

2 p, i.e., (7), the Airy stress function becomes azimuthally independent: ϕ = ϕ0(r).
For this case, the compatibility condition can be reformulated in terms of the Airy stress function by
combining equations (11), (4), and (5):

d4ϕ0(r)
dr4 +

2(1−m)
r

d3ϕ0(r)
dr3 +

(m2
+ νm−m− 1)

r2

d2ϕ0(r)
dr2 −

(m+ 1)(mν− 1)
r3

dϕ0(r)
dr

= 0. (12)

This equation is an ordinary differential equation of Euler type whose solution is

ϕ
(o)
0 (r)= z1 ln(r)+ z2r2 (13)
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for the outer cylinder and
ϕ
(i)
0 (r)= C1rm/2+ρ/2+1

+C2rm/2−ρ/2+1 (14)

for the inner shell, where z1, z2,C1,C2 represent unknown coefficients to be determined by imposing
the boundary conditions and ρ =

√
m2+ 4− 4νm. It is easy to show for the practical range of Poisson’s

ratio, e.g., 0 < ν < 0.5, the parameter ρ is always a real number. Substituting (13) and (14) back into
(11) yields

σ (o)r = 2z2+
z1

r2 , σ
(o)
θ = 2z2−

z1

r2 , (15a)

σ (i)r =
(m+ ρ+ 2)rm/2+ρ/2C1+ (m− ρ+ 2)rm/2−ρ/2C2

2r
, (15b)

σ
(i)
θ =

(m+ ρ)(m+ ρ+ 2)rm/2+ρ/2C1+ (m− ρ)(m− ρ+ 2)rm/2−ρ/2C2

2r
. (15c)

The four unknown coefficients (z1, z2,C1,C2) are determined by the boundary conditions (7a), (9a),
(10a), and (10c)

z1 =−
mr2

br2
0 p

2�

(
rρa (m− 2ν− ρ)(2+m+ ρ)− rρ0 (m− 2ν+ ρ)(2+m− ρ)

)
,

z2 =
r2

brρa p
4�

(2+m+ ρ)(m2
+m(2− 2ν− ρ)+ 2(2− ρ))

−
r2

brρ0 p
4�

(2+m− ρ)(m2
+m(2− 2ν+ ρ)+ 2(2+ ρ)),

C1 =−
2r2

br1−m/2+ρ/2
0 (2+m− ρ)p

�
, C2 =−

2r2
brρa r1−m/2+ρ/2

0 (2+m+ ρ)p
�

,

(16)

where

�= rρa (2+m+ ρ)(mr2
0 (ρ−m+ 2ν)+ r2

b (m
2
+m(2− 2ν− ρ)+ 2(2− ρ)))

+ rρ0 (2+m− ρ)(mr2
0 (ρ+m− 2ν)− r2

b (m
2
+m(2− 2ν+ ρ)+ 2(2+ ρ))). (17)

2.2. Antisymmetric solution. Given the antisymmetric boundary conditions (8), the Airy stress function
for both domains must assume the form ϕ = ϕ2(r) cos 2θ . In view of (11) and (4), the strain compatibility
(5) can now be recast in terms of the function ϕ2(r). For the outer cylinder and the inner shell, the
compatibility condition becomes(

d2

dr2 +
1
r

d
dr
−

4
r2

)(
d2

dr2 +
1
r

d
dr
−

4
r2

)
ϕ
(o)
2 (r)= 0 (18)

and

d4ϕ
(i)
2 (r)

dr4 +
2(1−m)

r
d3ϕ

(i)
2 (r)

dr3 +
(m2
+ νm−m− 9)

r2

d2ϕ
(i)
2 (r)

dr2

−
(m+ 1)(mν− 9)

r3

dϕ(i)2 (r)
dr

+
4m(mν+ νm− 3)

r4 ϕ
(i)
2 (r)= 0, (19)
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respectively. Benefitting from the constant material properties in the cylinder, (18) is easy to solve and
the corresponding stress function is found to be

ϕ
(o)
2 (r, θ)=

(
z24+

z23

r2 + z21r2
+ z22r4

)
cos 2θ. (20)

Although the differential equation (19) is much more complicated, it is a fourth-order Euler equation,
whose solution can be put in the form

ϕ
(i)
2 (r, θ)= rm+1(D1 A1(r)+ D2 A2(r)+ D3 B1(r)+ D4 B2(r)

)
cos 2θ. (21)

The eight coefficients (D1, D2, D3, D4, z21, z22, z23, z24) are all unknown constants to be evaluated from
the boundary conditions (8), (9), and (10). The four functions (A1, A2, B1, B2) depend solely on the
radial coordinate:

A1(r)= r−m/2−α/2, A2(r)= r−m/2+α/2, B1(r)= r−m/2−β/2, B2(r)= r−m/2+β/2, (22)

where

α =

√
m2+ 2m− 2νm+ 20− 2

√
m2+ ν2m2− 14νm2− 32νm+ 32m+ 64, (23a)

β =

√
m2+ 2m− 2νm+ 20+ 2

√
m2+ ν2m2− 14νm2− 32νm+ 32m+ 64. (23b)

For real α and β, the inhomogeneity index m has to fall in the interval [0, 8(2−
√

3)/(ν+ 4
√

3− 7)].
Given the Airy stress functions (20) and (21), it is straightforward to find the stress components from (11):

σ (o)r =−2
(

z21+
2z24

r2 +
3z23

r4

)
cos 2θ, (24a)

σ
(o)
θ = 2

(
z21+ 6z22r2

+
3z23

r4

)
cos 2θ, (24b)

σ
(o)
rθ = 2

(
z21+ 3z22r2

−
z24

r2 −
3z23

r4

)
sin 2θ, (24c)

σ (i)r =
(m−α− 6)A1(r)D1+ (m−β − 6)B1(r)D3

2r1−m cos 2θ

+
(m+α− 6)A2(r)D2+ (m+β − 6)B2(r)D4

2r1−m cos 2θ, (24d)

σ
(i)
θ =

(m−α)(m−α+ 2)A1(r)D1+ (m−β)(m−β + 2)B1(r)D3

4r1−m cos 2θ

+
(m+α)(m+α+ 2)A2(r)D2+ (m+β)(m+β + 2)B2(r)D4

4r1−m cos 2θ, (24e)

σ
(i)
rθ =

(m−α)A1(r)D1+ (m−β)B1(r)D3+ (m+α)A2(r)D2+ (m+β)B2(r)D4

r1−m sin 2θ. (24f)

Simultaneously enforcing the boundary conditions at the inner surface of the shell (9), at the shell-
cylinder interface (10), and at the outer boundary of the cylinder (8) solves the eight unknown coefficients
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z21 =
r2

b p
∑4

i=1
∑

j>i (ξi − ξ j )ηi j ai a j

4
∑4

i=1
∑

j>i (ξi − ξ j )ψi j ai a j
, (25a)

z22 =
p
∑4

i=1
(
2r2

br2
0 (4z21+ 1)λi4− 4z21r4

0λi1− (4z21+ 1)r4
bλi3

)
ai

4
∑4

i=1(r
6
0λi2+ 2r6

bλi3− 3r4
br2

0λi4)ai
, (25b)

z23 =
r4

br4
0 p
∑4

i=1
∑

j>i (ξi − ξ j )µi j ai a j

4
∑4

i=1
∑

j>i (ξi − ξ j )ψi j ai a j
, (25c)

z24 =
r2

b p
∑4

i=1(12z21r2
br4

0λi1− 2(4z21+ 1)r6
0λi2+ (4z21+ 1)r6

bλi3)ai

4
∑4

i (r
6
0λi2+ 2r6

bλi3− 3r4
br2

0λi4)ai
, (25d)

Di = p
4∑

j=1

ζ j z2 jλi j , i, j = 1, 2, 3, 4, (25e)

where λi j , ηi j , µi j , and ψi j are elements of 4× 4 matrices while ξi , ai , and ζi are those of vectors
possessing four components. Although the solution procedure was straightforward, the mathematical
expressions for these parameters are quite lengthy. For brevity, they are documented in the Appendix.

At this point, the complete solution to the uniaxial traction load σx = p applied at the outer boundary
of the cylinder can readily be obtained by superposing the axial symmetric (15) and the antisymmetric
(24a) stresses. For the case of σy = q , stresses can be adapted by making the replacements θ→ θ + 1

2π ,
cos 2θ→− cos 2θ , and sin 2θ→− sin 2θ , without affecting the axial symmetric part.

In summary, we solved the boundary value problem presented in Figure 1 by the method of Airy stress
function. The solution algorithm follows closely to typical plane elasticity problems as explained in the
classical theory of elasticity [Barber 2010]. First, the governing equations of plane elasticity (2)–(5) were
combined to construct the compatibility condition on stress components. Second, by the introduction of
Airy stress function (11), the condition was further transformed into a fourth-order differential equation
whereas both equilibrium equations in (2) are found to be identically satisfied. Third, the compatibility
equation in terms of Airy stress function was analytically solved for both axial symmetric and antisym-
metric uniform boundary loading. For the two cases, the solutions contain four and eight integration
constants, respectively. Finally, they were uniquely determined by implementing the traction boundary
conditions at the inner and outer surfaces of the cylinder and the perfect bonding assumption at the graded
shell-cylinder interface.

3. Numerical results and discussion

Although we have obtained the analytical solution to the present problem it is mathematically lengthy
and therefore inconvenient to demonstrate the effect of the embedded FGM shell. The numerical studies
that will be presented in this section are for two purposes. The first of which is to compare the differences
in stress concentrations of a thick-walled cylinder, if any, due to an FGM inner shell and a completely
homogeneous one. The other is to explore the mechanism of mitigating stress concentrations and thus
to enhance the structural integrity of pressure vessels.
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Figure 2. Variation of the normalized radial stress as a function of the radial coordinate
for five homogeneous shells.

Calculations require specific values for material properties, geometric parameters, and mechanical
loads. We assume that the Poisson’s ratio of both the cylinder and the shell is ν = 0.3, because of its very
limited impact on stress concentrations [Sburlati 2013]. Due to the absence of the size-dependent effect,
it is sufficient to assign just two radii ratios r0/ra = 3 and rb/ra = 9 for the geometric parameters. All
stress values are normalized with respect to the applied boundary traction. In addition, for comparison
purposes the case of a homogeneous inner shell that possesses the same material properties as those of
the outer cylinder is also calculated whenever necessary. As aforementioned in Section 2, all analysis
and discussion to be presented in this section were performed against the plane strain condition. In the
remainder of this section, we first consider the case of a uniform all-around boundary loading, followed
by the more general case of an arbitrary biaxial traction.

3.1. Axial symmetric traction loading.

3.1.1. A homogeneous inner shell with different properties from those of the outer cylinder. For compar-
ison purposes, let us first consider a completely homogeneous inner shell but with a different Young’s
modulus than that of the outer cylinder

E (i) =
(

ra

r0

)n

E (o), (26)

where n is an arbitrary constant representing the relative stiffness between the shell and the cylinder. For
nonzero n, it is seen that there is a discontinuity in material properties across the shell-cylinder interface.
This simplified case may be treated as a degeneracy of the solution developed for an FGM shell. The
Airy stress function of the shell thus takes the same form as that of the cylinder (13). As a result, the
stress fields in both domains share the same distribution pattern; see (15a) and (15b). The four constants
of integration can subsequently be determined by imposing the boundary conditions at the material’s
surfaces (ra, rb) and the shell-cylinder interface (r0). For the special case of a completely homogeneous
cylinder, the stress field can be obtained by further setting the index n as zero.

Figure 2 shows the normalized radial stress distribution for different values of n (n=0, 0.5, 0.85, 1.1, 2).
It is seen that for positive n, the radial stress is always smaller than that of a completely homogeneous
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Figure 3. Variation of the normalized hoop stress as a function of the radial coordinate
for five homogeneous shells.

cylinder (n = 0 or E (i) = E (o)). In particular, the radial stress is significantly reduced at the shell-cylinder
interface. Because in this case the Young’s modulus of the embedded shell is smaller than that of the
outer cylinder, the slope of the radial stress curve becomes smaller in the shell and larger in the cylinder,
when compared to the case of n = 0. With increasing n, both the slope and general level of the radial
stress in the shell decrease. For the outer cylinder, an opposite trend can be confirmed. It is also noticed
that at the shell-cylinder interface the radial stress is not differentiable, although the stress value remains
continuous. For all values of n, the maximum stress always appears on the outer surface of the cylinder
and is equal to the applied all-around tension, indicating that stress concentrations are not of a concern
for the radial stress component.

Figure 3 shows the variation of the normalized hoop stress for the same five cases that were studied
in Figure 2. It is seen that for the case of a completely homogeneous cylinder (n = 0), the stress
concentration factor reads σθ/p = 2.025. For n 6= 0 the hoop stress experiences a sharp discontinuity
across the shell-cylinder interface. The softer the inner shell is the larger the stress discontinuity becomes.
Moreover, the stress level becomes lower in the embedded shell but higher in the outer cylinder. In both
domains, the hoop stress component decays with the radial coordinate. Furthermore, it is interesting to
note the trade-off pattern between the stress levels at the rim of the inner shell and at the shell-cylinder
interface. With increasing n, the stress concentration factor at r = ra monotonically decreases. The
opposite is true for the stress concentration factor at the shell-cylinder interface. This behavior suggests
an optimized value of the relative stiffness parameter (n = 0.725, E (i)/E (o) ≈ 0.451) such that the
stress concentration factors at the shell surface and at the shell-cylinder interface become an equal value
(σθ/p = 1.446). The stress concentration level has reduced by 27.7% when compared with a completely
homogeneous thick-walled cylinder.

3.1.2. A graded thin shell perfectly bonded to a thick-walled cylinder. In this subsection, we aim to
analyze the stress distribution inside an FGM shell perfectly bonded to the inner surface of a thick-walled
cylinder. The combination is still subjected to an axisymmetric all-around tension at the outer surface of
the cylinder r = rb. The Young’s modulus of the FGM shell is allowed to vary along its radial dimension,
by following the power-law function (1). To investigate the variation of stresses, the four constants of



TUNING STRESS CONCENTRATIONS THROUGH EMBEDDED FUNCTIONALLY GRADED SHELLS 321

m z1/p z2/p C1/p C2/p

0.5 −1.692 0.510 0.366 −2.417
0.85 −2.176 0.513 0.272 −1.216
1.1 −2.521 0.516 0.212 −0.819
2 −3.698 0.523 0.071 −0.233

Table 1. Numerical values of the four constants of integration in (16) that are used for
plotting Figures 4 and 5, left. The other parameters are set as ν = 0.3, r0/ra = 3, and
rb/ra = 9.
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Figure 4. Variation of the normalized radial stress along the radial dimension for five
inhomogeneous shells.

integration in (16) must first be determined. Table 1 tabulates numerical values of these coefficients for
four representative inhomogeneity indices. Values of other parameters are already given at the beginning
of Section 3. It is also worth mentioning that, since the Young’s modulus remains continuous across the
shell-cylinder interface, its value does not enter into the determination of stress components.

Figure 4 shows the normalized radial stress along the thickness dimension of the structure for five
inhomogeneity indices. It is found that the radial stress level can be effectively reduced by the use of
an FGM shell. In particular, the radial stress at the graded shell-cylinder interface is significantly lower
than that of an integral cylinder of constant stiffness. The larger the inhomogeneity index is the more
effective the stress reduction becomes. Benefitting from the continuity of material properties across the
graded shell-cylinder interface (r = r0), no sharp corners in the radial stress curves were observed. For
all five cases, the maximum radial stress always appears at the outer surface of the cylinder and thus
implies the absence of concentration.

To validate the accuracy of the developed analytical solution, finite element modelings of the exactly
same model were also performed. Figure 5 shows the analytical solution and finite element results of the
hoop stress distribution for five values of the inhomogeneity index. It can be seen that these two inde-
pendent solutions agree with each other very well. In the finite element approach, the biggest challenge
involves the modeling of the inhomogeneous shell. In this work, we closely followed a discretization
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Figure 5. Variation of the normalized hoop stress along the radial dimension for five
inhomogeneous shells. Left: analytical solution. Right: finite element modeling.

scheme recently proposed by Liu et al. [2018]. Readers who are interested in the numerical modeling of
inhomogeneous materials may refer to the article for more details.

When compared with the radial stress, the distribution pattern of the hoop stress becomes more com-
plicated. In the graded shell, three trends can be clearly observed. First, when m is small the hoop
stress decreases all the way through the thickness of the shell. Second, as the value of the inhomogeneity
index increases the hoop stress curve shows a parabolic behavior and a local minimum can be found
somewhere between the shell rim and the shell-cylinder interface. Third, when the inhomogeneity index
reaches a critical value (e.g., m ≈ 1.1) the point of inflection of the hoop stress curve disappears and the
hoop stress monotonically increases all the way through the thickness of the shell.

Similar to the case of a homogeneous inner shell, the hoop stress at the shell surface r = ra decreases
with increasing inhomogeneity index. However, the opposite trend is found at the shell-cylinder interface.
On the other hand, the hoop stress within the outer cylinder decays all the way along the radial axis for
any inhomogeneity index. Soft shells result in higher hoop stresses in the cylinder. Unlike the case of a
homogeneous shell, the hoop stress across the shell-cylinder interface now becomes continuous but is still
not differentiable. The sharpness of the corner at r = r0 behaves a positive function of the inhomogeneity
index. It is clear that the maximum hoop stress for the case of an inhomogeneous shell may occur either
at the shell rim or at the shell-cylinder interface, depending on the value of the inhomogeneity index. It
can be inferred that there must exist an optimized inhomogeneity index (m = 0.731) to make the hoop
stress equal (σθ/p = 1.248) at the shell surface and at the shell-cylinder interface. It becomes obvious
that the use of a graded inner shell is more effective than a homogeneous one when the stress reduction
is of primary concern. In this case, the stress concentration factor has reduced by 38.4% when compared
with a completely homogeneous thick-walled cylinder.

3.2. An arbitrary biaxial traction load. We now consider a thick-walled cylinder reinforced by a graded
inner shell and subjected to a general biaxial traction load applied at the outer boundary of the cylin-
der. Since there are many possible combinations of the applied tractions p and q, we here introduce
another parameter γ = q/p. In the numerical examples, several typical values of γ are taken, e.g.,
γ = 1, 0.5, 0,−0.5, and −1. It is noted that when γ = 1 the solution degenerates to the special case of
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z21/p z22/p z23/p z24/p D1/p D2/p D3/p D4/p

−0.272 1.320 · 10−04
−1.361 0.899 0.365 −0.189 −0.177 3.485 · 10−04

Table 2. Numerical values of the eight constants of integration in (25) that are used for
plotting the various figures in Section 3.2. The other parameters are set as m = 0.5,
ν = 0.3, r0/ra = 3, and rb/ra = 9.
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Figure 6. Variation of the normalized hoop stress along x-axis (θ = 0) for five inhomo-
geneity indices. The traction ratio was fixed as a constant γ = 0.5.

an axial symmetric traction load that was studied in the previous subsection. A uniaxial tension (σx = p)
is represented by γ = 0 whereas the antisymmetric/pure shear load (σx = p, σy =−p) is equivalent to
γ =−1. Moreover, it is sufficient to consider the loading case of q ≤ p, since all solutions due to q ≥ p
can be obtained by a simple coordinate rotation of 1

2π around the axis of symmetry.
In addition to Table 1, calculation of stresses due to an arbitrary biaxial load also requires the eight

constants of integration given by (25). For the representative inhomogeneity index m = 0.5, the numerical
values of these coefficients are tabulated in Table 2. Again, stresses are independent on the Young’s mod-
ulus E (o), benefitting from its continuity across the shell-cylinder interface. In the next two subsections,
we explore separately the effects of the inhomogeneity index m and the loading parameter γ on the stress
reduction in the thick-walled cylinder.

3.2.1. Effect of the inhomogeneity index. In this subsection, we study the effect of the inhomogeneity
index m. Several specific values of the index were considered in the subsequent numerical calculations,
e.g., m = 0, 0.5, 0.85, 1.1, and 2. To exclude the undesired coupling effect of the traction ratio, it was
fixed as a constant, i.e., γ = 0.5, in this subsection.

Figures 6 and 7 show the hoop stress distribution along x and y directions, respectively. Along the
radial direction θ = 0, the behavior of the hoop stress has been significantly affected by the introduction
of the inhomogeneous shell. For all cases with m 6= 0, the hoop stress now increases within the inner
shell and then approximately stays constant in the cylinder. The location of the maximum hoop stress
has changed from close to the inner surface of the shell toward to the shell-cylinder interface. Moreover,
with increasing inhomogeneity the hoop stress value decreases at the inner surface of the shell. Slight
fluctuations in the hoop stress level were found at the shell-cylinder boundary, with the highest stress
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Figure 7. Variation of the normalized hoop stress along y-axis (θ = 1
2π) for five inho-

mogeneity indices. The traction ratio was fixed as a constant γ = 0.5.

value given by the largest inhomogeneity m = 2. An intersection among the stress curves was found near
the shell-cylinder interface, approaching from the shell side.

Along the other radial direction θ = 1
2π , the distribution of the hoop stress shows quite similar be-

havior as that of the case due to an all-around boundary traction (Figure 7). In the inhomogeneous shell,
the hoop stress decreases when the shell inhomogeneity is small. In particular, for the special case of
zero inhomogeneity (m = 0), the stress concentration factor is the highest (σθ/p = 2.556). For large
inhomogeneity indices, e.g., m ≥ 1.1, the trend has been reversed. Roughly in the interval 0.85<m < 1.1,
the hoop stress curve behaves as a parabola with positive curvature and the maximum value of the hoop
stress could occur on either boundary of the shell, or on both. In contrast, the hoop stresses in the outer
cylinder monotonically decay for all values of the inhomogeneity index.

Referring to both Figure 6 and Figure 7, it can be concluded that the maximum hoop stress exists on
either the inner surface of the shell or the shell-cylinder interface. Therefore, there must exist a critical
inhomogeneity index, m̂, which makes the hoop stress equal at r = ra and r = r0. A numerical search is
performed for such an optimized inhomogeneity level. A close examination of Figures 6 and 7 reveals
that the optimum inhomogeneity index must lie within the interval (0.85, 1.1). The search can start
from either the lower or the upper bound. For the given inhomogeneity index, the stress concentration
factor at the inner surface of the shell is compared with that at the shell-cylinder interface. If the two
factors are found to be unequal, the inhomogeneity index is updated by an increment of 0.001. The stress
concentration factors are subsequently recalculated. The search stops until the difference between the
two factors is less than a predefined degree of accuracy, e.g., 0.001. The final result was found to be
m̂ ≈ 0.961. It is clear that when m < m̂, the maximum hoop stress occurs on the inner surface of the shell,
the same situation as that of a completely homogeneous thick-walled cylinder. On the other hand, when
m > m̂ the most severe stress concentration shifts to the shell-cylinder interface. The concentration factor
of the hoop stress component reaches its minimum value (σθ/p = 1.327) when m = m̂. This represents
a reduction of 48.1% in the stress concentration factor when compared with a completely homogeneous
cylinder under the exact same loading condition.
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Figure 8. Variation of the normalized hoop stress along the inner surface of the inho-
mogeneous shell (r = ra) for five inhomogeneity indices. The traction ratio was fixed
as a constant γ = 0.5.
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Figure 9. Variation of the normalized hoop stress along the shell-cylinder interface (r =
r0) for five inhomogeneity indices. The traction ratio was fixed as a constant γ = 0.5.

Since the stress concentration always occurs on the inner surface for a cylinder subjected to far-field
boundary loading, it is enlightening to examine the hoop stress distribution along r = ra , as shown in
Figure 8. It is seen that no matter how the inhomogeneity index changes, the hoop stress curve follows
a complete period of sine-wave within θ ∈ [0, π]. The minimum and the maximum hoop stresses are
found at θ = 0 and θ = 1

2π , respectively. The general level of the hoop stress decreases with increasing
inhomogeneity index.

Figure 9 shows the shear stress distribution along the shell-cylinder interface (r = r0). It is seen that
the effect of the inhomogeneity index m is quite marginal. In the interval θ ∈ [0, π], all shear stress curves
follow a complete sine-wave. The extremes of the shear stress appear at θ = 1

4π and 3
4π . It is therefore

instructive to examine the shear stress distribution along either of these two directions. Figure 10 shows
the variation of the shear stress component through the wall thickness of the structure along θ = 1

4π .
It is found that along this dimension all shear stresses are negative. A point of inflection exists for
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Figure 10. Variation of the normalized hoop stress along the radial direction (θ = 1
4π)

for five inhomogeneity indices. The traction ratio was fixed as a constant γ = 0.5.

all inhomogeneity indices, with the exact location clearly depending on the value of m. With increasing
inhomogeneity index, the location of the shear stress extreme shifts from inside the inner shell to the outer
cylinder. More importantly, the magnitude of the shear stress extreme decreases with the inhomogeneity
index when m is small and subsequently increases when it becomes large. This observation implies
that there exists an optimal inhomogeneity index m̂ at which the magnitude of the shear stress extreme
assumes its lowest value. Numerical search suggests that the optimal inhomogeneity index is m̂ ≈ 0.504,
occurring at r ≈ 2.767ra . In this case, the corresponding concentration factor of the shear stress is the
lowest (σrθ/p = 0.318).

3.2.2. Effect of the traction ratio. To investigate the effect of the traction ratio γ = q/p, in this subsection
we fix the inhomogeneity index as a constant, i.e., m = 0.5. As expected, for all loading cases (|γ | ≤ 1)
no stress concentrations were found for the radial stress component. The absolute value of the maximum
radial stress is never greater than p. It is therefore only necessary to examine the hoop and shear stresses.

The hoop stress distribution along the radial dimension θ = 0 is shown in Figure 11. It is seen that
for positive γ , the hoop stress varies smoothly through the thickness of the structure. For negative γ ,
the hoop stress depends more sensitively on the radial coordinate. Very high compressive values are
found near the inner surface of the graded shell whereas the stress curve varies quite smoothly in the
outer cylinder. As γ switches from positive to negative, the hoop stress also switches from tension
to compression. Again, excellent agreements have been achieved between the results predicted by the
analytical approach and the finite element approach.

On the other hand, the distribution of the hoop stress along the radial direction θ = 1
2π behaves quite

differently, as shown by both the analytical (Figure 12, left) and the finite element (Figure 12, right)
solutions. In this direction, the hoop stress remains positive irrespective of the sign of the traction ratio γ .
It is obvious that the hoop stress continuously decays in both domains, with a blunt corner found across
the shell-cylinder interface. The level of σθ in the inner shell is inversely proportional to γ . Although
an opposite trend shows in the outer cylinder, the stress levels due to all loading conditions are actually
quite close to σx = p. From Figure 12 it is clear that high stress concentrations appear near the inner
surface of the embedded shell and the concentration factor increases with decreasing traction ratio γ .
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Figure 11. Variation of the normalized hoop stress along the x direction (θ = 0) for
five boundary loads. The inhomogeneity index of the inner shell was fixed as a constant
m = 0.5. Left: analytical solution. Right: finite element modeling.

Figure 12. Variation of the normalized hoop stress along the y direction (θ = 1
2π) for

five boundary loads. The inhomogeneity index of the inner shell was fixed as a constant
m = 0.5. Left: analytical solution. Right: finite element modeling.

Informed by Figures 11 and 12, high stress values are always found at the surface of the inner shell.
As a result, in Figure 13, we present the distribution of the hoop stress along the inner surface of the
shell r = ra . Due to symmetry, only a half interval of the surface was taken into account. In general,
for θ ∈ [0, π], the hoop stress varies by following a sine pattern for each traction ratio γ . It is found
that stress extremes always appear along the x or y direction. For all traction ratios considered in the
numerical study (|γ | ≤ 1), the maximum compressive and tensile hoop stresses happen along the x
and y direction, respectively. Among them, the antisymmetric traction load results in the highest stress
concentration factor (σθ/p = 3), the same value as that of a voided homogeneous plate subjected to a
uniaxial tensile load. Nonetheless, it should be recalled that such a stress distribution is obtained by
fixing the inhomogeneity index of the inner shell as a constant (m = 0.5).
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Figure 13. Variation of the normalized hoop stress along the inner surface of the shell
(r = ra) for five boundary loads. The inhomogeneity index of the inner shell was fixed
as a constant m = 0.5.
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Figure 14. Variation of the normalized shear stress along the radial direction (θ = 1
4π)

for five boundary loads. The inhomogeneity index of the inner shell was fixed as a
constant m = 0.5.

Enlightened by the stress distribution in an axially loaded structural member, the maximum shear
stress should occur along the radial direction θ = 1

4π , as shown in Figure 14. The magnitude of the
shear stress increases with decreasing γ , as the boundary loading shifts from an all-around tension to an
antisymmetric load. For the case of γ =−1, slight stress concentration in the shear stress component
was found near the shell-cylinder interface. Along the radial direction, the absolute value of the shear
stress rapidly increases in the inner half of the shell and remains nearly constant in the outer half. No
significant variations of the shear stress occur in the cylinder.

Figure 15 shows the distribution of the shear stress component along the shell-cylinder interface
(r = r0). As can be expected, the maximum values are found along directions that are 1

4π from the
two loading axes (θ = 0, 1

2π). The shear stress extremes behave a negative function of the traction
ratio γ , with the maximum values occurring in the case of the antisymmetric load.
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Figure 15. Variation of the normalized shear stress along the shell-cylinder interface
(r = r0) for five boundary loads. The inhomogeneity index of the inner shell was fixed
as a constant m = 0.5.

4. Conclusions

In this work, we solved the stress distribution and stress concentration in a homogeneous thick-walled
cylinder, reinforced by either a radially graded or a homogeneous inner shell. An arbitrary biaxial traction
load applied at the outer boundary of the cylinder was taken into consideration. Closed-form analytical
solutions were obtained with the method of Airy stress function. On the basis of the analytical solutions
and extensive numerical experiments, a few summaries and conclusions can be made as follows:

• We show that the stress concentration that is commonly encountered in thick-walled cylinders can
be significantly mitigated by introducing a graded inner shell with a proper distribution in elastic
modulus.

• With reference to the elastic stiffness of a thick-walled cylinder, a graded soft shell tends to decrease
the conventional stress concentration occurring at the inner boundary of the structure. Nonetheless,
stresses at the interface separating the shell and the cylinder increase inevitably due to the softening
of the inner layer of the hollow structure.

• An optimal inhomogeneity index in the power-law gradation can be found for which the stress
concentrations at the inner boundary of the structure and at the shell-cylinder interface are well
balanced.

• In addition to the inhomogeneity index of the embedded shell, we also investigated the effect of
the biaxial traction ratio. For all loading cases, no significant concentrations in the radial and shear
stress components are found. The hoop stress concentration is therefore of the primary concern.
In analogy to the classical solution of a thick-walled cylinder, the concentration factor in the hoop
stress component increases with growing difference (including sign) between the boundary loads
along perpendicular directions. In this sense, an all-around uniform load is most desired.

Despite the completeness of this work in the context of an idealized plane elasticity problem, future
work in this line of research could entail more practical engineering conditions:
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(1) the incorporation of more realistic bonding conditions across the embedded shell-cylinder interface,

(2) grading functions different than the power-law, and

(3) three-dimensional structures.

Appendix: Expressions for the various parameters defined in (25)

The parameters λi j , ηi j , µi j , and ψi j are elements of four 4× 4 matrices:

λ11 =
1

3A1(r0)

(
4(1+ ν)βM22+ 2(1+ ν)(α−β)M23− 2(1+ ν)(α+β)M24

+M14
(
2(1+ ν)(α−β)+ (2−m+β)M22+ (−2+m+α)M23

)
+M13

(
−2(1+ ν)(α−β)+ (−2+m+β)M22+ (2−m−α)M24

)
+M12

(
−4(1+ ν)β + (2−m−β)M23+ (−2+m−β)M24

))
,

λ12 =
1

3A1(r0)

(
8νβM22+ 4ν(α−β)M23− 4ν(α+β)M24

+M14
(
2(3+ ν)(α+β)+ (6−m+β)M22+ (m− 6+α)M23

)
+M13

(
−2(3+ ν)(α−β)+ (m− 6+β)M22+ (6−m−α)M24

)
+M12

(
(6−m−β)M23− 4(3+ ν)β + (m− 6−β)M24

))
,

λ13 =
1

3A1(r0)

(
2(1+ ν)(α+β)M24− 4(1+ ν)βM22− 2(1+ ν)(α−β)M23

+M14
(
2(1+ ν)(α+β)+ (β − 6−m)M22+ (6+m+α)M23

)
+M13

(
(6+m+β)M22− 2(1+ ν)(α−β)− (6+m+α)M24

)
+M12

(
(6+m−β)M24− 4(1+ ν)β − (6+m+β)M23

))
,

λ14 =
1

3A1(r0)

(
4(α+β)M24− 8βM22+ 4(β −α)M23

+M14
(
2(ν− 1)(α+β)+ (β − 2−m)M22+ (2+m+α)M23

)
+M13

(
2(1− ν)(α−β)+ (2+m+β)M22− (2+m+α)M24

)
+M12

(
4(1− ν)β − (2+m+β)M23+ (2+m−β)M24

))
,

λ21 =
1

3A2(r0)

(
2(1+ ν)(α+β)M23− 4(1+ ν)βM21− 2(1+ ν)(α−β)M24

+M14
(
2(1+ ν)(α−β)+ (m− 2−β)M21+ (2−m+α)M23

)
+M13

(
(2−m−β)M21− 2(1+ ν)(α+β)+ (m− 2−α)M24

)
+M11

(
4(1+ ν)β + (m− 2+β)M23+ (2−m+β)M24

))
,

λ22 =
1

3A2(r0)

(
4ν(α+β)M23− 8νβM21− 4ν(α−β)M24

+M14
(
2(3+ ν)(α−β)+ (m− 6−β)M21+ (6−m+α)M23

)
+M13

(
(6−m−β)M21− 2(3+ ν)(α+β)+ (m− 6−α)M24

)
+M11

(
4(3+ ν)β + (m− 6+β)M23+ (6−m+β)M24

))
,
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λ23 =
1

3A2(r0)

(
4(1+ ν)βM21− 2(1+ ν)(α+β)M23+ 2(1+ ν)(α−β)M24

+M14
(
2(1+ ν)(α−β)+ (6+m−β)M21+ (α− 6−m)M23

)
+M13

(
(6+m−α)M24− 2(1+ ν)(α+β)− (6+m+β)M21

)
+M11

(
4(1+ ν)β + (6+m+β)M23+ (β − 6−m)M24

))
,

λ24 =
1

3A2(r0)

(
8βM21− 4(α+β)M23+ 4ν(α−β)M24

+M14
(
2(ν− 1)(α−β)+ (2+m−β)M21+ (α− 2−m)M23

)
+M13

(
2(1− ν)(α+β)− (2+m+β)M21+ (2+m−α)M24

)
+M11

(
4(ν− 1)β + (2+m+β)M23+ (2−m+β)M24

))
,

λ31 =
1

3B1(r0)

(
− 2(1+ ν)(α−β)M21+ 2(1+ ν)(α+β)M22+ 4(1+ ν)αM24

+M14
(
(2−m−α)M21− 4(1+ ν)α+ (m− 2−α)M22

)
+M12

(
2(1+ ν)(α+β)+ (m− 2+β)M21+ (2−m+α)M24

)
+M11

(
2(1+ ν)(α−β)+ (2−m−β)M22+ (m− 2+α)M24

))
,

λ32 =
1

3B1(r0)

(
8ναM24− 4ν(α−β)M21− 4ν(α+β)M22

+M14
(
(6−m−α)M21− 4(3+ ν)α+ (m− 6−α)M22

)
+M12

(
2(3+ ν)(α+β)+ (m− 6+β)M21+ (6−m+α)M24

)
+M11

(
2(3+ ν)(α−β)+ (6−m−β)M22+ (m− 6+α)M24

))
,

λ33 =
1

3B1(r0)

(
2(1+ ν)(α−β)M21+ 2(1+ ν)(α+β)M22+ 4(1+ ν)αM24

+M14
(
(6+m−α)M22− 4(1+ ν)α− (6+m+α)M21

)
+M12

(
2(1+ ν)(α+β)+ (6+m+β)M21+ (α− 6−m)M24

)
+M11

(
2(1+ ν)(α−β)− (6+m+β)M22+ (6+m+α)M24

))
,

λ34 =
1

3B1(r0)

(
4(α−β)M21+ 4(α+β)M22− 8αM24

+M14
(
4(1− ν)α− (2+m+α)M21+ (2+m−α)M22

)
+M12

(
2(ν− 1)(α+β)+ (2+m+β)M21+ (α− 2−m)M24

)
+M11

(
2(ν− 1)(α−β)− (2+m+β)M22+ (2+m+α)M24

))
,

λ41 =
1

3B2(r0)

(
2(1+ ν)(α+β)M21+ 2(1+ ν)(α−β)M22− 4(1+ ν)αM23

+M13
(
4(1+ ν)α+ (m− 2+α)M21+ (2−m+α)M22

)
+M11

(
(m− 2−β)M22− 2(1+ ν)(α+β)+ (2−m−α)M23

)
+M12

(
(2−m+β)M21− 2(1+ ν)(α−β)+ (m− 2−α)M23

))
,
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λ42 =
1

3B2(r0)

(
4ν(α+β)M21+ 4ν(α−β)M22− 8ναM23

+M13
(
4(3+ ν)α+ (m− 6+α)M21+ (6−m+α)M22

)
+M11

(
(m− 6−β)M22− 2(3+ ν)(α+β)+ (6−m−α)M23

)
+M12

(
(6−m+β)M21− 2(3+ ν)(α−β)+ (m− 6−α)M23

))
,

λ43 =
1

3B2(r0)

(
4(1+ ν)αM23− 2(1+ ν)(α+β)M21− 2(1+ ν)(α−β)M22

+M13
(
4(1+ ν)α+ (6+m+α)M21+ (α− 6−m)M22

)
+M11

(
(6+m−β)M22− 2(1+ ν)(α+β)− (6+m+α)M23

)
+M12

(
(β − 6−m)M21− 2(1+ ν)(α−β)+ (6+m−α)M23

))
,

λ44 =
1

3B2(r0)

(
8αM23− 4(α+β)M21− 4ν(α−β)M22

+M13
(
4(ν− 1)α+ (2+m+α)M21+ (α− 2−m)M22

)
+M11

(
2(1− ν)(α+β)+ (2+m−β)M22− (2+m+α)M23

)
+M12

(
2(1− ν)(α−β)+ (β − 2−m)M21+ (2+m−α)M23

))
,

ηi j = r2
br4

0 (λi3λ j2− λ j3λi2)+ 2r6
0 (λi2λ j4− λ j2λi4)+ r6

b (λi3λ j4− λ j3λi4),

µi j = r4
0 (λi2λ j1− λ j2λi1)+ r4

b (λi4λ j1− λ j4λi1),

ψi j = r8
0 (λi2λ j1− λ j2λi1)+ 2r2

br6
0 (λi4λ j2− λi2λ j4)+ r4

br4
0 (3(λi1λ j4− λi4λ j1)+ λi2λ j3− λi3λ j2)

+ 2r6
br2

0 (λi3λ j1− λi1λ j3)+ r8
b (λi4λ j3− λ j4λi3),

where

M11 =
(m2
+ 2(1−α)m−α(2−α))ν

2(m+α)
−

m−α− 6
m+α

,

M12 =
(m2
+ 2(1+α)m+α(2+α))ν

2(m−α)
−

m+α− 6
m−α

,

M13 =
(m2
+ 2(1−β)m−β(2−β))ν

2(m+β)
−

m−β − 6
m+β

,

M14 =
(m2
+ 2(1+β)m+β(2+β))ν

2(m−β)
−

m+β − 6
m−β

,

M21 =
1

96

(
m2(4ν− 28)+m(β2

−α2
+ 28β − 4βν− 24ν− 88)

−β3
− 6β2

+ 6α2
+α2β + 64β − 192ν− 192

)
,

M22 =
1

96

(
m2(4ν− 28)+m(α2

−β2
− 28α− 4αν− 24ν− 88)

+α3
− 6α2

+ 6β2
−β2α− 64α− 192ν− 192

)
,
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M23 =
1

96

(
m2(4ν− 28)−m(α2

−β2
+ 28β − 4βν+ 24ν+ 88)

+β3
− 6β2

+ 6α2
−α2β − 64β − 192ν− 192

)
,

M24 =
1

96

(
m2(4ν− 28)−m(β2

−α2
− 28α+ 4αν+ 24ν+ 88)

+α3
+ 6α2

− 6β2
−β2α− 64α+ 192ν+ 192

)
,

and

3= M11(−2βM22− (α−β)M23+ (α+β)M24)+M12(2βM21− (α+β)M23+ (α−β)M24)

+M13((α−β)M21+ (α+β)M22− 2αM24)+M14(−(α+β)M21− (α−β)M22+ 2αM23).

The parameters ξi , ai , and ζi are elements of three four-component vectors

ξi = {α −α β −β},

ai = {A1(ra) A2(ra) B1(ra) B2(ra)},

ζi = {r1−m
0 r3−m

0 r−3−m
0 r−1−m

0 }.
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